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Abstract

We investigate a proof system based on a guarded resolution rule and show its adequacy for

the stable semantics of normal logic programs. As a consequence, we show that Gelfond–

Lifschitz operator can be viewed as a proof-theoretic concept. As an application, we find a

propositional theory EP whose models are precisely stable models of programs. We also find

a class of propositional theories CP with the following properties. Propositional models of

theories in CP are precisely stable models of P , and the theories in CT are of the size linear

in the size of P .

KEYWORDS: guarded resolution, proof-theory for Answer Set Programming

1 Introduction

In this note, we introduce a rule of proof, called guarded unit resolution. Guarded

unit resolution is a generalization of a special case of the resolution rule of proof,

namely positive unit resolution. In positive unit resolution, one of the inputs is an

atom unit clause. Positive unit resolution is complete for Horn clauses, specifically,

given a consistent Horn theory T and an atom p, the atom p belongs to the least

model of T , lm(T ), if and only if there is a positive unit resolution proof of p from

T (Dowling and Gallier 1984).

The modification we introduce in this note concerns guarded atoms and guarded

Horn clauses. Guarded atoms are strings of the form: p : {r1, . . . , rm} where p, r1, . . . , rm
are propositional atoms. Guarded Horn clauses are strings of the form p ←
q1, . . . , qn : {r1, . . . , rm} again with p, q1, . . . , qn, r1, . . . , rm propositional atoms.
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These guarded atoms and guarded rules will be used to obtain a characterization of

stable models of normal logic programs. There are many characterizations of stable

models of logic programs. In fact, in Lifschitz (2008), Lifschitz lists 12 different

characterizations of stable models of logic programs. The characterization of stable

models that we present in this paper has a distinctly proof-theoretic flavor and

makes it easy to prove some basic results on Answer Set Programming (Marek and

Truszczyński 1999; Niemelä 1999; Baral 2003) such as Fages’ theorem (Fages 1994),

Erdem–Lifschitz theorem (Erdem and Lifschitz 2003), and Dung’s theorem (Dung

and Kanchansut 1989).

It should be observed that Dung and Kanchansut (Dung and Kanchansut 1998)

consider the so-called quasi-interpretations which, in the formalism of our paper,

can be viewed as collections of guarded atoms. The difference between our approach

and that of Dung and Kanchansut (1998) is that we elucidate the proof theoretic

content of the Gelfond–Lifschitz operator and show how this technique allows for

uniform proof of various results in the theory of stable models of programs.

The outline of this paper is as follows. First, we introduce the definition of the

guarded resolution rule of proof and then derive its connections with the Gelfond–

Lifschitz operator (Gelfond and Lifschitz 1988). Once we do this, we will obtain the

desired lifting of the classical result on the completeness of positive unit resolution

for Horn theories (Dowling and Gallier 1984) to the context of the stable semantics

of logic programs. In Section 3, we show how guarded resolution proofs can be used

to prove various standard results in the theory of stable models of propositional

programs. Finally, in Section 4, we show how the theory developed in this paper can

be used to obtain an algorithm for the computation of stable models that does not

use loop formulas and runs in polynomial space in the size of the program.

2 Guarded resolution and Stable Semantics

By a logic program clause, we mean a string of the form

C = p← q1, . . . , qn, not r1, . . . , not rm. (1)

A program P is a set of logic program clauses.

We will interpret program clause C given in (1) as a guarded Horn clause:

g(C) = p← q1, . . . , qn : {r1, . . . , rm}.

We define g(P ) = {g(C) : C ∈ P }. Observe that when we interpret a logic program

clause as a guarded Horn clause, the polarity of atoms appearing negatively in

the body of the program clause changes in its representation as the guarded Horn

clause. That is, they occurred negatively in the body of clause and they now appear

positively in the guard. By convention, we think of a propositional atom as a guarded

atom with an empty guard.

We now introduce our guarded resolution rule as follows. It has two arguments:

the first is a guarded Horn clause and the second is a guarded atom q : {r1, . . . , rn}.
The guarded atom q must occur in the body of the guarded Horn clause. The result

of the application of the rule is a guarded Horn clause whose body is the body

of the original guarded Horn clause minus the atom q. The guard of the resulting

https://doi.org/10.1017/S1471068410000062 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000062


Guarded resolution for Answer Set Programming 113

guarded Horn clause is the union of the guard of the guarded atom and the guard

of the original guarded Horn clause. Formally, our guarded resolution rule has the

following form:

p← q1, . . . , qn : {r1, . . . , rm} qj : {s1, . . . , sh}
p← q1, . . . , qj−1, qj+1, . . . , qn : {r1, . . . , rm, s1, . . . , sh}

.

Next, we discuss the Gelfond–Lifschitz operator associated with a normal propo-

sitional program. Given a set of atoms M and a normal logic program P , we first

define the Gelfond–Lifschitz reduct PM of P . PM is constructed according to the

following two-step process. First, if

C = p← q1, . . . , qn, not r1, . . . , not rm

is a clause in P and rj ∈ M for some 1 � j � m, then we eliminate C . Second, if C

is not eliminated after the first step, then we replace C by

p← q1, . . . , qn.

Clearly, PM is a Horn program. Thus PM has a least model NM . The Gelfond–

Lifschitz operator assigns to M the set of atoms NM .

Our guarded unit resolution rule naturally leads to the notion of a guarded

resolution proof P of a guarded atom p : S from the program P . Here S is a,

possibly empty, set of atoms. That is, a guarded resolution proof of p : S is a labeled

tree such that every node that is not a leaf has two parents, one labeled with a

guarded Horn clause and the other labeled with a guarded atom, where the label

of the node is the result of executing the guarded unit resolution rule on the labels

of the parents. Each leaf is either a guarded Horn clause p← q1, . . . , qn : {r1, . . . , rm}
such that p ← q1, . . . , qn, not r1, . . . , not rm is in P or a guarded atom q : {r1, . . . , rm}
such that q ← not r1, . . . , not rm is in P . In the special case where the tree consist of a

single node, we assume that the node is labeled with a guarded atom q : {r1, . . . , rm}
where q ← not r1, . . . , not rm is in P . Note that in a guarded resolution proof, guards

only grow as we proceed down the tree. That is, as we resolve, the guards are

summed up. For this reason, the guard of the root of the proof contains the guards

of every label in the tree.

We say that a set of atoms M admits a guarded atom p : S , if M ∩ S = ∅ and that

M admits a guarded resolution proof P if it admits the label of the root of P. The

following statement follows from the containment properties of guards in a guarded

resolution proof.

Lemma 2.1

If M admits the guarded resolution proof P, then M admits every guarded atom

occurring as a label in P and M is disjoint from the guard of every guarded clause

in P.

We then have the following proposition.

Proposition 2.1

Let P be a propositional logic program and let M be a set of atoms. Then GLP (M)

consists exactly of atoms p such that there exists a set of atoms Z where the guarded
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atom p : Z is the conclusion of a guarded resolution proof P from g(P ) admitted

by M.

Proof

Let Q = PM and assume that p ∈ GLP (M). Then by definition, p ∈ Tω
Q where TQ

is the standard one-step provability operator for Q. We claim that we can prove by

induction on n ∈ N that whenever p ∈ Tn
Q, then there exists a set of atoms Z such

that p : Z possesses a guarded resolution proof from g(P ) admitted by M. If n = 1,

then it must be the case that the p← belongs to Q. But then, for some r1, . . . , rm,

p← not r1, . . . , not rm

belongs to P and {r1, . . . , rm} ∩M = ∅. Therefore the guarded atom p : {r1, . . . , rm} is

admitted by M and it possesses a guarded resolution proof from g(P ), namely, the

one that consists of the root labeled by p : {r1, . . . , rm}. Now, let us assume p ∈ Tn+1
Q .

Then there is a clause C = p ← q1, . . . , qs in Q such that qi ∈ Tn
Q for i = 1, . . . , s.

Thus by induction, there are sets of atoms Si, 1 � i � n, such that qi : Si possesses a

guarded resolution proof from g(P ) admitted by M. As p← q1, . . . , qn belongs to Q,

there must exist atoms r1, . . . , rm /∈M such that

p← q1, . . . , qn, not r1, . . . , not rm

is a clause in P . It is easy to combine the guarded resolution proofs of qi : Si,

1 � i � n and the guarded clause p ← q1, . . . , qn : {r1, . . . , rm} to obtain a guarded

resolution proof from g(P ) of the following guarded atom:

p : S1 ∪ . . . ∪ Sn ∪ {r1, . . . , rm}.

As all the sets occurring in the guard of this guarded atom are disjoint from M, the

resulting guarded resolution proof is admitted by M. This shows the inclusion ⊆.

Conversely, suppose p : S has a guarded resolution proof P from g(P ) admitted

by M. By the lemma, all the guards occurring in P are disjoint from M. We can

then prove by induction on the height of the tree P that p ∈ GLP (M). If the height

of P is 0, then it must be the case that

p← not r1, . . . , not rm

belongs to P where S = {r1, . . . , rm}. But since M ∩ S = ∅, the clause p← belongs to

Q. Hence p ∈ GLP (M).

Now, for the inductive step, assume that whenever q : S has a guarded resolution

proof from g(P ) that is admitted by M of height less than or equal to n, then

q ∈ GLP (M). We now show that the same property holds for all guarded atoms

p : U which have a guarded resolution proof from G(P ) that is admitted by M of

the height n + 1. What does such a guarded resolution proof look like? First, the

root must be the result of a guarded unit resolution of the form

p← q : Z1 q : S0

p : Z1 ∪ S0
.

As (Z1 ∪ S0) ∩M = ∅, Z1 ∩M = ∅ and S0 ∩M = ∅. Now, q : S0 has a guarded

resolution proof from g(P ) that is admitted by M of height at most n and, hence,
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q ∈ GLP (M) by our inductive assumption. Since as we progress down the proof

tree, the body of guarded clauses only get smaller and the guards of guarded clauses

only get bigger, there must exist a path starting at the guarded clause p ← q : Z1

which consists of guarded clauses of the form

p← q, q1, . . . , qt : Zt+1

...

p← q, q1 : Z2

p← q : Z1,

where Zt+1 ⊆ Zt ⊆ · · · ⊆ Z1 and for each i, there is a node in the tree of the form

qi : Si such that the resolution of p ← q, q1, . . . , qi : Zi+1 and qi : Si results in the

clause p ← q, q1, . . . , qi−1 : Zi. Now each qi : Si is the root of a guarded resolution

proof from g(P ) that is admitted by M of height less than or equal to n and, hence,

qi is in GLP (M) for i = 1, . . . , t.

Since p← q, q1, . . . , qp : Zt+1 is a leaf, there must be a clause

p← q, q1, . . . , qt, not r1, . . . , not rm

in P where Zt+1 = {r1, . . . , rm}. Since M admits the proof tree, it must be the case that

{r1, . . . , rm} ∩M = ∅ and, hence, p ← q, q1, . . . , qt is in Q. But then, since q, q1, . . . , qt
are in GLP (M), it follows that p ∈ GLP (M). �

Proposition 2.1 tells us that the Gelfond–Lifschitz operator GL is, essentially, a

proof-theoretic construct. Here is one consequence, this time a semantic one.

Corollary 2.1

Let P be a propositional logic program and let M be a set of atoms. Then M is a

stable model of P if and only if

(1) for every p ∈ M, there is a set of atoms S such that there is a guarded

resolution proof of p : S from g(P ) admitted by M and

(2) for every p /∈ M, there is no set of atoms S such that there is a guarded

resolution proof of p : S from g(P ) admitted by M.

When P is a Horn program Corollary 2.1 reduces to the classical fact (Dowling

and Gallier 1984) that the elements of the least model of the Horn programs are

precisely those that can be proved out of clausal representation of P using positive

unit resolution.

Given a finite set of atoms S , we write ¬S for the conjunction
∧

q∈S ¬q. Next, let

us call S such that p : S has a guarded resolution proof from g(P ) a support of p

with respect to P . We can then form an equation for p with respect to P , eqP (p), as

follows:

p⇔ (¬S1 ∨ ¬S2 ∨ . . .),

where S1, S2, . . . is the list of all supports of p with respect to P . If the only support

of p is the empty set, then we let eqP (p) = p and if there are no supports for p, then

we let eqP (p) = ¬p. Next, let EP be the propositional theory consisting of eqP (p)

https://doi.org/10.1017/S1471068410000062 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000062


116 V. W. Marek and J. B. Remmel

for all p ∈ At . We then have the following theorem resembling Clark’s completion

theorem, except we get it for stable models, not supported models.

Proposition 2.2

Let P be a propositional program and let M be a set of atoms. Then M is a stable

model of P if and only if M |= EP .

Proof

First, assume that M is a stable model of P . Then if p ∈M, it follows from Corollary

2.1 that there is an S such that p : S has a guarded resolution proof admitted by M.

Hence M ∩ S = ∅ and M |= ¬S . Thus M satisfies both p and one of the disjuncts on

the right-hand side of eqP (p). Hence M |= eqP (p). Next assume that p /∈ M. Then

there is no Z such that p : Z has a guarded resolution proof admitted by M. It

follows that either eqP (p) equals ¬p or M satisfies both negation of p and of the

negation of every disjunct on the right-hand side of eqP (p). Thus again M |= eqP (p).

This shows “if” part of the theorem.

For the other direction, suppose that M |= eqP (p). Then if p ∈M, either eqP (p) = p

or eqP (p) = p ⇔ (¬S1 ∨ ¬S2 ∨ . . .). In the former case, this means that the tree

consisting of a single node p : ∅ is a guarded resolution proof and, hence, p← is a

clause in P . Thus p must be in M. In the latter case, there must be some Si such

that M |= ¬Si. But by definition, p : Si is the root of some guarded resolution proof

P for g(P ) and since every guard in such a guarded resolution proof is contained in

Si, it must be the case that M admits P. But then we have shown that p ∈ GLP (M).

Thus M ⊆ GLP (M).

On the other hand, if p /∈ M, then either eqP (p) = ¬p or eqP (p) = p ⇔
(¬S1 ∨¬S2 ∨ . . .). In the former case, there must be be no guarded resolution proofs

of p and, hence, p is not in M. In the latter case, it must be that M does not satisfy

any ¬Si. This means that there is no guarded resolution proof from g(P ) whose root

is of the form p : S such that M admits p and, hence, p /∈ GLM(P ). This implies

GLP (M) ⊆M and, hence, GLp(M) = M. Thus M is a stable model of P . �
If we look carefully at the structure of any resolution proof tree of a guarded

atom p : S , we see that S collects a set atoms which guarantee that p ∈ NM

whenever M ∩ S = ∅. Thus in defining eqP (p), we essentially unfold the atoms in S

to conjunctions of negated atoms ¬S (cf. Brass and Dix 1999).

We observe that, in principle, when the program P is infinite, the theory EP

may be infinitary. Specifically, the formulas eqP (p) may be infinitary formulas, since

the disjunction on the right-hand side of the equivalence may be over an infinite

set of finite conjunctions. But the semantics for infinite propositional logic is well-

known (Karp 1964) and can be applied here. The authors studied the necessary and

sufficient conditions for EP to be finitary in (Marek and Remmel 2010).

3 Some applications

In this section we will use the results of Section 2 to derive the result of Erdem and

Lifschitz (Erdem and Lifschitz 2003). This result generalizes a theorem by Fages

(Fages 1994) which is useful as a preprocessing step for the computation of stable
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models of programs. We will also prove a result of Dung (Dung and Kanchansut

1989) on stable models of purely negative programs.

We say that a set of atoms M has levels with respect to a program P if

(1) M is a model of P , and
(2) there is a function rk : M → Ord such that, for every p ∈M, there is a clause

C such that

(a) p = head (C),

(b) M |= body(C), and

(c) For all q ∈ posBody(C), rk (q) < rk (p).

Clearly, the least model of a Horn program has levels since the function which

assigns to an atom p ∈M, the least integer n such that p ∈ Tn
P (∅) is the desired rank

function for condition (2).

We now prove the following proposition.

Proposition 3.1
Let P be a propositional logic program and M ⊆ At . Then M is a stable model of

P if and only if M has levels with respect to P .

Proof

Clearly, when M is a stable model of P , then M has levels with respect to P . Namely,

the rank function whose existence is postulated in (2) is the rank function inherited

from the Horn program PM .

Converse implication can be proved in a variety of ways. Our proof, in the

spirit of the proof-theoretic approach of this paper, uses guarded resolution. That

is, assume that M has levels with respect to P where rk is the rank function in

condition (2). Our goal is to prove that M = GLP (M). First, let us observe that

since M |= P , GLP (M) ⊆ M. Thus, all we need to show is that M ⊆ GLP (M). By

Corollary 2.1, we need only show that for given any p ∈ M, there is a Z such that

p : Z possesses a guarded resolution proof from g(P ) that is admitted by M. We

construct the desired set Z and guarded resolution proof by using the rank function

rk . Let S = {rk (p) : p ∈ M}, i.e. S is the range of rank function. We proceed by

transfinite induction on the elements of S . Let p be an atom in M such that rk (p)

is the least element of S . By assumption, there must exist a clause C in P such

that M |= body(C), p = head (C) and for all q ∈ posBody(C), rk (q) < rk (p). Since

M |= body(C), there can be no qs in positive part of the body of C because any

such q must be in M and have rank strictly less than p. Thus the clause C has the

following form:

p← not r1, . . . not rm.

As M |= body(C), r1, . . . , rm /∈M. But then p : {r1, . . . , rm} is a guarded atom admitted

by M and so p : {r1, . . . , rm} has a guarded resolution proof from g(P ) which consists

of a single node labeled with p : {r1, . . . , rm}.
Now, assume that whenever β ∈ S , β < α, and rk (q) = β, then there is a guarded

resolution proof of q : S from g(P ) admitted by M for some set S . Let us assume

that p ∈M and rk (p) = α. By our assumption, there is a clause C

p← q1, . . . , qn, not r1, . . . not rm
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with M |= body(C) and rk (q1) < rk (p), . . . , rk (qn) < rk (p). By inductive assumption,

for every qi, 1 � i � n, there is a finite set of atoms Zi such that there is guarded

resolution proof Di from g(P ) of qi : Zi admitted by M. In particular, Zi∩M = ∅. We

can then easily combine the guarded resolution proofs for qi : Zi with n applications

of guarded unit resolution starting with the leaf

p← q1, . . . , qn : {r1, . . . , rm}

to produce a guarded resolution proof of

p : Z

from g(P ) where Z = Z1 ∪ . . . ∪ Zn ∪ {r1, . . . , rn}. Since all Zis are disjoint from M

and M ∩ {r1, . . . , rm} = ∅, it follows that M ∩ Z = ∅. Thus the resulting resolution

proof is admitted by M. This completes the inductive argument and thus the proof

of the Proposition 3.1. �
We observe that, in fact, it is sufficient to limit the functions rk in the definition

of M having levels respect to P to those rank functions that take values in N, the

set of natural numbers.

We get, as promised, several corollaries. One of these is the result of Erdem and

Lifschitz (2003). Following Erdem and Lifschitz (2003), we say that a program P

is tight on a set of atoms M if there is a rank function rk defined on M such

that whenever C is a clause in P and head (C) ∈ M, then for all q ∈ posBody(C),

rk (q) < rk (head (C)). Here is the result of Erdem and Lifschitz.

Corollary 3.1 (Erdem and Lifschitz )

If P is tight on M and M is a supported model of P , then M is a stable model of P .

Proof

Indeed, tightness on M requires that for any p ∈M, there is a support for p and that

all clauses C that provide the support for the presence of p in M have the property

that the atoms in the positive part of the body of C have smaller rank. In Pro-

position 3.1, we showed that it is enough to have just one such clause. Since tightness

on M implies existence of such a supported clause, the corollary follows. �
Since all stable models are supported (Gelfond and Lifschitz 1988), one can

express Erdem–Lifschitz theorem in a more succinct way.

Corollary 3.2 (Erdem–Lifschitz )

If for every supported model M of a program P , P is tight on M, then the classes

of supported and stable models of P coincide.

Fages theorem (Fages 1994) is a weaker version of Corollary 3.1 (but with assump-

tions that are easier to test). Specifically, we say that a program P is tight if there

is a rank function rk such that for every clause C of P , the ranks of the atoms

occurring in the positive part of the body of C are smaller than the rank of the

head of C . Clearly, if P is tight, then P is tight on any of its models M since rk will

also witness that P is tight on M. Thus one has the following corollary.
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Corollary 3.3 (Fages)

If P is tight, then the classes of supported and stable models of P coincide.

Tightness is a syntactic property that can be checked in polynomial time by

inspection of the positive call-graph of P . This is not the case for the stronger

assumptions of Proposition 3.1 and Corollary 3.2.

Let Stab(P ) be the set of all stable models of P . We say that programs P , P ′ are

equivalent if Stab(P ) = Stab(P ′). This notion and its strengthenings were studied by

ASP community (Lifschitz et al. 2001), (Truszczynski 2006). We have the following

fact.

Lemma 3.1

If P , P ′ prove the same guarded atoms, then P and P ′ are equivalent.

As a corollary we get the following result due to Dung (Dung and Kanchansut

1989)

Corollary 3.4 (Dung)

For every program P , there is purely negative program P ′ such that P , P ′are

equivalent.

The program P ′ is quite easy to construct. That is, for each atom p, if

eqP (p) = p⇔ (¬S1 ∨ ¬S2 ∨ . . .),

then we add to P ′, all clauses of the form

p← not ri,1, . . . , not ri,mi
,

where Si = {ri,1, . . . , ri,mi
}. If eqP (p) = p, then we add p← to P ′. Finally, if eqP (p) =

¬p, then we add nothing to P ′. It is then easy to see that EP = EP ′ and hence P

and P ′ are equivalent. �

4 Computing stable models via satisfiability, but without loop formulas or defining

equations

Proposition 2.2 characterized the stable models of a propositional program in terms

of the collection of all propositional valuations of the underlying set of atoms. In

this section, we give an alternative characterization in terms of the models of suitably

chosen propositional theories. The proof of this characterization uses Proposition 2.2,

but relates stable models of finite propositional programs P to models of theories of

size O(|P |). This is in contrast to Proposition 2.2 since the set of defining equations

is, in general, of size exponential in |P |.
A subequation for an atom p is either a formula ¬p or a formula

p⇔ ¬S,

where S is a support of a guarded resolution proof of p from P . Here if S = ∅,
then by convention we interpret p ⇔ ¬S to be simply the atom p. The idea is that

a subequation either asserts absence of the atom p in the putative stable model or
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provides the reason for the presence of p in the putative stable model. A candidate

theory for program P is the union of P and a set of subequations, one for each

p ∈ At . By CP we denote the set of candidate theories for P .

Proposition 4.1

(1) Let T be a candidate theory for P (i.e. T ∈ CP ). If T is consistent, then every

propositional model of T is a stable model for P .

(2) For every stable model M of P , there is theory T ∈ CP such that M is a

model for T .

Proof

(1) Let T be a candidate theory for P and suppose that M |= T . We need to show

that M is a stable model for P . In other words, we need to show that

GLP (M) = M.

The inclusion GLP (M) ⊆ M follows from the fact that M is a model of P . That

is, since M is a model of P , it immediately follows that M is a model of the

Gelfond–Lifschitz transform of P , PM . Since GLP (M) is the unique minimal model

of PM , it automatically follows that GLP (M) ⊆M.

To show that M ⊆ GLP (M), suppose that p ∈ M. Then the subequation for p

that is in T can not be ¬p. Therefore it is of the form

p⇔ ¬Up,

where there is some guarded resolution proof P of p : Up from g(P ). Since M |= T

and p ∈ M, M |= ¬Up. But then M ∩ Up = ∅ so that M admits P. Hence by

Corollary 2.1, p ∈ GLP (M).

(2) Let M be a stable model of P . We construct a candidate theory T so that

M is a model of T . To this end, for each p /∈M, we select ¬p as a subequation for

p. For each p ∈ M, we select a guarded resolution proof of some p : Up from g(P )

that admitted by M. We then add to T the formula

p⇔ ¬Up.

Clearly, T is a candidate theory, and M |= T , as desired. �
Next we give an example of our approach to reducing the computation of stable

models to satisfiability of propositional theories. It will be clear from this example

that our approach avoids having to compute the completion of the program and

thus significantly reduces the size of the input theories.

Example 4.1

Let P be the following propositional program:

p← t,¬q
p← ¬r
q ← ¬s
t←
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Let us observe that the atom p has two inclusion-minimal supports, namely {q} and

{r}. The atom q has just one support, namely {s}, and the atom t also has just one

support, namely ∅. The atoms r and s have no support at all.

Thus there are three subequations for p:

p⇔ ¬q
p⇔ ¬r
¬p

Now, q has only two subequations: q ⇔ ¬s, and ¬q. Similarly, t has only two

subequations, t and ¬t, but the second one automatically leads to contradiction

whenever it is chosen. Finally, each of r and s have just one defining equation, ¬r,
and ¬s, respectively.

First, let us choose for p, the subequation ¬p, and for q, the subequation q ⇔ ¬s.
The remaining subequations are forced to t, ¬r, and ¬s. The resulting theory has

nine clauses, when we write our program in propositional form:

S = {¬p,¬r,¬s, t, q ⇔ ¬s} ∪ {¬t ∨ p ∨ q, r ∨ p, s ∨ q, t}.

It is quite obvious that this theory is inconsistent. However, if we choose for p, the

subequation p ⇔ ¬r and for q, the subequation q ⇔ ¬s, then the resulting theory

written out in propositional form is

S = {p⇔ ¬r,¬r,¬s, t, q ⇔ ¬s} ∪ {¬t ∨ p ∨ q, r ∨ p, s ∨ q, t}.

In this case, {p, q, t} is a model of S and hence, {p, q, t} is a stable model of P . �

It should be clear that Proposition 4.1 implies an algorithm for the computation

of stable models. Namely, we generate candidate theories and find their propositional

models.

Let us observe that the algorithm described above can be implemented as a

two-tier backtracking search, with the on-line computation of supports of guarded

resolution proofs, and the usual backtracking scheme of DPLL (Davis et al. 1962).

This second backtracking can be implemented using any DPLL-based SAT solver

(Moskewicz et al. 2001). Proposition 4.1 implies that the algorithm we outlined is

both sound and complete. Indeed, if the SAT solver returns a model M of theory T ,

then, by Proposition 4.1(1), M is a stable model for P . Otherwise we generate another

candidate theory and loop through this process until one satisfying assignment is

found. Proposition 4.1(2) guarantees the completeness of our algorithm.

Our algorithm is not using loop formulas like the algorithm of Lin and Zhao

(2004) but systematically searches for supports of proof schemes, thus providing

supports for atoms in the putative model. It also differs from the modified loop

formulas approach of Ferraris, Lee and Lifschitz (Ferraris et al. 2006) in that we do

not consider loops of the call-graph of P at all. Instead, we compute systematically

proof schemes and their supports for atoms. While the time-complexity of our

algorithm is significant because there may be exponentially many supports for any

given atom p, the space complexity is |P |. This is the effect of not looking at loop

formulas at all (Lifschitz and Razborov 2006).
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5 Conclusions and further work

We have shown that guarded unit resolution, a proof system that is a nonmonotonic

version of unit resolution, is adequate for description of the Gelfond–Lifschitz

operator GLP and its fixpoints. That is, we can characterize the stable models of

logic programs in terms of guarded resolution.

There are several natural questions concerning extensions of guarded resolution

in the context of Answer Set Programming. For example:

(1) Is there an analogous proof system for the disjunctive version of logic programming?

or

(2) Are there analogous proof systems for logic programming with constraints?

We believe that availability of such proof systems could help with finding a variety

of results on the complexity of reasoning in nonmonotonic logics. An interesting

case is that of propositional Default Logic. We will show in a subsequent paper that

that we can develop a similar guarded resolution proof scheme for propositional

Default Logic. The main difference is that we must allow proof trees where the

leaves can be tautologies rather than just guarded atoms or guarded clauses that

are derived from the given program P as in this paper.
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