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We address the question of stability of the Euler flow with elliptical streamlines in a
rotating frame, interacting with uniform external magnetic field perpendicular to the
plane of the flow. Our motivation for this study is of astrophysical nature, since many
astrophysical objects, such as stars, planets and accretion discs, are tidally deformed
through gravitational interaction with other bodies. Therefore, the ellipticity of the
flow models the tidal deformations in the simplest way. The joint effect of the magnetic
field and the Coriolis force is studied here numerically and analytically in the limit of
small elliptical (tidal) deformations (ζ � 1), using the analytical technique developed
by Lebovitz & Zweibel (Astrophys. J., vol. 609, 2004, pp. 301–312). We find that the
effect of background rotation and external magnetic field is quite complex. Both
factors are responsible for new destabilizing resonances as the vortex departs from
axial symmetry (ζ � 1); however, just like in the non-rotating case, there are three
principal resonances causing instability in the leading order. The presence of the
magnetic field is very likely to destabilize the system with respect to perturbations
propagating in the direction of the magnetic field if the basic vorticity and the
background rotation have opposite signs (i.e. for anticyclonic background rotation).
We present the dependence of the growth rates of the modes on various parameters
describing the system, such as the strength of the magnetic field (h), the inverse of
the Rossby number (Rv), the ellipticity of the basic flow (ε) and the direction of
propagation of modes (ϑ). Our analytical predictions agree well with the numerical
calculations.

1. Introduction
The elliptical instability is widely proposed as the so-called secondary instability

in turbulence development. The experimental studies of the transition to turbulence
(Cadot, Douady & Couder 1995; EloyLe Gal & Le Dizès 2000) as well as numerical
simulations and theoretical arguments (Orszag & Patera 1983; Waleffe 1990; Le Dizes
& Lacaze 2005) suggest that a three-dimensional instability develops in regions with
closed elliptical streamlines. Bayly (1986) and Pierrehumbert (1986) were the first
to realize that the ellipticity of those regions is responsible for three-dimensional
instability and explained its mechanism. This, now known as the elliptical instability,
is a linear instability of the Euler flow with elliptical streamlines and constant
vorticity with respect to perturbations in the form of inertial waves (common in
geo- and astrophysics). This problem was intensively investigated in the last decades,
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and different factors like viscosity (Landman & Saffman 1987) and nonlinear effects
(Lebovitz & Saldanha 1999) were taken into account, also in magnetohydrodynamic
context (Thess & Zikanov 2007). In the aeronautic context, a mechanism based on
elliptical instability was used to explain the three-dimensional turbulence generation
for co-rotating and counter-rotating vortex pairs (Leweke & Williamson 1998;
Meunier & Leweke 2001; Le Dizes & Laporte 2002; Sipp & Jacquin 2003; Fabre
& Jacquin 2004; Meunier, Le Dizès & Leweke 2005). Craik (1986, 1988, 1989) and
Craik & Criminale (1986) analysed turbulence development via three wave resonances
and the evolution of perturbations in a shear flow in the presence of Coriolis force
and also for electrically conducting fluid interacting with external magnetic field.
However, our main motivation for the study of the influence of the Lorentz and
Coriolis forces on the stability of elliptical vortices comes from geo- and astrophysics.
Approximately elliptical shape caused by tidal forces is very common in many real
astrophysical systems such as planetary cores, binary stars and accretion discs. The
development of hydrodynamic instabilities in such systems has direct implications for
the problem of generation of the planetary and stellar magnetic fields and for the
analysis of propagation of magnetohydrodynamic waves which on the surface are seen
as specific oscillations of the magnetic field. In the case of liquid planetary cores the
stability problem of the flow inside them has important consequences for the processes
of torque exchange with the neighbouring elliptically deformed solid body – the mantle
in the geophysical context. Understanding and providing a coherent description of
those processes is a base for creating a detailed model of the precessional motion of
the Earth and the length of day variations. This is why the elliptical instability has
also significant implications in geophysics, planetology and astrophysics.

Suess (1970) showed that the tidal forces of Moon and Sun tend to establish
an elliptical flow in the Earth’s core. At the same time gravimetric measurements
(Melchior & Ducarme 1986; Aldridge & Lumb 1987; Melchior et al. 1988; Crossley,
Hinderer & Legros 1991) suggest the presence of inertial waves in the liquid core. On
this basis Kerswell (1994) analysed the possibility of elliptical instability development,
leading to the growth of those waves in the Earth’s core, in the presence of the Coriolis
force and toroidal magnetic field. He found that even small elliptical deformation is
sufficient for resonant excitation of inertial modes, which are not damped by diffusive
effects. The presence of such magnetic waves at the core–mantle boundary (CMB)
may also be detected through the analysis of the magnetic field oscillations at the
surface, as well as the oscillations in the spinning and precessing motion of the Earth,
which they trigger (Braginsky 1999).

One of the very important issues in geophysics is the problem of the Earth’s
magnetic field generation, i.e. the dynamo effect in the liquid outer core (Braginsky
1991; Soward 1991; Roberts & Soward 1992). The process which is most often
proposed to be responsible for the generation of planetary magnetic fields is convection
(thermal and/or compositional) in an electrically conducting fluid of the planetary
cores. However, recently Le Gal, Lacaze & Le Dizès (2005) and Lacaze et al. (2006)
have shown the feasibility of an alternative mechanism, based on the above-mentioned
resonant amplification of inertial waves, caused by tidal (elliptical) deformation of
planetary cores. These results are of particular interest in the context of the recent
Galileo mission, which revealed that Jupiter’s two satellites – Io and Ganymede –
have their own magnetic fields. In both cases the magnetic field generation cannot
be explained by convective mechanism. In Io convection is very unlikely because of
strong tidal heating of its mantle, caused by the proximity of Jupiter (Wienbruch &
Spohn 1995), while the small size of Ganymede makes sustenance of convection for
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billions of years very implausible. Kerswell & Malkus (1998), taking into account the
significance of the tidal forces in those satellites, suggested that their magnetic fields
are an outcome of tidal (elliptical) instabilities and claimed that they are very likely
to occur in those bodies. For the Earth the mechanism of magnetic field generation
via the inertial instabilities resulting from precession of the Earth’s rotation axis or
from the tidal forces was proposed earlier (Vanyo et al. 1995; Kerswell & Malkus
1998; Noir et al. 2001; Tilgner 2005), also as a possible mechanism of induction of
the magnetic field at an early stage, before the start of crystallization of the inner
core about one billion years ago.

In relation to the dynamics of ocean and atmosphere Miyazaki & Fukumoto (1992)
and Miyazaki (1993) investigated the influence of the Coriolis force and density
stratification, caused by temperature or salinity gradient, on the elliptical instability.
The results of the analysis of this instability type are also of potential interest in the
context of the solar wind transport through the magnetopause. This is a region in
which the solar wind, carrying the solar magnetic field, encounters the magnetic field
of the Earth generating strong shear and triggering the Kelvin–Helmholtz instability,
which, as it develops, creates elliptically shaped vortex structures (Le Dizes 2003),
on which fully three-dimensional instabilities develop (Pierrehumbert 1986). Roth
et al. (2001), Mozer, Phan & Bale (2003) and Hasegawa (2005) have shown that the
destabilization of the magnetopause is necessary to explain the effective transport of
the solar wind to the magnetosphere (and then to the ionosphere as manifested by
the associated aurora phenomenon).

A very important issue in astrophysics is that of the angular momentum transfer
in accretion discs. It is believed that turbulence must be employed for a coherent
description of this phenomenon. The elliptical instability, in a purely hydrodynamic
context, was discussed in terms of a possible mechanism of generation of turbulence
in tidally distorted accretion discs by Goodman (1993). A recent experimetal study
by Ji et al. (2006) suggests, however, that magnetohydrodynamic turbulence must
be employed in order for the angular momentum to be transported effectively. One
of the mechanisms of generation of the magnetohydrodynamic turbulence, widely
believed to operate in accretion discs, is the magnetorotational instability (MRI).
This instability is due to the presence of the magnetic field perpendicular to the
plane of an axisymmetric vortex in which angular momentum increases with distance
from the centre (Balbus & Hawley 1991). Lebovitz & Zweibel (2004) proposed an
alternative generative mechanism resulting from tidal deformations of the discs and
the development of elliptical instability in the presence of external magnetic field.
They found that when the Alfvén speed is large, uA �

√
3ωd , where d is the vertical

extent of the accretion disc and ω is its rotation rate, the elliptical instability should
be damped. We show how this upper bound for the magnetic field strength above
which the instability cannot operate is modified by the presence of background
rotation. However, rather than looking at the problem globally, we shall have in mind
the picture of an elliptically deformed vortex embedded in an accretion disc. Such
vortices are created due to the shear instability of the non-uniform average angular
velocity profile in the disc.

In the context of the dynamics of the solar interior Lebovitz & Lifschitz (1996)
investigated the stability of the Riemann ellipsoids (the models of self-gravitating
rotating stars, the problem going back to Chandrasekhar 1969), i.e. the possibility
of elliptical instability taking place in the Sun’s interior, in the presence of short-
wavelength perturbations and in the absence of the magnetic field. Mizerski, Bajer &
Moffatt (2009) studied the dynamo problem (the alpha effect) in such systems.
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A review of different mechanical aspects of the elliptical instability in the theory
of turbulence and in geophysics, astrophysics and planetology was done by Kerswell
(2002). However, it is also worth mentioning that Le Bars & Le Dizes (2006) found the
elliptical instability to be strongly affected by thermal phenomena which may lead to
its suppression. They suggested that in the context of astrophysical objects (including
the Earth) the thermal effects on the elliptical instability development should be taken
into account.

From the point of view of geophysical and astrophysical applications it seems crucial
to investigate the joint effect exerted by the Coriolis and Lorentz forces on the elliptical
instability, which was not investigated so far. Lacaze et al. (2006) did not take into
account the Coriolis force. Moreover they considered only weak magnetic fields, i.e.
the kinematic dynamo problem, neglecting the Lorentz force. The latter was included
by Lebovitz & Zweibel (2004), but they neglected the effect of the Coriolis force.

In the present paper we analyse in detail the joint influence of the background
rotation (Coriolis force) and an external uniform magnetic field (Lorentz force) on
the stability of the Euler flow with elliptical streamlines of a perfectly conducting
fluid. We show how the growth rates of the perturbations depend on their direction
of propagation and on the parameters measuring the strength of the magnetic field,
the intensity of background rotation and the ellipticity of the basic flow. We also
visualize the evolution of a selected unstable mode by presenting the time evolution
of its magnetic field lines, streamlines and the lines of the electric current density
and also the trajectories of fluid particles (Mizerski & Bajer 2007). First we describe
the method we use to analyse the stability problem, and then in § 3 we present the
numerical solutions for various parameter values. Section 4 and the Appendix are
devoted to the detailed theoretical explanation of the computed stability diagrams.

2. Formulation
We consider a linear velocity field with elliptical streamlines given by

u0 = ω[−Ey, E−1x, 0] = γ [−(1 + ε)y, (1 − ε)x, 0], (2.1)

where ω > 0 is a measure of the intensity of the flow; E � 1 is a measure of elliptical
deformation of the streamlines; 2γ êz is the uniform, vertical vorticity; −γ ε is the
strain rate; and 0 < ε < 1 for the flow to be elliptical. It is subject to the external
uniform magnetic field B0, in a system of reference rotating with constant angular
velocity Ω (figure 1a),

B0 = B0 êz, Ω = Ω êz. (2.2)

In this paper we study the linear stability of the above system, by analysing the
evolution of the three-dimensional perturbations of the velocity field u′(x, t) and the
magnetic field B′(x, t).

Equation (2.1) gives two equivalent forms of the velocity field. We will use both,
choosing the more appropriate one depending on the context. The parameters ω and
γ will be used to distinguish between the two conventions; i.e. the first one will be
called the intensity convention and the other the vorticity convention. (In general the
vorticity convention is more natural and suitable for the stability analysis of the
system. In the intensity convention the limit of the plane shear flow – which, since
Kelvin 1887, is known to be linearly stable but algebraically unstable – naturally takes
the form E → ∞ where Ω is constant. Such limit is singular because the vorticity
and the strain rate tend to infinity. In the vorticity convention, however, this limit is
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Intensity convention Vorticity convention

Intensity of the flow Vorticity of the flow

ω = γ
√

1 − ε2 γ =
1

2
ω(E + E−1) =ωδ

Measure of ellipticity Strain

E =

√
1 + ε

1 − ε
= δ +

√
δ2 − 1 ε =

E2 − 1

E2 + 1
=

ζ

δ
The ratio of the background rotation Inverse of the Rossby number

to the intensity

Ri
.
=

Ω

ω
= Rvδ Rv

.
= Ro−1 =

Ω

γ
Dimensionless magnitude of the Dimensionless magnitude of the

magnetic field magnetic field

H =
k0B0√
μ0ρω

= hδ h =
k0B0√
μ0ργ

Table 1. Table of parameters where μ0, ρ = const. and k−1
0 are magnetic permeability of

vacuum, constant density of the fluid and length scale of the perturbations, respectively.

Bo

(a) (b)

y

x

x
k

z

yΩ

θ

Figure 1. A schematic drawing of (a) the basic state – planar flow with elliptical streamlines
in the presence of a vertical uniform magnetic field in a system of reference rotating with
angular velocity Ω – and (b) the time evolution of the wave vector k of the perturbations –
the end of the wave vector moves along an ellipse rotated by an angle π/2 with respect to the
streamlines of the basic flow u0.

naturally given by ε → 0 where γ is constant. On the other hand the parameter ω

is the basic frequency of the motion of a fluid particle along elliptical trajectories,
and therefore the intensity convention seems more suitable for analysing resonant
destabilization in § 4.) Below we list the full set of the parameters which are going to
be used throughout this paper and the relations between them:

ζ
.
=

1

2
(E − E−1) =

ε√
1 − ε2

, δ
.
=

1

2
(E + E−1) =

1√
1 − ε2

, (2.3)

See table 1.
The equations describing the evolution of the velocity field u (x, t) and the magnetic

field B (x, t), for an ideal, perfectly conducting fluid are the Euler’s equation with the
Lorentz and Coriolis forces and the induction equation,

∂u
∂t

+ (u · ∇) u = − 1

ρ
∇p − 2Ω × u +

1

ρ
j × B, (2.4)
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∂ B
∂t

+ (u · ∇) B = (B · ∇) u, (2.5)

where p is the pressure modified by the centrifugal potential (1/2)ρ (Ω × x)2, while
j is density of the electric current, together with the mass conservation law

∇ · u = 0 (2.6)

and the Maxwell laws

∇ · B = 0, (2.7)

j (x, t) =
1

μ0

∇ × B (x, t) , (2.8)

with the displacement currents neglected. Introducing in the system small, three-
dimensional perturbations u(x, t) = u0(x, y) + u′(x, t), B(x, t) = B0 + B′(x, t) and
p(x, t) =p0(x, y) + p′(x, t), in the form of inertial waves, for which the direction
and the speed of propagation depend on time⎛⎝u′

B′

p′

⎞⎠ =

⎛⎝v (t)
b (t)
p̃(t)

⎞⎠ exp[ik(t · x], (2.9)

where v(·), b(·), p̃(·) and k(·) are functions of time only, with the pressure in the
unperturbed state

p0(x, y) =
1

2
ρω2(x2 + y2) + ρΩω(E−1x2 + Ey2)

=

(
1

2
ρω2 + ρΩγ

)
(x2 + y2) − ερΩγ (x2 − y2), (2.10)

the above equations take the following form:

dv

dt
+ iv

[(
dk
dt

+ ÂT k

)
· x

]
= −Âv − ik

p̃

ρ
− 2Ôv +

iB0

μ0ρ
(k × b) × êz, (2.11)

db
dt

+ ib

[(
dk
dt

+ ÂT k

)
· x

]
= Âb + ikzB0v, (2.12)

k · v = 0, k · b = 0, (2.13)

where Â is the gradient of the basic velocity field u0,

u0 = Âx; so Â = ω

⎡⎣ 0 −E 0
E−1 0 0
0 0 0

⎤⎦ = γ

⎡⎣ 0 − (1 + ε) 0
(1 − ε) 0 0

0 0 0

⎤⎦ , (2.14)

and operator Ô = Ω×,

Ô = Ω

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ . (2.15)

Since the terms proportional to x in (2.11) and (2.12) must balance separately, we
obtain the equation

dk
dt

= −ÂT k, (2.16)
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the solution of which,

k = k0 (sinϑ cos [ω (t − t0)] , E sinϑ sin [ω (t − t0)] , cosϑ) , (2.17)

describes the evolution of the wave vector k along an ellipse similar to that of the
basic flow streamlines but with the main axes interchanged. Here constant k−1

0 is the
length scale of the perturbation, already used in table 1 (k0 is the minimal norm of
k); angle ϑ is constant and is the minimal angle between the wave vector k and the
z axis; and t0 is an arbitrary parameter serving only to determine the phase of the
wave vector k (see figure 1b).

By the use of the incompressibility condition (2.13) we may eliminate pressure from
(2.11),

−i
p̃

ρ
=

2

k2
[(ÂT + ÔT )k] · v + i

B0bz

μ0ρ
, (2.18)

and substituting it again in the (2.11) we get

dv

dt
=

[
2

k2
k ⊗ k(Â + Ô) − Â − 2Ô

]
v +

iB0kz

μ0ρ
b, (2.19)

where ⊗ denotes tensor multiplication. Quite remarkably it turns out that the z

components of the fields v and b are slaved (Lebovitz & Zweibel 2004), since they
only appear in the z components of (2.12) and (2.19),

dvz

dt
= −2ωkz

k2
[(E + Ri)kxvy − (E−1 + Ri)kyvx] +

iB0kz

μ0ρ
bz, (2.20)

dbz

dt
= iB0kzvz. (2.21)

This means that (2.20) and (2.21) can be solved for vz and bz after vx , vy , bx and by

are found. Another method for calculating vz and bz is provided by the solenoidal
conditions (2.13) if kz 	= 0. Moreover, from the form of these equations we easily
infer that the components vz and bz do not influence stability, since the homogeneous
system of equations (2.20) and (2.21) have only oscillatory and not exponentially
growing solutions. We are, therefore, allowed to reduce the system of six equations for
all the six components of v and b to a system of four equations for the components
vx , vy , bx and by .

In derivation of (2.19) we used the solenoidal conditions (2.13). This, in general,
does not mean, however, that these conditions are now automatically built into the
system of equations (2.19), (2.12) and (2.16). Still, these equations imply

d

dt
(k · v) =

iB0kz

μ0ρ
k · b, (2.22)

d

dt
(k · b) = iB0kzk · v, (2.23)

and therefore it is enough to ensure that k · v and k · b vanish only at the initial
instant. Then these conditions will hold for all t > 0 as a consequence of (2.19) and
(2.12). Moreover, since the solutions of (2.22) and (2.23) are necessarily periodic in
time, for the unstable, exponentially growing solutions the solenoidal conditions (2.13)
are satisfied automatically.
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We rewrite the system of equations (2.12) and (2.19) in the following compact form
(making a simple rescaling b → (1/

√
μ0ρ)b):

ds
dτ

= S (τ ) s, (2.24)

where

τ = ω (t − t0) , s =

⎡⎢⎢⎣
vx

vy

bx

by

⎤⎥⎥⎦ , (2.25)

S(τ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2kxky

k2
(E−1 + Ri)

(
1 − 2k2

x

k2

)
(E + Ri) + Ri iH cosϑ 0(

2k2
y

k2
− 1

)
(E−1 + Ri) − Ri −2kxky

k2
(E + Ri) 0 iH cosϑ

iH cos ϑ 0 0 −E

0 iH cosϑ E−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.26)

It is worth pointing out that for H = 0 the matrix S becomes independent of k0, which
means it is only the presence of the magnetic field in the system that introduces the
dependence of the stability problem on the wavelength of the perturbations.

Equation (2.24) is an ordinary first-order system of differential equations, and since
the matrix S (τ ) is periodic in τ with the period of 2π, this equation constitutes a
Floquet problem for vector s (τ ) (Bender & Orszag 1978). The general solution of
(2.24) is a linear superposition of Floquet modes

s (τ ) = eστ f (τ ) , (2.27)

where f (τ ) is 2π-periodic and σ is the complex growth rate, which is measured in
the units of the basic flow intensity ω. The linear stability of the basic state u0, B0

depends on the existence of exponentially growing solutions of (2.24), i.e. on the
sign of the real part of the Floquet exponent σ . This exponent is determined by
the fundamental matrix solution M (τ ) of the differential equation (2.24), satisfying
s (τ ) =M (τ ) s (τ = 0), through the fact that exp (2πσ ) is an eigenvalue of the matrix
M (2π). The equation for M (τ ) is analogous to (2.24),

d

dτ
Mij = Sik (τ ) Mkj , (2.28)

with initial condition

Mij (τ = 0) = δij , (2.29)

where δij is the unit matrix. If by Λ (E, ϑ, Ri , H ) we denote the eigenvalues of M (2π),
the growth rates are then given by

σ (E, ϑ, Ri , H ) =
1

2π
ln Λ (E, ϑ, Ri , H ) . (2.30)

This means that if any of the eigenvalues satisfies |Λ| > 1 the system is unstable.
Equation (2.28) can be solved numerically to compute the matrix M at τ = 2π and

its eigenvalues Λ (E, ϑ, Ri , H ). In the following section we present the results of such
numerical analysis of the stability problem for different values of the parameters H
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(magnetic field strength), Ri (the strength of the background rotation) and δ (the
ellipticity). At the end of this section we also present the numerically calculated
evolution of a typical unstable mode.

3. Numerical results
For a wide range of values of the parameters, (2.28) was solved numerically, by the

Runge–Kutta method (standard MATLAB procedure ode45 ) with the initial condition
given in (2.29). For each set of parameters (cosϑ, δ, h, Rv) the matrix M (2π) and its
eigenvalues were computed and then, with the aid of (2.30), the maximum of the real
part of the growth rate. Thanks to the symmetry cosϑ ↔ −cos ϑ of the equations
of magnetohydrodynamics ((2.4) and (2.5)), it was enough to consider ϑ only in the
interval 0 <ϑ < π/ 2. (It can be seen from (2.24) and (2.26) that the interchange
cos ϑ → − cosϑ is equivalent to H → −H , i.e. the reversal of the direction of B0.
The equations of magnetohydrodynamics imply that such transformation only causes
the magnetic field perturbation B′ to change sign but does not influence the stability
problem otherwise. Therefore, we will keep the assumption cosϑ > 0 throughout the
paper; see also the discussion below (4.3) in § 4). Because of its greater practical
utility, the vorticity convention was used for numerical simulations, and therefore the
vorticity γ is the unit of the growth rates.

We start with presenting stability diagrams in the δ–ϑ plane (figures 2 and 3) for
different values of the parameters h and Rv . The intensity of the grey colour indicates
the values of the growth rates. The stable regions are marked with white, and the
unstable ones typically take the form of grey wedges widening with increasing δ.
First, in figure 2, we reproduce the known results for the stability of elliptical flow
in a non-rotating system and with B0 = 0 (Bayly 1986) and also the effects of the
background rotation (Miyazaki 1992) and the magnetic field (Lebovitz & Zweibel
2004) separately. When the magnetic field is present, not only does the single unstable
wedge for h = Rv = 0, with the apex at (δ =1, ϑ = π/3), change its location, but also
new thinner unstable wedges appear, since there are more destabilizing resonances
possible, between the frequencies of oscillations of the modes. This means that the
presence of magnetic field allows for destabilization of the system along new directions
of propagation of the perturbations. A similar effect is exerted by the background
rotation, although there are fewer unstable wedges, and they are much weaker. (For
Rv = 0.6 a very thin wedge, which touches the ϑ axis at ϑ = arccos(1/(2 + 2Rv)), is
clearly seen.) The crucial difference, however, is that for anticyclonic rotation, i.e. for
Rv < 0, in the range −1 < Rv < 0 a strong unstable region which is not of resonant
nature appears, in which the most unstable modes are those propagating along the
z axis (ϑ = 0). This type of instability is explained in detail by Bajer & Mizerski
(2008) in a general magnetic case. After Miyazaki (1992) it is called the horizontal
instability, since for ϑ = 0 the perturbations of the velocity and the magnetic field lie
in the horizontal xy plane. For h = 0 and −1 < Rv < 0, the instability appears only
for ellipticities δ greater then a critical value, δc = 1/

√
−4Rv(Rv + 1). Additionally, in

the presence of Coriolis force, the unstable regions may take the form of wedges with
apexes on the δ axis and widening with increasing ϑ and δ (see figure 2e). Only this
type of unstable regions is possible for −3/2 < Rv < −1/2. The stability characteristics
of strong anticyclonic vortices (weak anticyclonic rotation), Rv < −3/2, become similar
to those of cyclonic vortices (Rv > 0).

The joint influence of the Coriolis and Lorentz forces can be seen in figure 3.
Weak background rotation, in the presence of external magnetic field, does not bring
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Figure 2. Greyscale maps of growth rates in the δ−ϑ plane: (a) h = 0, Rv =0;
(b) h = 4, Rv = 0; (c) h = 0, Rv = 0.6; (d ) h = 0, Rv = −0.6; (e) h = 0, Rv = −1.3; (f ) h = 0,
Rv = −2.3. The main effect of the Lorentz force is the breakup of one unstable wedge into
many smaller wedges (larger number of destabilizing resonances at δ = 1) and its shift towards
higher values of the angle ϑ . The Coriolis force in the range −1 < Rv < 0 causes the horizontal
instability (Bajer & Mizerski 2009), which typically has very large growth rates and for Rv < −1
allows for resonant destabilization of some ellipticities δ.
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Figure 3. Grey-shaded maps of growth rates in δ−ϑ plane – the joint effect of the
Coriolis and Lorentz forces: (a)h =4, Rv = 0.6; (b) h = 4, Rv = −0.2; (c)h = 4, Rv = −1.6;
(d ) h = 4, Rv = −3.0; (e) h = 4, Rv = −4.5; and (f ) h =4, Rv = −8.5. The Lorentz and the
Coriolis forces together create more resonantly destabilized modes (i.e. destabilized by
resonances between their frequencies of oscillation) and widen the range of existence of
horizontal instability to an unbounded interval Rv < −h2/4.
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in any significantly new stability characteristics, but clearly, weak cyclonic rotation
tends rather to change the shapes of the unstable regions, whereas weak anticyclonic
rotation tends to decrease the growth rates (compare figures 2b, 3a and 3b). Both
factors, jointly and separately, cause the directions of propagation of the resonant
unstable modes to tend to the vertical (z) axis; in other words the wedges with apexes
on the ϑ axis move upwards with increasing h or Rv . For all values of Rv the apexes
of the thickest unstable wedges at δ = 1 are given in (4.5), (4.9) and (4.16), in § 4. For
0 > Rv > −h2/4 (figures 3c and 3d ), we clearly see wedges originating from the δ axis,
indicating that some values of ellipticity δ are subject to destabilization via, possibly,
a resonant mechanism. When Rv tends to −h2/4 from above, the apexes of these
wedges move towards infinity and reach it when Rv � −h2/4, making the wedges
bend in a ‘bow-shaped’ manner. In the case in which h = 0 and −1 < Rv < 0, i.e.
when the horizontal instability is present in non-magnetic case, such bow shapes do
not appear at all. For the wedges that originate from the δ axis, formulae analogous
to (4.5), (4.9) and (4.16) could, in principle, be derived. Analysis similar to that for
ζ � 1 presented in the Appendix could be done for ϑ � 1. However, it would be
necessary to go to the order higher than ϑ2; hence the analysis would be much more
complicated. Moreover, the usefulness of the results of such analysis would probably
be limited, since there are not many systems in which the direction of propagation
of the perturbations is restricted to the z axis and its neighbourhood. Additionally,
the growth rates inside these wedges typically are very small close to the apex. We
therefore do not perform such analysis and only anticipate that the destabilization
in the case of wedges originating at ϑ =0 is also due to a resonant mechanism,
i.e. the resonances between the frequencies of oscillation of the horizontal modes

� = ± γ

√
χ2

± − ε2, where χ± = Rv ±
√

(Rv + 1)2 + h2 (Bajer & Mizerski 2009), and

the basic frequency ω. Such resonances lead to the following expressions:

±γ
√

χ2
+ − ε2 = nω, n ∈ � ⇒ δ =

√
n2 − 1

χ2
+ − 1

and n � |χ+| for |χ+| > 1

and ± γ
√

χ2
− − ε2 = nω, n ∈ � ⇒ δ =

√
n2 − 1

χ2
− − 1

and n � |χ−| .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.1)

However, it must be noted that without a proper asymptotic analysis for (ϑ � 1) we
cannot distinguish which of these resonances leads to instability, and most likely not
all of them do. Moreover the resonant destabilization of the system may also be due
to the resonances of the type �j −�k = nω, where n ∈ �, which in some cases reduce
to the conditions (3.1). The conditions for the resonance of order n in (3.1) result from
the fact that δ � 1. It is also worth pointing out that the first formula in (3.1) allows
for resonant destabilization only if |χ+| > 1, i.e. in absence of the horizontal instability
(Bajer & Mizerski 2009). It also explains the shift of the apexes of the unstable
wedges along the δ axis towards infinity, when Rv → −h2/4 from above, since then
χ+ → 1. The second formula in general allows for resonant destabilization even if
Rv and h are such that the horizontal instability is possible, since |χ−| > 1 always.
In practice, however, because χ− increases quickly with negative and decreasing Rv ,
the condition n � |χ−| makes only high resonances possible, which are likely to be
weak and difficult to spot. (Such wedges may exist but may simply be too thin and
the growth rates inside them too small to be detected.) For h = 0 and negative Rv the
resonant excitation of horizontal modes is possible only if Rv < −1.

As already mentioned, the Coriolis force is a reason for the existence of
horizontal instability (Bajer & Mizerski 2009), which appears when Rv < −h2/4
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Figure 4. The dependence of the maximal growth rate on the dimensionless intensity of the
magnetic field h for E =4 and Rv = 0.6, 0 and −4.5. In the latter case the growth rates of
the vertical mode (VM) and horizontal mode (HI) are indicated separately. The limiting value
σ (h) when h → ∞ is the same in all cases. A characteristic minimum at about h ≈ 2 appears.

and is present for δ � 1/
√

1 − χ2
+, strongly dominating other unstable modes. When

Rv = −(h2 + 1)/2 = −8.5, it is present for all values of δ. We emphasize that the
horizontal instability, although caused by the presence of the Coriolis force, is very
strongly modified by the magnetic field. In the h = 0 case this type of instability may
develop only in a bounded range of values of the parameter Rv , i.e. for −1 < Rv < 0.
Switching on the magnetic field results in immediate change in the range of its
existence to an unbounded interval −∞ < Rv < −h2/4.

Figure 4 illustrates the dependence of the growth rate maximized over the angle
ϑ on the intensity h of the external magnetic field, for positive and negative values
of the parameter Rv and also for Rv = 0. For Rv < 0, in the range of domination
of the horizontal instability, we have also plotted the maximal growth rate for
angles ϑ in the interval ϑ ∈ (π/4, π/2), denoted as VM (vertical mode). The growth
rates of the horizontal perturbations are marked by HI. When Rv > −4.5, the
function (Reσ )max (h) has a minimum at h ≈ 2. The presence of horizontal instability
significantly changes the character of this function, causing a maximum at h ≈ 3. For
all values of the parameter Rv presented in the limit h → ∞ the growth rates tend to
the same value, depending only on the ellipticity of the basic flow. (Likewise in the
asymptotic case ζ =(1/2)(E − E−1) � 1, investigated in detail in the next section and
the Appendix, where in the limit of strong magnetic field the growth rates tend to
(1/4)ζ ).

In an analogous way to (Reσ )max (h) we computed the dependencies of the growth
rate, again maximized over ϑ , on the ellipticity ε (figure 5a) and on the parameter
measuring the strength of the Coriolis force Rv (figure 5b). Again, in the range of
existence of horizontal instability the growth rates of horizontal instability and vertical
modes are plotted. It is clear that in the absence of horizontal instability the Coriolis
and Lorentz forces act to decrease the growth rates, and in the limit of pure shear flow
ε → 1, the system is then linearly stable (see figure 5a). The horizontal instability,
when present, changes these characteristics completely by significant increase of
the maximal growth rate and strong destabilization in the pure shear flow limit.
Figure 5(b) clearly shows the domination of horizontal instability over other types of
unstable modes. The values of the growth rates are definitely largest when horizontal
instability is present. This means that real systems with anticyclonic rotation and
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Figure 5. Dependence of the maximal growth rate on the ellipticity ε for h =4 and
Rv = 0, 0.6, −3.0 and −4.5. Analogous dependence for h = 0 and Rv = 0 is shown for
comparison. For Rv = −4.5 the growth rates of vertical mode (VM) and horizontal mode
(HI) are shown as well in (a). The magnetic field and background rotation in general act to
decrease growth rates, with the exception of the horizontal instability, for which the growth
rates are usually very large. For large and increasing ellipticities, i.e. in the pure shear limit, in
absence of HI the growth rates tend to zero. Horizontal instability, in the limit ε → 1, persists.
(b) Depiction of the dependence of the maximal growth rate on the parameter Rv for h = 4
and E = 4. In the range of existence of the horizontal instability the growth rates of VM and
horizontal mode (HI) are indicated as well. For anticyclonic rotation, when HI is present, the
maximal growth rates are significantly larger than in the case of cyclonic rotation.

Rv < −h2/4 are more likely to develop turbulence, since the dissipative effects would
have to be very strong to damp the instability.

The irregular dependence of the maximal growth rate of the vertical-mode-type
perturbations on the parameters h, ε and Rv is probably a result of interaction of
different modes. For ϑ ∈ (π/4, π/2) the unstable regions in δ–ϑ plane, originating
from different types of resonances, merge with increasing δ, which influences the value
of the maximal growth rate.

The above analysis sums up to the conclusion that the presence of the magnetic
field and background rotation exerts a stabilizing effect by decreasing the values of
growth rates in the absence of horizontal instability. This means that the viscosity
and electric resistivity may damp the elliptical instability more easily if the Lorentz
and/or Coriolis forces are present in the system and Rv > −h2/4. Additionally the
whole area of the unstable regions in the δ–ϑ plane is, under these conditions, smaller
than in the absence of the magnetic field and background rotation. Both statements
change radically when horizontal instability enters the dynamics, since the unstable
horizontal modes typically have very large growth rates, and the total area of unstable
regions is also significantly larger. Moreover, besides those two effects, there is also
another one, which should rather be regarded as destabilizing, since the presence
of the magnetic field and background rotation allow for destabilization along new
directions of propagation of the perturbations.

We end the numerical analysis with presenting the evolution of a selected unstable
mode in figure 6, for Ri = 0. For different times within one period the projections
of the streamlines on the xy plane as well as the projections of the magnetic lines
and lines of electric current on the xz plane are shown (figure 6a). It can be seen
that the streamlines are being twisted as they evolve, while the electric current,
j = Re(ik × B′), flows along straight lines, perpendicular to the wave vector k and
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Figure 6. For legend see next page.

ImB′. In figure 6(b) we present the three-period evolution of the projections of the
trajectories of a selected fluid particle on the xy, xz and yz planes, successively
after each period T = 2π/ω. Since we visualize here the evolution of perturbations in
infinite space, the initial amplitude of the perturbations is arbitrary. This is because
in the case of infinite space the individual Floquet modes are exact solutions also of
the fully nonlinear system of evolution equations, since the divergence-free conditions
(2.13) ensure vanishing of the nonlinear terms. Thus e.g. the velocity trajectories are
simply calculated in the following way: dx/dτ = u0 + Re{v(τ ) exp[ik(τ ) · x]}, where
the horizontal component of the initial amplitude v (τ =0) is obtained from the
Floquet analysis, by taking the first two components of the eigenvector s (τ = 0)
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Figure 6. Visualization of the evolution of a selected unstable mode for H = 4 (h = 1.88) and
Rv = 0, E = 4: (a) projections of streamlines on the xy plane and projections of the magnetic
field lines and electric current density lines on the xz plane in the perturbed flow (from left
to right), at times τ = 0, π/2, π, 3π/2, 2π (from top to bottom). For electric current lines the
direction of the current flow is indicated: continuous lines, positive; dashed lines, negative; the
length of the line is correlated with the value of the vector j . (b) Projections of the trajectories
of a selected fluid particle on the xy, xz and yz planes (from left to right), after each of three
successive periods T = 2π/ω, i.e. for τ = T , 2T , 3T (from top to bottom).

of the Floquet matrix M (2π). We checked that the numerical solutions satisfy the
solenoidal conditions for u and B (2.13).

We now proceed to the detailed explanation of the instability mechanism in the
analysed system. In the next section we will answer the question which of the
perturbations of a circular flow are destabilized in consequence to small deviations
of the basic flow from axial symmetry.

4. The destabilizing resonances
In the Appendix we will repeat the whole procedure of the asymptotic calculation

for ζ � 1 done by Lebovitz & Zweibel (2004) for Ri = 0 but with the inclusion of
Coriolis force. Here we only state the results. First we note that the time average of

the trace of S(τ ) over a period (1/2π)
∫ 2π

0
Tr(S(τ ))dτ = 0; thus the Liouville theorem

gives det(M(2π)) = 1. Hence our system is conservative and possesses the property
that if Λ is an eigenvalue of the Floquet matrix M (2π), so is its inverse Λ−1 and
its complex conjugate Λ∗. The proof of this fact is exactly the same as given by
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Lebovitz & Zweibel (2004), and we will not repeat it here. This implies that in the
stable situation all eigenvalues of M(2π) must lie on the unit circle. Moreover, at
the instability threshold, when the eigenvalue Λ is about to leave the unit circle,
its multiplicity is at least 2, since the eigenvalue (Λ∗)−1 must leave the unit circle
simultaneously, and on the unit circle, at the threshold, Λ = (Λ∗)−1. This means
that the destabilization of Floquet modes is a result of a special type of resonances
between them (including resonances between their frequencies and the basic frequency
ω). For ζ = 0, i.e. when the streamlines of the basic flow are circular, these resonances
are defined by the condition �k − �l = n, with n ∈ �, where the frequencies �j ,
j =1, 2, 3, 4, are defined in (4.3). If n 	= ±2 the matrix J′ defined in the Appendix
is diagonal (see the discussion after (A 28)). The roots of (A 40) take the following,
purely imaginary, form:

Γ ∈
{

1

λk

(M′
1)kk,

1

λk

(M′
1)ll

}
=

{
J′

kk + i
2πa�k

cos ϑ
, J′

ll + i
2πa�l

cos ϑ

}
, (4.1)

where M′
1 ((A 8) and (A 31)), λj ((A 25) and (A 10)), a (A 6) and Γ (A 36) are defined

in the Appendix. The growth rates of the Floquet modes, in the asymptotic regime
ζ � 1, are equal to

Reσ = ζReΓ / 2π; (4.2)

i.e. if ReΓ 	= 0 we infer instability. Thus for n 	= ±2 the system remains stable, at
least in the first order in ζ . The only possibility of destabilization in the first-order
analysis appears for n= ± 2. The frequencies of oscillation of the modes for ζ =0
are essentially the imaginary parts of the eigenvalues of C0 given in (A 10); hence

�1 = cos ϑ((1 + Ri) +
√

(1 + Ri)2 + H 2),

�2 = − cosϑ((1 + Ri) +
√

(1 + Ri)2 + H 2),

�3 = cos ϑ((1 + Ri) −
√

(1 + Ri)2 + H 2),

�4 = − cosϑ((1 + Ri) −
√

(1 + Ri)2 + H 2).

(4.3)

As Lebovitz & Zweibel (2004) already pointed out, the interchange cos ϑ → −cos ϑ ,
i.e. the reversal of the direction of propagation along the z axis, leads to the same set
of frequencies {�j }. Therefore, we may, without loss of generality, assume cos ϑ > 0.
As a consequence, only the following four resonant cases need to be considered:
�1 − �2 = 2, �1 − �3 = 2, �1 − �4 = 2 and �4 − �3 = 2.

Case 1 (hydrodynamic resonance): �1 − �2 = 2

The frequencies �1 and �2 correspond to hydrodynamic modes, modified by the
presence of the magnetic field and the Coriolis force; in other words when H → 0
they do not reduce to zero but asymptotically achieve the frequencies of modes from
non-magnetic case (Miyazaki 1992). In the case at hand

{
�1 = −�2

�1 − �2 = 2

∣∣∣∣ ⇒ �1 = 1, �2 = −1; (4.4)
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hence

cos ϑ =
1

(1 + Ri) +
√

(1 + Ri)
2 + H 2

, (4.5)

and since cos ϑ � 1,

H 2 � −2Ri − 1 (4.6)

For Ri =H = 0, i.e. for pure elliptical instability, cosϑ is 1/2, so that ϑ = π/3. When
H → ∞ or Ri → ∞, cosϑ tends to zero and ϑ → π/2. On the other hand, when
Ri → −∞, holding H 2 ∼ −2Ri − 1, cos ϑ tends to 1 and ϑ to zero. The fact that
�1 = 1 = −�2 in particular means a resonant coincidence of the frequencies �1 and
�2 with the basic frequency ω.

By the use of (A 28), (A 31) and (A 40) we may obtain the Γ coefficient for this
case,

Γ 2 =
π2

4
(1 + cosϑ)4 − π2

(
2a

cos ϑ
− (1 + Ri) cos ϑ(1 − cos2 ϑ)

1 − (1 + Ri) cosϑ

)2

. (4.7)

Thus, with the aid of (4.2), the maximal growth rate achieved for

a =
cos2 ϑ (1 + cosϑ)

2

(1 + Ri) (1 − cosϑ)

1 − (1 + Ri) cos ϑ

is

σmax =
ζΓmax

2π
=

1

4
ζ (1 + cosϑ)2 , (4.8)

and it depends on Ri and H via cosϑ . For H → ∞ or Ri → ∞, the maximal growth
rate tends to the value (1/4)ζ , dependent only on the ellipticity of the basic flow.
It is worth mentioning that for H 2 = −2Ri − 1, i.e. for the only case in which the
horizontal instability is present for all values of δ, angle ϑ = 0 for this resonance
(which indicates that this mode becomes horizontal in this case).

Case 2 (mixed resonance): �1 − �3 = 2
This time the frequency �3 corresponds to a magnetic mode (i.e. when H → 0 it
reduces to zero), and �1, as previously, corresponds to a hydrodynamic mode. Now

cosϑ =
1√

(1 + Ri)
2 + H 2

, (4.9)

and hence

�1 = (1 + Ri) cosϑ + 1, �3 = (1 + Ri) cosϑ − 1. (4.10)

The condition cos ϑ � 1 results in

H 2 � −Ri (Ri + 2) . (4.11)

For Ri = H = 0 we have ϑ = 0, and when H → ∞ or Ri → ±∞, the angle ϑ → π/2.
Also here, by the use of (A 28), (A 31) and (A 40) we calculate the coefficient Γ ,

Γ = iπ (1 + Ri) cosϑ

(
2a

cos ϑ
− 1 + cos2 ϑ

)
±

√
D , (4.12)

where D given by Lebovitz & Zweibel (2004) for Ri = 0 is now modified to

D = π2(1 − cos2 ϑ)2[1 − (1 + Ri)
2 cos2 ϑ(3(1 + Ri)

2 cos2 ϑ + 2)]

+ 16π2 a

cos2 ϑ
[(1 + Ri)

2 cos3 ϑ(1 − cos2 ϑ) − a], (4.13)
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which must be greater than zero in order to have instability. Now the maximal growth
rate, which in this case is achieved for

a =
cos3 ϑ(1 − cos2 ϑ)(1 + Ri)

2

2
,

is

(Reσ )max =
ζ (ReΓ )max

2π
=

1

4
ζ (1 − cos2 ϑ)(1 − (1 + Ri)

2 cos2 ϑ), (4.14)

which, again, depends on Ri and H through cosϑ . For Ri = H =0, when cosϑ = 1,
it is equal to 0, and when H → ∞ or Ri → ∞, it tends, as previously, to (1/4)ζ .

Case 3 (magnetic resonance): �4 − �3 = 2
In this case both frequencies correspond to magnetic modes not present when H = 0.
This time {

�4 = −�3

�4 − �3 = 2

∣∣∣∣ ⇒ �4 = 1, �3 = −1, (4.15)

and the destabilized direction of propagation

cos ϑ =
1√

(1 + Ri)
2 + H 2 − (1 + Ri)

. (4.16)

Because cosϑ � 1 this resonance type takes place only when

H 2 � 3 + 2Ri . (4.17)

Here, just as in case 1, the frequencies �3 and �4 are in resonance with the basic
frequency ω. The coefficient Γ is now

Γ 2 =
π2

4
(1 − cos ϑ)4 − π2

(
2a

cos ϑ
+

(1 + Ri) cos ϑ(1 − cos2 ϑ)

1 + (1 + Ri) cosϑ

)2

. (4.18)

The maximal growth rate is achieved for

a = −cos2 ϑ (1 − cosϑ)

2

(1 + Ri) (1 + cosϑ)

1 + (1 + Ri) cos ϑ

and is equal to

σmax =
ζΓmax

2π
=

1

4
ζ (1 − cos ϑ)2 . (4.19)

For H =
√

3 + 2Ri , when cosϑ = 1, it is equal to zero, and when H → ∞, the maximal
growth rate tends, again, to (1/4)ζ .

Case 4: �1 − �4 = 2
Like in case 2 the resonance here takes place between the hydrodynamic and magnetic
modes. We get

cos ϑ =
1

1 + Ri

, (4.20)

and so

�1 =

√
(1 + Ri)

2 + H 2 cos ϑ + 1, �4 =

√
(1 + Ri)

2 + H 2 cos ϑ − 1. (4.21)

However, for such values of the frequencies, the matrix J′, in accordance with (A 28),
is diagonal. This means that the coefficient Γ is purely imaginary, and the system is
stable (see (4.1)).
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Figure 7. A comparison between the asymptotic theory and numerical solutions. The depend-
ence of the maximal growth rate on the ellipticity ζ is shown for h = 4 and Rv = 0.6,
−1.6, −3, −4.5. The dashed straight lines are the theoretical predictions, and the continuous
lines are obtained from numerical calculations.

The results of the asymptotic analysis performed in this section can explain some
of the effects observed earlier in numerical solutions of the stability problem at hand,
concerning the modes destabilized by the departure of the basic flow from axial
symmetry. The magnetic field and the background rotation give rise to new unstable
modes, destabilized by a resonant mechanism. The formulae (4.5), (4.9) and (4.16)
obtained in the first-order analysis in the parameter ζ , i.e. for the thickest wedges,
describe the directions along which the system is most likely to be destabilized and are
in perfect agreement with numerical calculations. It also follows from these formulae
that with increasing magnetic field strength or increasing background rotation, the
directions of propagation of the unstable modes tend to the direction of the z axis,
which was also observed in numerical solutions. This results in another effect, namely
the decrease of growth rates of the modes destabilized via the resonant mechanism
after switching on the magnetic field or the background rotation. The growth rate in
the first case of resonance between two hydrodynamic modes, i.e. present also when
H = Ri = 0, has the highest value (see (4.8), (4.14) and (4.19)), and since switching
on the magnetic field and the background rotation increases the angle ϑ associated
with the unstable mode, it follows from (4.8) that the growth rate must then be
decreased. Moreover, both formulae (4.5) and (4.8) suggest that for small ellipticities
the dependence of the maximal growth rate on H should be monotonic. Hence, the
minimum observed in figure 4 does not appear in this case. When H → ∞ (or Ri → ∞)
the growth rates given in (4.8), (4.14) and (4.19) tend to a value depending only on
the ellipticity of the basic flow, (1/4)ζ , in agreement with numerical predictions. We
compare our asymptotic and numerical results in figure 7, where the dependence of the
maximal growth rate on the ellipticity is presented for small values of ζ . The dashed
lines are the straight lines predicted by our asymptotic theory, and the continuous
lines are calculated numerically. We note that the asymptotic theory provides good
agreement with the numerical calculations for ζ up to about 0.05.

Since the presence of the magnetic field introduces the dependence of the
stability problem on the wavelength of the perturbations (through the parameter
H = k0B0/

√
μ0ρω, which is proportional to the scale of the wave vector k0), one more

comment is necessary here. For a given magnetic field B0 the formulae (4.8), (4.14) and
(4.19) for the growth rates in the three resonant cases should also be maximized over
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the parameter H . In case 1, that of the hydrodynamic resonance, the growth rate has
a maximum at H =0, and therefore the long wavelength perturbations are the most
unstable. However, in cases 2 and 3, those of the mixed and magnetic resonances, the
growth rates have a minimum at H = 0 and increase with H . It follows that short
wavelength perturbations are preferable for these resonant cases.

4.1. Finite vertical thickness and an upper bound for the magnetic field strength

The idea of applying the results of the magnetoelliptic instability analysis to a system
with finite vertical thickness d comes from Lebovitz & Zweibel (2004). It stems from
the fact that the magnetoelliptic instability, as mentioned in the introduction, is likely
to take place in accretion discs. Since in some cases the tidal deformation of the
disc can rotate with a different angular velocity than the whole accretion disc, the
incorporation of the Coriolis effect seems important. Here we would like to show how
the resulting condition for the magnetic field strength at which this type of instability
can operate is modified by the presence of the Coriolis force. If the vertical extent d of
the system is finite, the z component of the wave vector of the perturbations cannot
be smaller then C /d , where C the constant is a number of the order of unity. When
Ri � −1 all three above-mentioned resonant cases which lead to instability, i.e. (4.5)
and (4.6), (4.9) and (4.11) and (4.16) and (4.17), imply H cos ϑ �

√
3 + 2Ri . Thus the

condition that must be satisfied in order for the elliptical instability to operate takes
the form⎧⎪⎨⎪⎩

k0 cosϑ �
√

3 + 2Ri

ω

uA

k0 cos ϑ �
C

d

∣∣∣∣∣∣∣ ⇒ uA �
√

3 + 2Ri

ωd

C
and Ri � −1 , (4.22)

where uA = B0/
√

μ0ρ is the Alfvén speed. Analogously, when Ri < −1 the same set

of equations implies H cos ϑ �
√

−2Ri − 1, and hence⎧⎪⎨⎪⎩
k0 cos ϑ �

√
−2Ri − 1

ω

uA

k0 cos ϑ �
C

d

∣∣∣∣∣∣∣ ⇒ uA �
√

−2Ri − 1
ωd

C
and Ri < −1. (4.23)

Thus, the presence of the Coriolis force significantly modifies the conditions at which
the elliptical instability is possible in an accretion disc of thickness d . In most cases,
i.e. for cyclonic rotation, and anticyclonic if Ri < −2 the bound on B0 is eased by the
presence of background rotation.

However, as mentioned in the introduction, our results are most likely to apply to
an elliptical vortex patch embedded in the accretion disc, created by the non-uniform
average angular velocity profile in the disc rather than the whole disc itself, since in
the latter case the effects of differential rotation are likely to predominate.

5. Conclusions
We have analysed here the problem of elliptical instability in the presence of

background rotation and external magnetic field. Our motivation comes mainly from
possible astrophysical applications, i.e. the investigation of the influence of tidal
deformations of astrophysical objects such as planet cores, stars and accretion discs
on their global stability characteristics. Here, we have investigated the joint effect
on such systems of the Lorentz and Coriolis forces, the two factors which play a
crucial role in the dynamics of the fluid interiors of such objects. Apart from accretion
discs, for which we have derived the formulae (4.22) and (4.23), the case of Io and
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Ganymede, Jupiter’s moons, is particularly interesting, since large tidal deformations
on these satellites caused by Jupiter are very likely to trigger instability (Kerswell &
Malkus 1998; Lacaze et al. 2006). Moreover, Mizerski et al. (2009) have argued that
the elliptical instability is capable of generating magnetic field, and since the convective
dynamo mechanism is very unlikely now on such small bodies as Io and Ganymede,
the elliptical instability is a promising mechanism of generation of their magnetic
fields (Lacaze et al. 2006). Generally, in all tidally deformed astrophysical objects,
where the flow of rapidly rotating conducting fluid is considered, the influence of the
magnetic field and the background rotation on their stability characteristics is crucial
and non-trivial. Although the effect that these factors exert in isolation has already
been studied (Miyazaki 1993; Lebovitz & Zweibel 2004) this is, as far as we know, the
first detailed investigation of their joint effect on the stability problem of elliptical flow.

In § 4 and in the Appendix, we have used the asymptotic technique of Lebovitz &
Zweibel (2004) for small ellipticities of the basic flow to establish the growth rates of
the unstable perturbations and their directions of propagation. (In other words we
have determined the directions along which the system is most likely to be destabilized
when it slightly departs from axial symmetry.) These results are in perfect agreement
with the numerical analysis of the stability problem, which we have also performed
and which allowed for a detailed investigation of the influence of the background
rotation and the magnetic field on elliptical instability. We have analysed the growth
rates for a wide range of values of all the parameters in the system. The dependence
of the growth rates on the magnetic field strength h, the intensity of the background
rotation Rv and the strain parameter 0<ε < 1 (which can be regarded as a measure
of ellipticity of the basic flow) was computed. We have also obtained the directions
of propagation of the unstable modes and their growth rates for varying ellipticity δ.

The influence of the Lorentz and Coriolis forces on the elliptical instability turns
out to be quite complex. In the absence of horizontal instability (Bajer & Mizerski
2009), i.e. for Rv > −h2/4, both these factors exert a stabilizing effect, by decreasing the
growth rates and the range of directions of propagation of the unstable perturbations.
On the other hand the presence of the magnetic field and the background rotation
allow for much more destabilizing resonances between the frequencies of oscillation
of the perturbations or in other words larger variety of unstable modes. This effect
is most clearly seen when both these factors are present at once. Additionally the
joint action of the Lorentz and Coriolis forces very effectively enlarges the range
of existence of the horizontal instability. This type of instability, which is not of
resonant nature, is mainly characterized by large growth rates and a wide range
of directions of propagation of unstable modes and is present only for anticyclonic
rotation Rv = γ/Ω < 0, exhibits a singular behaviour when the external magnetic field
decreases to zero. When h =0 it exists only within a bounded interval −1 < Rv < 0,
but when the magnetic field is switched on, the range of values of parameter Rv at
which horizontal instability is present becomes unbounded from below, Rv < −h2/4.
In contrast with all other unstable modes excited via a resonant mechanism the
horizontal instability is not suppressed in the limit of large ellipticity of the basic
flow, when ε → 1, and the basic flow becomes the pure shear flow.

An important conclusion of the analysis performed is that the systems with
anticyclonic rotation that are in the range of existence of horizontal instability,
i.e. for Rv < −h2/4, are more likely to develop turbulence, since the dissipative effects
are less likely to damp the instability. Another interesting observation is that in the
limit of strong magnetic field (or rapid rotation), the maximal growth rates depend
only on the ellipticity of the basic flow, and in the asymptotic limit, when this ellipticity

is small, they are equal to Re (σ )max = ε/4
√

1 − ε2.
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In § 3 we have presented the time evolution of a selected unstable mode, by
visualizing the evolution of the streamlines, magnetic field lines and the lines of
electric currents and also of the trajectories of a selected fluid particle.

We conclude by stating that the joint effect of the Coriolis and Lorentz forces is
qualitatively and quantitatively different from the effect they exert in isolation. The
analysis of their joint influence on the elliptical instability has revealed interesting and
new characteristics of the problem. It is important to keep in mind, however, that in
the astrophysical context of stellar and planetary interiors, thermal phenomena are a
fundamental factor in the dynamics and must be taken into account. The results of
Le Bars & Le Dizes (2006) suggest that the thermal phenomena may, in some cases,
suppress the elliptical instability.

We would like to thank Keith Moffatt for his valuable remarks. The numerical
calculations were performed at the Interdisciplinary Centre for Mathematical and
Computational Modeling (ICM), University of Warsaw (computational grant number
G28-11). KAM gratefully acknowledges the financial support of the Polish Ministry
of Science and Higher Education at the early stage of this work (grant no. N307 022
32/0669) and of the David Crighton Fund (through the David Crighton Fellowship
2007).

Appendix. Small ellipticity asymptotics
Here we use the asymptotic method of Lebovitz & Zweibel (2004) to calculate

growth rates of the modes destabilized by small departure of the basic flow from axial
symmetry, ζ = (1/2)(E − E−1) � 1. First we introduce new variables:

c1 = Ekxvy − E−1kyvx,

c2 = kxvx + kyvy,

c3 = Ekxby − E−1kybx,

c4 = kxbx + kyby.

⎫⎪⎬⎪⎭ (A 1)

We observe that such transformation is periodic in time and therefore does not affect
the stability problem. Equation (2.24) is now

dc
dτ

= C (τ ) c, (A 2)

where the only non-zero elements of C (τ ) are

C11 =
4kxky

k2
ζ

(
Ri

k2
z

Ek2
x + E−1k2

y

− 1

)
,

C12 = −2

(
1 + Ri

E2k2
x + E−2k2

y

Ek2
x + E−1k2

y

− 4Riζ
2

k2
xk

2
y

k2
(
Ek2

x + E−1k2
y

)) ,

C13 = iH cos ϑ,

C21 =
2k2

z

k2

(
1 + Ri

k2
x + k2

y

Ek2
x + E−1k2

y

)
,

C22 = −4Riζ
kxkyk

2
z

k2
(
Ek2

x + E−1k2
y

) ,
C24 = C31 = C42 = iH cos ϑ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 3)

The matrix C (τ ) is periodic in τ , and therefore (A 2), just as (2.24), constitutes a
Floquet problem. The important difference, however, is that for ζ = 0 (E =1) matrix
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C, unlike S, is independent of τ ,

C (ζ = 0)
.
= C0 =

⎡⎢⎢⎣
0 −2 (1 + Ri) iH cos ϑ 0

2k2
z

k2
0

(1 + Ri) 0 0 iH cos ϑ

iH cosϑ 0 0 0
0 iH cosϑ 0 0

⎤⎥⎥⎦ . (A 4)

The fundamental solution of this equation we will denote by M (τ ). All the conclusions
concerning the matrix M (2π) stated in § 4 are also true for M (2π), which for brevity

will be denoted as �̂.
We expand �̂ in Taylor series around ζ = 0 and cos ϑ = cosϑ0, for some wedge

apex (0, ϑ0), holding H and Ri constant,

�̂ (ζ, cosϑ) = �̂ (0, cos ϑ0) + ζ
∂�̂

∂ζ
(0, cosϑ0)

+ (cos ϑ − cosϑ0)
∂�̂

∂(cos ϑ)
(0, cosϑ0) + O(ζ 2, (cosϑ − cosϑ0)

2). (A 5)

The direction of propagation of a mode may also change when it becomes unstable,
and therefore

cosϑ = cos ϑ0 + aζ + O(ζ 2). (A 6)

This in fact means that we are including only the thickest wedges, whose thickness is
of order ζ in our analysis. (To include also the thinner wedges we would have to go
to higher orders.) Equation (A 5) may now be written as

�̂ = �̂0 + ζ�̂1 + O(ζ 2), (A 7)

where

�̂0 = �̂ (0, cosϑ0) �̂1 =
∂�̂

∂ζ
(0, cosϑ0) + a

∂�̂

∂ (cosϑ)
(0, cosϑ0) . (A 8)

A.1. Matrices �̂0 and �̂1

We will now proceed to calculate the matrices �̂0 and �̂1. Let us write the expansion
of C (τ ) in Taylor series around ζ = 0 at fixed cosϑ ,

C (τ, ζ, cosϑ) = C0 (τ, cosϑ) + ζ
∂C

∂ζ
(τ, cosϑ) + O(ζ 2). (A 9)

Operator C0 is given in (A 4), and since it does not depend on time we may calculate
its eigenvalues,

s1 = i cosϑ((1 + Ri) +
√

(1 + Ri)2 + H 2),

s2 = −i cosϑ((1 + Ri) +
√

(1 + Ri)2 + H 2),

s3 = i cosϑ((1 + Ri) −
√

(1 + Ri)2 + H 2),

s4 = −i cosϑ((1 + Ri) −
√

(1 + Ri)2 + H 2),

⎫⎪⎪⎬⎪⎪⎭ (A 10)

which are the zeroth-order approximation of the growth rates. We assume now
cosϑ 	= 0 and H 	= 0 so that these eigenvalues are distinct and non-zero. The matrix
(∂C/∂ζ ) (τ, cosϑ) can easily be calculated from (A 9), and its only non-zero elements
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are(
∂C

∂ζ

)
11

= i(e2iτ − e−2iτ )[1 − (1 + Ri) cos2 ϑ],(
∂C

∂ζ

)
12

= −Ri(e
2iτ + e−2iτ ),(

∂C

∂ζ

)
21

= cos2 ϑ[1 − (1 + Ri) cos2 ϑ](e2iτ + e−2iτ ) − 2 cos2 ϑ[1 − cos2 ϑ](1 + Ri),(
∂C

∂ζ

)
22

= iRi cos2 ϑ(e2iτ − e−2iτ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 11)

We may now construct the matrices �̂0 (cos ϑ) and (∂�̂/∂ζ ) (cosϑ). The former is
simply

�̂0 = exp (2πC0) . (A 12)

Next, for a given τ ∈ [0, 2π] and cosϑ we expand

M(τ, ζ, cos ϑ) = M0(τ, cos ϑ) + ζM1(τ, cos ϑ) + O(ζ 2), (A 13)

and substituting this form in (A 2), with the aid of (A 9), we obtain

dM0

dτ
= C0M0, (A 14)

dM1

dτ
= C0M1 +

∂C

∂ζ
M0, (A 15)

with initial conditions (see (2.29))

M0(τ = 0) = I M1(τ = 0) = 0̂. (A 16)

The solution of (A 14) is

M0 = exp(C0τ ), (A 17)

whereas of (A 15) at τ = 2π is

M1 (2π) =
∂�̂

∂ζ
(cos ϑ) = �̂0 (cos ϑ)

∫ 2π

0

M−1
0 (τ, cosϑ)

∂C

∂ζ
(τ, cosϑ) M0 (τ, cosϑ) dτ.

(A 18)

The aim of this calculation is to obtain the growth rates of the perturbations, hence

the eigenvalues of �̂ (see (2.30)), which do not depend on the choice of the coordinate
system. To simplify the calculation we will now express all the variables in the base
diagonalizing C0,

C′
0 = T̂ −1C0T̂ = diag(s1, s2, s3, s4), (A 19)

where the columns of T̂ are the eigenvectors of C0 expressed in the old base, i.e.

T̂ =

⎡⎢⎣ s1 s2 s3 s4

−i cosϑs1 i cosϑs2 −i cos ϑs3 i cosϑs4

iH cos ϑ iH cos ϑ iH cosϑ iH cosϑ

H cos2 ϑ −H cos2 ϑ H cos2 ϑ −H cos2 ϑ

⎤⎥⎦ (A 20)
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and

T̂ −1 =
1

�

⎡⎢⎢⎢⎢⎢⎢⎣
−iH cosϑ H s3

is3

cos ϑ

iH cosϑ H s3 − is3

cos ϑ

iH cosϑ −H −s1 − is1

cos ϑ

−iH cosϑ −H −s1
is1

cos ϑ

⎤⎥⎥⎥⎥⎥⎥⎦ , (A 21)

with �= 4H cos2 ϑ
√

(1 + Ri)
2 + H 2. Thus in the new base

∂�̂′

∂ζ
(cos ϑ) = �̂′

0 (cos ϑ) J′(cosϑ), (A 22)

where

J′ (cos ϑ) =

∫ 2π

0

M′−1
0 (τ, cosϑ)

∂C′

∂ζ
(τ, cosϑ) M′

0 (τ, cosϑ) dτ (A 23)

and ′ indicates that the operator is expressed in the base of eigenvectors of C0. since

si , i = 1, 2, 3, 4, are distinct, the matrix M′
0 given in (A 17) and �̂′

0 are diagonal,

M′
0 = diag(exp(s1τ ), exp(s2τ ), exp(s3τ ), exp(s4τ )), (A 24)

�̂′
0 = diag(λ1, λ2, λ3, λ4) where λi = exp(2πsi), for i = 1, 2, 3, 4. (A 25)

The matrix (∂C/∂ζ ) (τ, cosϑ) has only four non-zero elements (A 11); hence

J′
ij = T −1

i1 T1j

∫ 2π

0

e(sj −si)τ
(

∂C

∂ζ

)
11

(τ ) dτ + T −1
i2 T1j

∫ 2π

0

e(sj −si)τ
(

∂C

∂ζ

)
21

(τ ) dτ

+ T −1
i1 T2j

∫ 2π

0

e(sj −si)τ
(

∂C

∂ζ

)
12

(τ ) dτ + T −1
i2 T2j

∫ 2π

0

e(sj −si)τ
(

∂C

∂ζ

)
22

(τ ) dτ, (A 26)

which allows us to calculate (∂�̂′/∂ζ ) (cos ϑ). Let us remind that the destabilization
of the system, as pointed out in § 4, occurs through a resonance between at least

two eigenvalues of the matrix �̂, and as in Lebovitz & Zweibel 2004, only the
case of double multiplicity of the eigenvalue will be considered here. (Though higher
multiplicities are, in general, possible.) Because the eigenvalues of the zeroth-order

matrix �̂0 are of the form λj = exp(2πsj ), j =1, 2, 3, 4, destabilization occurs for
si −sj = ik, where k ∈ �\{0} and zero is excluded because {sj } are distinct. Moreover
with the aid of (A 11) we deduce that the diagonal elements of the matrix J′

ij (A 26)
are non-zero, but the off-diagonal ones are non-zero only when si − sj = ± 2i. Below
we give the full list of the elements of J′

ij which we will need in the following analysis,
for si − sj =+2i.
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Diagonal elements:

J′
11 = −iπ�1

4H cos2 ϑ

�
(1 + Ri)(1 − cos2 ϑ),

J′
22 = −iπ�2

4H cos2 ϑ

�
(1 + Ri)(1 − cos2 ϑ),

J′
33 = iπ�3

4H cos2 ϑ

�
(1 + Ri)(1 − cos2 ϑ),

J′
44 = iπ�4

4H cos2 ϑ

�
(1 + Ri)(1 − cos2 ϑ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 27)

Off-diagonal elements:

J′
12 = i 1

2
π�2 (1 + cosϑ)2

J′
21 = i 1

2
π�1 (1 + cosϑ)2

}
for �1 − �2 = 2,

J′
13 = i 1

2
π�3(1 − cos2 ϑ)(1 + (1 + Ri) cosϑ)

J′
31 = i 1

2
π�1(1 − cos2 ϑ)(1 − (1 + Ri) cosϑ)

}
for �1 − �3 = 2,

J′
41 = 0

J′
14 = 0

}
for �4 − �1 = 2,

J′
34 = i 1

2
π�4 (1 − cos ϑ)2

J′
43 = i 1

2
π�3 (1 − cos ϑ)2

}
for �3 − �4 = 2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 28)

where

sj = i�j for j = 1, 2, 3, 4. (A 29)

We only need now the derivative (∂�̂′/∂ (cos ϑ)) (cos ϑ), which appears in (A 7) and
(A 8). By the use of (A 25) and (A 10),

∂�̂′

∂ (cos ϑ)
(cos ϑ) = diag

(
λ1

2πs1

cos ϑ
, λ2

2πs2

cos ϑ
, λ3

2πs3

cos ϑ
, λ4

2πs4

cosϑ

)
, (A 30)

and thus finally (A 7), (A 8), (A 25), (A 27), (A 28) and (A 30) allow for calculation of

�̂′
1 = �̂′

0J
′ + a(∂�̂′/∂ (cos ϑ)),

(�̂′
1)jj = λj

(
J′

jj + i
2πa�j

cosϑ

)
,

(�̂′
1)jk = λj J′

jk where k 	= j, (A 31)

where no summation is taken over j .

A.2. Characteristic polynomial

Further analysis of the characteristic polynomial of �̂ leading to quadratic equation
for the first-order correction to the growth rate is of general nature and is exactly
the same as in Lebovitz & Zweibel (2004). We will therefore only briefly review the
necessary steps and write down the resulting equation. We expand the characteristic

polynomial of �̂,

w(λ, ζ ) = det(�̂(ζ ) − ΛI) = 0, (A 32)

in perturbative series around ζ =0 to second order in ζ ,

w(λ, ζ ) = w0(λ) + ζw1(λ) + ζ 2w2(λ) + O(ζ 3), (A 33)

where w0(λ) is the characteristic polynomial of �̂0, the roots of which λj = exp(2πσj ),
j =1, 2, 3, 4, are already known. The condition for destabilization is that there exist
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multiple eigenvalues Λj , i.e multiple roots of w(λ, ζ ). The Puiseux method, which
is basically a variation of the implicit function theorem (Hille 1962) determines the
character of expansion of the eigenvalues Λj , which depends on their multiplicity
when ζ = 0, i.e. the multiplicity of λj . Since we only consider the case in which the
eigenvalues are multiplicity 2, the expansion takes the form

Λ1(ζ ) = λ1 + ζ
1
2 β1/2 + ζβ1 + O(ζ

3
2 ), (A 34)

where, for definiteness, we have assumed that λ1 = λ2. It can be shown, however, that
β1/2 = 0 in this case, and then the leading-order correction to the eigenvalue, β1 	= 0,
can be established from a quadratic equation,

1

2

d2w0

dλ2
(λ1) β2

1 +
dw1

dλ
(λ1) β1 + w2(λ1) = 0. (A 35)

Defining

Γ =
β1

λ1

(A 36)

and with the aid of (A 34) we get |Λ1| =
√

(1 + ζReΓ )2 + (ζ ImΓ )2 = 1 + ζReΓ +
O(ζ 2), and since e2πσ = Λ, the growth rate Reσ = ζReΓ / 2π+O(ζ 2). This means that
the system is unstable only if ReΓ 	= 0.

Now, by the use of the formulae for the derivatives of the characteristic polynomial
with respect to parameter ζ , derived by Lebovitz & Zweibel (2004), we may calculate
the coefficients (d2w0/dλ

2) (λ1), (dw1/dλ) (λ1) and w2 (λ1) from (A 35),

d2w0

dλ2
(λ1) = 2 (λ3 − λ1) (λ4 − λ1) , (A 37)

dw1

dλ
(λ1) = −

[
(�̂′

1)11 + (�̂′
1)22
]
(λ3 − λ1)(λ4 − λ1), (A 38)

w2(λ1) = det

(
(�̂′

1)11 (�̂′
1)12

(�̂′
1)21 (�̂′

1)22

)
(λ3 − λ1)(λ4 − λ1). (A 39)

Going back now to the general case of λl = λk , the quadratic equation (A 35), with the
aid of (A 31), can easily be transformed to an equation for the coefficient Γ = β1/λk ,

Γ 2 −
[

1

λk

(�̂′
1)kk +

1

λk

(�̂′
1)ll

]
Γ + det

⎛⎜⎝ 1

λk

(�̂′
1)kk J′

kl

J′
lk

1

λk

(�̂′
1)ll

⎞⎟⎠ = 0. (A 40)
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