
THE JOURNAL OF NAVIGATION (2021), 74, 60–78. c© The Royal Institute of Navigation 2020
doi:10.1017/S0373463320000351

On Generalised Single-Heading
Navigation

Nicoleta Aldea1 and Piotr Kopacz 2

1(Faculty of Mathematics and Computer Science, Transilvania University of Braşov,
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Introducing the notion of a pseudoloxodrome, we generalise a single-heading navigation to
conformally flat Riemannian manifolds, under the action of a perturbing vector field (wind,
current) of arbitrary force. The findings are applied to time-optimal navigation with the use of
the Euler–Lagrange equations. We refer to the Zermelo navigation problem admitting space
and time dependence of both a perturbation and a ship’s speed. The necessary conditions for
single-heading time-optimal navigation are obtained and the pseudoloxodromes of minimum
and maximum time are discussed. Furthermore, we describe winds which yield the pseudolox-
odromic and loxodromic time extremals. Our research is also illustrated with the examples in
dimension two emphasising the single-heading solutions among the time-optimal trajectories in
the presence of some space-dependent winds.
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1. INTRODUCTION AND MOTIVATION. Roughly speaking, a single-heading (also
known as constant-heading) navigation is a strategy applied in dimension two with only
one angular control of a ship, i.e., a heading (a steering angle). This is the angle subtended
by the ship’s self-velocity and an axis of the orthogonal coordinate system, which is con-
stant with respect to a flowing medium (air, water) during a travel (flight, sea passage)
between two waypoints of a route and under the action of a perturbing wind or current.
In the absence of perturbation, a single-heading navigation is equivalent to a loxodromic
(rhumb line) navigation. The latter is widely applied and essential, in particular, in marine
passage planning including traditional and electronic navigational charts and systems, e.g.,
Electronic Chart Display and Information System (ECDIS) (Kos et al., 1999; Norris, 2010;
Tseng et al., 2012; Weintrit and Kopacz, 2012). In navigation based on a loxodrome, a ship
keeps a constant course in the presence of wind or/and current with respect to the fixed
ground, while the corresponding heading angle varies in general. Thus, on the rotational
surface model, a course line (a track) crosses the meridians or parallels of latitude at the
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same angle. In both cases the distance travelled is not the shortest, since this is represented
by the orthodromic passage (great circle, great ellipse, geodesic navigation) on the spheri-
cal or spheroidal model of the Earth, where both courses, i.e., the heading and the direction
of a tangent vector to the trajectory (course over ground), are variable during the passage
(see Earle, 2006; Weintrit and Kopacz, 2011; Pallikaris and Latsas, 2012). The strategy is
convenient from the navigational point of view; however, it does not guarantee an opti-
mal travel in the sense of time. One can say that the ship remains parallel to itself and is
carried freely by the flow, but with self-speed (airspeed) non-zeroed, so the ship’s engine
is not stopped. By analogy, we will call such a travelled single-heading path (in arbitrary
dimension) a pseudoloxodrome.

Many of the properties of the ship’s motion investigated in a two-dimensional stationary
field of flow are of great practical interest for navigation both at sea and in the air (see,
e.g., De Jong, 1974). The single-heading path passing through the starting and destination
points is unambiguously defined for a given heading. It is, however, possible that several
single-heading paths pass through both positions, but for different values of the constant
heading. Apart from its simple steering principle, such a strategy had in practice also other
benefits. Thus, it was in many cases preferred to other methods of navigation. For example,
in aviation the lateral drift may often become so large that areas of bad weather are avoided.
According to De Jong (1956) the time of navigation along a single-heading trajectory is
generally shorter than along the geometrically shortest route.

The systems or techniques of navigation can refer to different skills that involve the
determination of position and direction, as well as covering positioning and orienteering
by comparison to known locations or patterns. An interesting aspect of the problem in
nature concerns the navigation strategies in the presence of a perturbing medium and the
corresponding skills of migrating animals, that is, swimmers and flyers. Recent bioscience
works have introduced a new perspective in the analysis of wildlife tracking datasets, with
different animal groups potentially exhibiting different levels of complexity in goal attain-
ment during migration (Hays et al., 2014). There has been a lot of published work looking
at the ability of flying and swimming animals to deal with cross-flows to reach their goal
(e.g., Krupczynski and Schuster, 2008; Chapman et al., 2011). Recently some focus has
been given to navigational strategies including (sub)optimal tracks and single-heading
routes in animal ecology or avian biology (see McLaren et al., 2014; 2016; Chapman
et al., 2015). The animals’ route strategies between two locations may affect short daily
passages and long-distance travel that vary spatially and seasonally, e.g., from the place
where they rest to another place where they feed. There is an a priori expectation that it
may be difficult for animals migrating at sea to assess current flows due to the general
absence of fixed reference points, and hence achieving the time-minimal route may be
very challenging (Chapman et al., 2011). For example, in Hays et al. (2014) two sim-
ple planar strategies tested two rules for swimming direction: heading adjusted to the
goal (i.e., goal-oriented strategy) and constant heading to the goal (i.e., single-heading
strategy).

We remark that, before modern technology including navigational equipment and posi-
tioning systems was available, a single-heading flight had obvious advantages from the
point of view of the pilot. Having assumed in practice that the airplane was flying on
an isobaric surface, namely the wind was geostrophic and unchanging in time, and that
the Coriolis parameter was the same everywhere, an additional advantage for naviga-
tion was that one coordinate of the airplane’s position could always be determined easily
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if the airplane was flying a constant-heading course. It has been shown that the single-
heading flight is neither necessarily faster nor necessarily slower than the straight-line flight
(Arrow, 1949).

In our study we aim to extend the single-heading strategy to non-Euclidean back-
grounds and higher dimensions, considered on conformally flat Riemannian manifolds
in the presence of a perturbing vector field. We admit both a perturbation and a ship’s
self-speed as functions of position and time. The paper is organised as follows. Section 2
is dedicated to preliminaries, including the background of the problem under considera-
tion and time-extremal navigation in an arbitrary wind. We recall the condition (6) for
optimal navigation, which stands for the generalisation of the classical navigation for-
mula of Zermelo. This allows us to distinguish locally time-minimal and time-maximal
paths (Proposition 2.1). We also describe generalised loxodromic navigation, emphasising
time-extremal loxodromes (Proposition 2.2). In Section 3 we introduce the notion of a pseu-
doloxodrome and study the generalisation of single-heading navigation (Propositions 3.2
and 3.3). Next, we obtain the necessary conditions for pseudoloxodromic time-extremal
navigation (Theorem 3.4) and discuss pseudoloxodromes of minimum and maximum time
(Theorem 3.5) referring to the Zermelo navigation problem. Furthermore, we focus on
perturbations that generate time-extremal pseudoloxodromes (Proposition 3.6) and time-
extremal loxodromes (Proposition 3.7). Finally, Section 4 presents some examples in
dimension two, where pseudoloxodromes are emphasised among the time-optimal paths
in the presence of space-dependent winds.

2. PRELIMINARIES.
2.1. Background of the navigation problem under consideration. We begin with

some preliminaries concerning the description of the background for the study of the single-
heading navigation problem. Let (M , h) be a Riemannian manifold of dimension n that is
locally conformal to n-dimensional Euclidean space (conformally flat Riemannian mani-
fold), i.e., the positive definite fundamental metric tensor hij of the Riemannian metric h
satisfies

hij (x) =
1

S2(x)
δij , i, j = 1, . . . , n (1)

for any x ∈ M , where the conformal factor is represented by a positive smooth function S
defined on M and δij is the Kronecker delta; see also Catino (2016). Let (x1, . . . , xn) be the
local coordinates of x ∈ M . The tangent space TxM is spanned by ∂/∂x1, . . . , ∂/∂xn and so
any v ∈ TxM can be expressed as v =

∑n
i=1 vi(∂/∂xi), where v1, . . . , vn are the coordinates

of v. The length of v with respect to h is

|v|h =

√√√√ n∑
i,j =1

hij vivj =
1
S

√√√√ n∑
i=1

(vi)2

or, briefly, |v|h = (1/S)
√

(vi)2 is a sum with respect to i = 1, . . . , n, since (vi)2 = vivi. From
this point on, in each product where the same index appears twice, it should be read as a
sum with respect to this index without writing the explicit symbol � for the sum.

Let M × R be the fibred manifold with a point (x, t) on M × R, having the local coor-
dinates (x1, . . . , xn, t), t ∈ R. Instead of a smooth curve on M × R, we simply consider
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its projection on M , namely, a smooth curve γ : [0, 1] ⊂ R → M , and the variable t is
thought of as a parameter to which is ascribed no geometrical significance (Carathéodory,
1935; Aldea and Kopacz, 2020). The points of the curve γ are denoted by (x1(t), . . . , xn(t)),
t ∈ [0, 1], and for the tangent vector to γ we use the notation

ẋi(t) =
dxi(t)

dt
, i = 1, . . . , n.

A time-dependent tangent vector to M can be considered as the projection of a tangent
vector to M × R, e.g., ξ ∈ TxM × R and ξ = ξ i(x, t)∂/∂xi + ∂/∂t; see also Paláček and
Krupková (2012) and Aldea and Kopacz (2020) in this regard.

The ship will be modelled as a particle moving at variable speed with respect to water
(air) on (M , h). Under the influence of perturbation W, the ship’s resulting velocity will
be given by the composed vector v = W + u, with the ship’s self-velocity u �= 0. Here we
consider space- and time-dependent wind W, i.e., W = Wi(x, t)∂/∂xi ∈ TxM is the pro-
jection of Wi(x, t)∂/∂xi + ∂/∂t ∈ TxM × R. Also, the ship’s self-speed is |u|h = f (x, t) ∈
(0, 1] and Wi, i = 1, . . . , n, and f are smooth functions on M × R. Using the coordinates
(x1(t), . . . , xn(t)), the resulting velocity v is the tangent vector to the trajectory, and so the
global motion v = W + u can be rewritten in the local coordinates as

ẋi(t) = Wi + ui, i = 1, . . . , n, (2)

which are called the equations of motion.
Let cos θi(t) stand for the directional cosines of the ship’s velocity u(x, t). The assump-

tion of local flat conformality allows us to follow an analogous method to that in Arrow
(1949) by considering the functions αi(x, t) = S(x) cos θi(t), i = 1, . . . , n, with

∑
i(αi)2 = S2.

It follows that ui = f αi and then the equations of motion (2) can be rewritten as

ẋi(t) = Wi + f αi, i = 1, . . . , n. (3)

The condition |u|2h = hij uiuj = f 2 is checked. Further on, under the above setting, the triple
(h, W, f ) will be called the navigation data, which creates the background for the study of
the pseudoloxodromic navigation problem.

2.2. Time-optimal paths. Now, we recall Zermelo’s navigation problem,1 where the
aim is to find the time-minimal trajectories, or rather the corresponding steering angles
(optimal controls), of a ship (an aerial vehicle) that sails or flies in a space M , under the
influence of a perturbation represented by a vector field W, thought of as a wind or a cur-
rent. The problem was initially formalised and solved by Ernst Zermelo in 1929–1931 for
Euclidean spaces of low dimensions, i.e., R

2 (Zermelo, 1930) and R
3 (Zermelo, 1931). Its

new link to Finsler geometry has caused purely geometric investigations recently, with the
background model created by a Riemannian manifold (M , h), where h is an arbitrary Rie-
mannian metric (Bao et al., 2004; Chern and Shen, 2005). However, the Finslerian studies
were developed under the assumptions that the wind W is time-independent and only weak
or critical, i.e., |W|2h = h(W, W) ≤ 1, as well as a ship’s self-speed is constant, f = 1; see
also Yoshikawa and Sabau (2013), Brody and Meier (2015), Brody et al. (2015), Caponio

1 ‘In an unbounded plane where the wind distribution is given by a vector field as a function of position and
time, a blimp or an airplane moves with constant speed relative to the surrounding air mass. How must the ship
be steered in order to come from a starting point P0 to another P1 in the shortest time?’ (Zermelo, 1930).
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et al. (2015), Aldea and Kopacz (2017a;b), Kopacz (2017a;b), Javaloyes and Vitório (2018)
and Kopacz (2019) for some recent and generalised investigations in differential geometry
and physics.

In the field of optimal control, the Zermelo problem is usually taken with application of
Pontryagin’s maximum principle (Pontryagin et al., 1962). In what follows we proceed via
the Lagrangian and this way is in general equivalent to the discussion on the navigation
problem via the Hamiltonian; see Bijlsma (2001; 2009), Hull (2009), Techy and Woolsey
(2009), Bijlsma (2010), Techy (2011), Jardin and Bryson (2012), Burns (2013), Li et al.
(2013) and Marchidan and Bakolas (2016). However, which of them is more convenient in
the sense of solution and computational complexity depends in fact on the specific navi-
gation data. Following the general principles from Levi-Civita (1931), De Mira Fernandes
(1932) and Arrow (1949), however, in the more general case due to the extended naviga-
tion data (h, W, f ), recently we have studied the Lagrangian L(x(τ ), ẋ(τ ), t(τ )) in Kopacz
(2018b) and Aldea and Kopacz (2019a), which is a positive root of the following equation:

λL2 + 2pL − |v|2h = 0, (4)

where λ = f 2 − |W|2h,

p = S−2
∑

i

Wiẋi, |W|2h = S−2
∑

i

(Wi)2, |v|2h = S−2
∑

i

(ẋi)2

and L(x(t), ẋ(t), t) = 1 along the curves that satisfy Equation (2). Note that the case λ �= 0
(namely, Equation (4) is of degree two) refers to a weak wind (λ > 0) or a strong wind
(λ < 0), while λ = 0 (namely, Equation (4) is of degree one, under the restriction p �= 0)
refers to a critical wind. Since L(x(τ ), ẋ(τ ), t(τ )) is homogeneous of degree one with respect
to ẋ, it allows us to compute the length, i.e., T =

∫ 1
0 L(x(τ ), ẋ(τ ), t(τ )) dτ , which is inter-

preted here as the physical time necessary to travel along the extremals from a starting
point (x1(0), . . . , xn(0)) to a destination point(x1(1), . . . , xn(1)). The first variation of T,
under the condition dt = L(x(τ ), ẋ(τ ), t(τ )) dτ , leads to the Euler–Lagrange equations (see,
e.g., Levi-Civita, 1931), that is

d
dt

(
∂L
∂ ẋi

)
− ∂L

∂xi =
∂L
∂t

∂L
∂ ẋi , i = 1, . . . , n. (5)

Applying Equation (5) to the Lagrangian L given by Equation (4), we have recently
obtained the conditions for time-extremal navigation considered on conformally flat Rie-
mannian manifolds. Namely, the general solution to time-extremal navigation problem on
(M , h) is represented by Equation (3) and the condition

dαi

dt
= −S2

(
∂f
∂xi +

1
S2

∂Wj

∂xi αj

)
+

1
S2

∂Wk

∂xj αiαj αk +
∂f
∂xj αiαj − Sf

∂S
∂xi

+
1
S

∂S
∂xj (Wj + 2f αj )αi, i = 1, . . . , n, (6)

under the restriction λ + p �= 0, where λ + p = f 2 − |W|2h + p . Note that the inequality λ +
p > 0 can hold for any wind, but if a wind is weak or critical, then λ + p > 0. Also, if
λ + p ≤ 0, then a wind can only be strong. The curves x(t) that satisfy Equation (3) and λ +
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p = 0 are called anomalous (or abnormal) and Equation (6) may hold; see, e.g., Agrachev
and Sachkov (2004) and Carathéodory (1935) in this regard.

Equation (6) is the generalisation of the classical formula of Zermelo, namely, the con-
dition for optimal navigation. We remark that by time-optimal solutions to the navigation
problem we understand both minimum and maximum time. So, in this sense, we may con-
sider Zermelo’s problem as the particular case of the navigation problem. The solutions
of least time are of main interest in practice and theoretical studies, but for a complete
exposition concerning optimal navigation in arbitrary winds it is necessary to take into
consideration also time-maximal paths. This is due to the fact that the same Equation (6)
together with Equation (3) can generate both types of time extremals in strong winds. Thus,
they need to be distinguished.

Additional conditions for the time-minimal (time-maximal) solutions are provided by
the study of the second variation of T. Namely, some classification results on both types of
extremal paths with respect to the navigation data, so in particular the wind force |W|h, are
included in the following proposition (Kopacz, 2018b; Aldea and Kopacz, 2019a).

Proposition 2.1. Let (M , h) be a conformally flat Riemannian manifold of dimension n,
where h is given by Equation (1). Let (h, W, f ) be the navigation data with f = f (x) and
W = W(x). Then

1. if λ + p > 0 for any wind W, then Equations (3) and (6) yield the local solutions of
the Zermelo navigation problem on (M , h); and

2. if λ + p < 0, then the wind is strong and Equations (3) and (6) yield the local time-
maximal solutions to the navigation problem on (M , h).

2.3. Time-optimal generalised loxodromic navigation. By a generalised loxodromic
navigation we call a navigation with a constant direction of the resultant velocity v

during the entire travel on (M , h) between a starting point and a terminal point, i.e.,
dβ̃i/dt = 0, for all i = 1, . . . , n, where β̃i := cos θ̃i(t) are the directional cosines of the
ship’s resultant velocity v �= 0. The corresponding resulting trajectory on M under the
above-mentioned conditions will be called a generalised loxodrome. Also, by (h, W, f , β̃i =
const.), i = 1, . . . , n, we mean the loxodromic (navigation) data. In this subsection we recall
some results from Aldea and Kopacz (2019b) and Kopacz (2018b). Expressing the ship’s
resultant velocity v �= 0 in the form

ẋi = g(x, t)Sβ̃i, i = 1, . . . , n, (7)

where ẋi = vi and g = |v|h (a non-zero smooth function on M × R) is not known a priori
like f = |u|h, and combining Equations (7) and (3), we obtain

dαi

dt
= − 1

f

(
∂Wi

∂t
+

∂f
∂t

αi

)
− gS

f

(
∂Wi

∂xj +
∂f
∂xj αi

)
β̃j +

S
f

dg
dt

β̃i +
g2S
f

∂S
∂xj β̃iβ̃j , (8)

with i = 1, . . . , n, where

dg
dt

= gρ
∂Wk

∂t
αk + gρS2 ∂f

∂t
+ g2ρS

∂Wk

∂xj αkβ̃j + g2ρS3 ∂f
∂xj β̃j

+ g2 (
f ρS2 − 1

) ∂S
∂xj β̃j , (9)

and ρ := f /(S2(λ + p)), under the loxodromic data and λ + p �= 0.
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Proposition 2.2. Let (M , h) be a conformally flat Riemannian manifold of dimension n,
where h is given by Equation (1). Let (h, W, f , β̃i = const.), i = 1, . . . , n, be the loxodromic
navigation data with f = f (x) and W = W(x), and let g denote a ship’s resulting speed
|v|h �= 0. Then

1. if λ + p > 0 for an arbitrary wind W, then the solutions of the system of Equa-
tions (3), (6), (7), (8) and (9) yield the time-minimal generalised loxodromes on
(M , h); and

2. if λ + p < 0, then the wind is strong and the solutions of the system of Equations (3),
(6), (7), (8) and (9) yield the time-maximal generalised loxodromes on (M , h).

For short, we also write ‘a loxodrome’ instead of ‘a generalised loxodrome’ when no
confusion can arise.

3. GENERALISED SINGLE-HEADING NAVIGATION. Let (M , h) be a Riemannian
manifold of dimension n with the metric h given by Equation (1) and let (h, W, f ) be the
navigation data.

3.1. Generalisation of single-heading navigation.

Definition 3.1. A generalised single-heading (or pseudoloxodromic) navigation is a nav-
igation with a constant direction of the ship’s self-velocity u during a travel on (M , h)
between a starting point and a terminal point, i.e.,

∀ i = 1, . . . , n θi(t) = const. (10)

By analogy to widely applied rhumb line navigation in practice and the occurrence of the
well-known notion of a loxodrome in different theoretical studies, a path on M satisfying
Equation (10) will be called a pseudoloxodrome or a generalised single-heading trajectory.

To investigate u with constant direction, we denote by βi(t) the directional cosines of
the ship’s velocity u(x, t), i.e., βi(t) := cos θi(t), i = 1, . . . , n. This leads to

∑
i(βi)2 = 1 and

αi = S(x)βi(t). (11)

Hence, the equivalent conditions for the pseudoloxodromic navigation are

∀ i = 1, . . . , n
dβi

dt
= 0. (12)

By (h, W, f , βi = const.), i = 1, . . . , n, we call this the pseudoloxodromic navigation data.
Now, we aim to find the generalised single-heading trajectories. Thus, we have the

following.

Proposition 3.2. Let (M , h) be a conformally flat Riemannian manifold of dimension n,
where h is given by Equation (1). Let (h, W, f , βi = const.), i = 1, . . . , n, be the pseudolox-
odromic navigation data. If there exist the pseudoloxodromes on (M , h), then they are the
solutions of the system of Equations (3) and

dαi

dt
=

1
S

∂S
∂xj (Wj + f αj )αi, i = 1, . . . , n. (13)
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Proof. From Equation (11) it results that

dαi

dt
=

∂S
∂xj ẋj βi + S

dβi

dt
.

Next, we require the direction of u to be constant, i.e., Equation (12) holds. This yields

dαi

dt
=

∂S
∂xj ẋj βi,

which together with Equation (3) leads to Equation (13). �

Roughly speaking, the existence of the generalised single-heading paths depends on a
wind, so in particular its ‘force’ |W|h.

Note that the spherical coordinates denoted by ϕl, l = 1, . . . , n − 1 , are more suitable
for the navigational description of a ship’s motion (steering, controls) than the angles θi,
i = 1, . . . , n. The latter fit better to the geometrical description of the motion determined
by the vectors of the ship’s velocities. Therefore, a coordinate system in an n-dimensional
Euclidean space can be defined such that the coordinates consist of a radial coordinate, r,
and n − 1 angular coordinates, ϕ1, . . . , ϕn−1, where ϕ2, . . . , ϕn−1 ∈ [−π/2, π/2] and ϕ1 ∈
[0, 2π ). If xi, i = 1, . . . , n, represent the Cartesian coordinates, then they can be computed
from r and ϕ1, . . . , ϕn−1. Next, we can find the relation between the directional cosines
βi = cos θi and ϕl. Taking into consideration that βi is the component of the versor of a
given vector, so r = 1 and xi = βi, we have the following relation for the ship’s velocity u:

βk =
n∏

i=k

cos ϕi sin ϕk−1, (14)

where k = 1, . . . , n, ϕ0 = π/2 and ϕn = 0. Making use of the spherical coordinates we can
prove the following.

Proposition 3.3. Let (M , h) be a conformally flat Riemannian manifold of dimension
n, where h is given by Equation (1). Let ϕm �= ± π/2, m = 2, . . . , n − 1. The neces-
sary and sufficient conditions for pseudoloxodromic navigation on (M , h) are ϕl = const.,
l = 1, . . . , n − 1.

Proof. If βi = const., i = 1, . . . , n, and ϕm �= ± π/2, m = 2, . . . , n − 1, then by
Equation (14) we have ϕl = const., l = 1, . . . , n − 1. The converse is obvious. �

Regarding the above restriction excluding ±π/2 see, for instance, dimension three.
Namely, take θ1 = θ2 = π/2 = const., and so θ3 = 0 = const. Then ϕ2 = π/2 = const., but
ϕ1 is arbitrary, so not necessarily constant. Thus, in dimension three, by application of
the spherical coordinates the three angles of the directional cosines, i.e., θ1, θ2 and θ3,
are reduced by Equation (14) to two spherical coordinates. These are the angular con-
trols, i.e., the heading ϕ1 := ϕ and the elevation ϕ2 := ϑ . The navigation with ϕ1(t) = const.
and ϕ2(t) �= const. is not considered here as the generalised single-heading navigation,
although the (common) heading is constant in time. This is due to the fact that the
(three-dimensional) direction of the ship’s velocity u is varying. In higher dimensions, our
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reasoning is analogous. We can also consider a piecewise pseudoloxodromic route (flight),
i.e., with different pseudoloxodromic legs between the waypoints.

In dimension two, the heading is ϕ := θ1. Since θ1 + θ2 = π/2, we get β1 = cos ϕ and
β2 = sin ϕ, and so α1 = S cos ϕ and α2 = S sin ϕ. In this case Equation (13) means that
−ϕ̇ sin ϕ = 0 and ϕ̇ cos ϕ = 0, which yield ϕ̇ = 0 and thus ϕ = ϕ0 = const. The paths with
ϕ0 = const. are the solutions of the system

ẋ1 = W1 + fS cos ϕ0, ẋ2 = W2 + fS sin ϕ0. (15)

3.2. Time-optimal pseudoloxodromes. When the single-heading navigation (in
dimension two) was introduced for the first time, it was taken for granted that the resulting
trajectories themselves were extremals and that, consequently, along these trajectories the
time of navigation would assume an extreme value. Although, in general, the time of nav-
igation is shorter along a single-heading trajectory than along the geometrically shortest
route, it is only in fields of flow with a particular structure that the single-heading trajecto-
ries are time-minimising or time-maximising extremals. The single-heading trajectories in
R

2, which at the same time are also extremals, were called ‘single-heading extremals’ in De
Jong (1956). We would like to mention that the planar examples of time-minimal trajecto-
ries that are single-heading have already been emphasised in Zermelo (1930), Levi-Civita
(1931), Arrow (1949) and Carathéodory (1935) in the very first studies on the navigation
problem.

We thus arrive at the following theorem.

Theorem 3.4. Let (M , h) be a conformally flat Riemannian manifold of dimension n,
where h is given by Equation (1). Let (h, W, f ) be the navigation data and λ + p �= 0. The
necessary conditions for a pseudoloxodromic time-extremal navigation on (M , h) are

(
∂Wk

∂xj βk +
∂(fS)
∂xj

)
βij = 0, i = 1, . . . , n, (16)

where βij := δij − βiβj .

Proof. Taking into consideration the assumption for the constant ‘headings’, i.e.,
Equation (13) with αi = Sβi and inserting this into Equation (6), we obtain

∂S
∂xj (Wj + fSβj )βi = −S2

(
∂f
∂xi +

1
S

∂Wj

∂xi βj

)
+ S

∂Wk

∂xj βiβj βk + S2 ∂f
∂xj βiβj

− Sf
∂S
∂xi +

∂S
∂xj (Wj + 2fSβj )βi, (17)

which gives Equation (16). �

Note that βij , i, j = 1, . . . , n, is not an invertible matrix, but it is symmetric (βij =
βji, i, j = 1, . . . , n) and βij βi = 0, j = 1, . . . , n. Equations (3) and (16) determine the
time-optimal pseudoloxodromes, if they exist.

Now, taking together Proposition 2.1 and Theorem 3.4, we have the next result.

Theorem 3.5. Let (M , h) be a conformally flat Riemannian manifold of dimension n, where
h is given by Equation (1). Let (h, W, f , βi = const.), i = 1, . . . , n, be the pseudoloxodromic
navigation data with f = f (x) and W = W(x). Then
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1. if λ + p > 0 for an arbitrary wind W, then the system of Equations (3), (6) and (16)
yields the time-minimal pseudoloxodromes on (M , h); and

2. if λ + p < 0, then the wind is strong and the system of Equations (3), (6) and (16)
yields the time-maximal pseudoloxodromes on (M , h).

3.3. Which winds yield the pseudoloxodromic time-optimal navigation?. Recall that,
in the time-extremal navigation problem, one normally aims to find the resulting trajectory
or the corresponding optimal control for given navigation data including wind. However,
we can also look at the problem from a different point of view. Namely, we can look for
the vector fields W in the presence of which the time-extremal solutions have some spe-
cial properties. For instance, all of them are pseudoloxodromic or loxodromic, or both.
We should mention that, under the considered navigation data (with given W) by Proposi-
tion 2.2 and Theorem 3.4, one can obtain some pseudoloxodromic and loxodromic paths
among the family of time-extremal trajectories, respectively, if they exist. Namely, not all
of them are of such special kind.

To extend the study, further on we ask about the types of perturbations in which all
existing solutions of extreme time are generalised single-heading or loxodromic, or both at
the same time. Thus, we can reformulate Theorem 3.4 in the following way.

Proposition 3.6. Let (M , h) be a conformally flat Riemannian manifold of dimension
n, where h is given by Equation (1). Let u(x, t) be a ship’s self-velocity with |u|h =
f (x, t) ∈ (0, 1] and the directional cosines βi = const., i = 1, . . . , n. Then the wind W =
Wi(x, t)∂/∂xi ∈ TxM, with 0 ≤ |W|h and λ + p �= 0, under which all time-extremal paths
yielded by Equations (3) and (6) are pseudoloxodromic, is the solution of the system of
partial differential equations (PDEs) (16).

Proof. Considering Equations (3) and (6) with unknown wind W as well as combining
them with the assumption βi = const., this leads to Equation (16). �

In particular, we have the following remarks. Namely, if f = const., i.e., the stan-
dard version of Zermelo’s problem (with constant maximum ship’s self-speed) or if
S = const., i.e., the background metric is Euclidean, then the PDE system admits simpli-
fied forms. Considering (Rn, δij ) with f = 1, then W = W(t) or Wi = const., i = 1, . . . , n, are
the solutions of Equation (16). Thus, in this last case all existing time-extremal paths are
pseudoloxodromic.

In dimension two, since the necessary and sufficient condition for a constant direction
of velocity u is ϕ0 = ϕ(t) = const., the PDE system (16) is reduced to

0 = −∂W1

∂x2 cos2 ϕ0 +
(

∂W1

∂x1 − ∂W2

∂x2

)
sin ϕ0 cos ϕ0 +

∂W2

∂x1 sin2 ϕ0

+
∂(fS)
∂x1 sin ϕ0 − ∂(fS)

∂x2 cos ϕ0, (18)

for any ϕ0 = const. and unknown wind components W1 and W2. So, the last equation leads
to the types of perturbations under which the solutions to the time-extremal problem are
single-heading. In particular, if f = const. and S = const., then Equation (18) yields the
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condition

∂W1

∂x2 cos2 ϕ0 −
(

∂W1

∂x1 − ∂W2

∂x2

)
sin ϕ0 cos ϕ0 − ∂W2

∂x1 sin2 ϕ0 = 0. (19)

This is in fact the classical navigation formula of Zermelo (1930; 1931) considered for the
constant heading in R

2, ϕ := ϕ0. The condition (19) implies that in R
2 the only stationary

winds W in which all the solutions to the Zermelo problem (f = const.) are single-heading
are given by the radial, negative radial or constant vector fields. Thus, the above leads
to the result from De Jong (1956), that is, ‘all extremals are single-heading extremals in
convergent or divergent and in uniform rectilinear fields of flow’. Such a theorem was
proved by means of Hamilton’s PDEs (see De Jong (1956; 1974) for more details and the
investigation on the planar vector fields in which the single-heading extremals exist).

Now taking into consideration Proposition 2.2 we have the following.

Proposition 3.7. Let (M , h) be a conformally flat Riemannian manifold of dimension
n, where h is given by Equation (1). Let u(x, t) be a ship’s self-velocity with |u|h =
f (x, t) ∈ (0, 1] and the directional cosines β̃i = const., i = 1, . . . , n. Then the wind W =
Wi(x, t)∂/∂xi ∈ TxM, with 0 ≤ |W|h and λ + p �= 0, under which all time-extremal paths
yielded by Equations (3) and (6) are loxodromes, is the solution of the following PDE
system: (

∂Wk

∂t
+ gS

∂Wk

∂xj β̃j

)
β̃ik − fS

(
∂Wk

∂xj βk +
∂(fS)
∂xj

)
βij

= gρS3
(

∂f
∂t

+
∂(fS)
∂xj β̃j

)
βikβ̃k, (20)

i = 1, . . . , n, where β̃ik := δik − gρS2β̃iβk.

Proof. Substituting Equations (8) and (9) into the system of Equations (3) and (6) in which
the wind W is unknown, results in Equation (20). �

Note that β̃ikβi = 0, β̃ikβ̃k = 0 and βikβ̃k = β̃i − (1/(gρS2))βi, k = 1, . . . , n. Also β̃ik,
i, k = 1, . . . , n, is not an invertible matrix. Comparing the PDE systems (16) and (20), under
the assumption fS = const., we can emphasise the following fact. If the components of W
are arbitrary time-dependent functions, then such wind is the solution of Equation (16).
However, it may not solve Equation (20). Therefore, there exist time-extremal trajectories
such that they are pseudoloxodromic, but they are not loxodromic.

Finally, by Propositions 3.6 and 3.7 we obtain the following corollary.

Corollary 3.8. Let (M , h) be a conformally flat Riemannian manifold of dimension n,
where h is given by Equation (1). Let u(x, t) be a ship’s velocity with |u|h = f (x, t) ∈ (0, 1]
and the directional cosines β̃i = const., i = 1, . . . , n. Then the wind W = Wi(x, t)∂/∂xi ∈
TxM, with 0 ≤ |W|h and λ + p �= 0, under which all time-extremal paths yielded by Equa-
tions (3) and (6) are both pseudoloxodromic and loxodromic, is the solution of the PDE
system of Equations (16) and

(
∂Wk

∂t
+ gS

∂Wk

∂xj β̃j

)
β̃ik = gρS3

(
∂f
∂t

+
∂(fS)
∂xj β̃j

)
βikβ̃k, i = 1, . . . , n. (21)
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Proof. Equation (21) results from Equations (16) and (20). �

In order to emphasise some solutions to Equations (16) and (21), we consider the fol-
lowing cases. First, if fS = const., then the wind W with Wi = const., i = 1, . . . , n, is the
solution of Equations (16) and (21), and so all time-extremal trajectories are pseudoloxo-
dromic and loxodromic, if they exist. Second, also under the assumption fS = const., for
the wind W with Wi = axi + bi, with a, bi = const., i = 1, . . . , n, all time-extremal trajecto-
ries are pseudoloxodromic and loxodromic. Indeed, since ∂Wk/∂t = 0 and ∂Wk/∂xj = δjk,
which imply

∂Wk

∂xj βkβij = βj βij = 0 and
∂Wk

∂xj β̃j β̃ik = β̃j β̃ij = 0,

we have Equations (16) and (21) identically checked. This last case is actually the general-
isation of the two-dimensional result from De Jong (1956), i.e., the wind is radial (a > 0),
negative radial (a < 0) or constant (a = 0).

4. EXAMPLES IN DIMENSION TWO. For clarity, we now present two-dimensional
examples with the focus on the single-heading time-optimal paths, under the action of some
space-dependent winds.

4.1. Euclidean plane with linear (shear) wind. First, let (M , h) be (R2, δij ) and let
the perturbation be given by the shear river-type vector field, i.e., W = (x2, 0). Thus, the
current of the ‘river’ increases as a linear function of x2, reaching its minimum force
in the midstream. We mention that Zermelo described the problem in the presence of
such perturbation (actually he used W = (−x2, 0)) as ‘das einfachste nicht-triviale Beispiel
unserer Theorie’ (‘the simplest nontrivial example of our theory’) in his first paper (Zer-
melo, 1930), where the navigation problem was formalised initially, with f = 1 = const.
An example with the field and the use of the Hamiltonian formalism was also investigated
in Carathéodory (1935). In particular, if |W|h = |x2| < 1, then the ship can arrive at any
point of destination on the planar sea, so the solution exists, since the current is weak.
Now, however, let f (t, x1, x2) = 0·95 sin2 x2 + 0·01, so the ship’s speed is varying in space
and the restriction 0 < f ≤ 1 is checked. Applying Equation (6) we get the time-optimal
trajectories from the system

ϕ̇ = − cos2 ϕ − 0·95 sin 2x2 cos ϕ, ẋ1 = x2 + f cos ϕ, ẋ2 = f sin ϕ. (22)

Having solved the last system, we present the time extremals starting from (0; −0·5)
for different headings ϕ(0) = ϕ0 ∈ [0; 360◦), i.e., with the increments �ϕ0 = 15◦. They are
shown in Figure 1. Since we search the pseudoloxodromic extremals, by Equation (19)
we get cos2 ϕ0 + 0·95 sin 2x2 cos ϕ0 = 0. This implies that the single-heading navigation
of minimum time is possible only if ϕ0 = 90◦ or ϕ0 = 270◦; λ + p = f (f + x2

0 cos ϕ0) >

0. Thus, the strategy is to sail orthogonally to the flowing current W continuously. The
single-heading paths of least time are presented in red and blue, respectively.

For comparison, we solve the problem for different ship’s self-speed, which has the form
f (t, x1, x2) = (1/

√
k)x1 − C, with C = const. Then the domain is x1 ∈ (C

√
k; (1 + C)

√
k]

due to the restriction on f , and from Equation (19) we get cos2 ϕ0 = (1/
√

k) sin ϕ0. For
example, let k := 16 and C := −0·33, so x1 ∈ (−1·32; 2·68]. The single-heading time-
minimal paths among other time-optimal solutions are shown in Figure 2. Their desired
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Figure 1. The only single-heading solutions to the time-optimal navigation problem with variable
ship’s speed f (t, x1, x2) = 0·95 sin2 x2 + 0·01 and under the action of the linear vector field W = (x2, 0) are
for the headings ϕ0 = 90◦ (time-minimal, red) and 270◦ (time-minimal, blue). In the background are other
optimal paths: time-minimal (solid black) for ϕ0 ∈ (62·8◦, 297·2◦) and time-maximal (dashed black) for
ϕ0 ∈ [0, 62·8◦) ∪ (297·2◦, 360◦), to an accuracy of 0·1◦, obtained with the increments of the initial head-
ing �ϕ0 = 15◦. Also, there exist two anomalous paths (dot-dashed black) for ϕ0 ∈ {62·8◦, 297·2◦}. The
starting point (0; −0·5) is within the area of strong current; t ≤ 35.

headings are: 62◦ (blue) and 118◦ (red). We remark that there can also exist single-heading
extremals of both types (minimal and maximal), if we shift the initial point slightly,
e.g., x0 := −0·5. Then the values for both pseudoloxodromic extremals are preserved, but
the path with ϕ0 = 62◦ becomes time-maximal, since λ + p = f (t0, x1

0, x2
0)(f (t0, x1

0, x2
0) +

x2
0 cos ϕ0) < 0.

Finally, we also show the solutions when the ship proceeds with constant maximum
speed, i.e., f = 1. Now the same starting point is within the area of weak wind and there
are no time-maximal paths. The corresponding single-heading time-minimal trajectories
are parabolic (solid red and solid blue in Figure 3).

4.2. Prolate ellipsoid under weak rotational wind. Let �2 be an ellipsoid embedded
in the Euclidean space R

3, with the Cartesian coordinates (x, y, z), and axes equal to 2r, 2r
and 2ar. The parametrisation of �2 in the spherical coordinate system (ρ̃, φ, θ ) leads to the
relations x = r sin θ cos φ, y = r sin θ sin φ and z = ar cos θ , where the azimuth φ ∈ [0, 2π )
and the inclination (colatitude) θ ∈ [0, π ]. The parameter a > 0 determines the shape of
an ellipsoid and as a consequence the flow of the geodesics on a spheroid, which can be
oblate (0 < a < 1) or prolate (a > 1). The line element of �2 expressed in terms of the
spherical coordinates (φ, θ ) on �2 is ds2 = r2 sin2 θ (dφ)2 + r2(cos2 θ + a2 sin2 θ )(dθ )2. For
simplicity, we assume that r = 1, so the ellipsoid has the semiaxes (1, 1, a). In particular,
travelling between two points on S

2, we can reorient the system of coordinates so that the
destination point D is located in one of the poles. This can be done by the appropriate
rotation of the sphere and adapting W. In order to solve the navigation problem on the
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Figure 2. The only single-heading solutions to the time-optimal navigation problem with variable
ship’s speed f (t, x1, x2) = 0·25x1 + 0·33 and under the action of the linear vector field W = (x2, 0) are
for the headings ϕ0 = 62◦ (blue) and 118◦ (red), both time-minimal. In the background are other opti-
mal paths: time-minimal (solid black) for ϕ0 ∈ (48·7◦, 311·3◦) and time-maximal (dashed black) for
ϕ0 ∈ [0, 48·7◦) ∪ (311·3◦, 360◦), to an accuracy of 0·1◦, obtained with the increments of the initial
heading �ϕ0 = 15◦. There also exist two anomalous paths for ϕ0 ∈ {48·7◦, 311·3◦}. The starting point
(0; −0·5) is within the area of strong current; t ≤ 8.

Figure 3. The only single-heading solutions of minimum time (parabolic) to the standard navigation
problem (f = 1 = const.), under the action of the linear (shear) vector field W = (x2, 0) are for the head-
ings ϕ0 = 90◦ (solid red) and 270◦ (solid blue). The starting point (0; −0·5) is within the area of weak
current. In the background are other time-minimal solutions (solid black) generated with the increments
of the initial heading �ϕ0 = 15◦ (30 paths), ϕ0 ∈ [0, 360◦). The dashed (red, blue) lines are just the
prolongations of the single-heading paths of least time to show their parabolic shape clearly.
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rotational ellipsoid, we consider the transformation

x1 = φ, x2 =
∫ √

ε

sin θ
dθ , (23)

where we have ε := cos2 θ + a2 sin2 θ , θ ∈ (0, π ). This can be rewritten as ds2 =
(1/S2)[(dx1)2 + (dx2)2], with S = S(x2) = 1/(r sin θ ), θ ∈ (0, π ).

Next, we consider the perturbing (rotational) vector field in the following form:

W(x, y, z) = W̃1(x, y, z)
∂

∂x
+ W̃2(x, y, z)

∂

∂y
+ W̃3(x, y, z)

∂

∂z

= cy
∂

∂x
− cx

∂

∂y
+ 0

∂

∂z
, c ∈ R,

which acts on �2 seen as embedded in R
3. After transformation, the expression of W in the

base {∂/∂φ, ∂/∂θ} becomes

W(φ, θ ) = W1(φ, θ )
∂

∂φ
+ W2(φ, θ )

∂

∂θ
= −c

∂

∂φ
, (24)

and |W(φ, θ )|h = |c| sin θ , θ ∈ (0, π ), which includes all types of winds, i.e., |W|h < f
(weak), |W|h = f (critical) and |W|h > f (strong). Let f = 1, c = 5

7 (weak wind) and the
flattening is determined by a := 3

2 . Thus, the two equations of the spheroidal motion are

φ̇ =
cos ϕ

sin θ
− c, θ̇ = − sin ϕ√

ε
, (25)

and by Equation (18) it follows easily that the condition for the generalised single-heading
optimal navigation is ϕ0 ∈ {90◦, 270◦}. Consequently, the strategy is to head the self-
velocity u towards the destination point(s), i.e., the pole(s). This means that the ship (u)
follows a meridian pointing north or south; however, the spherical track will look vari-
ously. Namely, the angle ϕ̃(t) between the resulting velocity vector v and the meridians
varies. This is investigated in Figure 5 for three paths starting from different points on �2,
i.e., at three colatitudes: 60◦ (blue), 90◦ (red) and 120◦ (black). If ϕ̃(t) is taken clockwise
from north, then it corresponds to a course over ground in navigation. The corresponding
colour-coded trajectories are presented in Figure 4. It is clear that the solutions are not lox-
odromic, since ϕ̃ �= const., which Figure 5 shows. However, they are single-heading and
time-optimal. We remark that the constant heading ϕ changes sign, if the point of destina-
tion becomes the opposite pole. We also mention that several moons of the Solar System
approximate prolate spheroids in shape; however, they are actually triaxial ellipsoids. Also,
the algorithms for accurate and global navigational calculations correspond to spheroidal
(oblate, a ∈ (0; 1)) geometric models; see, e.g., Earle (2006), Pallikaris and Latsas (2012),
Tseng et al. (2012) and Kopacz (2018a) in this regard.

5. CONCLUSION. This study generalises a single-heading navigation to conformally
flat Riemannian manifolds under the action of arbitrary winds (currents) admitting the
varying ship’s self-speed in space and time. Special attention is paid to application of the
pseudoloxodromic strategy to time-optimal navigation, i.e., the constant heading solutions
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Figure 4. The single-heading (pseudoloxodromic) solutions of minimum time starting from different
colatitudes on the prolate ellipsoid (a := 1·5), i.e., 45◦ (solid blue), 90◦ (solid black) and 120◦ (solid red),
among other time-minimal paths (dashed colours, respectively), under weak rotational wind given by
Equation (24), with c := 5

7 ; t ≤ 1·5. The corresponding time extremals are generated for different initial
headings ϕ(0) = ϕ0, i.e., with the steps �ϕ0 = 30◦; t ≤ 5. The colour-coded surface of the ellipsoid shows
wind ‘force’ represented by the norm |W|h (left, side view; right, top (north) view).

Figure 5. The investigation of varying direction ϕ̃(t) (course over ground) of the tangent vectors v

to the single-heading (pseudoloxodromic) solutions of least time shown in Figure 4, respectively (in
colours). The horizontal green line represents the direction of the self-velocity u, i.e., the heading ϕ(t),
which points towards a pole and is constant (up to modulus), i.e., |ϕ(t)| = ϕ0 = 90◦ = const. for each
considered path; t ≤ 5.
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of the Zermelo navigation problem. Consequently, the corresponding necessary conditions
for such type of navigation are obtained. This leads to the types of perturbing vector fields
which yield the time-minimal paths of constant direction. By analogy, the investigation
shows direct connections to loxodromic (rhumb line) time-efficient navigation, where the
direction of a tangent vector to the resulting trajectory is preserved and the correspond-
ing steering angles (optimal controls) vary. In particular, some real-world applications in
dimension two combining both single-heading and time-optimal navigation refer to air
travel and marine navigation of ships as well as to ecology and avian biology, includ-
ing mathematical modelling and open problems that concern the navigational strategies
of migrating animals in their short daily passages and long-distance travels varying spa-
tially and seasonally. For consistency and comparison, future research will be to extend the
study to arbitrary Riemannian manifolds, dropping the assumption on conformal flatness of
the background Riemannian sea and focusing on the interplay between pseudoloxodromic
and loxodromic navigation, including time-optimal trajectories in arbitrary winds. Also, an
interesting area for further investigations concerns the structure of fields of flow in which
the time-optimal pseudoloxodromes exist, so when not all of optimal paths are of such
special type.
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