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The accumulation of impurities in the core of magnetically confined plasmas, resulting
from standard collisional transport mechanisms, is a known threat to their performance
as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown
to benefit from the effect of temperature screening, that is an outward flux of
impurities driven by the temperature gradient, impurity accumulation in stellarators
was thought to be inevitable, driven robustly by the inward pointing electric field
characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev.
Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in
stellarators, in the experimentally relevant mixed collisionality regime, where a highly
collisional impurity species is present in a low collisionality bulk plasma. Details of
the analytic calculation are presented here, along with the effect of the impurity on
the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap
current.
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1. Introduction
Magnetic confinement fusion requires a plasma to be maintained at multi-keV

temperatures in near-steady-state conditions. The two leading types of device used
to achieve this are the axisymmetric tokamak and non-axisymmetric stellarator.
Whilst they have a number of competing advantages and disadvantages (Helander
et al. 2012), which are still being studied and mitigation techniques developed,
both suffer from the potential threat of accumulation of impurities in the hot core
plasma (Connor 1973; Hirsch et al. 2008). Released during plasma–wall interactions,
impurities can make their way into the confined bulk plasma. Precautions are taken
to minimise dilution of the plasma (which would reduce the fusion reactivity) by
the choice of low atomic number materials for the walls of the device, but typically
heavy materials must be chosen for the plasma exhaust region (Joffrin et al. 2014).
Heavy impurities are not fully ionised at typical operating temperatures, and power
balance cannot be maintained in the presence of the radiation emitted by a significant
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accumulation, so the plasma would quench. Therefore, the behaviour of impurity ions
in hydrogen-isotope plasmas must be understood, to ensure that it can be controlled.

Particle transport in magnetically confined plasmas results from both turbulent
and neoclassical processes. The latter are essentially random walks due to collisions
between particles as they move along the variety of trajectories set by the magnetic
field structure. Turbulent transport dominates many aspects of confined plasma
behaviour, but for heavy impurity ions the neoclassical transport is known to be
significant, in both tokamaks and stellarators, with the bulk ion density gradient
producing a strong inward flux, and so, impurity accumulation (Hirsch et al. 2008;
Angioni & Helander 2014). However, in tokamaks, the velocity dependence of the
inter-species collision frequency is known to lead to an impurity flux driven by the
bulk ion temperature gradient, whose sign depends on the collisionality regime of
the bulk ions (Connor 1973; Hirshman 1977). Denoted by ν∗ab for collisions between
species a and b (and defined in detail in § 2.1), the collisionality represents the
ratio of the typical size of the device to the particle mean free path. When the
bulk ions (denoted throughout by i) are in the low collisionality regime, ν∗ib < 1,
an outward impurity flux is driven by the temperature gradient. This ‘temperature
screening’ was identified experimentally in Wade, Houlberg & Baylor (2000). Whilst
the temperature gradient typically drives an inward flux when the bulk ions are in
the high collisionality regime, it was noted that an outward flux could still be driven
in rather clean plasmas (Rutherford 1974).

Importantly, in tokamaks the net transport driven by the radial electric field
vanishes. This is not the case in a stellarator, where not only does a net particle
flux result from the radial electric field, it is proportional to the particle charge –
and therefore this contribution is usually expected to dominate the transport of heavy
impurities. With the radial electric field in hot stellarator plasmas typically pointing
inward (Hirsch et al. 2008; Klinger et al. 2017), a large inward flux arises and the
picture of impurity transport in stellarators has appeared bleak (Hirsch et al. 2008).
Accumulation is indeed often seen experimentally (W VII-A Team & NI Group
1985; Igitkhanov, Polunovsky & Beidler 2006; Hirsch et al. 2008), although the
exceptional behaviour of low density ‘impurity-hole’ plasmas in the Large Helical
Device (LHD) is still to be understood (Ida et al. 2009). However, recent work has
begun to identify situations in which the impurity flux, whilst still inward, can in
fact be weak even in the presence of an inward radial electric field (García-Regaña
et al. 2017; Velasco et al. 2017). Conclusions of severe impurity accumulation
were primarily based on calculations in which the collision operator describing
inter-species collisions was approximated by a scattering operator, accounting for
the deflection of the particle pitch angle with respect to the magnetic field line,
sometimes including an additional term to ensure momentum conservation. Numerical
codes retaining only scattering interactions between species have been routinely
used to calculate stellarator neoclassical transport (Beidler et al. 2011). However it
is known that such operators cannot correctly treat high collisionality species, and
hence the experimentally relevant mixed collisionality regime, where a heavy, highly
charged and thus collisional impurity species (denoted here by a subscript z, with
charge Ze) is present in a low collisionality hydrogenic bulk plasma.

We have therefore calculated the impurity flux across nested magnetic flux surfaces
in such a mixed collisionality plasma analytically. A summary of the results appeared
in Helander et al. (2017a), along with an initial successful comparison to the
numerical results from the drift-kinetic equation solver SFINCS (Landreman et al.
2014), which retains the full linearised Landau collision operator and can treat
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multiple species. Here we provide full details of the analytic calculation, whilst
a more extensive numerical comparison will appear separately. The complicated
stellarator field structure means that the bulk ions can exist in a series of low
collisionality regimes, unlike a tokamak plasma. We have treated both the moderate
1/ν collisionality regime, where the radial drift of particles trapped in localised
magnetic wells is interrupted sufficiently frequently by collisions to prevent direct
loss of particles from the plasma, and the lower collisionality

√
ν regime, where

magnetic field optimisation, or the averaging effect of the drift within the flux
surfaces produced by a sufficiently strong radial electric field, is required to ensure
good confinement. The transport of impurities in a highly collisional stellarator,
applicable to the cooler edge plasma, was studied analytically by Braun & Helander
(2010), and we adopt the same flux-friction formalism. We also present a short
extension, giving the cross-field flux of the heaviest impurity when two collisional
impurity species, of disparate mass, are present in the low collisionality bulk. This
may be of particular relevance experimentally, where heavy impurities from exhaust
components, such as Fe or potentially W in future devices, are often present in small
quantities in a main H bulk plasma, with another dominant, but lighter impurity,
released from the main plasma facing components.

Finally, note that the confining magnetic field in a stellarator is primarily produced
by external coils (Landreman 2017), and in the design of a stellarator, a numerical
optimisation process of coil positioning and current values is typically undertaken.
Beside cross-field transport, another important neoclassical effect in an inhomogeneous
plasma is the self-generated bootstrap current. In a tokamak this helps to maintain the
current needed to confine the plasma, but in a stellarator it can distort the confining
field and may have to be minimised (Geiger et al. 2015). The bulk ion flow and
bootstrap current were recently determined analytically for a pure plasma, in which
the bulk ions were taken to be in the 1/ν or

√
ν collisionality regimes (Helander,

Parra & Newton 2017b). As the plasma flow naturally follows from the flux-friction
formalism we also determine the effect of the impurity on the bulk ion flow here,
which will affect the final bootstrap current.

The paper is organised as follows. In § 2, we outline the flux-friction formulation for
the impurity flux, and present the solution for the species’ distribution functions in the
different collisionality regimes, using model collision operators at low collisionality.
The connection to the numerical results produced by the Drift Kinetic Equation Solver
(DKES) (Hirshman et al. 1986) with momentum conservation applied is considered.
The radial impurity flux is then evaluated in § 3 and expressed in terms of transport
coefficients, which give the response of the flux to the various driving gradients. The
impurity content appears only as a prefactor in the impurity flux. When the bulk
ions are in the 1/ν regime, the structure of the impurity flux is similar to the high
collisionality case, with the transport produced by the impurity and bulk ion density
gradients simply related by the impurity charge. With the bulk ions in the

√
ν regime,

additional geometry factors appear in the coefficients relating the impurity flux to the
bulk ion gradients. We find that temperature screening is possible in both of the low
collisionality regimes. As mentioned above this is contrary to the usual expectation.
Furthermore, we see that the drive from the radial electric field vanishes when the
bulk is in the 1/ν regime, and can remain weak into the

√
ν regime, under certain

conditions, which complements the work of García-Regaña et al. (2017), Velasco et al.
(2017). In § 4 we determine the bulk ion flow in the presence of impurities, again
expressing this in terms of transport coefficients, which are sensitive to the impurity
content. We conclude with a discussion in § 5.
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2. Formulation
The neoclassical impurity flux can be conveniently expressed in the following

form (Igitkhanov et al. 2006; Helander et al. 2012)

Γz =
〈∫

fz(vdz · ∇r) d3v

〉
= nz

(
Dzi

11A1i +Dzz
11A1z +Dz

12A2i
)
, (2.1)

where the set of transport coefficients D relate the flux across the magnetic surfaces
to the various driving ‘thermodynamic forces’, with a prime denoting the derivative
with respect to the argument,

A1a = d ln pa

dr
+ eaΦ

′(r)
Ta

, A2a = d ln Ta

dr
. (2.2a,b)

Here pa = naTa is the pressure of species a, with charge ea and distribution function
fa, and Φ(r) is the electrostatic potential. Stellarator geometry precludes rapid toroidal
rotation in general, and along with the density na and temperature Ta, the potential is
approximately constant on magnetic surfaces, which is discussed further below. (The
electric field parallel to the magnetic field is here taken to be negligibly weak, but this
is not always a good approximation in a stellarator, as shown in Calvo et al. (2017),
García-Regaña et al. (2017).) We also assume that the plasma is sufficiently well
confined (see § 2.2) that the temperatures of the ion species have equalised Tz=Ti=T ,
and so A2z = A2i.

The nested magnetic flux surfaces are labelled by r, which acts as an arbitrary radial
coordinate, and the angular brackets indicate the average over a flux surface. Finally
we note that the drift velocity of a species, vda, can usefully (Morozov & Solov’ev
1966; Boozer 1980; Parra & Catto 2008; Landreman & Catto 2013) be written in
conservative form

vda = v‖
Ωa
∇× (v‖b), (2.3)

where b = B/B, v is the particle velocity, Ωa = eaB/ma is the gyrofrequency for
a species with mass ma, parallel and perpendicular are taken throughout with
respect to the magnetic field B and the curl is taken at constant particle energy
εa=mav

2/2+ eaΦ and magnetic moment µa=mav
2
⊥/2B. In the following subsections

we describe the formalism used to calculate the radial impurity flux, and hence the
transport coefficients, which we present in § 3.

2.1. Flux-friction relation
The formulation of the radial impurity flux in a stellarator in terms of a flux-friction
relation was detailed in Sugama & Nishimura (2002), Braun & Helander (2010). The
flux is decomposed into a sum of contributions, the first due to friction against the
background bulk ions and the second the result of the impurity pressure anisotropy,

Γz =
〈∫

fz(vdz · ∇r) d3v

〉
= 1

Ze

〈
uBRz‖ + (pz‖ − pz⊥)

∇‖(uB2)

2B

〉
. (2.4)

The equilibrium function u satisfies b · ∇u=−b×∇r · ∇(B−2). The effect of friction
against electrons is small in the electron–ion mass ratio, so it is neglected throughout.
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The second term in (2.4) is necessary for the determination of the radial electric
field, as it is not intrinsically ambipolar. However, the pressure anisotropy may be
expected to be weak for a collisional species, as we discuss below, and the particle
flux dominated by the friction drive. This will give rise to a flux very different
to that in a tokamak, due to the different structure of the bulk ion distribution
function in a low collisionality stellarator. With the linearised, gyroaveraged, collision
operator for species a denoted by Ca =

∑
b Cab, where the sum is over the ion

species present, we can compare the magnitude of the flux driven by the parallel
friction Rz‖=mz

∫
v‖Cz( fz) d3v to that expected due to the species’ pressure anisotropy

pz‖ − pz⊥, by considering the first terms in an expansion of the drift-kinetic equation
governing the impurity behaviour.

The expansion is taken as usual with respect to the magnetisation parameter
ρ∗z = ρz/L (Helander 2014), where ρa is the gyroradius of species a, and L is
a characteristic length scale perpendicular to the background magnetic field. We
assume Z� 1, but not so large to require that ρ∗z is higher order with respect to ρ∗i.
Taking a characteristic parallel length scale L‖, which will satisfy L‖ > L, the ratio
of the contributions to the flux in (2.4) is approximately (pz‖ − pz⊥)/Rz‖L‖. Due to
the high collisionality the leading-order piece of the expanded distribution function
fz = fz0 + fz1 + · · · will be a Maxwellian, fMz = (nz/π

3/2v3
Tz) exp(−v2/v2

Tz), where the
thermal velocity of a species is vTa =√2Ta/ma. The first-order drift-kinetic equation
for the distribution function fz1 then takes the form

Cz( fz1)= v‖∇‖ fz1 + vdz · ∇fMz, (2.5)

where the independent velocity space coordinates are taken to be εz and µz. In a
subsidiary expansion of (2.5) with respect to collisionality, the pressure anisotropy
will appear in first order, as usual for a collisional species (Braun & Helander
2010). We define the collisionality here as ν∗ab = νab/ωta = L‖/λab

mfp, where ωta
is the characteristic transit frequency of species a along the magnetic field, νab
represents the characteristic collision frequency between species a and b, and the
mean free path λab

mfp = vTa/νab. Comparing the collision and drift terms in (2.5),
remembering that the flows of all species are at the diamagnetic level ∼ρ∗avTa, and
that a factor ZeΦ0/T is introduced through the gradient of FMz, we may expect
pz‖ − pz⊥ ∼ Zpzvdz/νzzL ∼ Zpzρ∗z/ν∗zz. The parallel friction between unlike species
drives the flux, and for the case of disparate mass ions considered here we may
approximate it as Rzi‖ ∼ mini(Vi‖ − Vz‖)νiz ∼ miniρ∗ivTiνiz, where Vi‖ and Vz‖ are the
bulk ion and impurity parallel flows respectively. (The form of the collision operator
is discussed in more detail in §§ 2.3–2.4.)

We therefore find that the pressure anisotropy drive will be small when the
collisionalities satisfy

1
ν∗iz
� ni

nz

√
mi

mz
ν∗zz. (2.6)

When both species are collisional, as in Braun & Helander (2010), this condition is
clearly satisfied, even for non-trace impurity levels, and the pressure anisotropy drive
is always small. In the mixed collisionality case here, with Z> 1, this condition limits
how collisionless the bulk ions can be compared to the impurities – otherwise there
would be a negligible frictional driving force. It is most readily satisfied for highly
charged impurities as the bulk ions become more collisionless. With density and
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temperature values around ni ∼ 1020 m−3 and Ti of a few keV in high performance
scenarios (Geiger et al. 2015; Dinklage et al. 2017) giving bulk (hydrogen) ion
collisionalities in the range ν∗ii ∼ 0.01 and lower, the relation ν∗zz = ν∗iinzZ4/ni
for equal species’ temperature indicates that, for example, trace levels of common
impurities such as Fe24+ and Ar16+ satisfy the mixed collisionality regime considered.
Further specific examples of potential parameter values can be found in Helander
et al. (2017a). We assume here that the ordering in (2.6) is satisfied and we will
take the dominant drive of the transport in (2.4) to come from the parallel friction.
Momentum conservation in collisions then allows us to write the impurity flux in
terms of the bulk ion–impurity parallel friction,

Rzi‖ =−Riz‖ =−mi

∫
v‖Ciz( fi, fz) d3v. (2.7)

In the next subsections, we develop the expressions for the bulk ion and impurity
distribution functions required to evaluate this friction, using model collision operators
to treat the low collisionality regimes analytically.

2.2. Bulk ion distribution function
The bulk ion distribution function can be treated throughout the low collisionality
regimes of interest here using a recently developed formulation, which was detailed
in Helander et al. (2017a). The distribution is split into pieces which are even and
odd, f±i , with respect to the parallel velocity v‖= σ |v‖|, where σ =±1. The full bulk
ion drift-kinetic equation then splits into two equations,

v‖∇‖f∓i =C±i ( fi)− vdi · ∇f±i , (2.8)

where C±i ( fi) denotes the even and odd parts of the collision operator Ci( fi) and the
independent coordinates are taken to be (r, α, l, εi,µi, σ ), where α labels different field
lines on the same flux surface and l gives the arc length along the magnetic field.

The orbit average may be introduced, which annihilates the left-hand side of (2.8)
and is essentially a time average over the particle trajectory neglecting the drift motion.
The parameter λ=µi/εi divides phase space into regions describing particles trapped
in the magnetic field structures, for which λ> 1/Bmax where Bmax(r) is the maximum
value of the magnetic field strength on the flux surface, and those able to circulate
freely. For circulating particles, the orbit average of an arbitrary function g is defined
as

g(r, εi, µi, σ )= lim
L→∞

∫ L

0
g(r, α, l, εi, µi)

dl
v‖

/∫ L

0

dl
v‖
. (2.9)

This is independent of α, as the integral extends along a field line so passes many
times around the torus on a flux surface, and can also be written in terms of the flux
surface average,

g(r, εi, µi, σ )=
〈

Bg
v‖

〉/〈
B
v‖

〉
. (2.10)

In the trapped region the integral is taken between consecutive bounce points, denoted
l1 and l2 at which B(r, α, l1)= B(r, α, l2)= 1/λ, so

g(r, α, εi, µi)= 1
τb

∫ l2

l1

g+(r, α, l, εi, µi)
dl
|v‖| , (2.11)

where the bounce time τb =
∫ l2

l1
dl/|v‖|.
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The odd piece of the distribution function is needed to evaluate the parallel friction
in (2.7). It was determined in Helander et al. (2017b) for a pure plasma, where it was
used to evaluate the parallel ion flow. For convenience we outline the arguments here,
as we will finally evaluate different velocity space averages of the distribution and
account for an impurity species. Formally, the odd piece of the distribution follows
from the line integral of the even (2.8),

f−i (r, α, l, εi, µi, σ )=
∫ l

l0

[
C+i ( fi)− vdi · ∇f+i

] dl′

v‖
+ X (r, α, εi, µi, σ ) . (2.12)

We will return to the definition of l0 momentarily. Ruling out the collisional limit for
the bulk ions, the odd (2.8) indicates that f+ is a function of the constants of the
motion, and the integration constant X is then determined by the orbit average

vdi · ∇f−i =C−i ( fi). (2.13)

The orbit average of the even equation (2.8) constrains the even piece of the
distribution function appearing above,

vdi · ∇f+i =C+i ( fi). (2.14)

This entails the assumptions on the quality of confinement noted in § 1. The ratio
of the right to left-hand side of (2.14) is formally of the order ν∗i/ρ∗i. In the 1/ν
regime, collisions are sufficiently dominant that the distribution function is nearly a
Maxwellian and the derivation can proceed quite readily (Helander 2014). At lower
collisionality, orbit drifts can generate loss regions in velocity space, and the plasma
is not generally in a local thermodynamic equilibrium (recent treatments of the
behaviour of near-quasisymmetric systems can be found, for example, in Helander
(2014), Calvo et al. (2015)). Two limits in which confinement can be adequately
restored are known (Ho & Kulsrud 1987; Calvo et al. 2014, 2015, 2017) – they were
outlined in Helander et al. (2017b) and can be summarised as follows. One is that
in which the drift in the radial electric field, vE =−∇Φ × b/B, is sufficiently strong
compared to the magnetic drift, vM, that the bounce-averaged orbits stay close to a
flux surface – this is often consistent with a large aspect ratio system. The other is
when the orbit-averaged magnetic drift is small compared to the local value, which
is achieved when a stellarator is optimised to be near omnigeneous. In both cases
the distribution function is maintained near to Maxwellian, and is constant on a flux
surface, thereby making the electrostatic potential a flux surface function, as assumed
earlier.

We therefore assume here that either we are in the 1/ν regime, or one of the
above low collisionality conditions is satisfied. The even distribution can then be
written in the form f+i = F0 + F1, where F0(εi, r) is a Maxwellian, and F1 � F0,
remembering that it is constant along field lines, so is independent of l in the
trapped region of phase space, and independent of α and l in the circulating region.
As the averaged drift vdi · ∇r(∂rF0) = 0 in the circulating region, it was argued
in Helander et al. (2017b) that F1 is small in the circulating region, compared to its
value in the trapped region, and we will neglect it. In the 1/ν regime, F1 = 0 also
in the trapped region. In the lower collisionality regimes, the orbit average (2.14)
requires vd · ∇α(∂αF1) + vd · ∇r(∂rF0) ≈ 0. (The resolution of the behaviour of the
distribution in the trapped–passing boundary layer is required to evaluate the bulk ion
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transport (Ho & Kulsrud 1987), but is not needed here.) The explicit drift term in
(2.12) can then be conveniently written for the low collisionality regimes of interest
here as

vdi · ∇f+i =
(
vdi · ∇r− εtvdi · ∇r

) ∂fMi

∂r
, (2.15)

where εt = 0 in the 1/ν regime, and εt = 1 in the trapped region of phase space and
zero otherwise in the

√
ν regime.

Now we consider the integration constant X. As the odd piece of the distribution
function must vanish at a bounce point, if we choose l0 in (2.12) to be such a point,
then X = 0 in the trapped region. Therefore, we set:

B(l0)=
{

1/λ λ> 1/Bmax,
Bmax λ< 1/Bmax.

(2.16)

In the circulating region, X is set by the constraint equation (2.13). Using the
conservative form of the particle drift, equation (2.3), along with the condition that
circulating particles do not drift from their flux surfaces on average, it was shown in
detail in Helander et al. (2017b) that this constraint reduces to the following familiar
form, for the low collisionality regimes of interest,〈

B
v‖

C−i ( fi)

〉
= 0. (2.17)

In the next section we introduce a model collision operator which allows the
integration constant to be determined explicitly, using this constraint. We will then
have, with (2.15), the expression for f−i needed to evaluate the moments giving the
bulk ion flow and the impurity flux.

2.3. Bulk ion collision operator
The differences in the bulk ion flow in a pure plasma which result from using different
forms of the collision operator to determine the odd piece of the distribution were
discussed in Helander et al. (2017b). Similar considerations apply when evaluating
particle fluxes via (2.4) and (2.7). It is well known that a momentum conserving
collision operator is at least required to maintain the intrinsic ambipolarity of transport
driven by friction (see, for example, Sugama & Nishimura (2002), Maaßberg, Beidler
& Turkin (2009)). Therefore, we adopt here the following description of the bulk ion
collisions.

Due to the disparate ion masses, we use a common approximation to the bulk
ion–impurity collision operator Ciz (Rosenbluth, Hazeltine & Hinton 1972; Helander
& Sigmar 2002),

Ciz( fi)= ν iz
D(v)

(
L( fi)+ miv‖Vz‖

T
fMi

)
. (2.18)

The pitch angle scattering operator L = (1/2)∂ξ (1 − ξ 2)∂ξ , where ξ = cos θ = v‖/v
is the cosine of the particle pitch angle. With the normalised velocity xa = v/vTa,
the deflection frequency ν iz

D(v) = 3π1/2/4τizx3
i = ν̂ iz

D/x3
i and the collision time τiz =

3(2π)3/2
√

miT3/2ε2
0/nzZ2e4 lnΛ. The parallel impurity flow, Vz‖, will be determined in
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the next section. Bulk ion self-collisions are described by an operator with a similar
structure (Rosenbluth et al. 1972; Connor 1973), that is, a combination of pitch angle
scattering and a momentum restoring term,

Cii( fi)= ν ii
D(v)

(
L( fi)+ miv‖Vi‖

T
fMi

)
. (2.19)

The full energy-dependent deflection frequency ν ii
D(v) = ν̂ ii

D[φ(xi) − G(xi)]/x3
i , ν̂ ii

D

is defined in analogy to ν̂ iz
D, the error function φ(x) = (2/

√
π)
∫ x

0 e−y2 dy and
the Chandrasekhar function G(x) = [φ(x) − xφ′(x)]/2x2. The momentum restoring
coefficient Vi‖ will be set by requiring momentum conservation in bulk ion
self-collisions,

∫
v‖C−ii ( fi) d3v = 0. Altogether our model bulk ion collision operator

is Ci =Cii +Ciz, and we introduce the total collision frequency ν i
D(v)= ν ii

D + ν iz
D. The

bulk ion flow was evaluated in Helander et al. (2017b) for the case Ci = Cii, with
nz= 0, and as expected many similar steps appear in the derivation here. We highlight
throughout the changes introduced by allowing for an impurity species.

For convenience we can set the electrostatic potential to zero on the surface of
interest, and use the velocity space coordinate λ= v2

⊥/v
2B, which satisfies ∇‖|ε,µλ= 0.

The pitch angle scattering operator can be written as L = (2ξ/B)∂λ(λξ∂λ) and ξ =
±√1− λB. The passing region constraint equation (2.17) is then

∂

∂λ
λ

〈√
1− λB∂f−i

∂λ

〉
+ miv

2T

〈
(ν ii

DVi‖ + ν iz
DVz‖)B

〉
ν i

D(v)
fMi = 0. (2.20)

Integrating over λ, with λ< 1/Bmax, the integration constant vanishes upon requiring
regularity at λ= 0. We can now insert the general form for f−i from (2.12), noting that
F1 is taken to be negligible in the passing region, so the contribution from the term
explicitly involving the collision operator vanishes. We thus obtain a simple extension
to equation (4.7) of Helander et al. (2017b) to account for the presence of an impurity
species,

∂X
∂λ
=− miv

2Ti 〈ξ〉

(〈
(ν ii

DVi‖ + ν iz
DVz‖)B

〉
ν i

D(v)
fMi + T

ei
〈g4〉 ∂fMi

∂r

)
, (2.21)

where the contribution from the drift term in (2.12) gave rise to the known geometry
function (Nakajima et al. 1989; Helander, Geiger & Maaßberg 2011)

g4(λ, l)= ξ
∫ l

lmax

(b×∇r) · ∇ξ−1 dl′, (2.22)

with λ < 1/Bmax and B(lmax) = Bmax. The full form for the integration constant X in
the bulk ion distribution equation (2.12) is thus given by (2.21), for λ< 1/Bmax, and
X= 0, for 1/Bmax < λ< 1/Bmin, where Bmin is the minimum field strength on the flux
surface.

The momentum restoring coefficient, Vi‖, is determined by momentum conservation
in bulk ion self-collisions,

0=mi

∫
v‖C−ii ( fi) d3v =mi

∫
v‖ν ii

D

(
L( f−i )+

miv‖Vi‖
T

fMi

)
d3v, (2.23)
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as the self-adjoint property of the Lorentz operator gives

Vi‖ = 1
ni{ν ii

D}
∫
ν ii

Dv‖f
−
i d3v. (2.24)

Here we have introduced the velocity space average (Hirshman 1976) for a function of
the magnitude of the velocity, {F(v)} = (8/3√π)

∫∞
0 F(x)x4e−x2 dx, so {ν ii

D}τii =
√

2−
ln(1+√2). Inserting f−i from (2.12), we see as detailed in Helander et al. (2017b) that
the term explicitly containing C+( fi) does not contribute when the collision operator
is of the form assumed here. The explicit drift term is usefully written in terms of
the function u defined in § 2.1, using the projection vdi · ∇r of (2.3), and results in
the same contribution as in Helander et al. (2017b), with the integration constant in
u fixed by taking u= 0 where B=Bmax. The appearance of the impurity flow term in
the integration constant here, however, gives an additional contribution compared to
equation (4.12) of Helander et al. (2017b),

− 1
ni{ν ii

D}
〈

B2
∫ ∞

0
dv 2πv2ν ii

D

∫ 1/Bmax

0
λ
∂X
∂λ

dλ
〉

= fc

{ν ii
D}

({
ν ii

D
2

ν i
D

} 〈
BVi‖

〉+{ν iz
D

2

ν i
D

} 〈
BVz‖

〉)+ fsT
e
(A1i − ηA2i), (2.25)

where it has been anticipated that we will only need the restoring coefficient in the
form

〈
BVi‖

〉
. So we find the following modification of equation (6.8) of Helander et al.

(2017b) in the presence of an impurity species,

〈
BVi‖

〉 [
1− fc{

ν ii
D

} {ν ii
D

2

ν i
D

}]
− fc{

ν ii
D

} {ν ii
Dν

iz
D

ν i
D

} 〈
BVz‖

〉
= T

ei
(A1i − ηA2i)

[
fs +

〈
(u+ s)B2

〉]
, (2.26)

which reduces to that expression in the limit of a pure plasma, where nz → 0 and
ν i

D→ ν ii
D. Here η= {ν ii

D(5/2− x2)}/{ν ii
D} = (5/2)− 1/[2−√2 ln(1+√2)],

fc = 3
〈
B2
〉

4

∫ 1/Bmax

0

λ dλ〈√
1− λB〉 , fs = 3

〈
B2
〉

4

∫ 1/Bmax

0

〈g4〉 λ dλ〈√
1− λB〉 , (2.27a,b)

and the term s is zero in the 1/ν regime, and given in the
√
ν regime by

s(l)= 3
2

∫ l

lmax

dl′
∫ 1/B(l′)

1/Bmax

dλ
ξ(l′)

ξ (b×∇r) · ∇
(
ξ

B

)
. (2.28)

Finally, with the assumed quality of confinement described in § 2.2 (that is F0 ≈
fMi) and the model collision operator, equation (2.18), then adopted here, the parallel
friction in (2.7) needed to determine the particle flux takes the form

Rzi‖ =mi

∫
ν iz

D(v)v‖f
−
i d3v − mini

τiz
Vz‖. (2.29)

We therefore now need an expression for the parallel impurity flow and in the next
section we consider the impurity distribution function.
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2.4. Impurity distribution function
As introduced in § 2.1, the collisional impurity species can be treated by the usual
expansion of (2.5) in the small parameter 1/ν∗zz (Braun & Helander 2010), allowing
for νzz ∼ νzi. At order −1, Cz( f (−1)

z1 )= 0, so the impurity distribution has the form of
a perturbed Maxwellian (Helander & Sigmar 2002),

f (−1)
z1 =

[
p(−1)

z

pz
+ mz

T
v‖V

(−1)
z‖ +

(
x2

z −
5
2

)
T (−1)

z

T

]
fz0. (2.30)

The parallel flow, V (−1)
z‖ , is constrained by momentum conservation in this order∫

mzv‖Czi( f (−1)
z1 ) d3v = 0, (2.31)

and we take the disparate mass form for the collision operator Czi (Helander & Sigmar
2002; Hazeltine & Meiss 2003),

Czi ( fz1)=− Rzi

mznz
·
∂fz0

∂v
+ mini

mznzτiz

∂

∂v
·

[
(v − V z)fz1 + T

mz

∂fz1

∂v

]
. (2.32)

Using this in (2.31) gives simply R(−1)
zi‖ = 0. Considering the balance in (2.29),

this would require an impurity flow V (−1)
z‖ ∼ ρ∗ivTi here, that is V (−1)

z‖ /vTz ∼ ρ∗zZ.
However, by definition of the collisional expansion, V (−1)

z‖ ∼ ρ∗zvTzν∗zz, that is
V (−1)

z‖ /vTz ∼ ρ∗zZ(ν∗iznzZ/ni). For the collisionless ions ν∗iz � 1, so restricting the
impurity density such that ν∗iznzZ/ni < 1 holds (hence we do not consider a pure
‘impurity’ plasma) the two conditions would give a contradiction. This is resolved
by requiring V (−1)

z‖ = 0, and so R(0)zi‖ is found to be the leading-order friction driving
the particle flux. (Note this can be compared to the derivation given by Braun &
Helander (2010) for the fully collisional case, where V (−1)

z‖ = 0 still results.)
The form of the leading-order flow, Vz‖ ≈ V (0)

z‖ , may also be found as usual
by considering density conservation from the v‖/B moment of (2.5) written in
conservative form using (2.3), or radial force balance combined with incompressibility
of the equilibrium flow in leading order:

Vz‖ =
(

1
Zenz

dpz

dr
+ dΦ

dr

)
uB+ Kz(r)B

nz
. (2.33)

A constraint on the flux surface function Kz is obtained from the Spitzer-type problem
for f (0)z1 arising at zeroth order in the collisional expansion of (2.5),

Cz( f (0)z1 )= v‖fz0

[
A(−1)

z1‖ +
(

x2
z −

5
2

)
A(−1)

z2‖

]
, (2.34)

where the parallel driving forces resulting from f (−1)
z1 are

A(−1)
z1‖ =

∇‖p
(−1)
z1

pz
+ Ze

T
∇‖φ

(−1)
1 , A(−1)

z2‖ =
∇‖T

(−1)
z1

T
. (2.35a,b)
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Parallel momentum conservation, that is the mzv‖ moment of (2.34), gives

R(0)zi‖ = nzTA(−1)
z1‖ . (2.36)

Upon taking the B-weighted flux surface average, the general property of the
divergence of a vector field F,

〈∇ ·F〉 = 1
V ′(r)

∂

∂r

〈
V ′(r)F · ∇r

〉
, (2.37)

where V is the volume enclosed by a flux surface, annihilates the parallel gradient
terms and sets the constraint, 〈

BR(0)zi‖
〉
= 0. (2.38)

This relation was first discussed in the context of transport in the mixed collisionality
regime of a tokamak in Hirshman (1976). Applying this to (2.29) results in

〈
BVz‖

〉= T
Ze

A1z
〈
uB2
〉+ Kz(r)

nz

〈
B2
〉= τiz

ni

〈
B
∫
ν iz

D(v)v‖f
−
i d3v

〉
. (2.39)

We will find in the following section that we do not need to solve explicitly for
the function Kz to determine the particle flux. Note that, in combination with the
choice of the momentum restoring form for the bulk ion collision operator, this leads
us to expect that the analytical result obtained here for the impurity flux will be in
good agreement with the result of the DKES code when the momentum conserving
correction is applied (Hirshman et al. 1986; van Rij & Hirshman 1989; Maaßberg
et al. 2009). This was seen already in the numerical results presented in Helander
et al. (2017a).

3. Impurity flux

With the ion distribution in (2.12), and the constraint equations (2.26) and (2.39),
we can now finalise the expression for the parallel friction driving the impurity flux in
(2.4). The integral needed in (2.29), and appearing in (2.39), is very similar to that in
the expression for the momentum restoring coefficient, equation (2.24), but with the
simpler velocity dependence of ν iz

D, rather than ν ii
D.

Again the contribution from the collision operator vanishes and similar contributions
arise from the explicit drift terms, resulting in

Rzi‖ = mipi

eτiz

(
A1i − 3

2
A2i

)
(u+ s)B+ P(r)B− mini

τiz
Vz‖, (3.1)

where the flux function P(r) contains the contribution resulting from the integration
constant X,

P(r)= mipi

eτiz

[
fs〈
B2
〉 (A1i − 3

2
A2i

)
+ eτiz

T
fc〈
B2
〉 ({ν iz

Dν
ii
D

ν i
D

} 〈
BVi‖

〉+{ν iz
D

2

ν i
D

} 〈
BVz‖

〉)]
.

(3.2)
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Substituting for Vz‖ from (2.33) gives

Rzi‖ = mipi

eτiz

[(
A1i − 3

2
A2i

)
(u+ s)B− A1z

Z
uB
]
+
[

P(r)− mini

nzτiz
Kz(r)

]
B, (3.3)

and we see that the friction has the following general structure

Rzi‖ =G1(r)uB+G2(r)sB+G3(r)B, (3.4)

where the bulk ion momentum restoring coefficient and impurity flow coefficient Kz
only appear in the flux function G3. The impurity flow constraint gives〈

BRzi‖
〉=G1(r)

〈
uB2
〉+G2(r)

〈
sB2
〉+G3(r)

〈
B2
〉= 0, (3.5)

so we may eliminate G3, and thus do not need to evaluate Vi‖ or Kz explicitly. Finally
then, the radial impurity flux is given by

Γz = 1
Ze

〈
uBRzi‖

〉=− mipi

Ze2τiz

[
1
Z

A1z

(〈
u2B2

〉− 〈uB2
〉2〈

B2
〉 )

−
(

A1i − 3
2

A2i

)(〈
u(u+ s)B2

〉− 〈(u+ s)B2
〉 〈uB2

〉〈
B2
〉 )] . (3.6)

The transport coefficients introduced in (2.1) can now be identified from the flux
given in (3.6). We can usefully note the appearance of the Pfirsch–Schlüter coefficient
in the flux of the collisional species, which can also be written in terms of the parallel
current,

DPS = miTi

e2τiz

(〈
u2B2

〉− 〈uB2
〉2〈

B2
〉 )= ρ2

i

τiz

〈
J2
‖
〉 〈

B2
〉− 〈J‖B〉2

(dp/dr)2
, (3.7)

and by the Schwartz inequality satisfies DPS > 0. Therefore Dzz
11 = −niDPS/Z2nz, and

a given impurity density gradient drives an impurity flux in the opposite direction, as
the increase of entropy requires. Note that the transport coefficients are independent
of the impurity content, up to an overall density prefactor coming from τiz.

When the bulk ions are in the 1/ν regime, s = 0 and Dzi
11 = −ZDzz

11, driving an
impurity flux in the same direction as the bulk ion density gradient. The equality
between the coefficients has also been shown to hold in the high collisionality limit,
where both ion species are collisional (Braun & Helander 2010), and so the flux driven
directly by the electric field cancels out in both of these regimes. We also see that
Dz

12 = −(3/2)Dzi
11, so there will be temperature screening when the bulk ions are in

the 1/ν regime, just as in a mixed collisionality tokamak (Hirshman 1976; Samain &
Werkoff 1977). In the presence of a temperature gradient typically pointing inward,
we thus expect an outward impurity flux to be driven if the logarithmic temperature
gradient is more than twice that of the density, ηi = ∂ ln Ti/∂ ln ni > 2. This outward
flux will not be overcome by any direct drive from the electric field, contrary to the
expectation for lower collisionality regimes. Note that such temperature screening is
typically not the case in a collisional plasma (Hirshman 1977; Braun & Helander
2010), but an exception can occur in the very relevant case of a heavy impurity in a
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relatively clean plasma (Rutherford 1974; Burrell & Wong 1981), where the effect of
bulk ion friction dominates over that of impurity self-collisions.

As the bulk ions move into the lower collisionality
√
ν regime, the exact

cancellation of the electric field drive coefficients is broken, leaving a drive
which is proportional to the geometric quantity originating in the trapped particle
drift,

〈
usB2

〉 − 〈sB2
〉〈

uB2
〉
/
〈
B2
〉
. This is not sign definite and must be evaluated

numerically for a given equilibrium, but we may expect it to be small in a
well-optimised device. The relation Dz

12 = −(3/2)Dzi
11 remains valid, and depending

on the sign of the geometric factor, either temperature screening will persist, or the
bulk ion density gradient, typically pointing inward, will drive an additional outward
impurity flux. The net flux, and strength of the drive by the electric field which
typically points inward (Hirsch et al. 2008; Klinger et al. 2017), must finally be
determined numerically in this low collisionality regime.

It is of interest to consider the tokamak limit of the above results, where s = 0.
The axisymmetric magnetic field can be written in the usual form: B = I(ψ)∇φ +
∇φ ×∇ψ , where ψ the poloidal flux function is used as the radial coordinate, φ is
toroidal angle and I is related to the confining toroidal magnetic field (Helander &
Sigmar 2002), so the function u→ I

∫ l
lmax
∇‖B−2 dl′ = I(B−2 − B−2

max). We then recover
the well-known expression

Γ tok
z =−

mipiI2

Ze2τiz

(
A1z

Z
− A1i + 3

2
A2i

)(〈
1
B2

〉
− 1〈

B2
〉) , (3.8)

first derived in Hirshman (1976), which shows temperature screening when the bulk
ion temperature decreases radially, as expected. We see that in the tokamak limit, the
elimination of the function G3 by (3.5) represents the fact that the radial flux of a
collisional species is driven only by the variation of the parallel friction on a flux
surface.

3.1. Two collisional impurities
There are typically many impurity species present in magnetically confined fusion
plasmas. A common situation is one in which there are trace amounts of a particularly
heavy impurity, often released from the exhaust region, in a background of an
otherwise dominant impurity, which may be released for example from the main walls.
The transport of the heavier impurity is of particular importance, as it will be the most
difficult to ionise and thus poses the strongest potential source of core radiation losses.
The results presented above allow us to make the following interesting observation
when both impurity species are taken to be collisional, extending somewhat the
analysis presented for the tokamak in Burrell & Wong (1981).

We denote the lighter impurity by a subscript A here, with charge ZA � 1, and
continue to use z for the heavier impurity. Following Braun & Helander (2010),
V (−1)

z‖ = V (−1)
A‖ = 0 as the species are collisional, and a flow cannot be driven at this

order through interaction with the collisionless bulk. Also, as species A is collisional,
the radial flux of species z will continue to be dominated by the friction drive, as
long as (2.6) is satisfied, so

Γz = 1
Ze

〈
uBRz‖

〉= 1
Ze

〈
uB(Rzi‖ + RzA‖)

〉
. (3.9)
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Assuming that the bulk ions and species A have disparate masses, mi�mA, collisions
between them can be modelled by a collision operator analogous to that in (2.18). The
contribution to the impurity flux from Rzi‖=−Riz‖ can then be determined as a simple
extension of the results above – we will again obtain (3.1) and (3.3), but with the flux
function P(r) modified such that ν i

D→ ν ii
D + ν iz

D + ν iA
D and{

ν iz
D

2

ν i
D

} 〈
BVz‖

〉→{
ν iz

D
2

ν i
D

} 〈
BVz‖

〉+{ν iz
Dν

iA
D

ν i
D

} 〈
BVA‖

〉
. (3.10)

Parallel momentum constraints analogous to (2.38) are obtained similarly for the two
collisional species, 〈

B(Rzi‖ + RzA‖)
〉= 0 (3.11)〈

B(RAi‖ + RAz‖)
〉= 0. (3.12)

The first of these allows us to again eliminate G3 from (3.4) leaving

Rzi‖ =G1(r)

(
uB− 〈uB2

〉 B〈
B2
〉)+G2(r)

(
sB− 〈sB2

〉 B〈
B2
〉)− B〈

B2
〉 〈BRzA‖

〉
.

(3.13)

Note that the total radial impurity current is

Jimp ≡ ezΓz + eAΓA =−
〈
uB(Riz‖ + RiA‖)

〉
. (3.14)

The disparate mass collision operator adopted will lead to an expression for
RiA‖ = −RAi‖ analogous to (3.3). Summing the two constraints in (3.12) gives〈

B(Riz‖ + RiA‖)
〉 = 0, which allows all of the unknown flux functions

〈
BVi‖

〉
, KA

and Kz to again be eliminated from the flux, leaving

Jimp = −mipi

eτiz

[(
A1z

Z
+ 1
ζA

A1A

ZA

)(〈
u2B2

〉− 〈uB2
〉2〈

B2
〉 )

−
(

1+ 1
ζA

)(
A1i − 3

2
A2i

)(〈
u(u+ s)B2

〉− 〈(u+ s)B2
〉 〈uB2

〉〈
B2
〉 )], (3.15)

where ζA= nzZ2/nAZ2
A. The total impurity current can thus also experience temperature

screening, under the conditions described in the previous section.
To form the explicit expression for the flux of the heavier impurity, we still need

to determine the combination

〈
uBRzA‖

〉− 〈uB2
〉〈

B2
〉 〈BRzA‖

〉
, (3.16)

where the friction RzA‖=mz
∫
v‖CzA( fz, fA) d3v contains the linearised collision operator

CzA acting on the distribution functions of the two collisional species. These are given
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to leading order by the solution of (2.34) and the analogous equation for f (0)A1 . The
solution can be written as an expansion in Sonine polynomials, L(3/2)α (x2), such that

f (0)a1 =
2∑
α=0

uaαL(3/2)α (x2
a)

mav‖
T

fMa. (3.17)

With L(3/2)0 (x2) = 1 and L(3/2)1 (x2) = (5/2) − x2, the expansion coefficients may be
recognised as ua0 = Va‖ and ua1 = −2qa‖/5pa, where qa‖ is the parallel heat flux.
Substituting this expansion into RzA‖, the integration over the collision operator may
be performed directly (Helander & Sigmar 2002), and the parallel friction coefficients
will depend on the mass ratio of the impurities. We treat the case of disparate impurity
masses, mA�mz and ZA� Z, explicitly here, which may give a good approximation
to the experimentally relevant case of a low collisionality bulk H plasma with a main
impurity such as C from the walls, and a low density, heavier component, such as Fe.
Then

RzA‖ = mini

τiz

√
mA

mi

nAZ2
A

ni

(
VA‖ − Vz‖ − 3

5
qA‖
pA
+ 15

8
uA2

)
. (3.18)

The v‖L2-moment of (2.34) for species A relates the coefficient uA2 to the parallel
flows in the disparate mass limit,

uA2 = 1(
45
√

2+ 433ζA/4
) [30ζA

(
Vz‖ − VA‖

)+ 2
5

(
12
√

2+ 69ζA

) qA‖
pA

]
. (3.19)

The parallel species flows in (3.18), Vz‖ and VA‖, have the general form of (2.33).
In the combination of (3.16), all terms containing the flux functions Kz and KA cancel,
leaving only contributions to the impurity flux from the radial gradients A1z and A1A.
The form of the parallel heat flows in (3.18) can be determined using the v‖εz/B
moment of the conservative form of (2.5) (and the analogous equations for species
A and i), which gives the equation of energy conservation for a species,

B∇‖

(
qa‖
B
− 5

2
paT
ea

A2au
)
=
∫

mav
2

2
Ca( fa1) d3v. (3.20)

The energy exchange between species appearing on the right-hand side competes
with the parallel heat flux to determine the parallel temperature perturbation on a flux
surface. It is typified here for disparate mass species using the second term of (2.32),
giving for example ∫

mzv
2

2
Czi( fz) d3v = 3mini

mzτiz
(Ti − Tz) , (3.21)

between the heaviest impurity and the bulk ions (remember to leading order here
the ion temperatures are equal, which leaves only the perturbed temperatures in this
expression). The v‖L1 and v‖L2-moments of (2.34) give us, in the disparate mass case,
the heavy impurity parallel heat flux

qz‖ =−125
√

2
32

p2
zτzz

nzmz
A(−1)

z2‖ . (3.22)
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Thus we see that energy exchange with the low collisionality bulk ions can only be
neglected when 1� (ni/nz)

√
mi/mzν∗zzν∗iz, which cannot be satisfied consistently with

the condition (2.6). This arises similarly for energy exchange between the impurity
species A and the bulk ions. Energy exchange between the collisional impurity
species is dominant when 1� (Z2/Z2

A)
√

mA/mzν∗zzν∗AA, which will always be satisfied.
Therefore we take the perturbed temperature of each impurity species to be equal, and
set by energy exchange to that of the collisionless bulk ions. The parallel temperature
gradients will then be negligible, and so the parallel impurity heat fluxes can be
neglected in the expressions above.

The flux of the heaviest impurity can now be constructed from (3.9), (3.13),
and (3.18), with (3.19) and the parallel flows just discussed, giving the final form

〈Γz · ∇r〉 = − mipi

Ze2τiz

{[(
1+

√
mA

mi

nAZ2
A

ni
(1− Y)

)
A1z

Z
−
√

mA

mi

nAZ2
A

ni
(1− Y)

A1A

ZA

]

×
(〈

u2B2
〉− 〈uB2

〉2〈
B2
〉 )

−
(

A1i − 3
2

A2i

)(〈
u(u+ s)B2

〉− 〈(u+ s)B2
〉 〈uB2

〉〈
B2
〉 )} , (3.23)

where Y = 225ζA/(180
√

2+ 433ζA). The net drive from the electric field still vanishes
in the 1/ν (s = 0) regime. The second impurity enhances the flux driven by the
impurity density gradient, whilst introducing an oppositely directed component
to the flux, when both impurity density gradients have the same sign. The net
effect of introducing a second collisional species thus depends on the combination
(Z−1A1z − Z−1

A A1A), producing an additional outward contribution to the flux when
this quantity is negative. Note that the result above does not require that the heaviest
impurity z is only present in trace quantities, but does also correctly describe that
case.

4. Bulk ion flow
In this section we determine the bulk ion flow parallel to the magnetic field in

a mixed collisionality plasma, returning to the case where only a single collisional
impurity species is present. The flow is needed to evaluate the bootstrap current,
which was considered for a pure plasma in the low collisionality 1/ν and

√
ν

regimes in Helander et al. (2017b). The bulk ion parallel flow has the same general
form as that of the impurities in (2.33), and it is in order to determine the equivalent
flux surface function, Ki(r), that we require a kinetic solution.

We must evaluate the integral of the bulk ion distribution function,

〈
Vi‖B

〉= 1
ni

〈
B
∫
v‖f−i d3v

〉
. (4.1)

As discussed in § 2.3, such an integral was considered in Helander et al. (2017b)
with the momentum conserving bulk ion self-collision operator used here. The
similar structure of the disparate mass bulk ion–impurity collision operator adopted
here allows the form of the integral to be given readily upon inserting the odd
piece of the distribution, equation (2.12), into (4.1) and following the procedure
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of Helander et al. (2017b). The term containing the collision operator is seen to
vanish due to particle conservation in collisions, while the term containing the
drifts recovers equation (6.4) of Helander et al. (2017b). The effect of the additional
impurity collisions again appears through their contribution to the integration constant,
extending (4.17) of Helander et al. (2017b) analogously to (2.25) here. This produces
the modified flow expression

〈
Vi‖B

〉= T
e

A1i
(

fs +
〈
(u+ s)B2

〉)+ fc
〈
BVi‖

〉 ({ν ii
D

ν i
D

}
+
{
ν iz

D

ν i
D

} 〈
BVz‖

〉〈
BVi‖

〉) . (4.2)

We can finally eliminate the inter-dependent flux surface-averaged quantities
〈
BVi‖

〉
and

〈
BVz‖

〉
appearing here. The expression for

〈
BVi‖

〉
was given in (2.26) and the

integral on the right-hand side of (2.39) giving
〈
BVz‖

〉
was evaluated in § 3, leading

to the first two terms on the right-hand side of (3.1). Thus we can form the ratio

〈
BVz‖

〉〈
BVi‖

〉 =
(

A1i − 3
2

A2i

)(
1− fc{

ν ii
D

} {ν ii
D

2

ν i
D

})
+ (A1i − ηA2i) fcτiz

{
ν iz

Dν
ii
D

ν i
D

}

(A1i − ηA2i)

(
1− fcτiz

{
ν iz

D
2

ν i
D

})
+
(

A1i − 3
2

A2i

)
fc{
ν ii

D

} {ν ii
Dν

iz
D

ν i
D

} ,
(4.3)

and extract〈
BVi‖

〉 = T
e

(
fs +

〈
(u+ s)B2

〉)

×
(A1i − ηA2i)

(
1− fcτiz

{
ν iz

D
2

ν i
D

})
+
(

A1i − 3
2

A2i

)
fc{
ν ii

D

} {ν ii
Dν

iz
D

ν i
D

}
(

1− fc{
ν ii

D

} {ν ii
D

2

ν i
D

})(
1− fcτiz

{
ν iz

D
2

ν i
D

})
− f 2

c τiz{
ν ii

D

} {ν ii
Dν

iz
D

ν i
D

}2 .

(4.4)

The bulk ion contribution to the bootstrap current can be written in terms of
transport coefficients as follows〈

Ji‖B
〉= nie

〈
Vi‖B

〉= pi
(
Lii

31A1i +Lii
32A2i

)
. (4.5)

These coefficients can be identified directly from (4.2) to (4.4). However, to clarify the
expressions analytically, we now assume a simplified dependence of the bulk ion self-
collision frequency on velocity (Newton & Helander 2006), taking it to have the same
form as the bulk ion–impurity collision frequency introduced in (2.18). This gives

ν iz
D

ν ii
D
≈ τii

τiz
= nzZ2

z

ni
≡ ζ , (4.6)

where the parameter ζ usefully represents the impurity content. Defining the effective
charge Zeff =

∑
a=i,z naZ2

a/ne, the approximation in (4.6) reproduces the correct limits
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for Zeff → 1 and Zeff →∞, and when in the trace limit, nzZ � ni, reduces to the
familiar Zeff ≈ 1+ ζ . The last term of (4.2) now simplifies to({

ν ii
D

ν i
D

}
+
{
ν iz

D

ν i
D

} 〈
BVz‖

〉〈
BVi‖

〉) 〈BVi‖
〉

= T
e

(
fs +

〈
(u+ s)B2

〉)
1− fc

[
Ai1 − 3

2
(ζ + 2η/3)

1+ ζ A2i

]
. (4.7)

Thus we have a generalisation of equation (6.9) of Helander et al. (2017b) to the case
of a mixed collisionality plasma with finite impurity content,

〈
Ji‖B

〉= pi

(
fs +

〈
(u+ s)B2

〉)
1− fc

[
A1i − 3

2
fc
(ζ + 2η/3)

1+ ζ A2i

]
. (4.8)

Note that, when s= 0, the contribution from the radial electric field is cancelled by a
similar contribution to the electron bootstrap current (Helander et al. 2017b), making
the total current independent of Er in the 1/ν regime.

We can see from (4.2) that if bulk ion collisions are approximated by pure
pitch angle scattering (PAS) the momentum restoring terms do not appear, so〈
Ji‖B

〉PAS= piA1i( fs+
〈
(u+ s)B2

〉
) and the effect of the impurities only enters through

the alteration of the main ion density in the prefactor. Accounting for momentum
conservation in collisions introduces Lii

32, which has an explicit dependence on
impurity content. In the axisymmetric tokamak limit, with s = 0, fs → I( fc −〈
B2
〉
/B2

max) and fs −
〈
uB2
〉 → −I(1 − fc), and so we recover the expression for

the bulk ion current in the presence of impurities (Newton & Helander 2006; Field
et al. 2009).

5. Discussion
Neoclassical impurity accumulation in the core of stellarator plasmas, under the

action of the radial electric field, has long been considered inevitable. The conclusion
was based on simplified models of the collisional interaction between species. We
have extended the treatment of stellarator impurity transport to the mixed collisionality
regime analytically, using a general flux-friction relation which was introduced
previously to treat collisional plasmas. In this experimentally relevant regime, a
heavy, highly charged, collisional impurity is taken to be present in a hydrogenic,
bulk plasma, with the bulk ions in one of the low collisionality stellarator regimes.
Here we have treated specifically the 1/ν and

√
ν regimes, assuming the electric field

is sufficiently strong or the geometry is sufficiently well optimised that the plasma is
well confined. The impurity flux is then dominated by the drive from friction against
the bulk ions, with the formal requirement set by (2.6).

The results here show that in the mixed collisionality limit, impurity temperature
screening will occur when the bulk ions are in the 1/ν regime, if the logarithmic
temperature gradient is more than twice the logarithmic density gradient, ηi > 2. In
the appropriate limit, the impurity flux reduces to that of a tokamak, where such a
screening effect is expected. Furthermore, the direct drive of the impurity flux by
the electric field vanishes, contrary to the usual expectation, when the bulk ions are
in the 1/ν regime. This feature does not hold as the bulk ions move into the lower
collisionality

√
ν regime, as an additional geometric factor appears in the bulk ion
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gradient drive terms, originating in the orbit average of the trapped particle drift.
This factor may be expected to be small in a well-optimised stellarator, which would
result in an impurity flux driven only weakly by the electric field, and a weakly
affected temperature screening. As the proportionality between the bulk ion density
and temperature gradient drives is maintained throughout the two low collisionality
regimes considered here, any reduction in temperature screening is accompanied by
an increased outward flux of impurities driven by the bulk ion density gradient. The
net direction of the remaining, small impurity flux will thus have to be determined
numerically in the lower collisionality regime. In practice, when this flux is sufficiently
small, it may be overwhelmed by turbulent transport.

The presence of a second, lighter, collisional impurity species is found to enhance
the flux of the heaviest impurity driven by its own density gradient. However, it also
introduces a flux driven in the opposite direction, by the density gradient of the second
species, which may be expected to dominate and give a typically inward contribution
to the flux.

We will present a numerical study of the transport coefficients derived here in an
upcoming paper, using the neoclassical code SFINCS (Landreman et al. 2014). This
is a continuum δf code, which can treat multiple species with the full linearised
Landau collision operator. A summary of the initial successful comparison was given
in Helander et al. (2017a). Note that numerical indications of temperature screening
were already seen in Mollén et al. (2015), and the analysis presented here and
summarised in Helander et al. (2017a) provides an explanation of those results.

Finally, the calculation of the radial flux by a flux-friction relation here used the
piece of the bulk ion distribution which is odd in the parallel velocity. With this we
could also evaluate the bulk ion contribution to the bootstrap current, which must be
well controlled in a stellarator with an island divertor, such as W7-X, and consider
the effect of an impurity species. We see as usual that the inclusion of momentum
restoring terms in the collision operator can introduce a substantial change to the
expected flow, and strongly modify the dependence on impurity content.
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