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Abstract

We are researching the interaction between the rule and the ontology layers of the Semantic

Web, by comparing two options: 1) using OWL and its rule extension SWRL to develop an

integrated ontology/rule language, and 2) layering rules on top of an ontology with RuleML

and OWL. Toward this end, we are developing the SWORIER system, which enables efficient

automated reasoning on ontologies and rules, by translating all of them into Prolog and

adding a set of general rules that properly capture the semantics of OWL. We have also

enabled the user to make dynamic changes on the fly, at run time. This work addresses

several of the concerns expressed in previous work, such as negation, complementary classes,

disjunctive heads, and cardinality, and it discusses alternative approaches for dealing with

inconsistencies in the knowledge base. In addition, for efficiency, we implemented techniques

called extensionalization, avoiding reanalysis, and code minimization.

KEYWORDS: Semantic Web, Logic programming, Knowledge compilation, Ontologies, Rules

1 Introduction

The wedding of Semantic Web technology and Logic Programming has created a

new technical paradigm called description logic programming. Recently, researchers

have begun focusing on the question of how to utilize logical rules from a particular

domain in order to improve the Semantic Web (Bechhofer et al. 2004; Hirtle et al.

2004; Horrocks et al. 2004). It is well established that the knowledge development

language and the knowledge runtime language may not be the same, so the former

should be transformed to the latter for greater efficiency at run time (Cadoli &

Donini 1997; Darwiche & Marquis 2002).
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We have developed SWORIER (Semantic Web Ontologies and Rules for Interop-

erability with Efficient Reasoning), which is a system that uses Logic Programming

to reason about and answer queries about ontologies and rules (Samuel et al. 2006;

Grosof et al. 2003; Hitzler et al. 2005; Volz et al. 2003; Volz 1994). OWL (Web

Ontology Language) ontologies (Bechhofer et al. 2004) along with rules in the

Semantic Web Rule Language (SWRL) (Horrocks et al. 2004) or the Rule Markup

Language (RuleML) (Hirtle et al. 2004) are all translated into Prolog using XSLTs

(Extensible Stylesheet Language Transformations). In addition, we have written a

set of General Rules in Prolog in order to enforce the semantics of OWL primitives.

To do this, it was necessary to address a number of issues related to negation, the

open world assumption, complementary and disjoint classes, disjunctive conclusions,

enumerated classes, equivalent individuals, error messages, existential quantification,

cardinality constraints, duplicate facts, cyclical hierarchies, and anonymous classes.

Recent work has suggested that some of these problems are unsolvable (Volz et al.

2003), but we believe we have found solutions for them.

We have imposed strong efficiency requirements demanding that queries are

answered in a matter of seconds. And, unlike previous work, SWORIER can

assimilate dynamic changes that are provided at run time, including adding new

facts, removing facts, and swapping rule sets, which also must be done in seconds. To

achieve this level of efficiency, we established three techniques: extensionalization,

avoiding reanalysis, and code minimization.

This paper is organized as follows: First, Section 2 provides the reader with

background information. Then, Section 3 describes SWORIER’s system design.

Section 4 addresses the challenges found in previous research. Section 5 adds

a capability to handle dynamic changes. Section 6 analyzes and addresses the

efficiency of the system, and then Section 7 discusses related work. Finally, Section

8 summarizes the paper, offers conclusions, and discusses future work.

2 Background

We are investigating the interaction between rules and ontologies in the Semantic

Web to determine how a standard language should best express them (Stoutenburg

et al. 2006). In particular, to determine whether an ontology and the corresponding

rules should be integrated or layered, we specified, translated, and executed inform-

ation in: 1) SWRL, which integrates OWL with rules (Horrocks et al. 2004); and

2) RuleML layered on top of OWL. The ontologies and instances were developed

in the Cerebra OWL ontology development environment,1 the SWRL and RuleML

rules were created in a text editor, and AMZI! (2006) Prolog was used as the

inference engine. We translated the constructs for both the integrated and layered

approaches into Prolog code, gauging each approach in terms of effectiveness,

efficiency, difficulty, restrictiveness, translatability, and suitability for deployment in

an operational setting.

1 http://cerebra.com/index.html
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Fig. 1. A military task.

Our initial experiments were set in a military command and control domain with

a supply convoy moving through an unsecured area. Figure 1 presents an example

situation where a convoy is moving north along the primary route, approaching

the location where intelligence has reported an enemy sniper is stationed. New

information can become available at any time, such as the discovery of a theater

object or the beginning of a sandstorm. The system has rules that trigger alerts and

recommendations to report to the convoy commander. For example, in the situation

shown in Figure 1, an enemy unit is within the convoy’s region of interest (the circle

surrounding the convoy), so the system might tell the convoy commander, “ALERT:

Intelligence report of enemy sniper in the vicinity” and “RECOMMENDATION:

Take alternate route.”

Most knowledge representation languages and knowledge-based systems utilize a

restricted version of First Order Logic (FOL). FOL, however, is semi-decidable. It

is decidable in that if a theorem is logically entailed by a FOL theory, a proof will

eventually be found, but it is undecidable in that if a theorem is not logically entailed,

a proof of that may never be found. But decidability here does not mean tractability,

and in general even inference in the simpler propositional calculus is NP-complete

(Cadoli et al. 1999; Godic et al. 1995), i.e., usually unable to be processed in less

than exponential time.

To make inference tractable, various approaches in the field of knowledge com-

pilation, which involves converting a knowledge base into a more concise or

tractable representation, have been devised (Cadoli & Donini 1997; Darwiche &

Marquis 2002; Schrag and Crawford 1996). One approach is to syntactically restrict

the knowledge representation language, sacrificing expressiveness for tractability and

efficiency (de Bruijn et al. 2004). Logic programming (LP), description logic (DL),

and description logic programming (an emerging field that weds DL and LP) take
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Fig. 2. System design.

this approach (Ait-Kaci 1991; Grosof et al. 2003; Hitzler et al. 2005; Van Roy 1990;

Volz et al. 2003). For example, OWL is a DL that defines a tractable subset of First-

Order Logic (Bechhofer et al. 2004; Daconta et al. 2003). An alternative is to employ

theory approximation (Kautz & Selman 1994; Kautz & Selman 1991; Selman &

Kautz 1991; Selman and Kautz 1996), in which the queries that are logically entailed

by a knowledge base (a “theory”) can be correctly answered, while, for the rest of

the queries, the response is “unknown”. Some researchers preprocess the knowledge

in various ways to relax either the completeness or the soundness requirements,

perhaps by generating certain default conclusions (Cadoli & Donini 1997). Another

possible optimization is to extensionalize the rule base, as discussed in Section 6.1.

3 System design

Figure 2 shows the system design of SWORIER. A developer creates ontologies,

knowledge bases, and/or rules in the formalism(s) of OWL, RuleML, and/or SWRL.

Examples of OWL, RuleML, and SWRL are in Table 1a, 1b, and 1c, respectively.

This information is translated into Prolog code using XSLTs, resulting in the code

shown in Table 2a, 2b, and 2c. (We include words like “is” and “of” in our predicate

names to avoid ambiguity. Otherwise, there is the danger of misinterpreting the

roles of the arguments. For example, member(X, Y) could be interpreted as “X is

a member of Y” or “X has a member, Y”, while ismemberof(X, Y) is more clear.)

Finally, a set of General Rules (defined in Section 3.2) is appended to the XSLT

output to form a complete Prolog program, which can be queried by the user.
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Table 1. Examples of OWL, RuleML, and SWRL.

Table 2. Translations.

3.1 Translating facts

SWORIER uses a syntax different from that typically found in previous work. For

example, Volz et al. (2003) would produce the translation of Table 2d, instead of

the translation in Table 2a. But we note that the syntax used by Volz et al. (2003)

cannot represent “every class that smith is a member of” with X(smith), because

most Prolog implementations disallow predicate variables. In contrast, by making

the class names and property names be arguments instead of predicates, SWORIER

has the flexibility to generalize on them with, for example, ismemberof(smith, X).
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Table 3. The transitive closure of subclass.

3.2 General rules

The General Rules are meant to capture the semantics of the primitives in OWL. For

example, the rules in Table 3a enforce the transitivity of subclass. Note that there

are two different predicates: issubclassof and isSubClassOf. One predicate would

be insufficient, because Table 3b has left recursion, resulting in an infinite loop.

With two different subclass predicates, some questions must be answered. Should

the user submit queries with issubclassof or isSubClassOf? Also, which form

should the input from the XSLTs be? If the input used isSubClassOf, then neither

of the rules in Table 3a would ever succeed, thus the input must use issubclassof.

On the other hand, queries should use isSubClassOf because the issubclassof set of

facts is incomplete–none of the subclass relationships that are derived by transitivity

are captured by issubclassof. Note that the issubclassof set of facts is a subset of

the isSubClassOf set of facts, because of the first rule in Table 3a, which is called

the conversion rule for subclass.

For consistency, we created two cases of each predicate, all-lowercase and

camelcase.2 Also, each predicate has a conversion rule. The XSLT facts always

use the all-lowercase forms of predicates, while the user queries are always in

camelcase. (However, the developer decides how to spell the names of constants,

such as hasSpeed in Table 2c.) And any rules, other than recursive rules and

conversion rules, follow the convention:

All predicates in the body of the rule are camelcase,

and the predicate in its head is all-lowercase.

As an example, see the second rule in Table 2c. Using camelcase predicates in the

rule’s body guarantees that the rule is triggered by everything that can be derived

for that predicate in either case. And using the all-lowercase predicate for the rule’s

head insures that any facts generated by the rule will hold for both cases of the

predicate.

3.3 Translating rules

Some of the inputs provided to SWORIER are RuleML or SWRL rules that were

created by the developer. It is not difficult to translate these rules into Prolog because

they are written in Horn Clause form. However, we cannot control which rules are

provided nor how they are written. Problems can emerge, such as the infinite loop

2 Any predicates that are not used for input or output are written in an underscore case, such as
is sub class of but not equal to. Also, for some predicates, there are two sources of recursion, requiring
three cases of the predicate. An example of this is the member relation, for which the three cases are
ismemberof, is member of, and isMemberOf.
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Table 4. logicNot.

in Table 2b, which was generated by the RuleML rule in Table 1b. In addition, the

order in which rules are listed and the order of the terms in the rules’ bodies can

have significant effects, much like order of join evaluation in database languages

such as SQL. Another concern is that the input could include rules that produce

duplicate copies of a fact (see Section 4.9.). And the rules might be inefficient.

There are ways to correct or at least mitigate some of these problems. For example,

we could apply transformations as for logic queries in the form of rewrite rules such

as “magic sets” optimization (Cadoli et al. 1999; Sippu & Soisalon-Soininen 1996).

But currently, we must impose strong requirements on the developer who may need

to be very familiar with Prolog programming techniques, the logical consequences

of the facts in the ontologies, and the General Rules.

4 Challenges

We are following the groundbreaking work of Volz et al. (2003) who were among

the first researchers to investigate OWL-to-Prolog translation. They discussed a

number of problems that they encountered in the course of their work. Now we

are proposing solutions for several of these problems, some of which are currently

implemented in SWORIER.

4.1 Negation

Negation in Prolog is not the same as negation in OWL, RuleML, and SWRL.

Prolog has finite-failure negation, which means that not(T) is true if it is not possible

to prove that T is true. Alternatively, with the logical negation of OWL, RuleML,

and SWRL, not(T) is true if it can be proven that T is false. (In both cases, not(T)

is false if T can be proven true.) In order to close this gap, we have created a Prolog

predicate called logicNot and we are developing rules to capture the semantics of

logical negation. The logicNot predicate takes one argument, which must be a term:

logicNot(¡term¿). Three examples are presented in Table 4.

4.2 The open world assumption

In Prolog, the closed world assumption holds, which means that anything that cannot

be proven true must be false. Alternatively, OWL has an open world assumption,

meaning that a term is false only if it can be proven false: (Rector et al. 2004).

So, in Prolog, a term can only be true or false, while OWL also allows for the

possibility that its truth value cannot be determined from the available information.

This distinction is addressed with the logicNot predicate, which was presented in

Section 4.1. If the user wants to ask a true/false question, Q, then it is necessary
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Table 5. A true/false query.

Table 6. Complementary and disjoint classes.

Table 7. Conjunction and disjunction in the head.

to submit two queries to SWORIER: Q and logicNot(Q). Table 5 shows how the

system’s responses to these queries should be interpreted.

4.3 Complementary and disjoint classes

Volz et al. (2003) claimed that “OWL features the complementOf primitive, which

cannot be implemented in Horn Logics due to the fact, that there may be no

negation in the head . . . ” With the introduction of the logicNot predicate, this is no

longer a problem. We can handle the complementary classes as well as the disjoint

classes with the rules in Table 6.

4.4 Multiple terms in the head

One notable limitation of Horn rules is that the head (conclusion) of a rule cannot

have more than one term. This means, if the conclusion of a rule is the conjunction

of terms, it is necessary to create multiple rules. For example, the logical statement

in Table 7a requires two rules in Prolog, as shown in Table 7b.

But for the logical rule in Table 7c, “. . . no Horn clause can be stated, since

disjunction in the head would occur . . . ” (Volz et al. 2003). We propose to address

this problem by creating a new Prolog predicate that can be put in the head. So
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Table 8. Enumerated class.

Table 9. Error messages.

Table 7c can then be translated into Table 7d by using this new or predicate, which

takes two arguments, each of which must be a term. Of course, we must supplement

General Rules in order to properly establish the correct semantics of disjunction.

Some examples of those rules are shown in Table 7e. Note that the last rule requires

the logicNot predicate.

Unfortunately, the head of the last rule in Table 7e is a variable, which is not

allowed in Prolog. However, although it may not be possible to solve this problem

in general, because we are limiting our analysis to OWL, there are a finite number

of predicates with which that variable can be instantiated, and this set of predicates

does not require any knowledge of the particular ontologies or rules that are provided

by the developer. So we can create one rule for each predicate and some examples

are presented in Table 7f.

4.5 Enumerated classes

“The owl:oneOf primitive can be partially supported” (Volz et al. 2003). This

primitive, which corresponds to our Prolog predicate, isset, defines a class, C,

extensionally by providing a set of all and only the individuals in the class, a0, . . . ,

an. For example, Table 8a declares that there are exactly three members of the class

combatIntent: friendlyIntent, hostileIntent, and unknownIntent.

Volz et al. (2003) observed that Horn Logic rules could be developed that would

draw the conclusions in Table 8b. But they also say that, “to support the other

direction . . . which states that every instance of C is one of the listed ai . . . requires

a disjunction in the consequent of the rule, which can not be provided by . . . Horn

Clauses” (Volz et al. 2003). However, with the or predicate, introduced in Section 4.4,

this should no longer be a problem. Table 8c presents the rule that captures the

semantics of the example in Table 8a.

4.6 Error messages

It is desirable for SWORIER to test the data for consistency. For this purpose,

we follow Volz et al. (2003) by implementing rules to catch inconsistencies, such as

those in Table 9. (In order to check for errors, the developer must submit the query:

error(X).) In each of these examples, the inconsistency is addressed by sending an

error message to the developer. However, there are other ways to handle most

inconsistencies. Examples will be presented in Sections 4.7 and 4.8.
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Table 10. An existential constraint.

4.7 Existential quantification

Prolog implicitly assumes that all variables in any rule are universally quantified.

However, OWL can specify existentially quantified variables. For example, the OWL

code in Table 10a states that every theater object is described by at least one

observation artifact. There are three ways to enforce this restriction. The simplest is

to report an error message if it is violated, as in Section 4.6. Volz et al. (2003) uses

the technique of skolemization. And the third approach is to add new facts to the

knowledge base, which is discussed in Section 4.8.

Skolemization solves the problem of a violated existential restriction by letting a

specific term represent the missing individual. This term must be unambiguous, so its

argument variables are selected to make it distinct. For example, given the restriction

in Table 10a, if there is a theater object, I, that is not described by any observation

artifacts, then the term unnamedIndividual(I, describedBy, observationArtifact) is

used to represent the required observation artifact. In general, the two rules in Table

10b are applied in order to insure that this term satisfies the existential restriction.

4.8 Cardinality

In OWL, there are three cardinality primitives: (1) minCardinality, (2) max-

Cardinality, and (3) cardinality. Each of these primitives takes three arguments:

a class, a property, and a number. The primitives’ meanings are that each individual

in the given class participates in the given property with (1) at least, (2) at most, or

(3) exactly the given number of unique individuals.

Volz et al. (2003) claims that, “the unrestricted use of cardinality constraints cannot

be supported efficiently in Logic Programming environments . . . ” It is true that, in

theory, there are an unlimited number of cardinality constraints that the developer

could impose. However, we can extend SWORIER’s system design (from Fig. 2) by

introducing a new module, as shown in Figure 3. Any cardinality constraints found

in the ontologies are sent to this Cardinality Rules module, which produces one or

two Prolog rules for each constraint. Since there are a finite number of cardinality

constraints in any ontologies, it is possible to develop all and only the necessary

cardinality rules, and thus, the problem is tractable.

An example cardinality constraint is expressed by the OWL code in Table 11a,

which says that every theater object is described by exactly one individual. For this
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Fig. 3. The cardinality rules module.

Table 11. Cardinality rules.

constraint, it is necessary to generate two rules, one testing to make sure that there

is no more than one individual, and the other checking that there is at least one

individual that satisfies the restriction. We have two options for the first rule: 1) If

two different individuals are found that both describe the same theater object, we

could report an error to the developer, as in Section 4.6, or 2) we could enforce

the constraint with the rule which says that if any theater object is described by

two individuals, then those two individuals must be equivalent. For the second rule,

there are three options: 1) If a theater object exists that is not described by any

individuals, we could report an error to the developer, as in Section 4.6, 2) the

constraint could be enforced by skolemization, which was explained in Section 4.7,

or 3) the problem could be fixed by adding new facts to the knowledge base. The

last option is demonstrated in Table 11c, where the Prolog predicate, gensym, sets
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Table 12. Duplicate facts.

I3 to a new unique constant, and the assert predicate adds the required fact to the

knowledge base. (The query, enforceConstraints, would be run offline in order to

create all of the required facts.)

4.9 Duplicate facts

It is desirable to prevent SWORIER from generating the same fact more than once.

To demonstrate the rationale, consider the program in the Table 12a. The query,

fact(X, c, 1) would cause the system to return two copies of fact(a, c, 1); one because

of rule 1, and the other through the interaction between rules 2 and 3. Although it

is not difficult to remove repetitive facts in a post-processing procedure, a significant

cost in efficiency can still result. Consider, for example, the query fact3(a, c, 3). To

determine the answer, the system tests the first term in the body of line 3, fact(a, c,

1), and it succeeds twice. Then the system runs two tests on the second term, fact(a,

c, 1), each time finding two results. Thus, the third term, slow(c), must be tested

four times, unnecessarily quadrupling the time spent processing that term. And for

the query fact3(a, c, 5), the slow(c)test is run 16 times. So it should be clear that,

when duplicate facts are generated, they can potentially slow down the program

significantly.

To block duplicate facts, we can add the term, not(Y=c) to rule 2, as shown in

Table 12b. This prevents fact(a, c, 1) from being generated via rule 2. But given the

query fact(a, Y, 2), the system fails to return fact(a, b, 2), which should be proven

by rules 2 and 3. This is because, in order to test not(Y=c), Prolog tries to prove

Y=c. But this is easy, since Y is an unbound variable, so it can be set to c. This

causes Y=c to succeed, and so not(Y=c) fails, and the rule is incorrectly blocked.

By changing rule 2 as shown in Table 12c, we can insure that Y is bound before

not(Y=c) is tested. Now the program works correctly, and the duplicates are blocked.

But unfortunately, the system must investigate the fact(X, Y, N-1) term, even if the

block, not(Y=c), is doomed to fail. In addition, rule 2 is no longer tail recursive, so

the Prolog compiler cannot utilize a significant efficiency improvement.

We believe we can make these rules both correct and efficient. The key is that

we require all constants to be declared with predicates like isclass, isindividual,

isproperty, and isdatatype. Then, by specifying the required type of Y at the

beginning of the rule’s body, as in rule 2 in Table 12d, this has the desired effect of

binding Y, enabling the blocker not(Y=c) to be tested.

https://doi.org/10.1017/S1471068407003249 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003249


Translating OWL and semantic web rules into prolog 313

Table 13. Cyclic hierarchies.

Table 14. Anonymous classes and properties.

4.10 Cyclic hierarchies

Cyclic class hierarchies and cyclic property hierarchies can be problematic. Suppose

the given OWL ontology includes the facts shown in Table 13a. Then the computa-

tion of the transitive closure of subclass, using the rules from Table 13b, produces an

infinite number of responses to the query, isSubClassOf(X, Y), as the system loops

around and around the cycle. Even though we may claim that a cyclic hierarchy

is erroneous, we cannot prevent the developer from creating one. So SWORIER

should be able to handle it.

We propose changing the subclass transitive closure rules (Table 3a) into the rules

in Table 13b. The idea is to stop the cycle when it reaches the beginning again,

which occurs when the two parameters of isSubClassOf are equal. For this purpose,

we create a new predicate is sub class of but not equal to that includes all of the

subclass relations, except for the reflexive ones. (The first rule catches them.) Note

that we use the technique discussed in Section 4.9, by including isclass predicates

to insure that the variables are bound before running any not tests on them.

4.11 Anonymous classes

OWL can define classes called anonymous classes without actually naming them.

Table 14a has an example of an anonymous class, and Table 14b has our suggestion

of how to translate it. An anonymous class, unnamedClass(hasCombatIntent,

friendly-Intent), is generated like anonymous individuals that were presented in

Section 4.7.

5 Dynamic changes

Another useful capability is to change the knowledge base at run time. For example,

in our convoy task, intelligence reports can come in at any time during a scenario,

and we want SWORIER to be able to incorporate the new information into the

https://doi.org/10.1017/S1471068407003249 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003249


314 K. Samuel et al.

Fig. 4. Dynamic changes of facts and rules.

knowledge base. This must be done within a few seconds. So, we have enabled

SWORIER to accommodate dynamic changes of facts, adding or removing facts

at run time. (We have not yet tried dynamically changing classes, properties, or

rules.) Unfortunately, dynamic assertions significantly decrease efficiency because

the Prolog compiler can no longer be used. It is not possible to assert or retract any

facts with predicates that are compiled. This issue is addressed in Section 6.3.

SWORIER is also capable of dynamically changing rules, but only in a restricted

way. We require that all of the desired rule sets are available in advance. This can still

be quite useful. For example, under low visibility conditions, different rules might be

desired from the rules used with high visibility. Both rule sets can be developed in

advance, and then SWORIER can generate a separate program for each case. These

rules might be considered different policies or rules invoked by different contexts. At

run time, when visibility is high, the user queries are submitted to the first program.

But whenever visibility is lost, such as at the onset of a sandstorm, the two programs

are swapped, and the user queries are sent to the second program.

Figure 4 shows the system after it is extended to accommodate dynamic changes.

Note that whenever facts are added or removed from the knowledge base, both

programs must be modified appropriately.

6 Efficiency

Initially, the SWORIER system was too slow. As shown in Table 15a, it took

1.9 hours to incorporate two dynamic changes into the knowledge base: A report of

the convoy’s current position and speed and information about a motorized infantry

unit approaching it from ahead. After those changes were made, 1.5 hours were
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Table 15. Response time (online).

Fig. 5. Extensionalization.

needed to respond to the following queries: What are the positions and speeds of

all known units, and what are the current alerts and recommendations?

The time efficiency that is required depends on the application. For our military

task, once a mission begins, the system’s responses must be very fast. If it takes more

than a few seconds to answer a query at run time, the system is effectively useless.

However, before the mission begins, more time is generally available for knowledge

compilation. Still, this offline processing would usually need to be done in hours,

not days.

6.1 Extensionalization

In order to make the system tractable at run time, we implemented an offline

technique to speed up the program. We modified SWORIER to extensionalize all of

the facts that can be derived from the input (that a user might want to query on),

converting the program from an intensional form to an extensional form. Figure 5

shows the modified system design.

Table 16a shows some sample intensional code, and the corresponding extensional

code can be found in Table 16b. The extensionalization algorithm runs generalized

queries (isClass(C) and equivalentClasses(C, D) in order to derive all of the desired

facts and save them in the extensional program. (Note that it is easy to keep duplicate
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Table 16. Intensional and extensional code.

Table 17. Extensionalization time (offline).

Table 18. Reevaluating a term.

facts out of the extensional code, because they always look identical.) Then, at run

time, the extensional program uses the derived facts. Since it only consists of facts

in camelcase form, several of the rules do not apply to the extensional code. Only

the facts that are added dynamically to the knowledge base have all-lowercase

predicates.

This preprocessing technique enabled the system to work much faster, as shown

in Table 15b. However, it still required 25.2 minutes to incorporate the same two

dynamic changes as in the previous test, and to answer the two queries took 58

minutes. This is still unacceptably slow. In addition, the offline extensionalization

process caused the AMZI Prolog application to crash, as shown in Table 17a. We

presume that the computer ran out of memory.

6.2 Avoiding reanalysis

In the process of extensionalizing the code, it was very common to test a term several

times with the same arguments. This unnecessary processing can be very slow. For

example, given the code in Table 18, the system must test isSubClassOf(convoy,

theaterobject) at least twice: Once when searching for all of the true isSubClassOf

terms, and again when trying to prove isMemberOf(convoy1, theaterobject).
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The proof of isSubClassOf(convoy, theaterobject) takes five steps.3 In general,

a very slow test may be run several times. To avoid the reevaluation of a term, each

time an isSubClassOf term is tested, that term is asserted as a success or failure.

Then, the next time the term needs to be tested, the answer is found in the new

assertion, so it is not necessary to run the full test again.4

Avoiding reevaluation of isSubClassOf makes the offline extensionalization

process tractable, though it still takes more than 13 hours, as shown in Table 17b.

We also tried implementing the avoiding reevaluation technique on isMemberOf.

But, for our task, very few ismemberof facts are known until run time, and the cost

of overhead outweighs the benefit, making extensionalization slower.

6.3 Minimizing code

Another efficiency improvement can be implemented if certain knowledge is available

prior to run time. Given a list of all of the predicates that are used in 1) the ontology,

2) the dynamic changes, and 3) the queries, it may be possible to eliminate some

of the rules, thus improving efficiency of the extensionalization process. In addition,

the same technique can be used to eliminate rules in the run time program.

The idea is to figure out which of the rules are actually necessary, because

the unnecessary rules can be dropped, improving efficiency. If a rule can never

successfully fire, then it is unnecessary. Also, if no query will ever result in testing a

rule, then that rule is unnecessary.

More precisely, a rule is a necessary rule only if it is both satisfiable and testable.

To determine which rules are satisfiable and testable, it is necessary to figure out

which predicates are satisfiable and testable, respectively. The algorithm that defines

satisfiable rules and predicates is presented in Table 19a, and Table 19b shows

how to determine which rules and predicates are testable.(In addition, we were able

to drop more rules by assuming that the knowledge base was already consistent,

eliminating the need to test for consistency.)

After removing all of the unnecessary rules, the extensionalization process only

took 6.5 hours, as shown in Table 17c. And the online processes can run much

faster, because the Prolog compiler can be applied to all of the predicates that are

not changed dynamically. Table 15c shows that it requires only 10 milliseconds to

assimilate the two dynamic changes and 130 milliseconds to answer the two queries.

(The dynamic changes and queries used in our experiments are briefly described near

3 1. isSubClassOf(convoy, theaterobject) :-
issubclassof(convoy, theaterobject). (FAILS)

2. isSubClassOf(convoy, theaterobject) :-
issubclassof(convoy, D),
isSubClassOf(D, theaterobject).

3. issubclassof(convoy, militaryunit).
4. isSubClassOf(militaryunit, theaterobject) :-

issubclassof(militaryunit, theaterobject).
5. issubclassof(militaryunit, theaterobject).
4 These are the predicates in queries, dynamically asserted facts, and the call to initiate extensionalization.
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Table 19. The code minimization algorithm.

the beginning of Section 6.) These results satisfy the requirements of our military

task.

7 Related work

Recent research has addressed similar issues and problems concerning the interaction

of Semantic Web ontology and rule technologies and logic programming. Related

work includes research on answer set programming (Eiter et al. 2004; Heymans

& Vermeir 2003), disjunctive logic programming (Maedche & Volz 2003; Minker

& Seipel 2002), constructive negation (Barták 1998), and Description Logic Pro-

gramming (DLP) (Grosof 2003). However, we have not yet had an opportunity to

investigate this other work enough to intelligently comment on it. Our preliminary

experimentation with answer set programming, however, seems to demonstrate
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across-the-board gains in efficiency, compared to our Prolog implementation. But

this work is as yet incomplete.

8 Discussion

The SWORIER system, given ontologies and rules, serves as an engine that responds

to queries. This type of work will result in a significant enhancement to the Semantic

Web, by providing a generally useful service to any application that requires

information from the Semantic Web. SWORIER is also amenable to dynamic

changes, quickly assimilating new facts or retracting old facts in an operational

setting. Although it cannot handle dynamic additions, deletions, or modifications of

rules at this time, it can switch between predefined sets of rules on the fly. Previously

there has been little work involving rules and dynamic changes.

We have built our work on the foundation developed in a paper written by Voltz

et al. (2003). We have addressed five of the problems that this paper suggested

were unsolvable. 1) By defining logical negation in Prolog, which makes it possible

to satisfy the open world assumption, it is now possible to properly capture the

semantics of complementary classes, as well as disjoint classes. 2) Disjunction in

the head of a rule is captured with the use of a new disjunctive operator. 3) The

disjunctive operator enables the analysis of enumerated classes. 4) Through an offline

analysis of the given ontologies, SWORIER can automatically develop rules that

enforce all and only the given cardinality constraints. 5) Using a different syntax

to express OWL facts in Prolog, addressing properties of equivalent individuals

has been simplified. Also, we dealt with three other issues: duplicate facts, cyclical

hierarchies, and anonymous classes.

We have also introduced alternative approaches for dealing with inconsistencies in

the given information. When an inconsistency is discovered, it is always possible to

simply send an error message to the developer. However, for many inconsistencies,

the possibility of fixing the problem automatically is available. And, with existential

constraints and minimum cardinality constraints, this can be done by adding new

facts to the knowledge base or by applying the skolemization method. We have

not yet confirmed which of these alternatives is preferable in which situations. We

expect that by introducing pragmas (instructions/annotations to the knowledge

compilation process), we can allow the developer to choose the specific behavior

he/she wants.

Efficiency problems have been addressed through 1) extensionalization, which is a

tabling method that converts a set of rules and facts into a set of facts, 2) avoiding

reanalysis, which saves results the first time they are determined to avoid running

the same costly evaluation again, and 3) code minimization, which deletes rules

that are unnecessary, for both offline and online processing. In our experiments, the

offline compilation process now completes in 6.5 hours, two dynamic changes are

incorporated into the knowledge base in 10 milliseconds, and two queries can be

answered in only 130 milliseconds.

In the future, we hope to analyze and convert the developer’s rules into ap-

propriately optimized rules, perhaps via the use of rewrite rules as for magic sets
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optimization and related rule techniques for logic queries (Cadoli et al. 1999; Sippu

& Soisalon-Soininen 1996) (see Section 3.3.). Also, the ideas presented in Section

4 concerning multiple terms in the head, equivalent individuals, cardinality issues,

cyclic hierachies, and anonymous classes have not yet been implemented. In addition,

there are several primitives in OWL that are not yet implemented in SWORIER,

including subPropertyOf.5 The logicNot predicate, introduced in Section 4.1, is only

partially implemented.
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