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A new framework is presented for estimation and control of instabilities in
wall-bounded shear flows described by the linearised Navier–Stokes equations.
The control design considers the use of localised actuators/sensors to account for
convective instabilities in an H2 optimal control framework. External sources of
disturbances are assumed to enter the control domain through the inflow. A new
inflow disturbance model is proposed for external excitation of the perturbation
modes that contribute to transition. This model allows efficient estimation of the
flow perturbations within the localised control region of a conceptually unbounded
domain. The state-space discretisation of the infinite-dimensional system is explicitly
obtained, which allows application of linear control theoretic tools. A reduced-order
model is subsequently derived using exact balanced truncation that captures the
input/output behaviour and the dominant perturbation dynamics. This model is
used to design an H2 optimal controller to suppress the instability growth. The
two-dimensional non-periodic channel flow is considered as an application case.
Disturbances are generated upstream of the control domain and the resulting flow
perturbations are estimated/controlled using point wall shear measurements and
localised unsteady blowing and suction at the wall. The controller is able to cancel the
perturbations and is robust to both unmodelled disturbances and sensor inaccuracies.
For single-frequency and multiple-frequency disturbances with low sensor noise a
nearly full cancellation is achieved. For stochastic forced disturbances and high
sensor noise an energy reduction in perturbation wall shear stress of 96 % is shown.

Key words: control theory, flow control, instability control

1. Introduction
It is widely accepted that if the initial perturbations are small, the initial phase

of the laminar–turbulent transition in wall-bounded shear flows is largely governed
by linear mechanisms (Butler & Farrell 1992; Trefethen et al. 1993; Schmid &
Henningson 2001; Jovanovic & Bamieh 2005). The application of linear control
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theory to fluid flows is therefore considered as a viable route to suppress instabilities
and delay transition for reducing skin-friction drag (Joshi, Speyer & Kim 1997;
Bewley & Liu 1998; Cortelezzi & Speyer 1998; Högberg, Bewley & Henningson
2003a; Baramov, Tutty & Rogers 2004; Chevalier et al. 2007; Bagheri, Brandt &
Henningson 2009b; Semeraro et al. 2013; Jones et al. 2015). In particular, optimal
multivariable control strategies (LQG/H2, H∞, where LQG denotes linear quadratic
Gaussian) (Zhou, Doyle & Glover 1996; Skogestad & Postlethwaite 2005) have been
successfully applied, see Kim & Bewley (2007), Bagheri & Henningson (2011), Sipp
& Schmid (2016) for an in-depth review on this subject. These control strategies can
be decomposed in a state estimation problem from non-ideal (noisy) measurements
and a state feedback control problem. Once the evolution of the flow perturbations
is sufficiently estimated, the estimated state can subsequently be used for feedback
control of the perturbations. The construction of an accurate linear state-space model
describing the perturbation dynamics from all inputs to all outputs is the cornerstone
of linear model-based control and is considered as a significant challenge (Bagheri
& Henningson 2011; Sipp & Schmid 2016). Limits related to unmodelled dynamics
and nonlinearities are commonly assessed from case to case (Semeraro et al. 2013;
Fabbiane et al. 2015) and/or addressed using robust design techniques such as H∞
loop shaping (Jones et al. 2015; Flinois & Morgans 2016). For example, in Jones
et al. (2015) the effect of nonlinearity is attenuated by a linear feedback controller
that employs high loop gain over a selected frequency range. As recently reviewed
in Schmid & Sipp (2016), Sipp & Schmid (2016), different difficulties arise for
modelling and control of globally unstable oscillator flows and convectively unstable
amplifier flows. Oscillator flows, such as bluff body flows and open cavity flows,
are characterised by the presence of global instabilities that oscillate at a particular
frequency and are rather insensitive to upstream perturbations. Modelling the external
disturbance environment is thus less of an issue for suppressing global instabilities
(Samimy et al. 2007; Barbagallo, Sipp & Schmid 2009; Ma, Ahuja & Rowley 2011;
Sipp & Schmid 2016), but it raises different issues related to nonlinear saturation
of global instabilities (Flinois & Morgans 2016). On the other hand amplifier flows,
such as channel flows and boundary layer flows, are characterised by the presence of
convective instabilities that amplify downstream (in space) in a broadband frequency
spectrum in both space and time. Amplifier flows are highly sensitive to external
disturbances and there exists only a small window in time to suppress convective
instabilities. This poses great challenges for control design and accurately modelling
the upstream disturbance environment is crucial since it forms the basis for estimation
and control of the flow perturbations (Hœpffner et al. 2005; Bagheri et al. 2009b;
Semeraro et al. 2011). This paper focuses on convective instabilities due to their
strong relevance to engineering problems such as laminar–turbulent transition of
flow over aerofoils. Besides the distinction in instability behaviour, two approaches
with regard to the flow modelling and the controller synthesis are frequently further
distinguished from each other (Bagheri & Henningson 2011), namely the wavenumber
approach for distributed control design and the localised control approach using
reduced-order models. The framework presented in this paper is inspired by both
approaches, which are discussed next.

1.1. Distributed control and localised computations
A large number of studies, including the seminal works by Joshi et al. (1997) and
Bewley & Liu (1998), consider full-domain distributed sensing and actuation to
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derive the control laws. Distributed control designs often exploit the spatial invariance
property of parallel flows to derive low-order models of the perturbation dynamics.
In the case of spatial invariance it is assumed that the base flow is invariant in the
streamwise (x) and spanwise (z) directions and that the sensors and actuators are
fully distributed along these coordinates. By using a Fourier–Galerkin decomposition
or a Fourier transform along the spatially invariant coordinates, the system can be
block diagonalised and decoupled in terms of discrete sets of wavenumbers that
replace the spatially invariant coordinates (Joshi et al. 1997; Bewley & Liu 1998).
Analysis and design of the controller can thus be carried out on a parameterised
lower-dimensional system. The resulting feedback controllers can subsequently be
reconstructed in physical space by computing the so-called control convolution kernels
(Bamieh, Paganini & Dahleh 2002; Högberg et al. 2003a). In Hœpffner et al. (2005),
Chevalier et al. (2006) stochastic models for external sources of excitation were
introduced that allow the computation of well-resolved estimation convolution kernels
for shear stress and pressure measurements. These estimation/control convolution
kernels have a localised structure in space and it was shown in Bamieh et al. (2002)
that localisation of the convolution kernels is a universal property of spatially invariant
optimal control problems. Although, strictly speaking the wavenumber approach is
only applicable to spatially invariant systems, it has also been successively applied to
spatially developing boundary layers (Högberg & Henningson 2002; Chevalier et al.
2007; Monokrousos et al. 2008) and fully turbulent flows (Lee et al. 2001; Högberg,
Bewley & Henningson 2003b; Sharma et al. 2011). The use of control/estimation
convolution kernels avoids the need for online fast Fourier transforms (FFT) of the
measurement vector and inverse fast Fourier transform (iFFT) of the control vector.
While this approach introduces a controller with the same order as the system, it
is shown in Högberg et al. (2003a) that spatially truncating the convolution kernels
does not degrade the closed-loop performance of the control system. Since these
convolution kernels are localised, the feedback controller can be implemented with
only localised computations. As a result, relatively small computational domains
can be considered for an effective control design. For example in Chevalier et al.
(2007) and Monokrousos et al. (2008) all perturbations were generated upstream of
the control domain and they were able to suppress Tollmien–Schlichting waves and
streaks in a flat plate boundary layer using small strips of distributed sensors and
actuators.

1.2. Model reduction and localised control
The exploitation of the spatial invariance property for control design, although
effective for distributed feedback control, requires sensor and actuator distributions
that are currently not available or cannot be manufactured in a cost effective
way. Moreover, in practice efficient control can be achieved using only a few
localised sensors and actuators, leading to a more cost-effective control design.
This led to the use of reduced-order modelling techniques for control design that
make no assumptions on the flow geometry and the shape and distribution of the
actuators/sensors. This approach, also known as the reduced-order modelling approach,
accounts for physically realisable localised actuators/sensors and has been validated
in experiments (Samimy et al. 2007; Pastoor et al. 2008; Fabbiane et al. 2015).
Galerkin projection is commonly applied, in which a reduced-order model (ROM) is
obtained by projecting the Navier–Stokes equations onto a reduced set of modes. The
choice of these modes is critical and greatly determines the effectiveness of the ROM
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for control application (Ilak & Rowley 2008; Bagheri et al. 2009c; Barbagallo et al.
2009). The global eigenfunctions of the linear operator (Åkervik et al. 2007), as
well as different variants of proper orthogonal decomposition modes (POD) (Noack
et al. 2003; Siegel et al. 2008) have been successfully applied for model reduction
and control design. Another approach is the use of balanced modes, also known as
balanced truncation, which typically produces models that are more robust and are
better able to capture the input–output behaviour of the system (Rowley 2005; Ilak
& Rowley 2008; Bagheri et al. 2009c; Barbagallo et al. 2009).

Balanced truncation is widely used for model reduction of linear systems (Moore
1981) and has the advantage of having a priori error bounds and guaranteed stability
of the reduced-order model. This method requires an initial model of the flow in
finite dimensional state-space format and constructs a ROM by extracting the most
controllable and observable modes of the state-space system. The construction of
these so-called balanced modes involves the computation of the controllability and
observability Gramians of the high-order model. These Gramians are obtained by
solving a set of Lyapunov equations which becomes computationally intractable for
very large systems (e.g. 105 states or more). Furthermore this method requires a
model of the flow in state-space format, which is not always available for complex
flow control problems. To reduce the complexity, an approximate method is proposed
by Rowley (2005), called balanced POD (BPOD), in which empirical Gramians are
computed directly from impulse response snapshots of the system and the related
adjoint. This method is suitable for large systems as it avoids the direct computation
of the Gramians and is successfully applied for modelling of the channel flow (Ilak
& Rowley 2008) and control of both boundary layer flows (Bagheri et al. 2009a,b;
Bagheri & Henningson 2011) and globally unstable flows (Barbagallo et al. 2009;
Ahuja & Rowley 2010).

A limitation of BPOD is that it requires full-state snapshots and adjoint simulations
to form the bi-orthogonal sets and thus cannot be applied to experimental data.
Another approach is the use of system identification methods in which low-order
models are obtained from a sample of input–output measurements. In particular the
eigensystem realisation algorithm (ERA) (Juang & Pappa 1985) was recently used to
construct reduced-order models for fluid flows (Ma et al. 2011; Illingworth, Morgans
& Rowley 2012; Belson et al. 2013; Dadfar et al. 2013; Semeraro et al. 2013;
Flinois & Morgans 2016). ERA is based on the impulse response measurements and
does not require prior knowledge of the high-order system. It is shown in Ma et al.
(2011) that ERA can theoretically obtain the same reduced-order models as BPOD
and in Flinois & Morgans (2016) it is shown that ERA can also directly be applied
to globally unstable flows.

1.3. Scope and outline of the present study
Modelling the influence of upstream disturbances is crucial for the control of
convective instabilities. The disturbance sources are generally not precisely known in
real experiments and modelling assumptions have to be made. For localised transition
control the disturbance is commonly represented by a localised body force placed
upstream of the control actuators, see e.g. Bagheri et al. (2009b), Semeraro et al.
(2011), Belson et al. (2013), Semeraro et al. (2013). For example, in Semeraro et al.
(2011) the disturbance was modelled as a localised initial condition that provides the
maximum energy amplification of the perturbation at a given final time. Different
choices and placements of the disturbance model result in different spatial and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.355


822 H. J. Tol, M. Kotsonis, C. C. de Visser and B. Bamieh

temporal scales of the perturbations in the control region. To properly account for
the upstream disturbance environment, relatively large computational domains are
often considered to derive the ROM. These result in high-dimensional systems and
prohibit the direct state-space modelling from the governing equations. Currently,
direct modelling is avoided, also due the computational challenges, and low-order
linear approximations of the dynamics are obtained from snapshots through (adjoint)
numerical simulations or from input–output data using system identification. Often the
same disturbance that is used to synthesise the ROM and control laws is also used
to evaluate the controller through numerical simulations. Robustness of the controller
to unmodelled disturbances is often not shown or addressed.

In this paper a new approach is presented for localised modelling and control
of convective instabilities in two-dimensional (2-D) wall-bounded shear flows.
The objective is to provide a systematic procedure to efficiently model upstream
disturbance environments and to design reduced-order controllers directly from the
governing equations without the use of numerical simulations or system identification.
Inspired by the earlier work regarding distributed control, very large systems are
avoided by focussing on localised computations. When using spatially localised
actuators/sensors for feedback control, the control domain that encapsulates the
actuators/sensors is much smaller than the complete physical domain. It is assumed
that external sources of disturbances enter the control domain through the inflow
boundary. A novel physically motivated inflow disturbance model is proposed for
the external excitation, which allows efficient estimation of the flow perturbations
within the localised control domain using wall shear sensors. Unlike common
practices for localised control, the state-space system used for discretisation of the
infinite-dimensional system is explicitly obtained. The state-space modelling in this
paper can make a large set of powerful and mature control theoretic tools for model
reduction and control directly applicable to the linearised Navier–Stokes equations.
In this work the modelling is combined with exact balanced truncation to reduce
the order of the controller and the truncated dynamics is taken into account in the
control system design.

The scope of this paper is input–output modelling of the flow dynamics (actuators/
sensors and upstream perturbations) and H2 optimal reduced-order controller design.
A super-critical 2-D non-periodic channel flow is chosen as application case. This is
both mathematically and physically one of the best understood geometries and allows
for a rigorous verification of the modelling method and the control design using the
classical linear stability theory. The formulation and the methods presented in this
paper can in principle be applied to general geometries and any actuator/sensor
configuration and allow for a straightforward extension to spatially developing
boundary layers. A feedforward actuator/sensor configuration (Belson et al. 2013) is
considered in which upstream sensors are used to detect the incoming perturbations.
Such a set-up is commonly considered for convectively unstable flows (Bagheri et al.
2009b; Semeraro et al. 2013; Sipp & Schmid 2016) and guarantees the best nominal
performance (Belson et al. 2013). Nonetheless a feedforward approach can be more
sensitive to unmodelled disturbances/dynamics as compared to feedback configurations
as argued in Belson et al. (2013). In this paper closed-loop convergence is shown
with respect to the truncated dynamics and the robustness to unmodelled disturbances
is assessed from case to case. The controllers are evaluated using linear simulations
based on the assumption that the amplitude of the perturbations is small. In Semeraro
et al. (2013) it is verified through nonlinear simulations that a fully linear control
approach can be effective in delaying transition in the presence of perturbation
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amplitudes up to 1 % of the free stream velocity. Limitations with respect to strong
nonlinear dynamics at transitional amplitudes are out of the scope of this work.
However, the modelling presented in this article also enables the application of linear
H∞ robust design strategies, of the sort presented in Baramov et al. (2004), Jones
et al. (2015), Flinois & Morgans (2016), to account for modelling uncertainties.
This would require a change of control set-up to include feedback measurement
information to effectively account for model uncertainty in the control design.

The outline of this paper is as follows. Section 2 outlines the dynamic modelling
and the problem formulation for control of convective instabilities. Section 3 presents
the design and synthesis of the reduced-order controller. In § 4 the controller is
evaluated using numerical simulations of the closed-loop system. All disturbances are
generated upstream of the computational domain for the control model. Three different
disturbance cases are considered in order to demonstrate the effectiveness and the
robustness of the proposed control design. In the last section concluding remarks are
given and a discussion regarding the application of this method to more complex
flow geometries is laid out. This paper is complemented with two appendices. In
appendix A the numerical scheme to derive the finite dimensional state-space system
of the flow is described. This numerical scheme is based on multivariate B-splines
defined on triangulations (Farin 1986; de Boor 1987; Lai & Schumaker 2007) and is
an extension of the model reduction scheme for parabolic partial differential equations
(PDEs) presented in Tol, de Visser & Kotsonis (2016) to fluid flows. In appendix B
the state-space formulas for the controller that solves the H2 optimal control problem
are given.

2. Dynamic modelling and problem formulation
This section presents the dynamic modelling and a generalised problem formulation

for localised control of instabilities that contribute to transition in 2-D wall-bounded
shear flows. The classical route to transition is considered, in accordance with the
linear stability theory (LST) (Schmid & Henningson 2001), triggered by linear
growth of convective instabilities. The 2-D non-periodic channel flow is considered
as application case. First the channel geometry and the governing equations are given
in § 2.1. In § 2.2 the feedforward actuator/sensor configuration used for control is
presented. The new inflow disturbance model to account for upstream disturbance
environments is introduced in § 2.3. To apply linear control theoretical tools the
input–output system must be formulated into the standard state-space form. To
generalise the framework the system is written as an abstract equation in operator
form (Curtain & Zwart 1995; Bewley, Temam & Ziane 2000) in § 2.4. Explicit
discrete expressions are obtained for all operators and the underlying numerical
method (appendix A) is discussed in § 2.5. Finally the H2 optimal control problem
to account for the flow perturbations is defined in § 2.6.

2.1. Governing equations
This paper considers a 2-D non-periodic flow between two infinite flat plates. The
flow is non-dimensionalised using the maximum centreline velocity U0 and half-height
h with corresponding Reynolds number Re = (U0ρh)/µ where ρ is the density and
µ the dynamic viscosity of the fluid. For flow simulations a total non-dimensional
length Lsim = 16π is considered. This section focuses in particular on the flow model
that is used for control design. For control design purposes a localised region with a
length of Lc= 8π is considered. External sources of disturbances are assumed to enter
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Control domain

Disturbances

–1

1

y

x–4.00 0 2.39 2.86 3.82 5.57 8.00 12.00

FIGURE 1. Channel flow geometry and control layout including the shear sensor locations
νi, boundary actuator distributions gi(x) and controlled output distribution qi(x).

the control domain though the inflow. The geometry of the flow is shown in figure 1.
A supercritical case is studied at Re= 7000 for which the flow field is convectively
unstable. However, the non-periodic flow configuration is globally stable since any
initial perturbation eventually leaves the computational domain. The control objective
is to stabilise convective perturbations around the steady-state parabolic velocity
profile U(y) = [1 − y2, 0]T. The dynamics of small-amplitude perturbations in a
viscous incompressible flow is governed by the Navier–Stokes equations linearised
around the base flow and the continuity equation

∂u
∂t
+ (U · ∇)u+ (u · ∇)U−

1
Re
1u+∇p= f in Ω, (2.1a)

∇ · u= 0 in Ω, (2.1b)
u= ub on ΓD, (2.1c)

−pn+
1

Re
(n · ∇)u= 0 on Γout, (2.1d)

where u(x, t) = [u(x, t), v(x, t)] and p(x, t) denote the velocity and pressure
perturbation field, x = (x, y) is the spatial coordinate and f (x, t) is an in-domain
body force field per unit mass typically used for applying control. The system is
closed by the boundary conditions (2.1c)–(2.1d) where ΓD = Γin ∪ Γr is the Dirichlet
part of the boundary, Γin the inflow part of the boundary, Γr are the rigid walls
and Γout the Neumann outflow part of the boundary. ub(x, t) is a prescribed velocity
input profile used for boundary control at the wall boundary Γr and for the external
disturbances at the inflow boundary Γin. The outflow boundary condition (2.1d) is
known as a no-stress condition and has proven to be well suited for unidirectional
outflows (Rannacher, Turek & Heywood 1996). It is naturally satisfied by the
variational formulation used in the numerical method (see appendix A). The artificial
non-physical effect of this boundary condition near the outflow is investigated in § 3.
In this study only boundary feedback control is considered, therefore the in-domain
body force is set to zero (f = 0) in the remainder of this section. However, in-domain
disturbances are considered to evaluate the controller in § 4.

2.2. Inputs and outputs
The chosen control objective is to suppress the effect of inflow disturbances on the
fluctuating wall shear stress. The control actuation is achieved by means of unsteady
blowing and suction at the wall and boundary shear sensors are used to extract the
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measurements. A feedforward actuator/sensor configuration (Belson et al. 2013) is
considered in which two point shear sensors at the walls are placed upstream of
the control actuators. A schematic representation of the control layout is shown in
figure 1. It is shown in Belson et al. (2013) that feedforward configurations achieve
the best disturbance attenuation, but can be less robust to additional disturbances not
seen by the sensor. The shear sensors νm are therefore placed close to the control
actuators gc. In addition a controlled shear output q is defined which will be used to
define the performance objective of the controller. The specifications will be discussed
next. The boundary actuation is modelled through the boundary conditions (2.1c) and
is decomposed into an external disturbance and a control

u|ΓD = ub = uc(x, t)+ ud(x, t), (2.2)

with uc(x, t) the actuation imposed at the rigid walls and ud(x, t) the external
disturbance imposed at the inflow. This disturbance model is discussed in detail in
the next section. To manipulate the flow, localised wall-normal blowing and suction
with zero net mass flux is considered. It is assumed that the spatio-temporal actuator
model is described by the following state-space description

η̇c = τ
−1(φ − ηc)=Acηc +Bcφ,

uc =Gcηc = Ccηc,

}
(2.3)

with ηc(t) ∈ R2 the actuator state that describes the magnitude of the blowing and
suction, φ(t) ∈ R2 the control input and uc(x, t) is the actuator velocity output at
the wall. The temporal dynamics is described by a first-order low-pass filter defined
by Ac = −τ

−1I, Bc = τ
−1I with τ the time constant of the filter. A fast actuator is

assumed with τ = 0.1, that is a stable approximation of a pure integrator typically
used for boundary control in shear flows, see e.g. Högberg & Henningson (2002),
Högberg et al. (2003a). The actuator output at the wall is defined by Cc = Gc(x) =
[gc1

(x), gc2
(x)] with gci

∈ L2(Γri)
2 the spatial distribution function that describes how

ηci(t) is distributed on the rigid boundary. A localised sinusoidal spatial distribution
function is considered

gc(x)=


[

0 sin
(

2π(x− xg)

Lg

)]T

if x ∈ [xg, xg + Lg]

[0 0]T elsewhere.

(2.4)

Such a set-up is frequently considered in a fully distributed setting to control single
wavenumber pairs, see e.g. Bewley & Liu (1998), Aamo & Krstic (2002), Jones et al.
(2015). Here a localised distribution is considered with a spatial length of Lg = 3 ≈
0.95π and origin at xg= 9≈ 2.86π. The length Lg is less than half the wavelength of
the dominant spatial perturbation mode which is 2π (see next section).

Information about the perturbation field is given by two wall-normal shear stress
point measurements

νmi =

∫
Γri

δ(x− xm)t · (n · ∇)u|Γri
dx+wni

=

∫
Γri

δ(x− xm)
∂u
∂y

∣∣∣∣∣
Γri

dx+wni, (2.5)
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where n is the inward unit normal on Γr and t the corresponding unit tangential vector
and the Dirac function δ indicates a point measurement. The term wall shear stress is
used loosely here as the shear stress at the wall τxy|Γr = (1/Re)∂u/∂y|Γr also depends
on the Reynolds number. It is assumed that the Reynolds number is known, so that
∂u/∂y|Γr may easily be determined from measurements of τxy|Γr . The measurement
noise wn(t) is assumed to be a Gaussian stochastic process with zero means and
covariances

E{wn(t)} = 0, E{wn(t)wT
n (τ )} = Iσ 2

n δ(t− τ) (2.6a,b)

with σ 2
n the variance of both sensors. A feedforward configuration is chosen where

the sensor is placed upstream of the control actuators at xm= 7.5≈ 2.39π. In addition
to the measured output, also two controlled outputs are defined

qi =

∫
Γri

h(x)t · (n · ∇)u|Γri
dx, (2.7)

where h(x) is determined by the desired performance specifications in the domain.
In this study we wish to stabilise the perturbations by minimising the wall shear
stress downstream of the control actuators integrated over a localised region over the
boundary. To this end h(x) is chosen as a Gaussian distribution function

h(x)= e−(x−xq)
2/σ 2

x , (2.8)

with xq = 17.5 ≈ 5.57π the centre of the distribution and σx = 1 the radius. The
controlled output is used to define the control objective in the H2 control framework
later in this section.

2.3. Inflow disturbance model
The 2-D flow perturbations are characterised by unsteady fluctuations over a broad
range of length scales and time scales. This makes the problem of estimating and
controlling these perturbations inherently difficult. In particular the performance of the
state estimation relies on the construction of a proper model for the external flow
disturbances (Hœpffner et al. 2005). In this section a new inflow disturbance model
is introduced which allows for an efficient estimation of the flow perturbations within
the localised control domain. To generate the external disturbances a superposition of
eigenmodes from the spectrum of the Orr–Sommerfeld (OS) operator is used. These
modes are calculated from the OS equation at the desired temporal frequencies. With
this approach, specific modes of the flow perturbations can thus be selected and are
included in the control design. In this way the most dominant modes that contribute
to transition can be precisely targeted by the controller. These modes are included in
the state-space model by imposing them at the inflow boundary of the control domain.
Such a boundary condition has been used to introduce disturbances in direct numerical
simulations, e.g. for evaluating controllers (Baramov et al. 2004; Kotsonis et al. 2013).
However, the use of such boundary conditions as a disturbance model that is included
in the design of the controller has so far not been reported. We consider H2 optimal
control which is a design methodology in which the external sources of excitation are
stochastic. First the disturbance model is presented for the case of stochastic excitation
of the modes in § 2.3.1 and in § 2.3.2 the specific modes are selected that are included
in the control design.
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2.3.1. External disturbances
Assuming that the perturbations are sufficiently small, a single mode of the flow

perturbation in a 2-D unbounded domain takes the form

u=Re[A0ũ(y)ei(αx−ωt)
]. (2.9)

With A0 the initial amplitude, ũ(y) = ũr(y) + iũi(y) ∈ C the eigenfunction, ω the
radial frequency and α the non-dimensional wavenumber. The eigenfunction ũ for
a particular frequency and wavelength can be determined from the Orr–Sommerfeld
equation which will be discussed in the next section. The inflow is considered as the
disturbance source which generates the perturbation (2.9) at a particular frequency
that grows in space. Thus, the case ω ∈R and α= αr + iαi ∈C is considered and the
spatial wavelength of the perturbation is given by λx = 2π/αr. At the inflow x= 0 a
single mode of the perturbation can be described by

u|Γin = ud = Re[A0ũ(y)e−iωt
]

= ũr A0 cos(ωt)︸ ︷︷ ︸
ηr

d

+ ũi A0 sin(ωt)︸ ︷︷ ︸
ηi

d

. (2.10)

Equation (2.10) corresponds to a solution of a modal perturbation imposed at the
inflow. The spatial content consists of the real and imaginary part of the eigenmode
each excited with a persistent sinusoidal temporal input, where ηr

d is the input that
excites the real part of the eigenmode and ηi

d the input that excites the imaginary
part of the eigenmode. The two temporal components are not independent and for a
modal perturbation the two components are 90◦ out of phase, that is 6 ηr

d =
6 ηi

d + 90◦.
However, external disturbances are accounted for in a stochastic control framework in
which the temporal disturbances are considered as independent inputs. To effectively
account for modal perturbations in the control design, ηd is not regarded as an external
disturbance, but as a dynamic state in the disturbance model. The phase dependency
can then be included in the model by exploiting the fact that ηi

d = −(1/ω)η̇
r
d for

the case of a modal perturbation with frequency ω. Let ηr
d = ηd and ηi

d =−(1/ω)η̇d,
equation (2.10) can be represented in terms of a single temporal component and its
derivative

ud = ũr
ηd −

1
ω

ũi
η̇d, (2.11)

where the imaginary part of the eigenfuction is scaled with the perturbation frequency
to account for the phase. Accounting for the phase in the model will reduce the
non-modal spatial transients introduced by the perturbation near the inflow as will be
shown in § 3.1. To account for the inflow perturbation (2.11) in the control design a
second-order low-pass filter is proposed for the temporal dynamics

η̈d =ω
2
nwd − 2ζωnη̇d −ω

2
nηd, (2.12)

with ζ the damping ratio, ωn the undamped natural frequency and wd the external
disturbance assumed to be an uncorrelated white Gaussian stochastic process with zero
mean and variance

E{wd(t)} = 0, E{wd(t)wd(τ )} = σ
2
d δ(t− τ). (2.13a,b)
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FIGURE 2. Magnitude plot of the low-pass filter (2.12) used for the disturbance model.
The frequency is normalised with the peak frequency ωp.

The low-pass filter (2.12) allows the frequency response shaping of ud at the inflow.
The parameters are chosen such that the filter amplifies the frequencies near the
frequency ω of the perturbation mode. The damping ratio is set to ζ = 0.25. The
natural frequency is chosen such that the peak frequency ωp = ωn

√
1− 2ζ 2, where

the filter has the maximum magnitude, is equal to the frequency of the perturbation
mode. The magnitude plot of the filter as a function of the normalised frequency
ω/ωp is shown in figure 2. With these settings the filter amplifies the disturbance
magnitude by approximately a factor two at ωp. By increasing the magnitude at the
perturbation frequency the controller will be better able to target the mode. The filter
attenuates the disturbance at higher frequencies which will also make the controller
design more robust to unresolved dynamics (Jones et al. 2015). Finite-dimensional
representations of the system (discussed in the next section) are used for the control
design which only resolve a finite number of modes, typically those with a lower
temporal frequency. By suppressing the magnitude of the disturbance at higher
frequencies, the situation where the disturbance excites unresolved plant dynamics
is avoided. This in turn avoids that the controller, which is designed based on the
disturbance model, estimates unresolved plant dynamics. This phenomenon is also
known as spillover and can destabilise the infinite-dimensional system (Balas 1979).

The disturbance model defined by (2.11) and (2.12) can be written in state-space
format as [

η̇d

η̈d

]
=

[
0 1
−ω2

n −2ζωn

]
︸ ︷︷ ︸

Ad

[
ηd

η̇d

]
︸︷︷︸

η̄d

+

[
0
ω2

n

]
︸ ︷︷ ︸
Bd

wd

ud =

[
ũr
−

1
ω

ũi

]
︸ ︷︷ ︸

Cd

[
ηd

η̇d

]

⇒
˙̄ηd =Adη̄d +Bdwd

ud = Cdη̄d,
(2.14)

where η̄d = [ηd, η̇d] is the state, wd is the external disturbance and the perturbation
velocity ud at the inflow is the output. For the case when multiple N modes
are accounted for in the control design, the state-space systems for the selected
frequencies and wavenumbers can be combined in diagonal form as
Ad = diag{Ad1, . . . ,AdN }, Bd = diag{Bd1, . . . ,BdN } and Cd = [Cd1, . . . , CdN ].
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2.3.2. Selection of the perturbation modes
The next step is to select the modes that contribute to the transition process to

include in the disturbance model (2.14) for control design. The modes are computed
from the Orr–Sommerfeld equation. Let ũ = [∂ψ̃/∂y, −∂ψ̃/∂x] = [ψ̃ ′, −iαψ̃]T. The
eigenfunction for the streamfunction ψ̃ satisfies the Orr–Sommerfeld equation(

U −
ω

α

)
(ψ̃ ′′ − α2ψ̃)−U′′ψ̃ =−

i
αRe

(ψ̃ ′′′′ − 2α2ψ̃ ′′ + α4ψ̃),

ψ̃(±1)= ψ̃ ′(±1)= 0,

 (2.15)

which is an eigenvalue problem with ψ̃ the eigenfunction of the problem and with
either α or ω the eigenvalue of the problem. The prime superscript in (2.15) denotes
differentiation with respect to y. The spatial amplification theory is considered to
generate the modes. Thus a real frequency ω is chosen and (2.15) is solved for the
complex eigenfunction and complex wavenumber α. At each frequency and Reynolds
number this gives a spectrum of spatial eigenvalues. Figure 3 shows the spectrum at
the most dominant frequency that includes the mode with the maximum growth rate
given by the imaginary part of the spatial eigenvalue (wavenumber). For the case
Re= 7000 the dominant frequency is approximately ω= 0.253. Only the least stable
eigenvalues that contribute to a physical downstream response are shown in figure 3
(Schmid & Henningson 2001, p. 260). The spectrum contains one spatially growing
mode (k = 1) with a negative imaginary part. This is the leading or most unstable
mode that contributes to the primary route to transition (Saric, Reed & Kerschen
2002) in 2-D channel flows. The left branch k = 2, . . . , k = 13, k = 15 are ‘centre
modes’ (Kim & Bewley 2007) with very little support near the walls and represent
perturbations in the free stream. Mode k = 14 is highly stable and has negligible
influence in the transition process. Figure 4 shows the spatial eigenvalue of the first
or most unstable (k= 1) mode as a function of the temporal frequency. Although the
flow is unstable over the frequency range 0.216 6 ω6 0.286, only the leading mode
calculated at the most amplified frequency ω= 0.253 is included in the control design.
This will be referred to as the design point in the remainder of the paper. Figure 5
shows the shape of the eigenfunction for this particular mode. This mode is used to
define the inflow perturbation (2.14). Note that the design frequency becomes part of
the disturbance model. This model can easily be extended to include the dominant
modes calculated for different temporal frequencies. However, it is found that adding
more eigensolutions does not improve the performance of the control system. This is
a direct result of the near-linear dependence of the leading eigenmodes for different
temporal frequencies. In other words the modes are very similar. It will be shown
in § 3 that also at other frequencies than the design point, the single mode inflow
disturbance will quickly develop in-domain to a travelling wave with a spatial growth
as predicted by the Orr–Sommerfeld equation (2.15).

2.4. State-space formulation
In this section the linearised Navier–Stokes equations (LNSE) including the inputs,
outputs and the inflow disturbance model are written as a boundary control system in
the standard state-space format (u̇=Au+Bφ, ν = Cu). This is required for defining
the control objective and applying control theoretic tools. Boundary control systems
do not fit directly into the standard form. However, we can extract the boundary
controlled part of the dynamical model and rewrite the system on an extended state
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FIGURE 3. Spatial Orr–Sommerfeld spectrum for ω = 0.253 and Re = 7000. Only the
dominant eigenvalues that contribute to a physical downstream response are shown.
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FIGURE 4. The leading or most unstable wavenumber as function of the temporal
frequency ω at Re= 7000. (a) The imaginary part αi. Negative values of αi characterise
unstable modes (grey region). (b) The real part αr. The point marked by ‘o’ corresponds
to the most amplified frequency for the investigated conditions.
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FIGURE 5. The selected eigenfunction included in the inflow disturbance model for the
control design. The Orr–Sommerfeld eigenfunction for u (a) and v (b) calculated at Re=
7000, ω= 0.253. The corresponding wavenumber for this mode is α = 1− 0.0047i.
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space in standard form. This method originates from Fattorini (1968) and has been
applied for boundary control of wall-bounded shear flows (Högberg & Henningson
2002; Högberg et al. 2003a; Chevalier et al. 2007). We also refer to Curtain & Zwart
(1995, § 3.3) for more information on this formulation. Let X (Ω) be the space of
n-dimensional divergence free functions defined on Ω with inner product (u1, u2)=∫
Ω

u1 · u2 dx and norm ‖u1‖2 = (u1, u1)
1/2 where u1, u2 ∈ X . Furthermore, let the

trajectory segment u(·, t)={u(x, t),x∈Ω} be the state and u(t)|Γ ∈U the value of u(t)
on the boundary defined in a separable Hilbert space U . The LNSE (2.1) in X (Ω),
including the boundary inputs (2.2), the measurements (2.5) and the controlled output
(2.7), can be written as

u̇=A u,
Bu= uc + ud,

q=Qu,
νm = Cu+wn.

 (2.16)

The operator A : D(A ) ⊂ X 7→ X corresponds to evaluating the linear differential
operator of the LNSE. The pressure can be eliminated from the equations by using
a space of velocity fields which are divergence free (Bewley et al. 2000), which is
also done here (see also appendix A for the variational formulation). B :X 7→U is a
boundary operator which maps the flow field to its values on the boundary and C, Q
are output operators, respectively defined as

Bu= u|ΓD, Ciu= (δ(x− xm), t · (n · ∇)u|Γri
), Qiu= (h(x), t · (n · ∇)u|Γri

).

(2.17a−c)

To extract the boundary controlled part the first step is to construct two operators Zc,
Zd such that

Zc: U 7→X , BZcuc = uc,

Zd : U 7→X , BZdud = ud.

}
(2.18)

The boundary condition can then be removed by decomposing the state into

u= uh +Zcuc +Zdud. (2.19)

The dynamics of the new state uh is governed by the following evolution equation
with homogeneous boundary conditions (Curtain & Zwart 1995)

u̇h =Auh −Zcu̇c +A Zcuc −Zdu̇d +A Zdud, (2.20)

where the operator A :D(A) 7→X is defined as

Auh(t)=A uh(t), for uh ∈D(A),
D(A)=D(A )∩ ker(B)= {uh ∈X |uh(t)|ΓD = 0}.

}
(2.21)

If uh is a solution of the homogeneous system (2.20), then u defined by (2.19) is
a solution of the original system (2.16) (Fattorini 1968; Curtain & Zwart 1995).
Equation (2.20) contains both the temporal inputs and their time derivatives which
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is undesirable since they are not independent inputs. This can be eliminated by
reformulating (2.20) on the extended state space X e

=X ⊕ Uu̇h

u̇c

u̇d

=
A A Zc A Zd

0 0 0
0 0 0

uh

uc

ud

+
−Zc

I
0

 u̇c +

−Zd

0
I

 u̇d. (2.22)

The inflow perturbation velocity and the wall actuation velocity have become a state
of the system in this formulation. The external input is actually the time derivative
of the boundary velocity. From the actuator model (2.3) it follows that uc = Ccηc,
u̇c= CcAcηc+ CcBcφ and from the disturbance model (2.14) it follows that ud = Cdηd,
u̇d = CdAdη̄d + CdBdwd. Substituting these expressions in (2.22), and combining this
system with the actuator dynamics (2.3) and the disturbance dynamics (2.14), gives
the following augmented systemu̇h

η̇c

˙̄ηd

 =
A A ZcCc −ZcCcAc A ZdCd −ZdCdAd

0 Ac 0
0 0 Ad


︸ ︷︷ ︸

Ā

uh

ηc

η̄d


︸ ︷︷ ︸

ue

+

−ZcCcBc

Bc

0


︸ ︷︷ ︸

B̄c

φ +

−ZdCdBd

0
Bd


︸ ︷︷ ︸

B̄d

wd,

q=
[
Q QZcCc QZdCd

]︸ ︷︷ ︸
Q̄

uh

ηc

η̄d

 ,
νm =

[
C CZcCc CZdCd

]︸ ︷︷ ︸
C̄

uh

ηc

η̄d

+wn,



(2.23)

where also included are the resulting output equations from the state transformation
(2.19). Equation (2.23) can be compactly written as

u̇e
= Āue

+ B̄cφ + B̄dwd,

q= Q̄ue,

νm = C̄ue
+wn,

 (2.24)

with ue the extended state. A final remark is given about the controllability of the
system. By formulating the system on the extended state space (2.20) pure integrators
have been added at the system external inputs. This results in additional system poles
at the origin. As a result, the system in the form (2.20) is not stabilisable, which
means that not all uncontrollable modes are asymptotically stable. This is a direct
result of the fact that both the control and disturbance are defined at the boundary
and both appear as a state in the system. It is not possible to influence the additional
poles of the disturbance dynamics by means of control and vice versa (assumption (i)
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is violated, and assumptions (iii) and (iv) are violated for ω= 0, see appendix B). By
including the actuator dynamics and disturbance dynamics, the uncontrollable poles at
the origin are moved to the stable left half-plane to the location of the eigenvalues of
Ac and Ad. The state-space formulation (2.23) is thus stabilisable which allows the
synthesis of H2 optimal controllers.

2.5. Finite-dimensional system
Equation (2.24) represents the continuous formulation of the flow control problem. For
simulation and control design a finite-dimensional representation of (2.24) is required.
In Tol et al. (2016) a framework is presented for deriving state-space descriptions for
a general class of linear parabolic PDEs to which standard control theoretic tools can
be applied. This method is also used in this work and uses multivariate B-splines of
arbitrary degree and smoothness defined on triangulations (Farin 1986; de Boor 1987;
Lai & Schumaker 2007) to find matrix representations of all operators in (2.23). This
method has the flexibility of the finite element method to use local refinements and
to cope with irregular domains and the high approximation power of spectral methods.
The triangulations used to construct the simulation model, and the model that is used
as a starting point for model reduction and control design are shown in figure 6. The
use of spline spaces provides a convenient way for stating the degree and smoothness
of the spline model. In addition, the approximation properties of such spline spaces
have been extensively studied in the literature (Lai & Schumaker 2007). Let T be the
triangulation of Ω . The spline space is the space of all smooth piecewise polynomial
functions of arbitrary degree d and arbitrary smoothness r over T with 0 6 r< d

Sr
d(T ) := s ∈Cr(Ω) : s|t ∈Pd, ∀t ∈ T . (2.25)

With Pd the space of all polynomials of total degree d and t denotes a triangle. We
construct a basis for the smooth divergence free spline subspace S such that S⊂X in
conjunction with a Galerkin scheme to obtain a finite-dimensional representation of the
governing equations. The pressure is eliminated from the equations by using a space
of velocity fields which are divergence free and a suitable choice of the variational
formulation. This will also avoid singularities in the numerical method. The Galerkin-
type variational formulation through which the spline approximation is determined and
the corresponding numerical method are described in detail in appendix A.

To derive the full-order control model a structured triangulation is used, refined
near the walls to properly resolve the shear features of the flow consisting of nt= 960
triangles, and the S0

4 (T960)
2 spline space is chosen as approximating space for the

velocity field. C0 continuous spline elements are chosen which allows an accurate
interpolation of the actuator distribution function at the boundary. Degree d = 4
elements are chosen which allows the construction of an exactly divergence free basis
and to obtain better approximation properties (Awanou, Lai & Wenston 2005; Lai &
Schumaker 2007). With this degree each element t has a total of Nt = 15 degrees
of freedom. The complete basis for L2(Ω)2 has a total of N = nt × Nt × 2 = 28 800
degrees of freedom. This basis is used to spatially discretise the system. The resulting
discrete system is transformed to state-space format using a null-space projection
method (Tol et al. 2016). This projection employs a similar state transformation as
in (2.19), but in a discrete setting, and results in a reduced number of states that
have a minimal non-zero support for the smooth divergence free spline space S ⊂X .
The reduction is equal to the total rank R∗ of the discrete divergence, boundary
and smoothness operators. The order of the state-space model resulting from the
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FIGURE 6. Triangulations used for the simulation model and the model that is used for
model reduction and control design. (a) Triangulation with 960 triangles used for the
control model. (b) Triangulation with 1920 triangles used for the simulation model.

null-space projection is N − R∗ = 5569. The large reduction can be contributed
to the fact that the constrained smooth divergence free subspace is much smaller
than the unconstrained space. The order of the model is sufficiently small to allow
a direct application of balanced truncation for model reduction. For the case of
spatially periodic boundary conditions the accuracy of the model can be assessed via
comparison of the model spectra with the temporal spectra of the Orr–Sommerfeld
equation (2.15). This comparison is demonstrated in § A.2. The numerical accuracy
of the first 22 dominant eigenvalues varies between 2× 10−8 6 |λk − λ

OS
k |6 2× 10−3.

This is considered accurate for the purpose of control design and demonstration. A
more physical validation of the model for the non-periodic case considered in this
study is conducted in § 3. A different model is used for simulating the response of
system. The simulation model is defined on a longer domain with a total length
of Lsim = 16π. A similar triangulation consisting of 1920 triangles is used and the
simulation model has approximately the same accuracy as the control model. In the
next sections we focus on the control model and use the notation (A, B, C, D) to
represent the full-order finite-dimensional system and use the notation (A, B, C, D)
to represent a reduced-order system resulting from balanced truncation.

2.6. Formulation of the H2 control problem
In this section the feedback design problem for the state-space representation of the
flow (2.24) is cast as an H2 optimisation problem. The state-space formulas for the
optimal solution are given in appendix B. We refer to Doyle et al. (1989), Zhou et al.
(1996), Skogestad & Postlethwaite (2005) for more detail on this control theory. The
main objective of the feedback control design is to find a control input φ based on
the output measurement νm that minimises the wall shear stress defined by q in the
presence of the disturbances wd and wn. First the standard control formulation that
is considered by H2 control is presented. The application of H2 control to the state-
space representation of the flow (2.24) will follow thereafter. Let w be the vector of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.355


Localised estimation and control in shear flows 835

FIGURE 7. The general control configuration. System G, controller K , output measurement
ν, control input φ, performance objective z and exogenous disturbances w.

exogenous disturbances and z the vector of performance measures to be minimised.
The H2 control problem is a disturbance rejection problem and considers the standard
control configuration shown in figure 7 which is described by[

z
ν

]
=G(s)

[
w
φ

]
=

[
Gzw(s) Gzφ(s)
Gνw(s) Gνφ(s)

] [
w
φ

]
,

φ = K (s)ν,

 (2.26)

with K (s) the controller to be synthesised and G(s) the open-loop transfer function
matrix of the generalised plant defined by

G(s)= Cp(sI −Ap)
−1Bp +Dp, (2.27)

with the state-space realisation

G(s)=

 Ap
[
B1 B2

]
[
C1
C2

] [
0 D12

D21 0

]
= [ Ap Bp

Cp Dp

]
. (2.28)

To account for the state disturbances wd and the measurement noise wn in a H2
control framework the state-space system (2.24) is formulated as a generalised plant
(2.28) and scaled in terms of two parameters which may be individually adjusted to
achieve the desired closed-loop performance. A similar scaling was also presented in
Bewley & Liu (1998). The control objective is to counteract the influence of the state
disturbance wd on the controlled output defined by q= Q̄ue. Therefore the controlled
output is used to define the performance measure z

z=
[
Q̄
0

]
ue
+

[
0
lI

]
φ, (2.29)

which also includes a penalty on the control defined by the parameter l. The parameter
l determines the trade-off between a low control effort (φTφ) and a low controlled
output energy (qTq). For the design of the controller, decisions must be made about
the expected state disturbances and measurement noise. The temporal magnitude of
these disturbances in the state-space system is defined by the expected covariances of
the temporal state disturbance (2.13) and the measurement noise (2.6). In this study it
is assumed that nothing is known a priori about the expected covariances. To make
a parametric study for the controller design tractable, a relative magnitude of the
measurement noise is defined

γ =
σn

σd
, (2.30)
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which is the ratio between the root mean square of the expected variance of
respectively the sensor noise and the state disturbance. The state disturbance and
measurement noise are respectively modelled as wd = σdw1 and wn = σnw2 with w1
and w2 defined as white noise with unit intensity. The system is parameterised in
terms of γ by defining a new scaled observation that is used for feedback

ν =
γ

σn
νm =

γ

σn
(C̄ue
+ σnw2)

=
γ

σn
C̄ue
+ γw2 (2.31)

and the system is normalised such that σd = 1. Using this normalisation it follows
from (2.30) that γ = σn and the observation (2.31) is obtained by a simple change
of variables. For the control design γ does not represent a physical root mean
square value of the measurement noise, but a relative measure with respect to the
state disturbance, used to tune the controller. Defining the vector of disturbances as
w= [w1, wT

2 ]
T and the following system matrices

Ap = Ā, B1 =
[
σdB̄d 0

]
, B2 = B̄c,

C1 =

[
Q̄
0

]
, D12 =

[
0
lI

]
, C2 =

γ

σn
C̄, D21 =

[
0 γ I

]
,

 (2.32)

the system (2.24) can be written as a generalised plant with the state-space
formulation (2.28), that is

u̇e =Apue
+B1w+B2φ,

z= C1ue
+D12φ,

ν = C2ue
+D21w.

 (2.33)

The H2 control design problem for this system is to find a controller K (s) that, based
on the measurement information ν, generates a control input φ which stabilises the
system (2.33) internally and minimises

‖T zw(s)‖2 =

√
1

2π

∫
∞

−∞

Trace{T ∗zw(iω)T zw(iω)} dω=

√
1

2π

∫
∞

−∞

∑
i,j

|T i,j
zw(iω)|2 dω.

(2.34)
Equation (2.34) is referred to as the H2-norm of the closed-loop transfer function
matrix T zw from the external disturbances w to the control objectives z and |T i,j

zw|

denotes the magnitude of the closed-loop transfer function from the jth disturbance
to the ith objective. T zw is given by

T zw(s)=
z(s)
w(s)
=Gzw(s)+Gzφ(s)K (s)(I −Gνφ(s)K (s))−1Gνw(s), (2.35)

which follows from (2.26). Physically, the H2 norm in (2.34) can be interpreted as
the amplification of the system from w to z integrated over all frequencies. In the
time domain, this is equivalent to the variance amplification of stochastic disturbances
(Jovanovic & Bamieh 2005). By minimising the H2 norm, the controlled output power
E[zTz] of the system, due to unit white Gaussian disturbances w, is minimised. The
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state-space formulas for the optimal controller K (s) that minimise (2.34) are given in
appendix B. It combines a state estimator (Kalman filter) for the flow field and a state
feedback, and has a state-space description of the form

u̇e
K =AKue

K +BKν,

φ = CKue
K,

}
(2.36)

with ue
K the estimated state and AK =A+ B2CK − BKC2. The controller input matrix

BK represents the estimator gain and the output matrix CK represents the state
feedback gain. The controller (2.36) can be structured using the separation principle,
which means that the estimator and state feedback can be tuned independently. Thus
the control penalty l and the estimation parameter γ may be individually adjusted to
achieve the desired characteristics for the closed-loop system T zw. A low value for
the control penalty l results in higher gain state feedback CK . Similarly, when γ is
small (high signal to noise ratio) the observation is fed back more aggressively
(high observer gain BK) than when γ is high. The controller K (s) in (2.36)
represents the full-order controller. Such a high-order controller is usually not real
time implementable for practical flow configurations. To synthesise a reduced-order
controller K r(s) for the high-order plant the so-called reduce-then-design approach
(Anderson & Liu 1989) is used, which is discussed in detail in the next section. This
section also includes a parametric study for the parameters γ and l.

3. Controller design and synthesis
In this section the reduced-order controller is designed and synthesised for the

problem defined in the previous section. An input–output analysis (Bagheri et al.
2009b) is conducted in § 3.1 for the uncontrolled system using the spatio-temporal
frequency response (Baramov et al. 2004; Jovanovic & Bamieh 2005) to identify the
perturbation modes that are captured by the inflow disturbance model and are retained
in the reduced-order model. The input–output analysis reveals the non-modal transients
introduced by the inflow disturbance as well as the modal unstable perturbation modes.
In § 3.2 a reduced-order model that captures the input–output behaviour is derived
using balanced truncation. This model is used to design the optimal controller and the
truncated dynamics is taken into account in the control system design. This section
also includes a parametric study for the estimator and state feedback design problem.
Finally, the closed-loop performance of three selected controllers is evaluated in the
frequency domain in § 3.3. These three controllers will also be evaluated in § 4 using
numerical simulations of the closed-loop system.

3.1. Analysis of the uncontrolled system
In this section the uncontrolled system from the disturbance input w to the shear
output ν, that is Gνw = [Gνw1, Gνw2] in (2.26), is analysed in the frequency domain.
In particular the effect of the inflow disturbance w1 on ν is investigated from
an input–output viewpoint. The disturbance input w1 excites the Orr–Sommerfeld
eigenfunction calculated for the most amplified frequency (ω = 0.253) at the inflow,
see also § 2.3 and figure 5. The perturbation shear stress created by the disturbance
along the complete lower wall, ν1(x)= (∂u/∂y)(x,−1), is considered as output in the
analysis. In this way the spatial transients created by the inflow disturbance can be
evaluated and the perturbation modes that are excited can be identified. The same
results hold for the upper wall due to the symmetry of the geometry. If a linear
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100

102

100

10–1

x

FIGURE 8. The magnitude of the spatio-temporal frequency response from the inflow
disturbance w1 to the shear along the lower wall ν1(x, y = −1). The 10 contour levels
lie within |Gν1w1 | ∈ [6.9, 69.4].

system is forced by a sinusoidal input at a particular frequency, once the initial
temporal transients have died out asymptotically, the output will also be sinusoidal, at
the same frequency, but with a change in amplitude and a phase shift. The magnitude
amplification and phase shift of the output are equal to the magnitude and phase
of the frequency response of the system. The frequency response is obtained by
evaluating the transfer function on the imaginary axis, that is s= iω. The asymptotic
response for the shear output along the lower wall in the spatio-temporal frequency
domain is given by

ν1(iω, x)=Gν1w1(iω, x)w1(iω), (3.1)

where Gν1w1(iω, x) is obtained from the (1, 1) element of

Gνw(iω, x)= C2(x)(iωI −Ap)
−1B1. (3.2)

Gν1w1(iω, x) is the spatio-temporal frequency response function (Jovanovic & Bamieh
2005) from the inflow disturbance w1 to the shear stress along the lower wall. It is
a function of temporal frequency and streamwise direction. Gν1w1(iω, x) is visualised
using the magnitude bode plot |Gν1w1(iω, x)| which is shown in figure 8. To support
the interpretation of the magnitude the fully developed open-loop response for ω =
0.25 and ω= 0.35 is shown in figure 9. The effect of the low-pass filter (2.12) on the
magnitude at the inflow and the amplification at the design frequency ω= 0.253 can
clearly be observed. After initial spatial transients near the inflow boundary, the modal
perturbations are revealed and the magnitude linearly increases or decreases depending
on the frequency of w1. At the design frequency an insignificant transient is involved
for the mode to develop in the domain. Larger transients can be observed near the
inflow at other frequencies than the design point. These non-modal transients do not
cause a problem for control design as they have died out in the control region (x>2π).
The outflow boundary condition (2.1d) gives rise to an artificial gain near the outflow
x> 6π. This does not result in reflections (wiggles) in the control domain. No special
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FIGURE 9. Fully developed open-loop response of the streamwise perturbation velocity
for two inflow disturbance frequencies. (a) Shows 10 levels in the range u∈ [−1.61, 1.61].
(b) Shows 10 levels in the range u ∈ [−1.00, 1.00].

attention needs to be taken for the non-physical region as long as no measurement
sensors are placed in this region. For validation purposes the exponential growth for
the perturbation shear output is compared with predictions from linear stability theory.
The exponential growth can be calculated using

αi =−
1

x1 − x0
ln
|Gν1w1(iω, x1)|

|Gν1w1(iω, x0)|
. (3.3)

The location of the shear sensor x0 = xm = 2.39π and the location of the controlled
shear output x1= xq=5.57π are chosen to compute the growth rate. Within this region
the magnitude varies linearly over a wide range of frequencies. Figure 10 shows the
magnitude of Gν1w1(iω, x) at the two spatial locations and the exponential growth
rate of the magnitude compared with the growth rates from LST. Good agreement
with LST predictions can be observed. Both the model and the OS equation predict
instability within the range 0.2166ω60.286. The real part of the wavenumber αr and
the corresponding wavelength λx = 2π/αr of the perturbation can be evaluated using
the phase response of the system. Let 6 Gν1w1(iω, x) be the phase in degrees for the
shear output along the lower wall. The real part of the wavenumber can be calculated
using

αr =

|6 Gν1w1(iω, x1)− 6 Gν1w1(iω, x0)|
π

180
x1 − x0

. (3.4)

Figure 11 shows the phase at the two spatial locations and the resulting wavenumbers
compared with the predictions from LST. It can be observed that also the wavelengths
are in good agreement with LST. At ω = 0.25 LST predicts a wavelength of λx =

2π/αr ≈ 2π and at ω= 0.35 a wavelength of λx ≈ 1.6π. These wavelengths can also
be observed in figure 9.

These results verify that the single mode inflow disturbance model accurately
captures the wavelengths and growth rates in a wider frequency band in the
actuator/sensor region. Also at other frequencies than the design frequency, the
disturbance will quickly develop in-domain to a travelling wave with a spatial
wavelength and growth rate as predicted by the Orr–Sommerfeld equation. It provides
confidence that the followed modelling procedure allows for an efficient estimation
of the dominant flow perturbations in the localised control domain using wall shear
sensors. In the next section the controller is designed to reduce the magnitude of the
shear downstream of the control actuators.
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FIGURE 10. (a) Magnitude of the shear output at two x-locations and (b) resulting
exponential growth (3.3) compared with the solutions of the Orr–Sommerfeld equation.
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FIGURE 11. (a) Phase of the shear output at two x-locations and (b) resulting wavelength
(3.4) compared with the solutions of the Orr–Sommerfeld equation.

3.2. Reduced-order controller
The reduce-then-design approach (Anderson & Liu 1989) is used to construct a
reduced-order controller for the high-order plant. First, exact balanced truncation
(Moore 1981) is applied to construct a reduced-order model of the full-order system
after which the ROM is used to synthesise the optimal controller. Exact balanced
truncation requires dense matrix factorisations and generally results in a computational
complexity of O(N3) and a storage requirement of O(N2). Exact balanced truncation
is not computationally tractable for very large systems and approximate methods, such
as proposed by Rowley (2005), could be used in this case. However, the modelling
approach in this paper avoids very large systems through localised computations
allowing to apply exact balanced truncation (N = 5569 for the control model). Since
the current flow configuration is globally stable, balanced truncation can directly be
applied without the need of separating the stable and unstable subspaces. Only the
application of balanced truncation for model reduction and control design is discussed
in this section. We refer to Moore (1981) for more detail and to Rowley (2005), Kim
& Bewley (2007) for more background in the context of flow control.
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Balanced truncation extracts the most controllable and observable modes of
the system and first involves creating a balanced realisation of the system such
that each state has an equal measure for both controllability and observability.
Let Gb(s) = (Ab, Bb, Cb, Db) be a balanced realisation of the generalised plant
G(s) = (Ap, Bp, Cp, Dp) given by (2.28) such that the controllability Gramian and
observability Gramian respectively defined as

P =
∫
∞

0
eAbtBbBT

b eA
T
b t dt, (3.5)

Q=
∫
∞

0
eA

T
b tCT

b CbeAbt dt (3.6)

are given by P =Q = diag(σH
1 , σ

H
2 , . . . , σ

H
N )=:Σ where σH

1 > σH
2 > · · ·> σH

N > 0 are
the Hankel singular values of the system. An efficient algorithm for creating balanced
realisations is available in Matlab (balreal). This algorithm computes the similarity
transformation ue

b 7→ Sue, which balances the plant matrices through Ab = S−1ApS,
Bb = S−1Bp, Cb = CpS and Db = Dp. The similarity transformation S is obtained
from the Cholesky factorisation of the Gramians (Laub et al. 1987). The Gramians
are computed by solving a set of Lyapunov equations (Moore 1981). This method is
also stable if the system contains nearly uncontrollable/unobservable modes which are
present in the linearised Navier–Stokes operator (Bewley & Liu 1998; Kim & Bewley
2007).

The balanced realisation and corresponding singular values can be partitioned as

Ab =

[
A11 A12

A21 A22

]
, Bb =

[
B1

B2

]
, Cb =

[
C1 C2

]
, Σ =

[
Σ1 0
0 Σ2

]
, (3.7a−d)

where Σ1 = diag(σH
1 , σ

H
2 , . . . , σ

H
r ) and Σ2 = diag(σH

r+1, σ
H
r+2, . . . , σ

H
N ). The reduced-

order model of order r is obtained by truncating the least observable/controllable
modes, that is truncating the r+ k, k=1, . . . ,N− r modes: Gr(s)= (A11,B1,C1,Db) :=
(A,B,C,D). Note that balanced truncation does not depend on Db and it follows that
Db = Dp = D. A feature of balanced truncation is the existence of upper and lower
bounds for the maximum error of the reduced-order model

σH
r+1 6 ‖G−Gr‖∞ < 2

N∑
k=r+1

σH
k , (3.8)

with σH
r+1 the first neglected Hankel singular value. Figure 12 shows the first 150

Hankel singular values of the system and the upper and lower bounds for the
maximum error. The steep initial drop indicates that the input–output behaviour can
be captured using low-order models. However, no guarantees are available about the
stability and performance of a controller designed for Gr on the original system G
and the truncated dynamics should be taken into account in the performance analysis.
Therefore, instead of evaluating the performance of the ROM, the performance of
the reduced-order controller in combination with the original system is evaluated for
increasing order r.

The reduced-order model Gr is used to synthesise the H2 optimal reduced-order
controller K r(s) that minimises (2.34) (see appendix B), and takes the form

u̇e
K = AKue

K + BKν,

φ = CKue
K,

}
(3.9)
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FIGURE 12. The first 150 Hankel singular values (‘u’ markers), the theoretical upper
bound (dashed line) and theoretical lower bound (solid line) for the maximum error of
the reduced-order model.

with ue
K ∈ Rr the controller state. The resulting closed-loop system from the

disturbance w to the control objective z is obtained by combining the controller
(3.9) with the original system (2.33) and is given by[

u̇e

u̇e
K

]
=

[
Ap B2CK

BKC2 AK

]
︸ ︷︷ ︸

Acl

[
ue

ue
K

]
+

[
B1

BKD21

]
︸ ︷︷ ︸

Bcl

w,

z=
[
C1 D12CK

]︸ ︷︷ ︸
Ccl

[
ue

ue
K

]
.


(3.10)

For the design of the controller, the performance of the closed-loop system (3.10) is
characterised for different combinations of control penalties l and estimation penalties
γ . As in Bewley & Liu (1998) a parametric study is conducted for the H2 norms of
the following two closed-loop transfer functions

T qw =
[
C1 0

]
(sI −Acl)

−1Bcl, (3.11)

T φw =
[
0 CK

]
(sI −Acl)

−1Bcl, (3.12)

which are the closed-loop transfer function matrices from the disturbance to
respectively the controlled output q and the control input φ. The definitions of
the closed-loop system matrices (Acl, Bcl, Ccl) follow from (3.10). The H2 norms of
these transfer functions are related by

‖T zw‖
2
2 = ‖T qw‖

2
2 + l2
‖T φw‖

2
2, (3.13)

with T zw = Ccl(sI − Acl)
−1Bcl the transfer function from the disturbance to the

combined performance objective z. A low value for ‖T qw‖2 indicates a good controller
performance while a low value for ‖T φw‖2 indicates a low control effort. A finite
value for these norms means an exponentially stable closed-loop system. Figure 13
shows the norms as function of the order r of the controller for the combination
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FIGURE 13. Convergence of the closed-loop system norms ‖T qw‖2 (a) and ‖T φw‖2 (b)
versus the order r of the reduced-order controller with l= 1, γ = 1. The two dashed lines
indicate the norms of the full-order (r=N = 5569) controller.
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FIGURE 14. Performance of the ROM (r= 50). Magnitude frequency response from the
state disturbance w1 to the measured output ν1 (a) and from the control input φ1 to the
controlled shear output q1 (b) at the lower wall.

γ = 1, l = 1. The norm of the full-order controller (r = N) is indicated by the
asymptotes. It can be observed that the performance of the closed-loop system
converges quickly to the case of a full-order controller. Similar results were obtained
for other combinations. We select r = 50 to design and implement the controller.
With this order the performance has converged and there is no loss in performance
due to the truncated dynamics. The input–output behaviour of the ROM with r= 50
is compared to full system in figure 14. Shown is the magnitude frequency response
of the transfer function Gν1w1 from the inflow disturbance w1 to the measured output
ν1 (a) and the transfer function Gq1φ1 from the control input φ1 to the controlled
output q1 at the lower wall (b). There is a good agreement and the ROM accurately
captures the input–output (disturbance and control) behaviour.

Figure 15 shows the contours of the H2 norms and the relative energy norm
‖T qw‖

2
2/‖Gqw‖

2
2 for the order r = 50 controller. It can be observed that an energy

reduction between 90 %–99 % can easily be achieved by a proper choice of the
design parameters. The performance for the case l→∞, γ →∞ converges to the
uncontrolled case. The control penalty l can be used to tune the feedback gain CK

in (3.9) and determines the trade-off between control effort and magnitude of the
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FIGURE 15. Contours of the closed-loop system norms ‖T qw‖2 (a), ‖T φw‖2 (b) and
the relative energy norm ‖T qw‖

2
2/‖Gqw‖

2
2 (c) with a r = 50 reduced-order controller for

different combinations of control parameter l and estimation parameter γ (‖Gqw‖2= 16.90).
Controllers (I) l= 10, γ = 1.5, (II) l= 20, γ = 5 and (III) l= 40, γ = 15 are considered
for evaluating the closed-loop response of the system.

shear perturbation q. Lower values lead to an increased controller performance (low
‖T qw‖2) at the cost of a higher control effort. It is found that choosing l < 10 does
lead to a significantly increase in performance. The parameter γ can be used to tune
the estimator, that is the output injection gain BK in (3.9). Low values for γ (high
to noise ratio) lead to a higher magnitude of estimator feedback and an increased
performance. However, choosing a lower value for γ leads to a reduced robustness.
The role of γ is to account for uncertainties in the estimated output which also arise
in the case of unmodelled dynamics and unmodelled disturbances. High estimator
gain feedback can in this case result in larger overshoots which should be avoided
since they can aggravate the initial stage to transition. From the contour of ‖T qw‖2
it can be observed that for a given control penalty l, the estimation penalty γ , and
thus the robustness, can be increased up to the curvature of the contour level without
significant loss of performance. Thus choices for l and γ on the curvature of a desired
performance level can be considered as an optimal trade-off between robustness and
the desired performance. In this study robustness is valued more than control effort in
determining the trade-off. Three controllers will be investigated in the next sections
for evaluating the performance in the frequency domain and through numerical
simulation. The design parameters for the controllers are marked in figure 15. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.355


Localised estimation and control in shear flows 845

10010–110–2

102

101

100

10–1

10–2

10–3

No control
Control
Control
Control

FIGURE 16. Closed-loop frequency response from the inflow disturbance w1 to the
controlled output q1 along the lower wall.

first (I) is a high gain controller with l= 10, γ = 1.5 corresponding to approximately
a 99.9 % energy reduction. The second (II) is an intermediate controller with l= 20,
γ = 5 corresponding to a 99 % energy reduction and the third (III) is a lower gain
controller with l= 40, γ = 15 corresponding to a 90 % energy reduction.

3.3. Closed-loop frequency response
In this section the three selected controllers are evaluated in the frequency domain.
The magnitude frequency response from w1 to the controlled output q1 (2.7) is shown
in figure 16. The magnitude of the closed-loop system Tq1w1 is compared with the
magnitude of the open-loop system Gq1w1 . The frequency domain performance for the
three controllers is in accordance with the results in figure 15. Controller (III) limits
the control effort and takes higher levels of sensor inaccuracies into account. It is more
conservative also with respect to higher frequencies. The three controllers significantly
suppress the most amplified frequencies close to the design frequency ω = 0.253 as
well as the off-design frequencies. The peak magnitude is equal to the H∞ norm of
Tq1w1 which is reduced between approximately 80 %–99 % for the three controllers.

The perturbation shear reduction along the complete walls, as well as spatial
transients introduced by the control can be evaluated using the spatio-temporal
frequency response. Figure 17 shows the magnitude for the shear along the lower
wall for the open-loop system (a) and closed-loop (b) system with controller (II).
Compared to the open-loop magnitude it can be observed that the controller
significantly reduces the shear in the entire downstream region of the control actuators.
The magnitude at the most dominant frequencies 0.1 6 ω 6 0.4 is significantly
suppressed and only small amplifications are present in the region of the control
actuator.

4. Closed-loop simulations

In this section the effectiveness of the proposed control design is evaluated using
linear simulations of the closed-loop system. The three controllers characterised by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.355


846 H. J. Tol, M. Kotsonis, C. C. de Visser and B. Bamieh

10–4

102

100

10–2

10–4

102

100

10–2

100

10–1

100

10–1

x x

(a) (b)

FIGURE 17. Open-loop (a) and closed-loop (b) magnitude frequency response from the
inflow disturbance w1 to the shear stress ν1 along the lower wall. The 10 contour levels lie
within |Gν1w1 |, |Tν1w1 | ∈ [6.9, 69.4] (l= 20, γ = 5). The triangles indicate respectively the
position of the measurement sensors (C), the actuators (A) and the controlled outputs (D).

(I) l = 10, γ = 1.5, (II) l = 20, γ = 5 and (III) l = 40, γ = 15 are again considered,
see also figure 15. The model defining a channel with a total length of Lsim = 16π,
as discussed in § 2.5, is used for simulating the response. Disturbances are generated
upstream of the control domain and propagate downstream. Three different disturbance
cases are considered to demonstrate the robustness of the control design. In the first
case (Case A, § 4.1), a single-frequency perturbation is considered which is generated
using the disturbance model presented in § 2. This case can be seen as the design
case, since the same disturbance model is used for both simulation and control
design. In the second test case (case B, § 4.2) a multiple-frequency disturbance
is considered in the form of a wave train consisting of a linear combination of
Orr–Sommerfeld modes. This case is used to verify the spatio-temporal frequency
domain results in the previous section and to test if the controller based on the single
mode inflow disturbance model indeed allows for efficient estimation and control
of perturbations in a wider frequency band. In the third test case (case C, § 4.3)
the controller is evaluated for a stochastic excited body force located at the upper
wall. Similar body forces have been used by Bagheri et al. (2009b), Dadfar et al.
(2013) to evaluate controllers for transition delay. The case is used to study the
effectiveness of the controller in a transient unmodelled environment. For simulating
the response, the original unscaled system (2.24) is considered. For the design of the
controller no a priori knowledge is assumed about the expected covariances σ 2

d and
σ 2

n of respectively the state and measurement disturbances. Therefore, a scaling is
introduced in terms of an expected relative magnitude of the sensor noise γ = σn/σd.
γ plays a role for accounting measurement uncertainties in the control design and
is not used for defining the measurement noise in the simulations. We also wish
to investigate the robustness of the three controllers with respect to unmodelled
measurement inaccuracies. Therefore each disturbance case is considered with both
a low sensor noise σn = 0.01 and a high sensor noise σn = 0.2. In total 18 different
cases were simulated: three disturbance cases (A, B, C) with three controllers and
two sensor noise intensities. The cases and the results are summarised in table 1 and
are discussed in more detail in the next three sections.
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Case Control penalty Estimation penalty Shear energy reduction Control effort
l γ ‖qcon‖

2
2/‖qunc‖

2
2 r.m.s. φ

A1.I 10 1.5 0.000088 0.002404
A2.I 10 1.5 0.001521 0.002398
A1.II 20 5 0.001940 0.002319
A2.II 20 5 0.003669 0.002312
A1.III 40 15 0.041873 0.001932
A2.III 40 15 0.044999 0.001924
B1.I 10 1.5 0.000112 0.001064
B2.I 10 1.5 0.007609 0.001091
B1.II 20 5 0.002147 0.001023
B2.II 20 5 0.007735 0.001045
B1.III 40 15 0.048270 0.000840
B2.III 40 15 0.047928 0.000855
C1.I 10 1.5 0.027664 0.001026
C2.I 10 1.5 0.038694 0.001017
C1.II 20 5 0.030085 0.000985
C2.II 20 5 0.041530 0.000972
C1.III 40 15 0.078881 0.000806
C2.III 40 15 0.092690 0.000791

TABLE 1. The controlled shear output energy reduction and the control effort for three
controllers. Three disturbance cases (A, B, C) are considered with both a low sensor noise
(A1, B1, C1) and with a high sensor noise (A2, B2, C2). Each case is evaluated using
three controllers (A1.I, A1.II, A1.III). Disturbance case A–C corresponds respectively to
the single-frequency disturbance, multiple-frequency disturbance and stochastic in-domain

forcing. (r.m.s. φ =

√
(1/T)

∫ T
0 |φ|

2 dt).

4.1. Case A: single-frequency disturbance
In the first case a single-frequency modal disturbance, of the form (2.9), is
considered with ω = 0.253 which has the maximum growth rate for the investigated
conditions. An animation of the controlled single-frequency disturbance is provided
as supplementary movie 1, available at https://doi.org/10.1017/jfm.2017.355. This
disturbance is generated at the inlet x = −4π of the simulation domain using the
disturbance model presented in § 2.2. The shape of the disturbance corresponds to
the eigenfunction calculated from the Orr–Sommerfeld equation at ω = 0.253 (see
figure 5). To mimic the transitional regime in the simulations the amplitude of the
perturbation is set to A0 = 0.01. First the performance of controller (II) with l = 20,
γ = 5 and a low sensor noise σn= 0.01 is investigated. Figure 18 shows the temporal
evolution of the shear measurements νm that are used for feedback, the control input
φ (amplitude of the blowing and suction), the perturbation energy (E = ‖u‖2

L2) and
the norm of the controlled output ‖q‖2. q reflects the controller performance as it
is used within the control objective that is minimised by the controller, see (2.29).
As the perturbation convects downstream towards the control region, the amplitude
of blowing and suction increases to cancel the perturbation. The effect of the noise
on the shear measurements can be observed and the resulting control input confirms
the filtering and feedback of these measurements. Both control actuators at the upper
and lower wall act in phase which is to be expected due to the symmetry of the
geometry and the control layout. A snapshot at t= 200 of the flow perturbation field
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FIGURE 18. Closed-loop performance for the single-frequency disturbance case.
Controller (II) with low sensor noise is considered. (a) Shear measurements νm used for
feedback. (b) Control input φ (amplitude of the blowing and suction). (c) Perturbation
energy E= ‖u‖2

L2 . (d) Norm of the controlled perturbation shear output ‖q‖2.

in the control domain x ∈ [0, 8π] is shown in figure 19. The performance of the
state estimation is best visualised without control applied. Figure 19(a) shows the
estimated flow field without control, figure 19(b) shows the real flow field without
control and figure 19(c) shows the real controlled flow. The estimated flow field is
computed from the controller state ue

K through ue
K 7→ S−1

r ue
K where S−1

r are the first
r columns of the inverse of the similarity transformation as discussed in § 3.2. It can
be seen that the flow perturbations are well reconstructed in the control region where
the measurements are taken, actuation is applied and where the performance objective
q is defined. As a result the controller is effective in cancelling the perturbations
by minimising the effect of the perturbation on q. Only low-amplitude oscillations
remain. The required amplitude of the blowing and suction is of the same order as
the magnitude of the perturbation as can be seen in the snapshot for the wall-normal
velocity component in figure 19(c).

To compare the performance of the three controllers, the spatial evolution of
the perturbation is evaluated. We define the amplitude of the streamwise velocity
perturbation as

A(x)=max
t,y

√
|u|2. (4.1)

Figure 20 shows the amplitude for the three controllers with both low (σn= 0.01) and
high (σn = 0.2) measurement noise. The amplitude reduction for the three controllers
is in accordance with the frequency domain results in figure 16. The controllers
are also robust to higher levels of sensor noise. Controller (III) takes higher sensor
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FIGURE 19. Snapshot of the perturbation velocity within the control domain x ∈ [0, 8π]
at t = 200 for the uncontrolled and controlled single frequency (ω = 0.253) disturbance.
Controller (II) with low sensor noise is considered. (a) Estimated velocity without control.
(b) True velocity without control. (c) True velocity with control. The triangles indicate
respectively the position of the measurement sensors (C), the actuators (A) and the
controlled outputs (D).

inaccuracies into account and the performance is preserved in the case of high sensor
noise, see also table 1. Controllers (I) and (II) do not take such high measurement
noise into account and the performance is less preserved. However, no severe
deterioration can be observed. This can also be contributed to the simple structure of
the perturbation.

4.2. Case B: multiple-frequency disturbance
In the second test case a multiple-frequency disturbance is considered. An animation
of the controlled multiple-frequency disturbance is provided as supplementary movie 2.
The total disturbance consists of a linear combination of Orr–Sommerfeld modes. In
total 16 modes in the frequency range ω∈ [0.1, 0.4] are excited. Thus the disturbance
is generated using 16 eigenfunctions whose shape corresponds to the eigenfunction
calculated from the Orr–Sommerfeld equation at the selected frequencies. The
temporal frequencies, the spatial wavelengths and spatial growth rates of these
modes are listed in table 2. The spectrum includes 3 convectively unstable modes
and 13 stable modes. Each mode is given the same amplitude A0 = 0.002 such
that the total disturbance is in the form of a wave train that is modulated as it
propagates downstream. First the performance of controller (II) with a low sensor
noise σn = 0.01 is again investigated. The input–output signals and the closed-loop
performance are shown in figure 21 and a snapshot at t = 200 of the perturbation
field in the control domain is shown in figure 22. The modulation of the perturbation
can clearly be observed and the perturbation presents a richer structure as compared
to the single-frequency case. With respect to the closed-loop performance the same
observations can be made. The measurements are successfully filtered and the real
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FIGURE 20. The maximum amplitude of the streamwise perturbation velocity (4.1) of
the single-frequency disturbance for three controllers. (a) Feedback with low measurement
noise σn = 0.01. (b) Feedback with high measurement noise σn = 0.2. The triangles
indicate respectively the position of the measurement sensors (C), the actuators (A) and
the controlled outputs (D).

Frequency ω Wavelength αr Growth rate αi

0.10 0.5611 0.0666
0.12 0.6247 0.0511
0.14 0.6843 0.0369
0.16 0.7418 0.0242
0.18 0.7982 0.0134
0.20 0.8541 0.0049
0.22 0.9095 0.0010i
0.24 0.9646 −0.0042
0.26 1.0193 −0.0044
0.28 1.0735 −0.0015
0.30 1.1270 0.0047
0.32 1.1797 0.0145
0.34 1.2314 0.0281
0.36 1.2817 0.0469
0.38 1.3300 0.0687
0.40 1.3757 0.0971

TABLE 2. Spectrum of the multiple-frequency wavepacket for Case B.

flow is reconstructed well in the control domain as can be seen in figure 22. The
controller is again able to cancel the perturbations and to suppress the perturbation
wall shear stress. Although the unstable modes are dominant in the simulations, the
(nearly) stable modes have not damped out and are still present as can be seen
in figure 22. Nevertheless, the controller achieves nearly a full cancellation of the
perturbations. This corroborates the findings of the input–output analysis presented
in § 3.1 showing that the single mode disturbance model accurately captures the
spatial wavelength and spatial growth of perturbations in a wider frequency band in
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FIGURE 21. Closed-loop performance for the multiple-frequency disturbance case.
Controller (II) with low sensor noise is considered. (a) Shear measurements νm used
for feedback. (b) Control input φ. (c) Perturbation energy E = ‖u‖2

L2 . (d) Norm of the
controlled perturbation shear output ‖q‖2.

the actuator/sensor region. As such the controller is able to effectively estimate and
control a broader frequency spectrum of modes. To compare the performance of the
three controllers, the spatial evolution of the perturbation is again evaluated. Since
the amplitude of the perturbation also varies in time a measure for the time-averaged
amplitude is defined

Ā(x)=max
y

√
1
T

∫ T

0
|u|2 dt, (4.2)

which is the wall-normal maximum amplitude of the root mean square (r.m.s.)
streamwise velocity perturbation (Andersson, Berggren & Henningson 1999). Figure 23
shows the time-averaged amplitude for the three controllers with both low and high
measurements noise. It can be observed that the amplitude reduction in case of
high measurement noise for controller (I) is reduced more significantly. This is
to be expected since the controller does not take high measurement inaccuracies
into account. However, it still achieves a robust performance. Actually controller (I)
and (II) have a comparable performance, see also table 1. This indicates that there is
no large sensitivity in the choice of design parameters in case of high sensor noise.
Again, the performance of controller (III) is preserved and is in accordance with its
design.

4.3. Case C: stochastic in-domain forcing
In the third most challenging test case a stochastic in-domain forcing is considered
which is generated at the upper wall near the inflow. An animation of the controlled
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FIGURE 22. Snapshot of the perturbation velocity within the control domain x∈[0, 8π] at
t= 200 for the uncontrolled and controlled multiple-frequency disturbance. Controller (II)
with low sensor noise is considered. (a) Estimated velocity without control. (b) True
velocity without control. (c) True velocity with control. The triangles indicate respectively
the position of the measurement sensors (C), the actuators (A) and the controlled
outputs (D).
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FIGURE 23. The wall-normal maximum amplitude of the root mean square streamwise
perturbation velocity (4.2) of the multiple-frequency disturbance for three controllers.
(a) Feedback with low measurement noise σn= 0.01. (b) Feedback with high measurement
noise σn= 0.2. The triangles indicate respectively the position of the measurement sensors
(C), the actuators (A) and the controlled outputs (D).

stochastic in-domain forcing is provided as supplementary movie 3. In this case the
momentum equation is forced with

f (x, y, t)=F(x, y)w(t), (4.3)
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FIGURE 24. Contours of the spatial distribution F= [Fx, Fy]
T of the in-domain

disturbance used for case C.

where w(t) is zero mean white noise with a normal distribution at unit intensity. The
spatial distribution of the ‘vibrating ribbon’ at the upper wall (y = 1) corresponds
to that of Bertolotti, Herbert & Spalart (1992) and has the form Fx = ∂ψ/∂y, Fy =

−∂ψ/∂x with

ψ(x, y)= ε exp

(
−
(x− xr)

2

σ 2
x

−
(y− 1)2

σ 2
y

)
(y− 1)2 cos((x− xr)), (4.4)

where ε = 0.5 is the amplitude of the force, σx = 1, σy = 0.1 the spatial lengths, xr =

−3π the x-position of the ribbon. The spatial distribution of this force is shown in
figure 24. The body force (Fx, Fy) is both divergence free and satisfies the no-slip
boundary conditions. First the performance of controller (II) with a low sensor noise
is investigated. The input–output signals and the closed-loop performance are shown
in figure 25 and a snapshot at t= 350 of the perturbation field in the control domain
is shown in figure 26. In addition, to better visualise the evolution of the perturbation
and the controller performance, the temporal evolution for the shear stress along the
lower wall for the uncontrolled case and the controlled case is shown in figure 27.

The stochastic disturbance excites a spectrum of frequencies which results in large
initial transients after which the disturbance develops in the form of wavepackets
as can be seen in the energy plot in figure 25. The transients can also observed
in the temporal evolution of the wall shear stress in figure 27 and are also present
in the control region. It can be observed that the controller is still able to properly
estimate the flow field and is effective in both minimising the wall shear stress and
reducing the perturbation energy in the domain. Although a complete cancellation
of the disturbance is not possible, the controller manages to achieve a reduction of
97 % in the controlled shear output power, see also table 1. Note that the disturbance
is completely independent of the disturbance model used to design the controller. It
is defined in-domain and creates initially asymmetric developing perturbations while
the complete input–output layout is symmetric. Furthermore the transients are not
accounted for in the control design and the perturbations are not fully developed in
the control domain. Nevertheless, the controller achieves a high level of robustness to
unmodelled disturbances; no overshoots can be observed in the perturbation energy
and the controlled output, and the controller does not aggravate the flow. This can
be contributed to the fact that the controller is able to estimate and stabilise the
underlying modes that are present in the disturbance as can be seen from figure 26.

Figure 28 shows the time-averaged amplitude for the three controllers with both low
and high measurements noise. It can be observed that controllers (I) and (II) have
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FIGURE 25. Closed-loop performance for the stochastic disturbance case. Controller (II)
with low sensor noise is considered. (a) Shear measurements νm used for feedback.
(b) Control input φ. (c) Perturbation energy E = ‖u‖2

L2 . (d) Norm of the controlled
perturbation shear output ‖q‖2.
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at t= 350 for the uncontrolled and controlled stochastic disturbance. Controller (II) with
low sensor noise is considered. (a) Estimated velocity without control. (b) True velocity
without control. (c) True velocity with control. The triangles indicate respectively the
position of the measurement sensors (C), the actuators (A) and the controlled outputs (D).
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FIGURE 27. Temporal evolution of the wall shear stress ∂u/∂y along the bottom wall of
the channel for the stochastic forced disturbance. The triangles indicate respectively the
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FIGURE 28. The wall-normal maximum amplitude of the r.m.s. streamwise perturbation
velocity (4.2) of the stochastic forced disturbance for three controllers. (a) Feedback
with low measurement noise σn = 0.01. (b) Feedback with high measurement noise σn =

0.2. The triangles indicate respectively the position of the measurement sensors (C), the
actuators (A) and the controlled outputs (D).

comparable performance, also for the low sensor noise case. This can be contributed
to the fact that uncertainties in output measurements also arise due to the unmodelled
disturbances. This indicates that there is also no large sensitivity in the choice of
design parameters in case of unmodelled disturbances.

5. Conclusion
The paper presents a new framework to design and synthesise H2 optimal

controllers for control of linear instabilities in 2-D laminar wall-bounded shear flows.
The 2-D non-periodic channel flow is considered as a case study. The flow modelling
accounts both for localised actuation/sensing and the dominant perturbation dynamics
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in physical space. A new inflow disturbance model is presented for external sources
of excitation. This model allows for an efficient estimation of the flow perturbations
in the localised control domain using wall shear sensors. The perturbation modes that
contribute to transition can be selected and are included in the control design. In this
way the most dominant modes of the flow can be precisely targeted by the controller.
A reduced-order model (r = 50) that captures the input–output behaviour is derived
directly from the linearised Navier–Stokes equations using exact balanced truncation.
No numerical simulations are required to synthesise the controller. The reduced-order
model is used to design an H2 optimal controller to minimise the wall shear stress
created by the perturbations. It is shown that there is no loss in performance due
to the truncated dynamics and the reduced-order controller maintains the closed-loop
performance as compared to the full-order controller. The controller is evaluated with
linear simulations of the closed-loop system. Three different disturbance cases are
considered to evaluate the effectiveness and robustness of the proposed control design.
It is shown that the controller is able to cancel the perturbations and is robust to
both unmodelled disturbances and sensor inaccuracies.

The modelling presented in this paper provides an efficient means to design and
synthesise controllers directly from the governing equations. This can be contributed
to the fact that the aim is to capture the input–output behaviour for localised sensors
and actuators, and the dominant perturbation dynamics within this localised region.
It is shown that with the new inflow disturbance model only minor spatial transients
are involved for the perturbation modes to develop in the domain. This allows an
arbitrary placement of the computational inflow boundary as it does not affect the
spatial length scales of the perturbations in the control region. Small computational
domains can thus be used to create the control models. Furthermore, to achieve
effective control it is not required to fully resolve the flow at all length scales in the
initial model. Only the dominant modes that contribute to transition and are included
in the control design should be accurately resolved. These features can make the
extension to three dimensions computationally feasible. Transition in 3-D flows is
also governed by algebraic growth of non-modal perturbations, which bypasses the
classical transition scenario considered in this study. To effectively apply this method
to 3-D flows requires the inclusion of multiple perturbation modes at different
wavenumbers in the disturbance model or the use of optimal inflow perturbations, e.g.
of the form presented in Andersson et al. (1999). In this paper multivariate splines
are used in the underlying numerical method which are effective in creating control
models. Multivariate splines are defined on triangulations allowing to approximate
any domain and to use local refinements in regions of interest. Secondly, they are
general in terms of smoothness and degree allowing for a higher resolving power. It
is also worth noting that the framework is generalised, independently of the spatial
discretisation method used in this study.

Significant work remains to be done to apply this method in real life applications.
We are currently extending this method for control of Tollmien–Schlichting waves
in spatially developing boundary layer flows and are working towards experimental
validation of this method in the wind tunnel. Future work will focus on the application
for efficient modelling and control of 3-D disturbances. This paper focussed on
optimal control and no other model uncertainties, such as input/actuator uncertainties
and uncertainties in the Reynolds number were addressed. Recently in Fabbiane et al.
(2015) it is shown through experiments that deviations from the design conditions
can destabilise optimal controllers. Future work will also focus on addressing model
uncertainties by integrating this method in a H∞ robust control framework.
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Appendix A. Multivariate spline state-space representation of the flow
In this section the finite-dimensional state-space system for the flow control

problem is derived. This method uses multivariate splines defined on triangulation’s
(Farin 1986; de Boor 1987; Lai & Schumaker 2007) to find matrix representations
of all operators in (2.23) and applies to general geometries and general control
configurations. This method is an extension of the model reduction scheme for
parabolic PDEs presented by Tol et al. (2016) to fluid flows. In Awanou & Lai
(2004) a numerical scheme is presented for approximating steady Navier–Stokes
equations in velocity pressure formulation using multivariate splines. This numerical
scheme is combined with the framework from Tol et al. (2016) to derive state
descriptions for the linearised Navier–Stokes equations and is presented § A.1. The
state-space system for the case of the non-periodic channel flow was validated in § 3
by comparing the spatial stability with the predictions from LST. For completeness
and to mathematically verify the numerical method, the state-space system for the
case of the periodic channel flow is validated using the temporal stability theory
in § A.2.

A.1. Numerical method
In this appendix the state equations are considered which are given by the forced
LNSE

∂u
∂t
+ (U · ∇)u+ (u · ∇)U−

1
Re
1u+∇p= f in Ω, (A 1a)

∇ · u= 0 in Ω, (A 1b)
u= ub on ΓD, (A 1c)

−pn+
1

Re
(n · ∇)u= 0 on Γout. (A 1d)

We refer to Tol et al. (2016) for the derivation of the output equations (2.5) and (2.7).
We first present the Galerkin-type variational formulation through which the spline
approximation is determined. In order to introduce the variational formulation some
functions spaces need to be defined. Let L2(Ω) be the space of square integrable
functions over Ω . We define the following Sobolev spaces

H1(Ω)=

{
u ∈ L2(Ω),

∂u
∂xi
∈ L2(Ω) for i= 1, . . . , n

}
,

H1
0(Ω)= {u ∈H1(Ω), u|ΓD = 0}.

 (A 2)

H1(Ω) consists of square integrable functions whose first-order derivative exists in the
weak sense and H1

0(Ω) is the subspace in which the functions vanish on the Dirichlet
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portion of the boundary ΓD. For vector valued functions the notation H1(Ω)=H1(Ω)n

is used. We define the bilinear form

a(v, u)=
1

Re

∫
Ω

∇v : ∇u dΩ =:
1

Re

∫
Ω

n∑
i=1

n∑
j=1

∂ui

∂xj

∂vi

∂xj
dΩ ∀ v, u ∈H1(Ω) (A 3)

and the trilinear form

b(v, u,w)=
∫
Ω

v · (u · ∇)w dΩ =
∫
Ω

n∑
i=1

n∑
j=1

viuj
∂wi

∂xj
dΩ ∀ v, u,w ∈H1(Ω). (A 4)

Also the inner product for functions belonging to L2(Ω) is given by

(v, u)=
∫
Ω

v · u dΩ. (A 5)

Equation (2.1) has no dynamic equation for the pressure that can be utilised for
control. Therefore the pressure is eliminated from the equations by using a space of
velocity fields which are exactly divergence free. Let

V0 = {v ∈H1
0(Ω),∇ · v = 0},

Vg = {u ∈H1(Ω), u|ΓD = ub,∇ · u= 0}.

}
(A 6)

The weak form of (A 1) can be obtained by taking the inner product of the first
equation (A 1a) with v ∈V0∫

Ω

{
v ·
∂u
∂t
−

1
Re

v ·1u+ v · (U · ∇)u+ v · (u · ∇)U+ v · ∇p
}

dΩ =
∫
Ω

v · f dΩ.

(A 7)
Applying integration by parts and the divergence theorem to the diffusion term and
the pressure gradient term gives∫

Ω

{
v ·
∂u
∂t
+

1
Re
∇v : ∇u+ v · (U · ∇)u+ v · (u · ∇)U− p(∇ · v)

}
dΩ

−

∫
ΓD

v ·

(
−pn+

1
Re
(n · ∇)u

)
dΓ −

∫
Γout

v ·

(
−pn+

1
Re
(n · ∇)u

)
dΓ

=

∫
Ω

v · f dΩ. (A 8)

The Neumann outflow boundary condition (A 1d) occurs in (A 8) as a boundary
integral term and can therefore naturally be imposed by setting it to zero. Furthermore,
∇ · v = 0 and v|ΓD = 0 for all v ∈ V0. The variational formulation of the problem
(A 1) can thus be stated as: find u ∈ L2(0, T;Vg) such that(

v,
∂u
∂t

)
+ a(v, u)+ b(v,U, u)+ b(v, u,U)= (v, f ) ∀ v ∈V0. (A 9)

The multivariate spline space is used as approximating space for the velocity. Let
T be the triangulation (triangular mesh) of the domain Ω . The spline space is the
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space of all smooth piecewise polynomial functions of arbitrary degree d and arbitrary
smoothness r over T with 0 6 r< d

Sr
d(T ) := s ∈Cr(Ω), s|t ∈Pd, ∀t ∈ T . (A 10)

With Pd the space of all polynomials of total degree d and t denotes a triangle. To
approximate the velocity vector u= (u, v) we use su= (s1, s2)∈ Sg with Sg= Sr

d(T )2 ∩
Vg. The spline approximation of (A 9) is to seek su(·, t) ∈ Sg ⊂Vg such that(

sv,
∂su

∂t

)
+ a(sv, su)+ b(sv,U, su)+ b(sv, su,U)= (sv, f ) ∀ sv ∈ S0. (A 11)

After constructing a basis for S0 and Sg, equation (A 11) is equivalent to a system of
ordinary differential equations. However, the implementation of such divergence free
spline elements of arbitrary degree and smoothness is very complicated. Awanou &
Lai (2004) streamlined this process by skipping the construction of smooth divergence
free finite elements. Instead, they used discontinuous piecewise polynomial functions
over a triangulation and treated desired smoothness properties together with the
boundary conditions and the incompressibility condition as side constraints. This
approach is also applied here to the time dependent problem (A 11). The multivariate
spline function is represented using the B-form of splines (Farin 1986; de Boor 1987).
We use the vector formulation from de Visser, Chu & Mulder (2009)

si(x, t)= Bd(x)ci(t), (A 12)

with Bd(x)∈R1×·ned̂ the global vector of B-form basis polynomials, ne the number of
elements in T and d̂=

( n
n+d

)
the number of basis polynomials per element. The spline

function is identified by its B-coefficient vector ci(t) ∈ Rned̂×1 which are used as the
time-varying expansion coefficients. Since s has a certain smoothness, the smoothness
conditions can be expressed by a linear system (Awanou et al. 2005) and (Lai &
Schumaker 2007, pp. 133–135). That is s ∈Cr if and only if

Hci = 0. (A 13)

Constructing H is not trivial and we refer to de Visser et al. (2009) for a
general formulation of the continuity conditions and the procedure to derive them.
The Dirichlet boundary condition (A 1c) provides additional constraints on the
B-coefficient vector. For control application the boundary condition is of the form
u|ΓD =ub(x, t)=[g1(x), g2(x)]TφΓ (t) with gi(x) the spatial distribution function for the
ith velocity component and φΓ (t) the temporal boundary control input. The discrete
constraints for this condition can also be given by a linear system (Awanou & Lai
2004; Tol et al. 2016)

Rci =GiφΓ . (A 14)

Where Gi is a vector of B-coefficients that interpolates gi(x) at the boundary ΓD. The
function s ∈ Cr(Ω) is guaranteed to be r times continuously differentiable on the
domain Ω . To approximate the variational formulation only first-order derivatives are
required. There exist matrices Di (Awanou & Lai 2004; de Visser, Chu & Mulder
2011) which map the B-coefficient vector of any spline function s ∈ Sr

d(T ) to the
B-coefficient vector of (∂/∂xi)s, that is

∂

∂xi
[Bd(x)c] = Bd−1(x)Dic. (A 15)
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The spline approximation su = (s1, s2) is identified with B-coefficients c = (c1, c2).
Hence the discrete equivalent of ∇ · u= 0 is given by (Awanou et al. 2005)

D1c1 + D2c2 =
[
D1 D2

]
c= D̄c= 0. (A 16)

Let H̄ and R̄ be the matrices that encode the smoothness conditions and the boundary
conditions for the complete discrete velocity field. Furthermore let

L=
[
H̄

T
R̄

T
D̄

T
]T
, Ḡ=

[
0 GT 0

]T
, (A 17a,b)

then for all spline vector functions s= (s1, s2) with B-coefficient c= (c1, c2) satisfying

Lc= ḠφΓ (A 18)

we have that s ∈ Sg, and can thus be used to approximate the variational formulation.
Let d denote the B-coefficient vector of the test function sv, then (A 11) translates to:
find c satisfying (A 18) such that

dTM
d
dt

c+ dTKc= dTFφ ∀d with Ld= 0, (A 19)

where M is a velocity mass matrix and dTKc denotes the discretisation of the linear
diffusion term and the two linear convective terms. The right-hand side matrix
F contains the contribution of the in-domain forcing model and φ(t) denotes the
temporal in-domain control input. We refer to Awanou & Lai (2004), Tol et al.
(2016) for details regarding the constructive aspects and assembling of the matrices
in (A 19). The side constraints are commonly enforced through Lagrange multipliers
(Awanou & Lai 2004; Lai & Wenston 2004). In Tol et al. (2016) a null-space
approach is proposed to transform (A 19) to state-space format. This approach result
in a reduced set of coefficients with minimal non-zero support for Sg which makes
the resulting state-space model suitable for control applications. Let V be a basis for
null(L) such that LV = 0 and let cp = ZφΓ be a particular solution of (A 18). The
general solution set for (A 18) can be written as

c= Vch + ZφΓ , (A 20)

with ch ∈RN−R∗ the coordinate vector of c relative to the basis for null(L) and with R∗
the rank of L. Since Ld= 0 for all B-coefficient vectors d of splines in S0, the solution
set for d can be written as d = Vdh. Substituting this set for d and the solution set
(A 20) for c in (A 19) gives

dT
h V TM(V ċh + Z φ̇Γ )+ dT

h V TK (Vch + ZφΓ )= dT
h V TFφ, (A 21)

which is a reduced unconstrained system of order N −R∗ projected on the null space
of the side constraints. Since (A 21) must hold for all dh, equation (A 21) is equivalent
to

(V TMV )ċh = V T
[−KVch − KZφΓ + Fφ −MZ φ̇Γ ]. (A 22)

Defining the following matrices

A=−(V TMV )−1V TKV , AΓ =−(V TMV )−1V TKZ ,
BΩ = (V TMV )−1V TF , BΓ =−(V TMV )−1V TMZ ,

}
(A 23)
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equation (A 22) can be written as

ċh = Ach + AΓ φΓ + BΓ φ̇Γ + BΩφ. (A 24)

Finally we obtain the system in state-space format[ ċh

φ̇Γ

]
=

[
A AΓ

0 0

] [
ch
φΓ

]
+

[
BΓ

1

]
φ̇Γ +

[
BΩ

0

]
φ. (A 25)

A.2. Validation
In this section the numerical method is validated using the temporal stability theory.
By considering the channel flow (figure 1) with spatially periodic boundary conditions
the eigenvalues of the state-space model (A 25) can be compared with the temporal
eigenvalues of the Orr–Sommerfeld equation (2.15). The channel of length L = 8π
is considered for the case Re = 7000. The S0

4(T960) state-space model which is used
for the controller synthesis is again considered but now with periodic boundary
conditions. Periodic boundary conditions can be applied in the numerical method by
simply extending the interelement continuity between the inflow and outflow. The
open-loop uncontrolled system has the following state-space representation

ċh = Ach. (A 26)

We wish to compare the eigenvalues λ of A with the eigenvalues ω of the
Orr–Sommerfeld equation. The eigenvalues of A correspond to fundamental solutions
eλt in the time domain. From (2.9) it follows that the temporal frequencies of the
Orr–Sommerfeld equation can be related to system eigenvalues by

λOS
=−iωOS. (A 27)

Furthermore, the wavelengths that fit in a periodic channel of box size L are
given by λx = L/j, j ∈ N+. Hence the corresponding wavenumbers are given by
αj = (2πj)/L = jα0, j ∈ N+ with α0 the fundamental wavelength. To compare the
eigenvalues of the state-space model we solve the Orr–Sommerfeld equation for a set
of integer multiples of the fundamental wavenumber and apply the conversion (A 27)
to relate the frequencies ω to system eigenvalues λ. The dominant eigenvalues of
the Orr–Sommerfeld equation and the spline model are listed in table 3. The spline
model accurately captures the dominant dynamics of the flow.

Appendix B. Solution of the H2 optimal control problem
This section presents the state-space formulas for the controller that solves the H2

optimal control problem. The reader is referred to Doyle et al. (1989) and Zhou et al.
(1996, chap. 14) for the derivation of the formulas and more information about this
control theory. The H2 control problem considers the generalised plant with state-
space realisation

u̇= Au+ B1w+ B2φ,

z= C1u+ D12φ,

ν = C2u+ D21w.

 (B 1)

The output feedback φ(s) = K (s)ν(s) must internally (exponentially) stabilise the
system and minimise the H2 norm of the closed-loop map T zw defined by (2.34).
This problem has a unique solution provided that:
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k Orr–Sommerfeld λOS Spline λ |λ− λOS
|

1 0.00171539− 0.25292937i 0.00171537− 0.25292939i 0.00000003
2 −0.00759183− 0.16438997i −0.00759179− 0.16439009i 0.00000013
3 −0.01182921− 0.34340007i −0.01183063− 0.34339614i 0.00000418
4 −0.01747563− 0.03476212i −0.01747563− 0.03476210i 0.00000002
5 −0.01806727− 0.10889122i −0.01806702− 0.10889070i 0.00000058
6 −0.02099365− 0.22879485i −0.02099071− 0.22879873i 0.00000487
7 −0.02111395− 0.22887111i −0.02111549− 0.22886843i 0.00000309
8 −0.02144973− 0.08601143i −0.02144968− 0.08601153i 0.00000011
9 −0.02973214− 0.47006733i −0.02975512− 0.47005252i 0.00002734

10 −0.02982088− 0.47011896i −0.02982758− 0.47015029i 0.00003204
11 −0.03010486− 0.18403967i −0.03010637− 0.18403908i 0.00000162
12 −0.03639968− 0.71336680i −0.03574655− 0.71362950i 0.00070398
13 −0.03646103− 0.71340240i −0.03643618− 0.71340606i 0.00002512
14 −0.03770525− 0.21175241i −0.03763012− 0.21170367i 0.00008956
15 −0.03799777− 0.21196786i −0.03804988− 0.21203181i 0.00008249
16 −0.04198552− 0.95771911i −0.04124565− 0.95600997i 0.00186241
17 −0.04201606− 0.95773859i −0.04200127− 0.95779573i 0.00005902
18 −0.04238220− 0.24852281i −0.04238296− 0.24852450i 0.00000185
19 −0.04672358− 0.41404472i −0.04669017− 0.41400991i 0.00004825
20 −0.04686574− 1.20274634i −0.04683349− 1.20289856i 0.00015560
21 −0.04687263− 1.20274602i −0.04810140− 1.20071794i 0.00237128
22 −0.04951767− 0.08897461i −0.04951630− 0.08896558i 0.00000913

TABLE 3. Dominant eigenvalues of the S0
4(T960) spline model compared with the solution

of the Orr–Sommerfeld equation for αj= (2πj)/L, j∈N+. The channel with a length L=8π
is considered for the case Re= 7000 with spatially periodic boundary conditions.

(i) (A, B2, C2) is stabilisable and detectable;
(ii) D12 and D21 have full rank;

(iii)
[

A−iωI B2
C1 D12

]
has full column rank for all ω;

(iv)
[

A−iωI B1
C2 D21

]
has full row rank for all ω.

The state-space realisation of the optimal controller K (s) is then given by

u̇K = AKuK + BKν,

φ = CKuK,

}
(B 2)

where
CK =−(B∗2X + D∗12C1),

BK = (YC∗2 + B1D∗21),

AK = A+ B2CK − BKC2,

 (B 3)

and where X and Y are the unique solution of the following algebraic Riccati
equations

(A− B2D∗12C1)
∗X + X(A− B2D∗12C1)− XB2B∗2X + C∗1C1 − C∗1D12D∗12C1 = 0,

(A− B1D∗21C2)Y + Y (A− B1D∗21C2)
∗
− Y C∗2C2Y + B1B∗1 − B1D∗21D21B∗1 = 0.

}
(B 4)

For the control objective considered in this paper there are no cross-terms in the cost
function z, that is D∗12C1=0 and the process noise and measurement noise are assumed
to be uncorrelated, that is B1D∗21 = 0.
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