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Abstract

Dye-sensitized solar cells consistently provide a cost-effective avenue for sources of
renewable energy, primarily due to their unique utilization of nanoporous semiconduc-
tors. Through mathematical modelling, we are able to uncover insights into electron
transport to optimize the operating efficiency of the dye-sensitized solar cells. In
particular, fractional diffusion equations create a link between electron density and
porosity of the nanoporous semiconductors. We numerically solve a fractional diffusion
model using a finite-difference method and a finite-element method to discretize space
and an implicit finite-difference method to discretize time. Finally, we calculate the
accuracy of each method by evaluating the numerical errors under grid refinement.

2020 Mathematics subject classification: 35R11.

Keywords and phrases: dye-sensitized solar cells, electron density, efficiency, fractional
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1. Introduction

Photoelectrochemical studies in dye-sensitized solar cells (DSSCs) have remained
vibrant since their officially recognized introduction in O’Regan and Grätzel’s seminal
paper [34]. DSSCs relieve traditional solar cell designs of their dependence on
high-purity semiconductors such as silicon, opting instead for the significantly cheaper
titanium dioxide (TiO2). Typically, DSSCs utilize four primary components to generate
sunlight: a photosensitive dye, a nanoporous semiconductor, a counter electrode and
an electrolyte couple [34].
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FIGURE 1. Diagram of an operating dye-sensitized solar cell [28] (colour available online).

Sunlight excites the dye molecules, which inject electrons to the nanoporous
semiconductor. Injected electrons are sent to power a load and are reintroduced into
the DSSC via the counter electrode. Finally, the electrolyte couple transfers electrons
from the counter electrode back to the photosensitive dye by a pair of redox reactions.

DSSCs are liable to suffer recombination effects. Injected electrons may be
absorbed by the dye or regenerate the electrolyte couple instead of powering the load,
which reduces the overall effectiveness of the device. Figure 1 shows a DSSC in
operation, denoting the processes encouraging electricity generation by green arrows
and recombination by red arrows [28].

Södergren et al. [36] pioneered diffusion-based mathematical modelling for DSSCs,
using the electron density to calculate the current–voltage relationship and the
efficiency of a given DSSC. Cao et al. [7] augmented the diffusion model with time
dependence and introduced nonlinear diffusivity to capture the role of trap states in
the TiO2 network, which was studied further by Anta et al. [2] and Maldon et al. [25].

Nigmatullin [33] proposed one of the first fractional diffusion models to study the
influence of the fractal geometry of a material on its diffusion processes (particularly,
the transfer equation for particles in a porous medium). Nelson [31] and Benkstein
et al. [5] explored the electron diffusion process on TiO2, with the latter motivated
by its effect on DSSCs. Benkstein et al. [5] established a critical link between the
porosity of the TiO2, its resultant fractal geometry and the electron transport in TiO2
with continuous-time random walk (CTRW) simulations. Henry and Wearne [18]
developed a sub-diffusion equation based on CTRW simulations to create a novel
fractional partial differential equation (FPDE), from which Maldon and Thamwattana
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[27] derived a new fractional diffusion equation for DSSCs that accounted for the
fractal geometry of the TiO2 semiconductor.

Fractional diffusion equations are well posed and special cases of pure diffusion
also possess analytical solutions [23]. Chen et al. [9] used separation of variables
to analytically solve the time-fractional heat equation on a bounded spatial domain.
Tomovski and Sandev [38] analytically solved the generalized time-fractional diffusion
equation under a variety of boundary conditions.

Laplace transform methods remain a popular method for numerically solving
FPDEs, as fractional derivatives are well suited for Laplace transformation [6]. Duan
et al. [11] also used Laplace transform methods to numerically solve fractional
diffusion-wave equations.

Spline collocation methods are also commonly employed to numerically solve
fractional diffusion problems. Maldon et al. [26] provided numerical solutions with
a cubic B-spline method to discretize space and an implicit finite-difference method
to discretize time. El Danaf [12] used spline functions to numerically solve the
time-fractional and space-fractional diffusion equation on a bounded interval under
Dirichlet boundary conditions. Zahra and Elkholy [41] applied cubic B-splines to
numerically solve a fractional ordinary differential equation which was used to model
fluid flow.

In this paper, we numerically solve a fractional diffusion model. We discretize space
with a finite-difference method and a finite-element method and discretize time using
an implicit finite-difference method. To elucidate the effectiveness of each scheme,
we estimate the numerical errors by comparison to a fine grid solution to serve as a
pseudo-analytical solution.

2. Mathematical model

Given a DSSC of thickness d, the electron density n(x, t) at position x ∈ [0, d] and
time t ≥ 0 satisfies the FPDE [27]

∂n
∂t
= D0

∂1−γ

∂t1−γ
∂2n
∂x2 + ϕαe−αx − kR(n(x, t) − neq), (2.1)

where D0 is the diffusion coefficient, γ is the exponent in the mean-square displace-
ment of the CTRW simulation of the semiconductor, ϕ is the incident photon flux, α
is the dye absorption coefficient, kR is the recombination constant and neq is the dark
equilibrium electron density. Equation (2.1) is subject to the boundary conditions

n(0, t) = n0 = neqeqVB/mIkBT , (2.2)

∂n
∂x

∣∣∣∣∣
x=d
= 0, (2.3)

n(x, 0) = n0, (2.4)

where q is the electron charge, VB is the bias voltage, mI is the diode ideality factor, kB

is Boltzmann’s constant [3] and T is the temperature of the DSSC.
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We note that under the special case γ = 1, we recover the standard linear diffusion
model studied by Maldon et al. [25], as the mean-square displacement in CTRW
simulations is usually proportional to time [18]. Given that the exponents β in the
mean-square displacement (studied by Benkstein et al. [5]) lie in the range 0 < β ≤ 0.5,
this model only considers sub-diffusion (0 < γ ≤ 1). Lower values of γ result in fewer
electron jumps, which consequently slows the diffusion process [5].

In this paper, we employ the Caputo fractional derivative [8] for its easy adoption
of traditional boundary conditions [15, 27]. Langlands et al. [20] noted that the use
of the Riemann–Liouville fractional derivative leads to an FPDE that is not positivity
preserving (see also the article by Baeumer et al. [4]). Without a spatially dependent
source term, Langlands et al. [20] suggested the alternative FPDE

∂n
∂t
= D0e−kt ∂

1−γ

∂t1−γ

(
ekt ∂

2n
∂x2

)
− kn,

where k is the reaction coefficient. For other fractional reaction–diffusion equations
featuring the Riemann–Liouville derivative and the influence of chemical reactions,
we refer the reader to the work of Méndez et al. [30, Section 3.4]. We also refer the
reader to the paper by Meerschaert and Sikorskii [29, Ch. 7] for the Langlands model,
which is another model to study CTRW motion.

The diode equation is commonly used to compute the current–density relationship
for solar cells, in which the current J as a function of bias voltage VB is given by [36]

J(VB) = Jsc − J0(eqVB/mIkBT−1),

where J0 is the dark saturation current density, given by

J0 = qneq
√

D0kR tanh
(√ kR

D0
d
)
.

To compute the short-circuit current density Jsc, we use

Jsc = qD0

[
∂1−γ

∂t1−γ

(
∂n
∂x

)]∣∣∣∣∣
x=0

,

noting that the usual electron flux is recovered in the linear diffusion special case
γ = 1.

Given that the open-circuit voltage Voc satisfies J(Voc) = 0, we may compute the
open-circuit voltage with

Voc =
mIkBT

q
ln
(Jsc

J0
+ 1
)
.

Maximizing the power output P(VB) = VBJ(VB) over VB, we obtain the maximum
power point Vmax by

Vmax =
mIkBT

q

(
W
(
e

Jsc + J0

J0

)
− 1
)
,
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TABLE 1. Parameter values for the numerical simulation.

Parameter Value Unit Reference

γ 0.612 – [5]
D0 10−11 m2 s−1 [2]
α 105 m−1 [14]
d 5 × 10−5 m [2]
kR 4 × 10−8 s−1 [2]
neq 1022 m−3 [32]
ϕ 1021 m−2 s−1 [16]

VB 0 V –
Pi 1000 W m−2 [14]

where W is the Lambert W-function [27] and Jmax = J(Vmax). With Pmax = VmaxJmax,
we compute the efficiency η of the DSSC by

η =
Pmax

Pi
, (2.5)

where Pi is the power of incident light.
In this paper, we use parameter values presented in Table 1 to numerically solve

equation (2.1) unless otherwise stated.

3. Numerical methods

Let tf > 0 be the final simulation time. Discretizing [0, tf ] into Nt temporal nodes
and [0, d] into Nx spatial nodes, we let

Δx =
d

Nx − 1
, Δt =

tf
Nt − 1

, xk = (k − 1)Δx, tm = (m − 1)Δt

for each k = 1, . . . , Nx + 1 and m = 1, . . . , Nt. To numerically estimate the fractional
derivative of a function f of order 1 − γ, we use [35]

∂1−γf
∂t1−γ

∣∣∣∣∣
t=tm
=

(Δt)γ−1

Γ(γ + 1)

m−2∑
p=0

[(p + 1)γ − pγ][f (tm−p) − f (tm−p−1)] +OΔt, (3.1)

where Γ denotes the usual Gamma function

Γ(z) =
∫ ∞

0
xz−1e−xdx.

The finite-difference approximation given in equation (3.1) provides a first-order
estimate for the fractional time derivative [13]. By using an implicit finite-difference
method to discretize time, we obtain an unconditionally stable numerical solution [19].
For a second-order approximation, we refer the reader to the paper by Dimitrov [10].

https://doi.org/10.1017/S1446181121000353 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000353


[6] Numerical solutions to a fractional diffusion equation 425

3.1. Finite-difference method To solve equation (2.1) under the boundary condi-
tions (2.2)–(2.4), we use a finite-difference method (FDM) to discretize space and
equation (3.1) to discretize time. In the literature, Esen et al. [13] numerically solved
the space–time fractional heat equation. Yuste and Acedo [40] proposed an explicit
and conditionally stable FDM scheme using Grünwald–Letnikov discretization for
the fractional derivative. Lynch et al. [24] employed a semi-implicit finite-difference
method for solving FPDEs, which outperforms standard explicit methods on stability
and accuracy. For further details on the consistency, stability and convergence
properties of FDM schemes for numerically solving FPDEs, we refer the reader to
Li and Zeng’s review paper [22]. To account for the Neumann boundary condition
at x = d, we also employ a ‘ghost node’ at x = d + Δx. Let ym,k denote the numerical
solution at (xk, tm). That is,

n(xk, tm) ≈ ym,k

for each k = 1, . . . , Nx + 1 and m = 1, . . . , Nt.

3.1.1. Nodes determined by boundary conditions. To satisfy the initial condition
(2.4), we set

y1,k = n0

for all k = 1, . . . , Nx. For the Dirichlet boundary condition (2.2) at x = 0, we set

ym,1 = n0

for all m = 1, . . . , Nt. Finally, for the Neumann boundary condition (2.3) at x = d, we
use a central difference approximation for the first derivative at x = d to set

ym,Nx+1 = ym,Nx−1

for all m = 1, . . . , Nt. Here Nx + 1 corresponds to the ghost node at x = d + Δx.

3.1.2. Algorithm. For each m = 2, . . . , Nt, we set
[
∂n
∂t

]∣∣∣∣∣
t=tm,x=xk

= D0

[
∂1−γ

∂t1−γ
∂2n
∂x2

]∣∣∣∣∣
t=tm,x=xk

+ ϕαe−αxk − kR(n(xk, tm) − neq).

Using the backward Euler method [17], a central difference approximation and
equation (3.1) to estimate ∂n/∂t, ∂2n/∂x2 and the fractional derivative, respectively,

ym,k − ym−1,k

Δt
=

D0(Δt)γ−1

Γ(γ + 1)

m−2∑
p=0

[(p + 1)γ − pγ]

×
[ym−p,k−1 − 2ym−p,k + ym−p,k+1

(Δx)2 −
ym−p−1,k−1 − 2ym−p−1,k + ym−p−1,k+1

(Δx)2

]

+ ϕαe−αxk − kR(n(xk, tm) − neq).
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tf

xt

n

FIGURE 2. Plot of the numerical solution to equation (2.1) under (2.2)–(2.4) using the FDM scheme.

Upon simplification,

− D0(Δt)γ

Γ(γ + 1)(Δx)2 ym,k−1 +

[
1 + kRΔt +

2D0(Δt)γ

Γ(γ + 1)(Δx)2

]
ym,k −

D0(Δt)γ

Γ(γ + 1)(Δx)2 ym,k+1

= − D0(Δt)γ

Γ(γ + 1)(Δx)2 [ym−1,k−1 − 2ym−1,k + ym−1,k+1] +
D0(Δt)γ−1

Γ(γ + 1)

m−2∑
p=1

[(p + 1)γ − pγ]

×
[ym−p,k−1 − 2ym−p,k + ym−p,k+1

(Δx)2 −
ym−p−1,k−1 − 2ym−p−1,k + ym−p−1,k+1

(Δx)2

]

+ ϕαe−αxk − kR(n(xk, tm) − neq),

which results in Nx + 1 equations in Nx + 1 unknowns, when combined with the
boundary conditions (2.2) and (2.3).

Figure 2 shows the numerical solution to (2.1) under boundary conditions
(2.2)–(2.4) using the data from Table 1, Nx = 100, Nt = 100 and tf = 1. From Figure 2,
we see that the electron density assumes its shape from the interaction of the Dirichlet
boundary condition, the exponential source term and diffusion. Note that Figure 2
shows good agreement with the explicit finite-difference method used by Maldon and
Thamwattana [27] while significantly improving stability with the use of an implicit
finite-difference method.

3.2. Finite-element method We also solve equation (2.1) under (2.2)–(2.4) using a
finite-element method (FEM) adapted from Alberty et al. [1]. Esen et al. [13] provided
a finite-element basis for the time-fractional diffusion equation under Dirichlet
boundary conditions. Yuan and Chen [39] solved a mixed diffusion problem featuring
the two-sided Riemann–Liouville fractional derivatives by an FEM scheme. Li and
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Wang [21] solved time-fractional reaction–diffusion and diffusion-wave equations,
using Galerkin FEM schemes [37] which enjoy unconditional stability.

3.2.1. Weak formulation. Letting ρ = n − n0, we solve the equivalent problem

∂ρ

∂t
= D0

∂1−γ

∂t1−γ
∂2ρ

∂x2 + ϕαe−αx − kR(ρ + n0 − neq), (3.2)

subject to

ρ(x, 0) = 0,
ρ(0, t) = 0,
∂ρ

∂x

∣∣∣∣∣
x=d
= 0.

Upon multiplying by a test function w and integrating over [0, d],∫ d

0

∂ρ

∂t
w dx = D0

∫ d

0

∂1−γ

∂t1−γ
∂2ρ

∂x2 w dx

+

∫ d

0
(ϕαe−αx − kR(n0 − neq))w dx − kR

∫ d

0
ρw dx.

Integrating by parts and using the commutativity of the Caputo derivative,∫ d

0

∂1−γ

∂t1−γ
∂2ρ

∂x2 w dx =
[
∂1−γ

∂t1−γ

(
∂ρ

∂x

)
w
]d

0
−
∫ d

0

∂1−γ

∂t1−γ
∂ρ

∂x
dw
dx

dx.

Given that w(0) = 0 and (∂ρ/∂x)|x=d = 0, the weak formulation for equation (3.2) is
given by ∫ d

0

∂ρ

∂t
w dx = −D0

∫ d

0

∂1−γ

∂t1−γ
∂ρ

∂x
∂w
∂x

dx

+

∫ d

0
(ϕαe−αx − kR(n0 − neq))w dx − kR

∫ d

0
ρw dx.

To solve equation (3.2) using this weak formulation, we employ the basis
{φ1, φ2, . . . , φNx−1}, where φj is given by

φj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x − xj

Δx
xj < x ≤ xj+1,

xj+2 − x
Δx

xj+1 < x ≤ xj+2,

0 otherwise,

for j = 1, . . . , Nx − 2 and φNx−1 is given by

φNx−1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − xNx−1

Δx
xNx−1 < x ≤ d,

0 otherwise.

https://doi.org/10.1017/S1446181121000353 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000353


428 B. Maldon, B. P. Lamichhane and N. Thamwattana [9]

3.3. Algorithm At each time step tm, we set

ρ(x, tm) ≈ P(x, tm)
Nx−1∑
j=1

gj(tm)φj(x),

where gj are the coefficients of the basis functions. In matrix form, the weak
formulation of equation (3.2) under the basis {φ1, φ2, . . . , φNx−1} is given by

M
∂
g
∂t
= −D0A

d1−γ
g
dt1−γ − kRM
g + 
C,

where the coefficient vector 
g, the mass matrix M, the stiffness matrix A and the load
vector 
C components are given by


gm = [g1(tm), g2(tm), . . . , gNx−1(tm)],

Mi,j =

∫ d

0
φi(x)φj(x) dx,

Ai,j =

∫ d

0

dφi

dx
dφj

dx
dx,


Cj =

∫ d

0
[ϕαe−αx − kR(n0 − neq)]φj(x) dx

for each m = 1, . . . , Nt, i = 1, . . . , Nx − 1 and j = 1, . . . , Nx − 1. Applying the implicit
finite-difference method to discretize time, we obtain the system

AL
gm = Ac
gm−1 + AR

m−2∑
p=1

[(p + 1)γ − pγ][
gm−p − 
gm−p−1] + Δt
C,

where

AL = (1 + kRΔt)M +
D0(Δt)γ

Γ(γ + 1)
A,

AC = kR(Δt)M +
D0(Δt)γ

Γ(γ + 1)
A,

AR = −
D0(Δt)γ

Γ(γ + 1)
A.

Figure 3 shows the numerical solution to equation (2.1) under the conditions
(2.2)–(2.4) using the data from Table 1, Nx = 100, Nt = 100 and tf = 1.

4. Efficiency calculations

To elucidate the effect of the TiO2 nanoporous semiconductor on efficiency through
the parameter γ, we calculate η using equation (2.5) and the numerical solution
obtained by the finite-difference method.
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xt

n

tf

FIGURE 3. Plot of the numerical solution to equation (2.1) under (2.2)–(2.4) using the finite-element
method.

4.1. Electron flux calculation To calculate the short-circuit current density, we
estimate the time-fractional derivative with equation (3.1) and the electron flux at x = 0
with the 10-point estimate from Maldon and Thamwattana [27]. Therefore, under the
finite-difference method the short-circuit current density is given by

Jsc =
qD0(Δt)γ−1

Γ(γ + 1)

Nt−2∑
p=0

[(p + 1)γ − pγ]
[ 10∑

j=1

aj(yNt−p,j − yNt−p−1,j)
]
,

where each coefficient is given by

a1 = −
7129

2520Δx
, a2 =

9
Δx

, a3 = −
18
Δx

,

a4 =
28
Δx

, a5 = −
63

2Δx
, a6 =

126
5Δx

,

a7 = −
14
Δx

, a8 =
36

7Δx
, a9 = −

9
8Δx

, a10 =
1

9Δx
.

4.1.1. Efficiency calculations. In Table 2, we calculate the efficiency η under
several values for the parameter γ and the numerical data provided in Table 1. From
the table, we see that efficiency decreases as γ increases, which is indicative of longer
waiting times in the CTRW simulation [27].

5. Error calculation

In lieu of an analytical solution, we compute the accuracy of each method using a
comparison to a fine grid solution from the same numerical method. We calculate the
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TABLE 2. Values for efficiency η (%) under several values of the parameter γ.

γ η(%)

0.25 3.6544
0.5 5.6951

0.612 6.6115
0.75 7.6690

1 8.4578

TABLE 3. Errors for the finite-difference method (FDM) and finite-element method (FEM) for solving
equation (2.1) under temporal refinement given Nx = 100, using equation (5.1).

Scheme Nt = 8 Nt = 16 Nt = 32 Nt = 64

FDM 0.2367 0.1177 0.0613 0.0335
FEM 0.2228 0.1039 0.0475 0.0197

TABLE 4. Errors for the finite-difference method (FDM) and finite-element method (FEM) for solving
equation (2.1) under spatial refinement given Nt = 1000, using equation (5.1).

Scheme Nx = 16 Nx = 32 Nx = 64 Nx = 128

FDM 0.2982 0.0786 0.0193 0.0046
FEM 0.3043 0.0675 0.0161 0.0040

errors for tf = 1 under the parameter data in Table 1. For the reference solution, we
use a finite-difference solution and finite element with 1000 spatial nodes and 1000
temporal nodes.

To calculate the error ε for both schemes under refinement, we use

ε =

√
ΔxΔt
n0

||
uC − 
uF ||, (5.1)

where 
uC is the coarse grid solution vector, 
uF is the interpolated fine grid solution
vector, Δx and Δt are calculated in the coarse grid and || · || denotes the usual
root-mean-square error. We scale ε by n−1

0 to account for the high magnitude of the
numerical solution.

From Table 3, we see that the error decreases by a factor of two when the number
of temporal nodes doubles, which confirms that equation (3.1) provides a first-order
approximation for the fractional time derivative in equation (2.1) for both numerical
schemes. Table 4 shows that the error for both schemes decreases by a factor of
four when the number of spatial nodes doubles, confirming that the finite-difference
method and finite-element method provide second-order spatial discretizations. From
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Tables 3 and 4, we see that the finite-element scheme is consistently more accurate than
the finite-difference scheme, since the weak formulation of the finite-element method
naturally satisfies the Dirichlet and Neumann boundary conditions.

6. Summary

We solve the fractional partial differential equation (2.1) using a finite-difference
method and a finite-element method to discretize space and an implicit finite-difference
method to discretize time. Our numerical results are in good agreement with the
literature. Error analysis indicates that the finite-difference method and finite-element
method feature respectively first- and second-order spatial approximations while
equation (3.1) provides an unconditionally stable finite- difference approximation for
Caputo fractional derivatives of order 0 < γ ≤ 1.

Finally, we use the numerical schemes to compute the efficiency of a DSSC under
several values of γ to elucidate the effect of electron diffusion in the nanoporous
semiconductor. We find that lower values of γ lead to lower efficiencies due to the
slower diffusion process associated with longer waiting times in the CTRW simulation.
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