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Abstract. The aim of this paper is to show J -stability of expanding rational maps over
an algebraically closed, complete and non-Archimedean field of characteristic zero. More
precisely, we will show that for any expanding rational map, there exists a neighborhood
of it such that the dynamics on the Julia set of any rational map in the neighborhood is the
same as the dynamics of the expanding rational map as a non-Archimedean analogue of a
corollary of Mañé, Sad and Sullivan’s result [On the dynamics of rational maps. Ann. Sci.
Éc. Norm. Supér. (4) 16 (1983), 193–217] in complex dynamics.

1. Introduction
Let K be an algebraically closed field of characteristic zero with a complete, non-trivial
and non-Archimedean norm | · | : K → R. For instance, one can consider the field Cp of
complex p-adic numbers or a smallest algebraically closed and complete extension of the
field of formal Laurent series C((T )) equipped with a non-Archimedean norm. We refer
to [Rob00] for the details on non-Archimedean norms. In this paper, we study stability on
the chaotic locus of iterations of expanding rational maps with coefficients in K . We will
give a rigorous definition of expanding rational maps later in this section (Definition 1.1).

This paper contributed to the development of the study of iterations of rational maps
acting on the projective line over non-Archimedean fields. We refer to [Hs00, Ben01,
Bez01, Ben02, Bez04, Riv03, Kiw06, Silv07, BH12] for interesting developments of the
theory of dynamical systems in this non-Archimedean settings. The main result of this
paper is motivated by Mañé, Sad and Sullivan’s result [MSS83] in complex dynamics.
They introduced the notion of J -stability of rational maps, which roughly means that the
dynamics on the Julia sets of two given rational maps are dynamically equivalent if those
two rational maps are close enough. They also showed that a rational map is J -stable if it
has a neighborhood in the set of rational maps on which the number of attracting cycles
is constant. As a corollary of their theorem, we can obtain the J -stability theorem for
expanding rational maps in complex dynamics. We refer the reader to [McMull94] for
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more details on J -stability in complex dynamics. The main purpose of this paper is to give
a non-Archimedean analogue of the J -stability theorem for expanding rational maps. Here
we prepare some notation to introduce our main result (Theorem 1.2).

The projective line P1
K over K is defined as the quotient space

P1
K := (K

2
\{0})/∼,

where ∼ is the equivalence relation defined by (z0, z1)∼ (w0, w1) if there exists a c ∈
K\{0} such that (z0, z1)= (c · w0, c · w1). The chordal metric ρ on P1

K is defined by

ρ((z0 : z1), (w0 : w1)) :=
|z0 · w1 − w0 · z1|

max{|z0|, |z1|} ·max{|w0|, |w1|}

for any (z0 : z1), (w0 : w1) ∈ P1
K . Note that this metric is complete and invariant under the

action of φ ∈ GL(2;O), where O := {z ∈ K | |z| ≤ 1} is the ring of integers of K . We refer
to [Silv07, §2.1] for more details on the chordal metric. A rational map f : P1

K → P1
K of

degree d over K is a map given by

f (z0 : z1)= (F0(z0, z1) : F1(z0, z1)),

where F0 and F1 are two-variable homogeneous polynomials of degree d over K with
no common factors. Note that we can identify (z : 1) ∈ P1

K with z ∈ K and (1 : 0) ∈ P1
K

with∞. Hence a rational map naturally induces an action on K ∪ {∞}. In the rest of this
paper, we will regard the projective line P1

K as the union K ∪ {∞} and a rational map as
an action on K ∪ {∞}. For a given rational map f : P1

K → P1
K , let us denote by f k the kth

iteration of f . The Fatou set F f of f is defined as the largest open set on which { f k
}
∞

k=0
is equicontinuous with respect to ρ and the Julia set J f of f is defined as P1

K \F f . We
will review some standard facts on rational maps and the Julia sets in §2. Throughout this
paper, we denote by N the set {1, 2, . . .} of all natural numbers.

Definition 1.1. Let f : P1
K → P1

K be a rational map of degree d ≥ 2. We say that f is
expanding if it satisfies the following properties.
(1) The Julia set J f of f is non-empty and it is contained in K .
(2) There exist a c > 0 and a λ > 1 such that, for any z ∈ J f and n ∈ N,

|( f n)′(z)| ≥ c · λn .

Note that the non-emptiness of the Julia set is necessary, unlike in complex dynamics.
We refer to [Silv07, §2.5] and [Ben14] for more details on rational maps whose Julia sets
are empty.

Remark 1. One can define expanding rational maps in terms of spherical derivatives as
complex dynamics. More precisely, we define the spherical derivative f #

: P1
K → R of a

rational map f : P1
K → P1

K by

f #(z) := lim
w→z

ρ( f (w), f (z))
|w − z|

and say that f is expanding with respect to the spherical derivative if it has non-empty
Julia set (possibly containing infinity) and there exists a C > 0 and a λ > 1 such that, for
any z ∈ J f and n ∈ N,

( f n)#(z)≥ C · λn .
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Note that f #
: P1

K → R and (φ ◦ f )# = f # for any φ ∈ GL(2;O) because the spherical
metric ρ is invariant under the action of GL(2;O). This implies that if f is expanding
with respect to the spherical derivative, then φ−1

◦ f ◦ φ is also expanding, although
the constant C may be different. Moreover, it is not difficult to check that if f is
expanding with respect to the spherical derivative, then f is also expanding in the sense of
Definition 1.1. Indeed, since F f is non-empty (see, for example, [Silv07, Corollary 5.19]
for more details), there exists a φ ∈ GL(2;O) such that ∞∈ φ(F f ). Thus replacing f
by φ−1

◦ f ◦ φ, we can assume that ∞ /∈ J f . Hence f is expanding in the sense of
Definition 1.1 because J f is bounded and

f #(z)=
| f ′(z)|

max{1, | f (z)|2}
for any z ∈ K . We refer to [Ben08] for more details on this spherical derivative.

Let us denote by Rd the set of rational maps of degree d . The set Rd is equipped with
the topology induced from the (2d + 1)-dimensional projective space over K .We refer
to [Silv07, Proposition 2.13 and §4.3] for more details.

THEOREM 1.2. Let f : P1
K → P1

K be a rational map of degree d ≥ 2. If f is expanding,
then it is J -stable in Rd , that is, there exists a neighborhood U ⊂Rd of f such that, for
all g ∈U, there exists a homeomorphism h : J f → Jg such that

h ◦ f (z)= g ◦ h(z)

for any z ∈ J f . Moreover, the homeomorphism h : J f → Jg is isometric if g is close
enough to f .

Note that it is an non-Archimedean analogue of the J -stability theorem for expanding
rational maps in complex dynamics. However, there is a difference in the property of the
conjugation. More precisely, Mañé, Sad and Sulilvan’s theorem states that the conjugation
is quasi-conformal although the conjugation in Theorem 1.2 is an isometry. It is also
natural to consider that there is a rational map which is not expanding but J -stable. Such
a problem is still open in complex dynamics and it is also known that this problem is
equivalent to the Fatou conjecture, which is one of the most famous conjectures in complex
dynamics. We refer the reader to [GS98] for more details on the Fatou conjecture.

This paper is organized as follows. In §2, we will recall some basic notions of non-
Archimedean dynamical systems. In §3, we will prove Theorem 1.2 by using some key
lemmas. The key lemmas used will be proved in §4.

2. Preliminaries
In this section, we give a brief exposition of rational maps and Julia sets. Let us denote by
B(a; r) a closed ball

B(a; r) := {z ∈ K | |z − a| ≤ r}

centered at a ∈ K with radius r > 0.

PROPOSITION 2.1. Let f : P1
K → P1

K be a non-constant rational map. If f has no zeros
or poles in B(a; r), then, for any z ∈ B(a; r),

| f (z)| = | f (a)|.
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Proof of Proposition 2.1. If α ∈ K satisfies |a − α|> r , then

|z − α| =max{|z − a|, |a − α|} = |a − α|

for any z ∈ B(a; r). Since K is algebraically closed, we can write f as a quotient of
products of polynomials of degree one and thus we complete our proof. �

Next let us briefly summarize the basic properties of Julia sets that we will need in this
paper.

PROPOSITION 2.2. Let f : P1
K → P1

K be a non-constant rational map. Then the following
properties hold.
(1) The Julia set J f is completely invariant under f , that is,

f −1(J f )= J f .

(2) For any z ∈ J f ,

J f =

∞⋃
k=0

f −k({z}).

(3) For a closed subset E ⊂ P1
K satisfying f −1(E)⊂ E and #(E)≥ 2, J f ⊂ E.

See [Silv07, Proposition 5.30 and Corollary 5.32] for the proof.
The following proposition deals with the relationship between repelling periodic points

and the Julia set. Recall that a periodic point x of f with period m is said to be repelling if
|( f m)′(x)|> 1. We refer the reader to [Silv07, §2.2] for more details.

PROPOSITION 2.3. Let f : P1
K → P1

K be a non-constant rational map. Then the Julia set
J f is contained in the closure of the set of periodic points of f .

See [Hs00, Theorem 3.1] for the proof. Hsia [Hs00] conjectured that the Julia set is
the closure of the repelling periodic points as a non-Archimedean analogue of Fatou and
Julia’s results in complex dynamics. His conjecture is still open. However, we remark that
Bézivin [Bez01] proved that it is true if the rational map has at least one repelling periodic
point. See also [Kiw06, Okuy11, BH12, DJR15] for more details on the recent progress
on this topic.

The following proposition yields information about how many zeros of a rational map
are in a closed ball not containing any poles of the rational map.

PROPOSITION 2.4. Let f : P1
K → P1

K be a non-constant rational map. Suppose that there
exists a sequence {ak}

∞

k=0 ⊂ K such that

f (z)= a0 + a1 · (z − a)+ a2 · (z − a)2 + · · ·

for any z ∈ B(a; r). Setting a non-negative integer

l :=max{m ∈ {0, 1, . . .} | ∀n ∈ {0, 1, . . .}, |am | · rm
≥ |an| · rn

},

we have exactly l zeros of f in B(a; r), counted with multiplicity. In particular, if

|a0|> |an| · rn

for any n ∈ N, then f has no zeros in B(a; r).
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See [BR10, Proposition A.16] for the proof. As an application of Proposition 2.4, we
obtain a criterion for bijective maps.

COROLLARY 2.5. Under the hypotheses of Proposition 2.4, if

|a1| · r > |an| · rn

for any n ≥ 2, then
f |B(a; r)→ B( f (a); |a1| · r)

is bijective.

See [BR10, Corollary A.17] for the proof. We end this section with an important
constant in this paper.

PROPOSITION 2.6. Let p ≥ 0 be the residue characteristic of K . Define

κ :=

{
|p|1/(p−1) if p > 0,

1 if p = 0.

Then κ =min{|k|1/(k−1)
| k ∈ {2, 3, . . .}}> 0.

Proof of Proposition 2.6. If p = 0, then |n| = 1 for any n ∈ N and thus

min{|k|1/(k−1)
| k ∈ {2, 3 . . .}} = 1= κ > 0.

Otherwise, since p =min{n ∈ N | |n|< 1},

min{|k|1/(k−1)
| k ∈ {2, 3, . . .}} =min{|p|n/(p

n
−1)
| n ∈ N} = |p|1/(p−1)

= κ > 0. �

3. Proof of Theorem 1.2
In this section, we prove Theorem 1.2. We divide the proof into a sequence of lemmas.
The proofs of these lemmas can be found in §4.

Proof of Theorem 1.2. Let us first construct a nested sequence of neighborhoods of J f .
Put

N :=min{n ∈ N | c · λn > 1}, (3.1)

where c > 0 and λ > 1 are the constants as in Definition 1.1.

LEMMA 3.1. There exists a nested sequence {�n, f }
∞

n=0 of closed sets such that �0, f is
open (as well as closed) and

�n, f ⊂ f (�n, f )=�n−1, f

for any n ∈ N. Moreover, �0, f does not contain any critical points or poles of { f k
}

N
k=1.

Furthermore,

J f =�∞, f :=

∞⋂
n=0

�n, f .
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We will explicitly construct a sequence satisfying the conditions of Lemma 3.1 in the
proof. We then fix the constructed sequence {�n, f }

∞

n=0. Let us next find a neighborhood
U ⊂Rd of f .

LEMMA 3.2. For a small enough r > 0, there exists a neighborhood U ⊂Rd of f such
that, for any g ∈U, z ∈�0, f and n ∈ {1, 2, . . . , N }, | f (z)− g(z)|< r and |( f n)′(z)| =
|(gn)′(z)|. In particular, gn has no critical points or poles in �0, f .

We fix a neighborhood U ⊂Rd of f for a small enough r . We will give an explicit
upper bound for r in the proof of Lemma 3.2. Let us fix a g ∈U . Our next goal is to
construct a nested sequence of neighborhoods of Jg .

LEMMA 3.3. There exists a nested sequence {�n,g}
∞

n=0 of closed sets such that
�0,g =�0, f and

�n,g ⊂ g(�n,g)=�n−1,g

for any n ∈ N.

As in the case of Lemma 3.1, we will explicitly construct a sequence satisfying the
conditions of Lemma 3.3 in the proof. We also fix the constructed sequence {�n,g}

∞

n=0.
Let us set

�∞,g :=

∞⋂
n=0

�n,g.

Although the existence of �∞,g is not guaranteed at this step, it will turn out that

�∞,g = Jg 6= ∅

at the end of this proof. Now let us construct a map from �∞, f to �∞,g .

LEMMA 3.4. There exists a uniformly Cauchy sequence {hn :�n, f →�n,g}
∞

n=0 of maps
such that

hn−1 ◦ f (z)= g ◦ hn(z)

for any n ∈ N and z ∈�n, f .

By Lemma 3.4, we can define a map h :�∞, f →�∞,g by

h(z) := lim
n→∞

hn(z) (3.2)

for any z ∈�∞, f . Moreover,

h ◦ f (z)= lim
n→∞

hn−1 ◦ f (z)= lim
n→∞

g ◦ hn(z)= g ◦ lim
n→∞

hn(z)= g ◦ h(z).

We next show that h is isometric.

LEMMA 3.5. For any z, w ∈ J f ,

|h(z)− h(w)| = |z − w|.

We end this proof with a lemma which yields that h(�∞, f )= Jg . In particular, this
implies that h : J f → Jg is a conjugacy of the dynamics on J f and Jg .
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LEMMA 3.6. The Julia set Jg is non-empty. Moreover,

Jg = h(J f )=�∞,g. �

4. Proof of key lemmas
In this section, we prove lemmas used in §3. Let f be an expanding rational map of degree
d ≥ 2 defined in Definition 1.1. We put

M := sup{|( f n)′(z)| | z ∈ J f , n ∈ {0, 1, . . . , N }},

where N is the natural number defined as (3.1). Note that M ≥ 1 is well defined because
J f is bounded and it is bounded away from all poles of f n for each n ∈ {1, 2, . . . , N }.
We denote by C f the set of critical points or poles of { f n

}
N
n=1. Fix a δ > 0 satisfying

C f ∩
⋃

z∈J f

B(z; M N
· δ)= ∅.

Let us set
� :=

⋃
z∈J f

B(z; M N
· δ).

We define functions ν, µ :�→ R by

ν(z) :=
1∑N−1

n=0 |( f n)′(z)|

and

µ(z) :=
∑N−1

n=0 |( f n)′(z)|∑N
n=1 |( f n)′(z)|

.

Remark 2. The functions ν and µ are constant on B(z; M N
· δ) for any z ∈ J f . Indeed, it

follows from Proposition 2.1 that

|( f n)′(z)| = |( f n)′(w)|

for any n ∈ {1, 2, . . . , N } and w ∈ B(z; M N
· δ).

Remark 3. If z ∈� satisfies f (z) ∈�, then

ν( f (z))
| f ′(z)|

= µ(z) · ν(z)=
1∑N

n=1 |( f n)′(z)|
< 1.

Indeed, by the chain rule,

ν( f (z))
| f ′(z)|

=
1∑N−1

n=0 |( f n)′( f (z))| · | f ′(z)|
=

1∑N
n=1 |( f n)′(z)|

= µ(z) · ν(z).

We set
ν̃(z) := ν(z) · δ · κ,

where κ is the constant defined in Proposition 2.6.
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LEMMA 4.1. For any z ∈ J f , let us denote by {zk}
d
k=1 the pre-image of z by f . Let µk

denote µ(zk) for each k ∈ {1, 2, . . . , d}. For any 0≤ r ≤ 1,

f |B(zk; µk · r · ν̃(zk))→ B(z; r · ν̃(z))

is bijective.

Proof of Lemma 4.1. Since f has no poles in B(zk; M N
· δ), there exists a sequence

{an}
∞

n=1 ⊂ K such that

f (w)= f (zk)+ a1 · (w − zk)+ · · ·

and
f ′(w)= a1 + 2 · a2 · (w − zk)+ · · ·

for any w ∈ B(zk; M N
· δ). Note that a1 = f ′(zk). By Remark 3,

|a1| · µk · r · ν̃(zk)= | f ′(zk)| · µk · r · ν̃(zk)= r · ν̃(z).

Moreover, since B(zk; δ) has no critical points of f , it follows from Proposition 2.4 that

|a1|> |n| · |an| · δ
n−1

for any n ≥ 2. Since µk · r · ν(zk) < 1, this implies that

|a1| · µk · r · ν̃(zk) > |n| · |an| · δ
n−1
· µk · r · ν̃(zk)

≥ |an| · (δ · κ)
n
· µk · r · ν(zk)

≥ |an| · (δ · κ · µk · r · ν(zk))
n
= |an| · (µk · r · ν̃(zk))

n .

Thus, by Corollary 2.5, f |B(zk; µk · r · ν̃(zk))→ B(z; r · ν̃(z)) is bijective. �

We put

3 := 1−
c · λN

− 1
N · M

.

Remark 4. The function µ is uniformly bounded by 3. Indeed, we calculate

µ(z)=
∑N−1

n=0 |( f n)′(z)|∑N
n=1 |( f n)′(z)|

= 1−
( f N )′(z)− 1∑N

n=1 |( f n)′(z)|
≤ 1−

c · λN
− 1

N · M
=3

for any z ∈�. In particular, 3 is positive, because µ is positive on �.

Proof of Lemma 3.1. Let us set

�n, f := f −n
( ⋃

z∈J f

B(z; ν̃(z))
)

for each n ∈ {0, 1, . . .}. It is obvious that �0, f is closed, and thus so is �n, f .
Let us show that

�n, f =
⋃

z∈J f

B
(

z;
n−1∏
k=0

µ( f k(z)) · ν̃(z)
)
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by induction on n ∈ N. In particular, this implies that �n, f ⊂�n−1, f because µ is
uniformly bounded by 3< 1.

(1) For any w ∈�1, f , there exists a z ∈ J f such that f (w) ∈ B(z; ν̃(z)). By
Lemma 4.1, there exists a z′ ∈ f −1({z})⊂ J f such that

w ∈ B(z′; µ(z′) · ν̃(z′)).

On the other hand, for any

w ∈
⋃

z∈J f

B(z; µ(z) · ν̃(z)),

there exists a z ∈ J f such that w ∈ B(z; µ(z) · ν̃(z)). Thus

f (w) ∈ B( f (z); ν̃( f (z)))⊂�0, f .

(2) Assume that

�n, f =
⋃

z∈J f

B
(

z;
n−1∏
k=0

µ( f k(z)) · ν̃(z)
)

for n ∈ N. For any w ∈�n+1, f , there exists a z ∈ J f such that

f (w) ∈ B
(

z;
n−1∏
k=0

µ( f k(z)) · ν̃(z)
)
.

By Lemma 4.1, there exists a z′ ∈ f −1({z})⊂ J f such that

w ∈ B
(

z′;
n∏

k=0

µ( f k(z′)) · ν̃(z′)
)
.

On the other hand, for any

w ∈
⋃

z∈J f

B
(

z;
n∏

k=0

µ( f k(z)) · ν̃(z)
)
,

there exists a z ∈ J f such that

w ∈ B
(

z;
n∏

k=0

µ( f k(z)) · ν̃(z)
)

and thus

f (w) ∈ B
(

f (z);
n−1∏
k=0

µ( f k( f (z))) · ν̃( f (z))
)
⊂�n, f .

By Proposition 2.2(3), J f ⊂�∞, f . On the other hand, any w ∈�∞, f satisfies

w ∈�n, f =
⋃

z∈J f

B
(

z;
n−1∏
k=0

µ( f k(z)) · ν̃(z)
)
⊂

⋃
z∈J f

B(z;3n+1
· δ · κ)

for any n ∈ N. Hence, for each n ∈ N, there exists a zn ∈ J f such that

|w − zn| ≤3
n+1
· δ · κ.

Since J f is closed, this implies that w ∈ J f . �
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Remark 5. As an immediately corollary of Lemma 3.1, one can find a repelling periodic
point of f . Indeed, it follows from Proposition 2.3 that there exists a periodic point x ∈
�0, f of f N with period m. On the other hand, by Lemma 3.1,

f −N (�0, f )=�N , f ⊂�0, f .

This implies that

{x, f N (x), f 2N (x), . . . , f (m−1)N (x)} ⊂
∞⋃

k=0

f −k N ({x})⊂�0, f .

Thus,

|( f m N )′(x)| =
∣∣∣∣m−1∏

k=0

( f N )′( f k N (x))
∣∣∣∣≥ (c · λN )m > 1.

For the proof of Lemma 3.2, we write

4k :=
⋃

z∈J f

B(z; Mk
· δ · κ)⊂�

for each k ∈ {0, 1, . . . , N }.

Proof of Lemma 3.2. It is not difficult to find a neighborhood U of f such that

| f (z)− g(z)|< δ · κ

and
| f ′(z)− g′(z)|< c · λ

for any g ∈U and z ∈4N because of the continuity of the coefficients of a rational map.
In particular, this implies that

| f ′(z)| = |g′(z)|

for any z ∈4N . Let us fix a g ∈U .
We first show that the following properties are satisfied for any k ∈ {1, 2, . . . , N }.

(1) g(4k−1)⊂4k .
(2) For any z ∈4k−1 and n ∈ {1, 2, . . . , N },

|( f n)′( f (z))| = |( f n)′(g(z))|.

Since z ∈4k−1, there exists a z′ ∈ J f such that z ∈ B(z′; Mk−1
· δ · κ). Since f has no

poles in B(z′; M N
· δ), there exists a sequence {am}

∞

m=1 ⊂ K such that

f (w)= f (z′)+ a1 · (w − z′)+ · · ·

and
f ′(w)= a1 + 2 · a2 · (w − z′)+ · · ·

for any w ∈ B(z′; M N
· δ). Note that a1 = f ′(z′). Since B(z′; Mk−1

· δ) has no critical
points of f , it follows from Proposition 2.4 that

|a1|> |m| · |am | · (Mk−1
· δ)m−1
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for any m ≥ 2. Thus

M · Mk−1
· δ · κ ≥ |a1| · Mk−1

· δ · κ

> |m| · |am | · (Mk−1
· δ)m · κ ≥ |am | · (Mk−1

· δ · κ)m .

It follows from Corollary 2.5 that

f (z) ∈ f (B(z; Mk−1
· δ · κ))= f (B(z′; Mk−1

· δ · κ))⊂ B( f (z′); Mk
· δ · κ)

and thus
| f (z)− f (z′)| ≤ Mk

· δ · κ.

In particular, this implies that

g(z) ∈ B( f (z); δ · κ)⊂ B( f (z); Mk
· δ · κ)= B( f (z′); Mk

· δ · κ)⊂4k .

Moreover, since f n has no critical points in B( f (z′); Mk
· δ · κ),

|( f n)′( f (z))| = |( f n)′(g(z))|

for any n ∈ {1, 2, . . . , N }. This completes the proof of (1) and (2).
Now we show that

|( f n)′(z)| = |(gn)′(z)|

on 40 for any n ∈ {1, 2, . . . , N }. It is clear that | f ′(z)| = |g′(z)| on 4N . Assume that

|( f n)′(z)| = |(gn)′(z)|

on 4N−n+1 for each n ∈ {1, 2, . . . , N − 1}. For any z ∈4N−n ,

g(z) ∈4N−n+1

and thus
|( f n)′(g(z))| = |(gn)′(g(z))|.

Hence

|( f n+1)′(z)| = |( f n)′( f (z))| · | f ′(z)|

= |( f n)′(g(z))| · |g′(z)|

= |(gn)′(g(z))| · |g′(z)| = |(gn+1)′(z)|.

This implies that
|( f n)′(z)| = |(gn)′(z)|

on 4N−n for any n ∈ {1, 2, . . . , N }. Since {4N−k}
N
k=0 is nested and �0, f ⊂40, this

completes our proof. �

Let U be a neighborhood of f determined in Lemma 3.2 for

r =
δ · κ

M · N
.

For a fixed g ∈U , we define functions ν, µ :�→ R by

νg(z) :=
1∑N−1

n=0 |(g
n)′(z)|
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and

µg(z) :=
∑N−1

n=0 |(g
n)′(z)|∑N

n=1 |(gn)′(z)|
.

Let us set
ν̃g(z) := νg(z) · δ · κ.

Remark 6. It follows from Lemma 3.2 that ν = νg and µ= µg on �0, f . Thus, by
Remark 2, the functions νg and µg are constant on B(z; ν̃(z)) for any z ∈ J f . In particular,
this implies that

δ · κ

M · N
≤ ν̃(z)= ν̃g(z)

on �0, f . Moreover, by Remark 3, if z ∈�0, f satisfies g(z) ∈�0, f , then

νg(g(z))
|g′(z)|

= µg(z) · νg(z)= µ(z) · ν(z) < 1.

LEMMA 4.2. For any z ∈�0, f , g−1({z})⊂�0, f . Let us denote by {zk}
d
k=1 the pre-image

of z by g. Let µk denote µg(zk) for each k ∈ {1, 2, . . . , d}. For any 0≤ s ≤ 1,

g|B(zk; µk · s · ν̃g(zk))→ B(z; s · ν̃g(z))

is bijective.

Proof of Lemma 4.2. Let us denote by {wk}
d
k=1 ⊂�0, f the pre-image of z by f . We show

that g(w)− z has a unique zero zk ∈ B(wk; µk · ν̃g(wk)). Set

µ′k := µ(wk).

Since g has no poles in B(wk; M N
· δ), there exists a sequence {an}

∞

n=1 ⊂ K such that

g(w)= g(wk)+ a1 · (w − wk)+ · · · (4.1)

and
g′(w)= a1 + 2 · a2 · (w − wk)+ · · ·

for any w ∈ B(wk; M N
· δ). Note that a1 = g′(wk). It is easily seen that

|a1| · µ
′

k · s · ν̃g(wk)= | f ′(wk)| · µ
′

k · s · ν̃(wk)= s · ν̃(z)= s · ν̃g(z).

On the other hand, since B(wk; δ) has no critical points of g, it follows from
Proposition 2.4 that

|a1|> |n| · |an| · δ
n−1

for any n ≥ 2. Thus

|a1| · µ
′

k · s · ν̃g(wk) > |n| · |an| · δ
n−1
· µ′k · s · ν̃(wk)

≥ |an| · (δ · κ)
n
· µ′k · s · ν(wk)

≥ |an| · (δ · κ · µ
′

k · s · ν(wk))
n
= |an| · (µ

′

k · s · ν̃g(wk))
n . (4.2)

Hence it follows from Corollary 2.5 that

g|B(wk; µ
′

k · s · ν̃g(wk))→ B(g(wk); s · ν̃g(z))
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is bijective. Since

|g(wk)− z| = |g(wk)− f (wk)|<
δ · κ

N · M
≤ ν̃g(z),

there exists a unique zk ∈ B(wk; µ
′

k · ν̃g(wk)) such that g(zk)= z. Furthermore, since gn

has no critical points in B(wk; µ
′

k · ν̃g(wk)),

|(gn)′(wk)| = |(gn)′(zk)|

for any n ∈ {1, 2, . . . , N }. This implies that

µ′k = µ(wk)= µg(wk)= µg(zk)= µk . (4.3)

�

Proof of Lemma 3.3. Set �n,g := g−n(�0, f ) for each n ∈ {0, 1, . . .}. It follows from
Lemma 4.2 that

B
(

z;
n∏

k=0

µg(gk(z)) · ν̃g(z)
)
⊂�n,g

if z ∈�n,g . Indeed, this can be proved by induction on n ∈ N, as follows.
(1) If z ∈�1,g , then it follows from Lemma 4.2 that

g(B(z; µ(z) · ν̃g(z)))= B(g(z); ν̃g(g(z)))

= B(g(z); ν̃(g(z)))⊂�0, f =�0,g.

(2) Assume that

B
(

z;
n∏

k=0

µg(gk(z)) · ν̃g(z)
)
⊂�n,g

for any z ∈�n,g . If z ∈�n+1,g , then it follows from Lemma 4.2 that

g
(

B
(

z;
n+1∏
k=0

µg(gk(z)) · ν̃g(z)
))
= B

(
g(z);

n∏
k=0

µg(gk(g(z))) · ν̃g(g(z))
)

⊂�n,g. �

Proof of Lemma 3.4. Let us show this statement by induction on n ≥ 0.
(1) Let us define h0 :�0, f →�0,g by h0(z) := z.
(2) Let us define h1 :�1, f →�1,g by

h1 := g−1
◦ h0 ◦ f.

It is well defined because

f |B(z; µ(z) · ν̃(z))→ B( f (z); ν̃( f (z))),

h0|B( f (z); ν̃( f (z)))→ B( f (z); ν̃g( f (z)))

and
g−1
|B(g(z); ν̃g(g(z)))→ B(z; µg(z) · ν̃g(z))
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�0, f
h0

−−−−→ �0,g

f
x xg

�1, f
h1

−−−−→ �1,g

FIGURE 1. The construction of h1 :�1, f →�1,g .

are bijective for a fixed z ∈�1, f (see Figure 1). Note that

B( f (z); ν̃g( f (z)))= B(g(z); ν̃g(g(z)))

because
| f (z)− g(z)| ≤

δ · κ

N · M
≤ ν̃g( f (z))= ν̃g(g(z)).

Therefore, we obtain
|h1(z)− h0(z)| ≤ µg(z) · ν̃g(z)

and
h0 ◦ f (z)= g ◦ h1(z)

for any z ∈�1, f .
(3) Assume that hn :�n, f →�n,g is a map satisfying

hn−1 ◦ f (z)= g ◦ hn(z)

and

|hn(z)− hn−1(z)| ≤
n−1∏
k=0

µg( f k(z)) · ν̃g(z)

for any z ∈�n, f . Then we define hn+1 :�n+1, f →�n+1,g by

hn+1 := g−1
◦ hn ◦ f

(see Figure 2). Let us check that hn+1 is well defined as follows. Fix a z ∈�n+1, f . Since

B
(

hn(z);
n∏

k=0

µg( f k(z)) · ν̃g(z)
)
= B

(
hn(z);

n∏
k=0

µg(gk(hn(z))) · ν̃g(hn(z))
)
,

it follows from Lemma 4.2 that

g|B
(

hn(z);
n∏

k=0

µg( f k(z)) · ν̃g(z)
)
→ B

(
g ◦ hn(z);

n∏
k=1

µg( f k(z)) · ν̃g( f (z))
)

is bijective. Since

|hn ◦ f (z)− g ◦ hn(z)| = |hn ◦ f (z)− hn−1 ◦ f (z)|

≤

n∏
k=1

µg( f k(z)) · ν̃g( f (z)),
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�0, f
h0

−−−−→ �0,g

f
x xg

�1, f
h1

−−−−→ �1,g

···

x x···
�n, f

hn
−−−−→ �n,g

f
x xg

�n+1, f
hn+1
−−−−→ �n+1,g

FIGURE 2. The construction of hn+1 :�n+1, f →�n+1,g .

we conclude that hn+1 is well defined. Moreover, it satisfies

hn+1(z) ∈ B
(

hn(z);
n∏

k=0

µg( f k(z)) · ν̃g(z)
)
⊂�n+1,g

and
hn ◦ f (z)= g ◦ hn+1(z). �

Let h :�∞, f →�∞,g be a map defined as (3.2). To prove Lemmas 3.5 and 3.6, we first
estimate |h(z)− z| for each z ∈�∞, f .

LEMMA 4.3. For any n ∈ N and z ∈�n, f ,

|hn(z)− z| ≤ µg(z) · ν̃g(z).

In particular, this implies that µg(hn(z))= µg(z) and ν̃g(hn(z))= ν̃g(z).

Proof of Lemma 4.3. It is easily seen that

|hn(z)− z| ≤max
n∈N
{|hn(z)− hn−1(z)|}

≤max
n∈N

{n−1∏
k=0

µg( f k(z)) · ν̃g(z)
}
≤ µg(z) · ν̃g(z). �

We proceed to show that the map h :�∞, f →�∞,g is isometric.

LEMMA 4.4. If z, w ∈�n,g satisfy |z − w| ≤ µg(z) · ν̃g(z), then

|g(z)− g(w)| = |g′(z)| · |z − w|.
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Proof of Lemma 4.4. It follows from (4.1), (4.2) and (4.3) that

|g(z)− g(w)| =
∣∣∣∣a1 · (z − w)+

∞∑
k=2

ak · (z − w)k
∣∣∣∣

=

∣∣∣∣a1 +

∞∑
k=2

ak · (z − w)k−1
∣∣∣∣ · |z − w|

= |a1| · |z − w| = |g′(z)| · |z − w|. �

Proof of Lemma 3.5. It is sufficient to show that {hn :�n, f →�n,g}
∞

n=0 constructed in
the proof of Lemma 3.4 is a sequence of isometries. We now proceed by induction on
n ≥ 0.

(1) It is clear that h0 :�0, f →�0,g is isometric.
(2) Assume that hn :�n, f →�n,g is isometric for n ≥ 0. Fix z, w ∈�n+1, f . If |z −

w|> µg(z) · ν̃g(z), then |z − w|> µg(w) · ν̃g(w). Indeed, if follows from Remarks 4
and 6 that |z − w| ≤ µg(w) · ν̃g(w) implies that µg(w)= µg(z) and ν̃g(w)= ν̃g(z).
Hence it follows from Lemma 4.3 that

|hn+1(z)− hn+1(w)| = |hn+1(z)− z + z − w + w − hn+1(w)|

= |z − w|.

Otherwise, by Lemma 4.3,

|hn+1(z)− hn+1(w)| ≤ µg(hn+1(w)) · ν̃g(hn+1(w)).

It follows from Lemma 4.4 that

| f (z)− f (w)| = | f ′(z)| · |z − w|

and
|g(hn+1(z))− g(hn+1(w))| = |g′(hn+1(z))| · |hn+1(z)− hn+1(w)|.

Therefore

| f ′(z)| · |z − w| = | f (z)− f (w)|

= |hn ◦ f (z)− hn ◦ f (w)|

= |g ◦ hn+1(z)− g ◦ hn+1(w)|

= |g′(hn+1(z))| · |hn+1(z)− hn+1(w)|

= |g′(z)| · |hn+1(z)− hn+1(w)|

= | f ′(z)| · |hn+1(z)− hn+1(w)|. �

Let us end this section with the proof of Lemma 3.6.

Proof of Lemma 3.6. It follows from Remark 5 that there exists a repelling periodic point
x ∈�0, f of f with period m. Since y := h(x) is a periodic point of g with period m and
{gk(y)}mk=1 ⊂�∞,g ,

|(gm)′(y)|> 1.
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In particular, this implies that Jg 6= ∅. Moreover, it follows from Proposition 2.2(2) that

h(J f )= h
( ∞⋃

k=0

f −k({x})
)
=

∞⋃
k=0

h( f −k({x}))=
∞⋃

k=0

g−k({y})= Jg.

We next see that �∞,g = Jg . By Lemma 4.3,

�0, f =
⋃

z∈Jg

B(z; ν̃g(z)).

Then we can show that

�n,g =
⋃

z∈Jg

B
(

z;
n−1∏
k=0

µg(gk(z)) · ν̃g(z)
)

for any n ∈ N and �∞,g = Jg in the same manner as in the proof of Lemma 3.1. �

Remark 7. In the proof of Lemma 3.6, we can also prove that y is a repelling periodic
point of g with period m by evaluating |(gm)′(y)|, as follows. By Lemma 4.3,

|h(z)− z| ≤ µg(z) · ν̃g(z)

for any z ∈�∞, f . Moreover, since f ′ has no zero in B(z; µg(z) · ν̃g(z)),

| f ′(h(z))| = | f ′(z)|.

Therefore,

|(gm)′(y)| =
m−1∏
k=0

| f ′(h ◦ f k(x))| =
m−1∏
k=0

| f ′( f k(x))| = |( f m)′(x)|> 1.
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[MSS83] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4)
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