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Kinetic energy and reactive scalar spectra in turbulent premixed flames are studied
from compressible three-dimensional direct numerical simulations (DNS) of a
temporally evolving rectangular slot-jet premixed flame, a statistically one-dimensional
configuration. The flames correspond to a lean premixed hydrogen–air mixture at an
equivalence ratio of 0.7, preheated to 700 K and at 1 atm, and three DNS are
considered with a fixed jet Reynolds number of 10 000 and a jet Damköhler number
varying between 0.13 and 0.54. For the study of spectra, motivated by the need
to account for density change, which can be locally strong in premixed flames, a
new density-weighted definition for two-point velocity/scalar correlations is proposed.
The density-weighted two-point correlation tensor retains the essential properties of
its constant-density (incompressible) counterpart and recovers the density-weighted
Reynolds stress tensor in the limit of zero separation. The density weighting also
allows the derivation of balance equations for velocity and scalar spectrum functions
in the wavenumber space that illuminate physics unique to combusting flows.
Pressure–dilatation correlation is a source of kinetic energy at high wavenumbers
and, analogously, reaction rate–scalar fluctuation correlation is a high-wavenumber
source of scalar energy. These results are verified by the spectra constructed from
the DNS data. The kinetic energy spectra show a distinct inertial range with a
−5/3 scaling followed by a ‘diffusive–reactive’ range at higher wavenumbers.
The exponential drop-off in this range shows a distinct inflection in the vicinity
of the wavenumber corresponding to a laminar flame thickness, δL, and this is
attributed to the contribution from the pressure–dilatation term in the energy balance
in wavenumber space. Likewise, a clear spike in spectra of major reactant species
(hydrogen) arising from the reaction-rate term is observed at wavenumbers close to δL.
It appears that in the inertial range classical scaling laws for the spectra involving the
Kolmogorov scale are applicable, but in the high-wavenumber range where chemical
reactions have a strong signature the laminar flame thickness produces a better
collapse. It is suggested that a full scaling should perhaps involve the Kolmogorov
scale, laminar flame thickness, Damköhler number and Karlovitz number.
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1. Introduction
The study of the spectra of scalars is of great importance for a broad class of

turbulent flows (Warhaft 2000; Dimotakis 2005): temperature and salinity fields in
ocean flows, pollutant dispersion in atmospheric flows, magnetic fields in astrophysical
flows, chemically reacting flows in industrial devices, to cite a few. In turbulent
reacting flows, which are relevant in many industrial and engineering applications,
stiff nonlinear chemical reactions amongst a multitude of reacting scalars (tens to
hundreds of chemical species) introduce length and time scales over a broad range.
Compared to the characteristic scales of the turbulent fluid flow, the chemical scales
are generally, except under extreme circumstances, at the finer end, with some
overlap. Nonetheless, the turbulence–scalar interaction is strong and two-way: fluid
dynamics affects the scalar mixing, which has a bearing on the finite-rate chemical
kinetics; while the reaction-induced density change affects the fluid dynamics. With
few notable exceptions, such as the spectral closure of the eddy-damped quasi-normal
Markovian (EDQNM) approximation (Ulitsky & Collins 1997; Xia et al. 2010),
virtually every modelling methodology of turbulent reacting flows relies on some
implicit or explicit assumptions about the dynamics of turbulence–scalar mixing
and associated scalar spectra. For instance, the widely used laminar flamelet model
for non-premixed turbulent combustion relies on representing the thermochemical
manifold with a single scalar whose evolution equations employ models based on
passive scalar mixing assumptions. While such assumptions are strictly valid for
purely passive scalars in incompressible homogeneous isotropic turbulence, it is
unclear what the consequences of variable density, finite-rate chemical kinetics and
differential species diffusion are on the evolution of scalar spectra. Recent studies
(Swaminathan & Grout 2006; Chakraborty & Swaminathan 2007) have shown that
scalar mixing physics are influenced by heat release in turbulent premixed flames, but
their role in spectral behaviour is unclear. Indeed, even the assumption of universality
of velocity spectra in the so-called dissipation range may be questionable for flows
with strong local density change and dilatation, such as turbulent premixed flames,
although it is routinely used for closing subgrid Reynolds stresses in large-eddy
simulations (LES).

While the spectra of passive scalars have been widely studied, the spectra of
reactive scalars have received limited attention. It is well known from Batchelor’s
early theory (Batchelor 1959) that passive scalars with large Schmidt number exhibit
a k−1 scaling of the power spectrum in the so-called viscous–convective wavenumber,
k, range in which the spectral transfer of velocity is diffusive but that of the scalar
is convective. On the other hand, scalars with small Schmidt number (Batchelor,
Howells & Townsend 1959) exhibit an inertial–diffusive range, with a k−17/3 scaling
for the scalar spectrum. Corrsin (1961) extended these scaling laws for the case of a
scalar undergoing a first-order reaction and elucidated the influence of the reactivity
on the scalar spectrum in the relevant wavenumber ranges for both large and small
Schmidt numbers. However, Corrsin’s analysis is restricted to a very dilute reactant
whose dynamics do not affect the flow field. Nonetheless, his results clearly show that
the spectral dynamics of a reactive scalar depend not just on scales of the background
turbulent flow but also on the characteristic scales of the reactions. Similarly, Kosály
(1993) examined a bivariate reacting system in an incompressible turbulent mixing
layer and derived the reacting scalar spectra in the slow and fast chemistry limits
to compare against the measurements of Bilger, Saetran & Krishnamoorthy (1991).
More recently Wang, Karpetis & Barlow (2007) and Vaishnavi, Kronenburg &
Pantano (2008) reported dissipation spectra of mixture fraction, a conserved scalar,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.392


458 H. Kolla, E. R. Hawkes, A. R. Kerstein, N. Swaminathan and J. H. Chen

in turbulent non-premixed flames from experiments and direct numerical simulations
(DNS), respectively. Knaus & Pantano (2009) examined spectra of kinetic energy,
mixture fraction and temperature from DNS of non-premixed reacting shear layers.
They note that the influence of heat release on the spectra can be accounted for
simply by considering density-weighted large-scale quantities in the classical scaling
laws (except for the dissipation range of the temperature spectrum). Even though
their results are based on DNS with single-step chemical kinetics, they are very
encouraging. They essentially confirm the arguments of Bilger (2004), who showed
that for most practical flows turbulence will overwhelm dilatation due to heat release
in non-premixed flames, and hence passive scalar behaviour is to be expected. This is,
however, not true of premixed flames in which the local dilatation due to heat release
is relatively stronger (Bilger 2004). Hence the spectral dynamics of both velocity and
scalars in premixed flames are likely to be very different from those of non-premixed
flames. Furukawa et al. (2002) report kinetic energy spectra, conditioned on fresh
and burnt gas fluids, for large-Damköhler-number turbulent premixed flames, and
observe an increase in kinetic energy as well as anisotropy in the burnt side relative
to the unburnt side. To the best of our knowledge the only works that have reported
reacting scalar spectra in turbulent premixed flames are the experimental works of
Guttenfelder et al. (2003) and Kariuki, Dawson & Mastorakos (2012), who report
spectra of hydroxyl radical. Little is known of spectra and co-spectra of reacting
scalars at realistic levels of heat release in premixed flames, as noted by Dimotakis
(2005) and Knaus & Pantano (2009), and this is the primary focus of the present
study.

The study of spectra is made difficult by the fact that measuring spectra is
very challenging in both experiments and DNS. In experiments of reacting flows,
selectively imposing conditions such as incompressibility, homogeneity or isotropy
is not straightforward. Furthermore, for statistically stationary flames, estimation of
spectra requires two-point correlation measurements in a three-dimensional field,
which are very difficult to obtain experimentally. These restrictions are alleviated
somewhat in DNS, but performing well-resolved DNS with a large range of dynamic
scales for long durations to achieve statistical convergence is expensive, prohibitively
so for reacting flows. However, with rapid increases in computing power, DNS of
turbulent reacting flows at realistic turbulence levels have become feasible in recent
years. In the present work, we employ one such DNS (Hawkes et al. 2012) to
study the spectra of reacting scalars in a premixed flame interacting with intense
shear-driven turbulence.

In terms of organisation of this paper, we first present details of the DNS in § 2. The
variable-density aspect of turbulent reacting flows requires a careful reconsideration
of the fundamental mathematical framework required to study spectra, and this is
discussed in § 3. The results are then presented in § 4, followed by concluding remarks
in § 5.

2. Direct numerical simulations

Compressible three-dimensional DNS of temporally evolving planar premixed
flames interacting with a turbulent rectangular jet shear layer are considered in the
present study. This configuration is amenable to analysis presented in § 3, since it
results in a statistically one-dimensional turbulent premixed flame. The configuration
comprises a high-velocity rectangular jet of unburnt lean hydrogen–air mixture of
equivalence ratio 0.7 flowing in a quiescent fluid of adiabatic burnt products of
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the same equivalence ratio. The unburnt reactants are preheated to 700 K and the
pressure is 1 atm. The jet is initialised as a high-streamwise-velocity region of
prescribed width, H, with a symmetric profile about the transverse midplane of the
computational domain. The mean streamwise velocity was prescribed to smoothly
approach zero in the quiescent mixture with a hyperbolic tangent function profile
given by

u(y)
Uj
= 1

2

{
tanh

(
y/H + 1/2

δs0

)
− tanh

(
y/H − 1/2

δs0

)}
, (2.1)

where u(y) is the mean streamwise velocity, Uj is the peak jet velocity, y is the
transverse coordinate and δs0 is the non-dimensional shear layer width, which was set
to 0.1. To trigger the shear layer instabilities, a small amount of broadband turbulent
velocity fluctuations of intensity 4 % was superimposed on the initial mean velocity,
and the velocity fluctuations were prescribed to approach zero in the co-flow using
the same hyperbolic tangent profile as in (2.1). The initial velocity fluctuations satisfy
continuity and were generated using the method of Rogallo (1981) to conform to
a prescribed energy spectrum of Passot & Pouquet (1987) with an integral length
scale equal to H/3. Since flame interaction with a realistic turbulent shear layer was
desired, two planar flames were initially placed sufficiently outside the shear layer, at
symmetric locations about the transverse midplane, such that, by the time the flames
propagate inwards and interact with the shear layer, it would retain no memory of
the initial synthetic velocity fluctuations. The planar flames divide the domain into
unburnt and burnt regions with transverse profiles for temperature and species mass
fractions corresponding to a freely propagating planar laminar flame. A schematic of
the initialisation is given in figure 1 and more details are given in Hawkes et al.
(2012).

The computational domain is three-dimensional rectangular Cartesian with a size of
16H × 20H × 12H in the x (streamwise), y (transverse) and z (spanwise) directions,
respectively. In the set of simulations, the jet width, H, is varied independently, while
the jet velocity, Uj, is adjusted such that the jet Reynolds number, Rej ≡ UjH/νu,
is held constant at 10 000 and the jet Damköhler number, Daj ≡ (H/Uj)/(δL/sL),
varies. Here νu is the kinematic viscosity, δL is the thermal thickness and sL is the
unstrained laminar flame speed of the unburnt mixture. Note that the definition of
the Damköhler number here using a mean convective time scale is slightly different
from the conventional definition where an integral time scale is normally used. Three
simulations with Damköhler numbers Daj = 0.13, 0.27 and 0.54 are performed and
these will be referred to as the ‘Da−’, ‘baseline’ and ‘Da+’ cases, respectively.
The relevant numerical and thermochemical parameters are listed in table 1. The
rectangular Cartesian domain is discretised using a fixed mesh of uniform size,
listed as 1x in table 1, in the streamwise and spanwise directions. In the transverse
direction, a uniform mesh of the same size is used in the inner 15H portion of the
domain, while for the outer portion the mesh is gradually coarsened, since neither
the flame nor the turbulent flow structures ever appear here. The grid resolution is
small enough to sufficiently resolve the inner structure of the flame. The thinnest
radical layer in an unstrained laminar flame for this mixture corresponds to species
HO2, which has a thickness, based on full width at 90 % of maximum, of 0.586 mm,
and this layer contains at least 16 grid points in the Da+ case and 32 grid points
in the Da− case (see table 1). The DNS is performed using the code S3D (Chen
et al. 2009) developed at Sandia National Laboratories. S3D solves the compressible
form of the conservation equations for mass, momentum, enthalpy and species mass
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FIGURE 1. (Colour online) (a) Schematic showing the configuration of the DNS. The
streamwise direction is x, transverse is y and spanwise is z. (b) Instantaneous local heat
release rate, normalised by the maximum laminar flame value, for the Da+ case at t=15tj.

fractions in physical space. Molecular transport coefficients are prescribed using the
mixture-averaged formulation by interfacing with the TRANSPORT library (Kee et al.
1986). Finite-rate chemical kinetics are prescribed by interfacing with the CHEMKIN
library (Kee et al. 1996), and the chemical mechanism of Li et al. (2004) with nine
species and 19 elementary reactions was used. S3D employs high-order explicit finite
difference schemes: an eighth-order central-difference scheme for spatial derivatives
(Kennedy & Carpenter 1994) and a six-stage fourth-order low-storage Runge–Kutta
scheme for temporal derivatives (Kennedy, Carpenter & Lewis 2000). All fields of the
solution vector are also filtered periodically using a tenth-order explicit filter (Kennedy
& Carpenter 1994) to remove spurious high-frequency noise. The application of the
filter in physical space can have some implications for the spectral content, and this
is discussed in § 4. The solution is advanced using a fixed time step, 1t, given in
table 1.

Periodic boundary conditions are applied at the streamwise and spanwise boundaries.
The transverse boundaries are prescribed as non-reflecting outflow using the
Navier–Stokes characteristic boundary conditions (NSCBC) treatment of Poinsot
& Lele (1992) with the improvements of Yoo & Im (2007). After initialisation, the
two flame sheets propagate inwards while the turbulence in the shear layer develops.
As the flame sheets interact with the shear layer, they get wrinkled and corrugated,
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Parameter Case Da− Baseline Case Da+
Daj 0.13 0.27 0.54
H (mm) 2.7 3.84 5.4
Uj (m s−1) 312.6 219.8 156.3
1x (µm) 18 25.6 36
1t (ns) 2.5 4 5

sL (m s−1) 7.89
δL (m) 5.025× 10−4

νu (m2 s−1) 8.44× 10−5

ρu (kg m−3) 0.3961
ρb (kg m−3) 0.1354
Equivalence ratio 0.7

TABLE 1. Numerical and thermochemical parameters of the three DNS cases. The
unburnt and burnt mixture densities are ρu and ρb.

causing a gradual increase in the turbulent burning velocity, defined here based on
the consumption rate of hydrogen,

sT =

∫
ω̇H2 dy

ρuYH2,u
. (2.2)

The overline ( ) denotes averaging in the streamwise and spanwise directions. The
hydrogen mass fraction in unburned reactants is YH2,u . The turbulent burning velocity
rises above the laminar flame speed, sL, and saturates before dropping to zero once
all the reactants are exhausted. The variation of sT/sL with time, normalised by the
jet time tj ≡H/Uj, is shown in figure 2 for the Da+ and Da− cases.

3. Mathematical framework
3.1. Density-weighted correlation tensors

In the study of turbulent reacting flows, it is conventional to consider density-weighted
moments, since their conservation equations closely resemble their incompressible
counterparts and are more tractable from a modelling point of view. The mean and
fluctuation of velocity, for instance, are defined as, respectively,

Ũi = ρui/ρ, u′′i = ui − Ũi, (3.1a,b)

and the Reynolds stress tensor is ρu′′i u′′j /ρ. The same ideas are seldom extended to
the study of spectral quantities, leading to some potential discrepancies.

To illustrate this, consider the conventional definitions of the two-point velocity
cross-correlation and velocity spectrum tensors (a Fourier transform pair) in
incompressible flows (Pope 2000):

Rij(r)= u′i(x)u′j(x+ r), (3.2)

Φij(k)= 1
(2π)3

∫∫∫ ∞

−∞
exp(−ik · r)Rij(r) dr, (3.3)
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FIGURE 2. (Colour online) Variation of the turbulent to laminar burning velocity ratio,
sT/sL, for the Da+ and Da− cases, plotted against normalised time, t/tj.

where u′i≡ ui− ui is the velocity fluctuation about the conventional ensemble average,
x and r are position and displacement vectors in physical space, respectively, and k
is the wavenumber vector. Thus defined, the turbulent kinetic energy, t.k.e., is related
to the velocity spectrum tensor via

t.k.e.= 1
2

u′iu′i =
1
2

∫∫∫ ∞

−∞
Φii(k) dk. (3.4)

An energy spectrum function, E(k), can then be defined that represents the
contribution to t.k.e. from all wavenumbers of magnitude k (i.e. k= |k|) such that

E(k)= 1
2

∫∫∫ ∞

−∞
Φii(k)δ(|k| − k) dk and t.k.e.=

∫ ∞

0
E(k) dk. (3.5a,b)

In a discrete representation of the flow field, such as in a DNS, E(k) can be
constructed as the average of the product of all the Fourier coefficients of u′i with a
wavenumber magnitude of k.

If one were to naïvely replace u′i with u′′i in the above schema, one would find
that the resulting energy spectrum function recovers u′′i u′′i /2, which is not equal to
the density-weighted turbulent kinetic energy, t̃.k.e. ≡ ρu′′i u′′i /2ρ. In other words, the
Fourier coefficients of u′′i cannot be used to represent the spectrum function of t̃.k.e.
Considering the almost universal adoption of density-weighted quantities in the study
and modelling of turbulent reacting flows, an appropriate mathematical framework is
in order. To this end, we propose that the two-point velocity cross-correlation tensor
incorporate a density weighting as follows:

R̃ij(r)= 1
2ρ

[
ρ(x)u′′i (x)u′′j (x+ r)+ u′′i (x)ρ(x+ r)u′′j (x+ r)

]
. (3.6)

Strictly, a trivariate correlation tensor should involve two separation vectors, and
in that respect the tensor defined above represents a contraction along one vector.
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The reasons for this choice are twofold. First, in variable-density flows, momentum,
rather than velocity, is the fundamentally conserved quantity. Physically, R̃ij can
be interpreted as the influence, on average, of the momentum fluctuation at point
(x) on the velocity fluctuation at point (x + r), and vice versa. Second, as the
ensuing derivations will show, this contraction simplifies the derivation of a balance
equation for R̃ij, with each of the terms carrying a clear physical meaning. Yoshizawa,
Matsuo & Mizobuchi (2013) found a similar benefit, simplified balance equations for
single-point statistical moments, by weighting the fluctuating quantities by density.
It is evident that R̃ij(0) is a symmetric tensor (R̃ij(0) = R̃ji(0)) and it is equal to
the density-weighted Reynolds stress tensor. If the density and fluctuating velocity
fields are homogeneous, then R̃ij(r)= R̃ji(−r), a property shared by its incompressible
counterpart Rij. Homogeneity might seem a stringent assumption for reacting flows,
but one might conceive of statistically one-dimensional reacting flows with a fixed
mean flame normal direction such that homogeneity applies in the two directions that
are orthogonal to it. However, while the continuity equation in incompressible flows
yields the simplifications

∇ · u′ = 0, (3.7)
∂Rij

∂rj
= 0, (3.8)

the same for R̃ij is not afforded by the definition in (3.6). Furthermore, for
incompressible isotropic turbulence, there exist simple relationships between the
two-point correlation tensors and velocity structure functions, which also contain
scale information. This is clearly not the case for the density-weighted correlation
tensor. One could contrive density-weighted structure functions to be consistent with
the correlation tensors, but that is not an objective here. Nonetheless, analogous
definitions for the density-weighted velocity spectrum tensor and energy spectrum
function can be written:

Φ̃ij(k)= 1
(2π)3

∫∫∫ ∞

−∞
exp(−ik · r)R̃ij(r) dr, (3.9)

Ẽ(k)= 1
2

∫∫∫ ∞

−∞
Φ̃ii(k)δ(|k| − k) dk, (3.10)

t̃.k.e.=
∫ ∞

0
Ẽ(k) dk. (3.11)

Likewise, the density-weighted cross-correlation tensor between two fluctuating scalars
ψ and ξ can be defined as

R̃ψξ (r)= 1
2ρ

[
ρ(x)ψ ′′(x)ξ ′′(x+ r)+ψ ′′(x)ρ(x+ r)ξ ′′(x+ r)

]
. (3.12)

The important distinction that must be stressed here is that the spectrum function for
kinetic energy, Ẽ(k), must now be constructed as the average of the product of the
Fourier coefficients of ρu′′i and u′′i . Note that this represents a one-wavenumber spectral
decomposition of the Favre-averaged turbulent kinetic energy and it stems from the
choice of using only one separation vector in the definition of R̃ij. Similarly, for scalar
energy, Ẽψ(k), it must be the average of the product of Fourier coefficients of ρψ ′′
and ψ ′′.
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The density weighting for the correlation tensors proposed here is not a definitive
form for variable-density flows, and other forms are certainly possible that might
retain all the properties of the incompressible counterparts. The proposed definitions
are motivated by the need to capture scale information while still being consistent with
Favre-averaged Reynolds stresses and scalar fluctuations that are widely considered
as useful quantities for describing turbulent reacting flows. Apart from having the
useful properties described above, these definitions of R̃ij and R̃ψξ serve an important
objective of the present study: the derivation of a balance equation for the spectrum
of turbulent kinetic energy and scalar fluctuations in reacting flows, presented in the
following subsection.

3.2. Balance equations for density-weighted spectrum functions
Hinze (1975) presents an elegant derivation of a balance equation for two-point
velocity correlations, leading to an equation for the energy spectrum
function, in incompressible isotropic turbulence as well as in homogeneous sheared
turbulence. He also notes the difficulties of incorporating variable density, particularly
if the local turbulent fluctuations are high enough that compressibility effects
become appreciable. Krzywoblocki (1952) derived balance equations for velocity
and temperature fluctuation correlations in compressible homogeneous isotropic
turbulence but considered a density-weighted correlation function of the form
ρ(x)u′′i (x)ρ(x+ r)u′′j (x+ r), which is different from (3.6). Here we seek a balance
equation governing the latter.

In the derivation to follow, we largely adopt the approach and notation of Hinze
(1975). For the sake of simplicity, and without loss of generality, we consider
statistically stationary turbulent reacting flows. Furthermore, since reacting flows
cannot be homogeneous in a strict three-dimensional sense, consider a scenario that
comes closest, i.e. statistically one-dimensional reacting flows, where moments vary
only along a mean flame normal direction. The two-point correlation function R̃ij(r)
will then be invariant to translation as long as the displacement vector r is constrained
always to be orthogonal to the mean flame normal vector. We start from the balance
equations (A 4) and (A 8) for u′′i and ρu′′i derived in appendix A:

∂u′′i
∂t
+ ∂Ũi

∂t
+ Ũk

∂Ũi

∂xk
+ u′′k

∂Ũi

∂xk
+ Ũk

∂u′′i
∂xk
+ u′′k

∂u′′i
∂xk
=− 1

ρ

∂(P+ p′)
∂xi

+ 1
ρ

∂τik

∂xk
, (3.13)

and

∂ρu′′i
∂t
+ ρ ′

(
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

)
+ ρu′′k

∂Ũi

∂xk
+ ∂ρu′′i Ũk

∂xk
+ ∂

∂xk
(ρu′′i u′′k − ρu′′i u′′k)

=−∂p′

∂xi
+ ∂τ

′
ik

∂xk
. (3.14)

Denoting locations x and (x+ r) by ( )A and ( )B, respectively, the equation for (u′′i )A
is multiplied by (ρu′′j )B and the equation for (ρu′′i )A is multiplied by (u′′j )B. Similarly
the equations for (u′′j )B and (ρu′′j )B are multiplied by (ρu′′i )A and (u′′i )A, respectively,
and the resulting four equations are added. Note that the derivative at point A of
any quantity at point B is zero, and vice versa. Averaging the result, noting that
ρu′′ = 0, gives
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2∂(ρR̃ij)

∂t
+ ρ ′A(u′′j )B

(
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

)

A

+ ρ ′B(u′′i )A
(
∂Ũj

∂t
+ Ũk

∂Ũj

∂xk

)

B

+ (u′′j )B(ρu′′k)A

(
∂Ũi

∂xk

)

A

+ (ρu′′j )B(u′′k)A

(
∂Ũi

∂xk

)

A

+ (u′′i )A(ρu′′k)B

(
∂Ũj

∂xk

)

B

+ (ρu′′i )A(u′′k)B

(
∂Ũj

∂xk

)

B

+
(
∂

∂xk

)

A

(Ũk)A(ρu′′i )A(u′′j )B +
(

Ũk
∂

∂xk

)

A

(u′′i )A(ρu′′j )B

+
(
∂

∂xk

)

B

(Ũk)B(ρu′′j )B(u′′i )A +
(

Ũk
∂

∂xk

)

B

(u′′j )B(ρu′′i )A

+
(
∂

∂xk

)

A

(ρu′′i u′′k)A(u
′′
j )B + (ρu′′j )B

(
u′′k
∂u′′i
∂xk

)

A

+
(
∂

∂xk

)

B

(ρu′′j u′′k)B(u
′′
i )A

+ (ρu′′i )A

(
u′′k
∂u′′j
∂xk

)

B

− (u′′i )A
(
∂ρu′′j u′′k
∂xk

)

B

− (u′′j )B
(
∂ρu′′i u′′k
∂xk

)

A

=−
(
∂

∂xi

)

A

p′A(u
′′
j )B −

(
∂

∂xj

)

B

p′B(u′′i )A − (ρu′′i )A

(
1
ρ

∂(p′ + P)
∂xj

)

B

− (ρu′′j )B

(
1
ρ

∂(p′ + P)
∂xi

)

A

+
(
∂

∂xk

)

A

(τ ′ik)A(u
′′
j )B +

(
∂

∂xk

)

B

(τ ′jk)B(u
′′
i )A

+ (ρu′′i )A

(
1
ρ

∂τjk

∂xk

)

B

+ (ρu′′j )B

(
1
ρ

∂τik

∂xk

)

A

. (3.15)

A few simplifications are in order here. The fourth and fifth terms on the left-hand
side of (3.15) are simply 2ρR̃kj(∂Ũi/∂xk)A, while the sixth and seventh terms are
2ρR̃ik(∂Ũj/∂xk)B. The second and sixteenth terms of (3.15) can be combined and
rewritten as

(ρ ′A − ρ ′B)(u′′j )B
(
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

)

A

+ ρ ′B(u′′j )B
(
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

)

A

− (u′′j )B
(
∂ρu′′i u′′k
∂xk

)

A

= (ρ ′A − ρ ′B)(u′′j )B
(
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

)

A

− (u′′j )B

(
ρ
∂Ũi

∂t
+ ρŨk

∂Ũi

∂xk
+ ∂ρu′′i u′′k

∂xk

)

A

= (ρ ′A − ρ ′B)(u′′j )B
(
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

)

A

− (u′′j )B

(
− ∂P
∂xi
+ ∂τ ik

∂xk

)

A

(3.16)

after using (A 6) and (A 7) for a stationary flow. Similarly, the third and seventeenth
terms of (3.15) can be rewritten as

(ρ ′B − ρ ′A)(u′′i )A
(
∂Ũj

∂t
+ Ũk

∂Ũj

∂xk

)

B

+ ρ ′A(u′′i )A
(
∂Ũj

∂t
+ Ũk

∂Ũj

∂xk

)

B

− (u′′i )A
(
∂ρu′′j u′′k
∂xk

)

B

= (ρ ′B − ρ ′A)(u′′i )A
(
∂Ũj

∂t
+ Ũk

∂Ũj

∂xk

)

B

− (u′′i )A

(
− ∂P
∂xj
+ ∂τ jk

∂xk

)

B

. (3.17)
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In making these simplifications, it is assumed that (ρ)A = (ρ)B and (∂Ũk/∂xk)A =
(∂Ũk/∂xk)B, which is valid for the statistically one-dimensional case considered here.
For low-Mach-number reactive flows, compressibility effects will be negligible and the
density change occurs chiefly via chemical reactions. Accordingly, the mean density
will vary only along the mean flame normal direction. In addition, following Hinze
(1975), independent variables are introduced to simplify the derivatives of the two-
point correlations,

rk = (xk)B − (xk)A, (xk)AB = [(xk)A + (xk)B]/2, (3.18a,b)

such that the derivatives become
(
∂

∂xk

)

A

= 1
2

(
∂

∂xk

)

AB

− ∂

∂rk
(3.19)

(
∂

∂xk

)

B

= 1
2

(
∂

∂xk

)

AB

+ ∂

∂rk
. (3.20)

For the statistically one-dimensional case, since the displacement vector r is
constrained such that all two-point correlations are invariant to translations, derivatives
of all correlations with respect to (xk)AB are identically zero. This allows the
simplification of the eighth and eleventh terms on the left-hand side of (3.15) to

(
∂

∂xk

)

A

(Ũk)A(ρu′′i )A(u′′j )B +
(

Ũk
∂

∂xk

)

B

(u′′j )B(ρu′′i )A

=−Ũk
∂

∂rk
(ρu′′i )A(u′′j )B − (ρu′′i )A(u′′j )B

∂Ũk

∂rk
+ Ũk

∂

∂rk
(ρu′′i )A(u′′j )B

=−(ρu′′i )A(u′′j )B
∂Ũk

∂rk
, (3.21)

and, similarly, the ninth and tenth terms to

(
Ũk

∂

∂xk

)

A

(u′′i )A(ρu′′j )B +
(
∂

∂xk

)

B

(Ũk)B(u′′i )A(ρu′′j )B = (u′′i )A(ρu′′j )B
∂Ũk

∂rk
. (3.22)

Finally, the twelfth and thirteenth terms of (3.15) are simplified to
(
∂

∂xk

)

A

(ρu′′i u′′k)A(u
′′
j )B + (ρu′′j )B

(
u′′k
∂u′′i
∂xk

)

A

=
(
∂

∂xk

)

A

(ρu′′i u′′k)A(u
′′
j )B + (ρu′′j )B

[
∂u′′i u′′k
∂xk
− u′′i

∂u′′k
∂xk

]

A

=
(
∂

∂xk

)

A

[
(ρu′′i u′′k)A(u

′′
j )B + (u′′i u′′k)A(ρu′′j )B

]
− (ρu′′j )B

(
u′′i
∂u′′k
∂xk

)

A

, (3.23)

while the fourteenth and fifteenth terms become
(
∂

∂xk

)

B

[
(ρu′′j u′′k)B(u

′′
i )A + (u′′j u′′k)B(ρu′′i )A

]
− (ρu′′i )A

(
u′′j
∂u′′k
∂xk

)

B

. (3.24)
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When these simplifications are introduced, (3.15) represents a balance equation
for R̃ij:

2∂ρR̃ij

∂t
+ 2ρR̃ik

(
∂Ũj

∂rk

)
− 2ρR̃kj

(
∂Ũi
∂rk

)

︸ ︷︷ ︸
T1

+
[
(u′′i )A(ρu′′j )B − (ρu′′i )A(u′′j )B

](∂Ũk
∂rk

)

︸ ︷︷ ︸
T2

−
(
∂

∂rk

) [
(ρu′′i u′′k )A(u′′j )B + (u′′i u′′k )A(ρu′′j )B

]
+
(
∂

∂rk

) [
(u′′i )A(ρu′′j u′′k )B + (ρu′′i )A(u′′j u′′k )B

]

︸ ︷︷ ︸
T31

− (ρu′′i )A

(
u′′j
∂u′′k
∂rk

)

B

− (ρu′′j )B
(

u′′i
∂u′′k
∂rk

)

A︸ ︷︷ ︸
T32

+ (ρ′A − ρ′B)(u′′j )B
(
∂Ũi
∂t
+ Ũk

∂Ũi
∂xk

)

A

+ (ρ′B − ρ′A)(u′′i )A
(
∂Ũj

∂t
+ Ũk

∂Ũj

∂xk

)

B︸ ︷︷ ︸
T4

=+
(
∂

∂ri

)
(p′ + P)A(u′′j )B −

(
∂

∂rj

)
(p′ + P)B(u′′i )A

︸ ︷︷ ︸
T51

− (ρu′′i )A
(

1
ρ

∂(p′ + P)
∂xj

)

B
− (ρu′′j )B

(
1
ρ

∂(p′ + P)
∂xi

)

A︸ ︷︷ ︸
T52

−
(
∂

∂rk

)
(τik)A(u′′j )B +

(
∂

∂rk

)
(τjk)B(u′′i )A

︸ ︷︷ ︸
T61

+ (ρu′′i )A
(

1
ρ

∂τjk

∂xk

)

B
+ (ρu′′j )B

(
1
ρ

∂τik
∂xk

)

A︸ ︷︷ ︸
T62

.

(3.25)

The physical interpretation of the various terms is as follows: T1 represents the
contribution of mean velocity gradients; T2 represents the interaction between the
mean velocity and the fluctuating velocity correlations, and can be interpreted as eddy
deformation by mean flow (Hinze 1975); T3 ≡ (T31 + T32) denotes the contribution
of the turbulent straining motions; T4 represents the influence purely due to density
fluctuations; T5 ≡ (T51 + T52) represents the contribution of pressure–velocity
correlations; and T6 ≡ (T61 + T62) represents the viscous dissipation effects. All
of the terms in (3.25), except the fluctuating density term T4, have analogues in
the corresponding equation presented by Hinze (1975) for the incompressible case.
Without the density weighting ascribed to the definition of R̃ij, arriving at an equation
with such clear physical meaning of the various terms would not have been possible.
If one were instead to attempt a derivation without the density weighting, the resulting
equation would be much more complicated and unwieldy.

Our objective here is not to attempt a closure for the various terms in (3.25),
but rather to illustrate the various physical processes in reacting flows and compare
them with the incompressible case. We do not present any further simplification of
this equation but rather intend to use it as a basis to study the energy balance in
wavenumber space. Hinze (1975) considers the special case of homogeneous isotropic
sheared turbulence with a non-zero but uniform mean velocity gradient, which
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simplifies the equation considerably, particularly the terms involving mean velocity
and its gradients. Such an exercise is of limited utility here. The simplest archetypes
of statistically one-dimensional reacting flows conceivable – a non-premixed flame in
a turbulent shear layer or a statistically planar freely propagating premixed flame –
do not satisfy the condition of uniform mean velocity gradient.

We now apply the Fourier transform operation, denoted by the operator

F {· · ·} = 1
(2π)3

∫∫∫ ∞

−∞
exp(−ik · r)(· · ·) dr, (3.26)

to each of the terms in (3.25) and contract the tensorial indices i and j. The result is
expressed nominally as

2ρ
∂Φ̃ii(k)
∂t

+F {T1} +F {T2} +F {T3} +F {T4} =F {T5} +F {T6}. (3.27)

Since Φ̃ii(k) represents the contribution to t̃.k.e. from the wavenumber k, (3.27)
denotes the balance of t̃.k.e. in wavenumber space. Upon closer inspection of each
of the terms, it is self-evident that the terms F {T1} and F {T2} represent energy
production due to large-scale mean motion, just as their incompressible counterparts.
On the other hand, the term F {T4} denotes an additional mechanism by which mean
motion contributes to energy production by coupling with fluctuating density–velocity
correlations, a mechanism absent in the incompressible case.

The most interesting results, however, involve F {T31} and F {T5}. First consider
the former. Noting that, from the definition of rk given before,

∂

∂rk
= 1

2

[(
∂

∂xk

)

B

−
(
∂

∂xk

)

A

]
, (3.28)

the term T31 from (3.25), in the limit r= 0, can be written as

[T31]r=0 =
{

1
2

[(
∂

∂xk

)

B

−
(
∂

∂xk

)

A

] [
(u′′i )A(ρu′′j u′′k)B − (ρu′′i u′′k)A(u

′′
j )B

]

+
[
(ρu′′i )A(u′′j u′′k)B − (u′′i u′′k)A(ρu′′j )B

]}

A=B

= 0. (3.29)

Introducing the inverse Fourier transform operator

F−1{· · ·} =
∫∫∫ ∞

−∞
exp(ik · r)(· · ·) dk, (3.30)

this can also be expressed as

[T31]r=0 =F−1{F {T31}}r=0 =
∫∫∫ ∞

−∞
F {T31} dk= 0. (3.31)

This relation implies that the term F {T31} when integrated over all wavenumbers is
identically zero. In other words, this term is not a net source or sink in the balance
of t̃.k.e., but merely redistributes energy across wavenumbers. This is a significant
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result as, in effect, it states that the density-weighted triple velocity correlations do
not produce or destroy density-weighted turbulent kinetic energy, but merely transfer
it between wavenumbers, a characteristic shared by the unweighted triple velocity
correlations in the incompressible case (Hinze 1975).

As for the term F {T5}, it can be split into two terms, one involving mean pressure
and the other involving fluctuating pressure. In the absence of externally imposed
pressure gradients, the former is expected to be negligible. The latter comprises T51,
which is often referred to as a pressure–dilatation term in the context of single-point
correlations since the contraction of indices in (3.25) makes the fluctuating part of T51

∂

∂ri

[
p′A(u

′′
i )B − p′B(u′′i )A

]
. (3.32)

Hinze (1975) shows that in incompressible isotropic turbulence the condition
∂u′′i /∂xi = 0 leads to the fluctuating pressure–velocity correlation tensor, p′A(u

′′
i )B,

becoming zero. Hence F {T5} does not appear in the final energy balance. This is
clearly not the case in compressible flows. It is well known (Sarkar et al. 1991;
Zeman 1991) that, in non-reacting compressible flows at moderate to high Mach
numbers, pressure–dilatation has a leading-order influence in the balance of t̃.k.e.,
particularly if shocklets arise in the flow. On the other hand, in low-speed reactive
flows, pressure–dilatation has been shown to be a major source of t̃.k.e. (Zhang
& Rutland 1995). Our analysis suggests that, even when the energy balance is
considered in wavenumber space, pressure–velocity correlations can be interpreted
as a net source or sink. More significantly, dilatation fluctuations mostly occur at
flame scales, typically at the high-wavenumber end of the energy spectrum. Therefore,
pressure–velocity correlations could be a significant source of backscatter. The analysis
presented here provides a formal mathematical framework to quantify, and possibly
model, the extent of backscatter using dimensional arguments.

By analogy with the energy balance, the density-weighted two-point scalar
correlation balance can similarly be derived. While the primary interest is in
correlations of a scalar with itself, the equation is derived for the more general
case of correlations between two different scalars, ψ and ξ . We start from the
balance equations (B 1) and (B 4) for ψ ′′ and ρψ ′′ derived in appendix B:

∂ψ ′′

∂t
+ ∂ψ̃
∂t
+ Ũk

∂ψ̃

∂xk
+ u′′k

∂ψ̃

∂xk
+ Ũk

∂ψ ′′

∂xk
+ u′′k

∂ψ ′′

∂xk
= ω̇ψ
ρ
+ Dψ

ρ
, (3.33)

and

∂ρψ ′′

∂t
+ ρ ′ ∂ψ̃

∂t
+ ρ ′Ũk

∂ψ̃

∂xk
+ ρu′′k

∂ψ̃

∂xk
+ ∂ρψ

′′Ũk

∂xk
+ ∂

∂xk
(ρu′′kψ

′′ − ρu′′kψ ′′)= ω̇′ψ +D ′ψ .

(3.34)
We multiply the equation for (ψ ′′)A by (ρξ ′′)B and the equation for (ξ ′′)B by (ρψ ′′)A.
Similarly, we multiply the equations for (ρψ ′′)A and (ρξ ′′)B by (ξ ′′)B and (ψ ′′)A,
respectively. Adding and averaging the result yields

2∂ρR̃ψξ
∂t

+ ρ ′A(ξ ′′)B
(
∂ψ̃

∂t
+ Ũk

∂ψ̃

∂xk

)

A

+ ρ ′B(ψ ′′)A
(
∂ξ̃

∂t
+ Ũk

∂ξ̃

∂xk

)

B

+ (ξ ′′)B(ρu′′k)A

(
∂ψ̃

∂xk

)

A

+ (ρξ ′′)B(u′′k)A
(
∂ψ̃

∂xk

)

A
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+ (ψ ′′)A(ρu′′k)B

(
∂ξ̃

∂xk

)

B

+ (ρψ ′′)A(u′′k)B
(
∂ξ̃

∂xk

)

B

+
(
∂

∂xk

)

A

(Ũk)A(ρψ ′′)A(ξ ′′)B +
(

Ũk
∂

∂xk

)

A

(ψ ′′)A(ρξ ′′)B

+
(
∂

∂xk

)

B

(Ũk)B(ρξ ′′)B(ψ ′′)A +
(

Ũk
∂

∂xk

)

B

(ξ ′′)B(ρψ ′′)A

+
(
∂

∂xk

)

A

(ρu′′kψ ′′)A(ξ ′′)B + (ρξ ′′)B
(

u′′k
∂ψ ′′

∂xk

)

A

+
(
∂

∂xk

)

B

(ρu′′kξ ′′)B(ψ ′′)A + (ρψ ′′)A
(

u′′k
∂ξ ′′

∂xk

)

B

− (ψ ′′)A
(
∂ρu′′kξ ′′

∂xk

)

B

− (ξ ′′)B
(
∂ρu′′kψ ′′

∂xk

)

A

= (ω̇′ψ)A(ξ ′′)B + (ω̇′ξ )B(ψ ′′)A +
(
ω̇ψ +Dψ

ρ

)

A

(ρξ ′′)B

+
(
ω̇ξ +Dξ

ρ

)

B

(ρψ ′′)A + (D ′ψ)A(ξ ′′)B + (D ′ξ )B(ψ ′′)A. (3.35)

Analogous to (3.15), the second and sixteenth terms of (3.35) can be simplified
using (B 3) as

(ρ ′A − ρ ′B)(ξ ′′)B
(
∂ψ̃

∂t
+ Ũk

∂ψ̃

∂xk

)

A

− (ξ ′′)B
[
(ω̇ψ)A + (Dψ)A

]
, (3.36)

and the third and seventeenth terms as

(ρ ′B − ρ ′A)(ψ ′′)A
(
∂ξ̃

∂t
+ Ũk

∂ξ̃

∂xk

)

B

− (ψ ′′)A
[
(ω̇ξ )B + (Dξ )B

]
. (3.37)

Similarly, terms eight through eleven of (3.35) simplify to

[
(ψ ′′)A(ρξ ′′)B − (ρψ ′′)A(ξ ′′)B

]∂Ũk

∂rk
, (3.38)

while terms twelve through fifteen give

− ∂

∂rk

[
(ρψ ′′u′′k)A(ξ ′′)B + (ψ ′′u′′k)A(ρξ ′′)B

]
+ ∂

∂rk

[
(ρψ ′′)A(u′′kξ ′′)B + (ψ ′′)A(ρξ ′′u′′k)B

]

− (ρξ ′′)B
(
ψ ′′
∂u′′k
∂xk

)

A

− (ρψ ′′)A
(
ξ ′′
∂u′′k
∂xk

)

B

. (3.39)
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Finally, (3.35) simplifies to

2∂ρR̃ψξ
∂t

−
[
(ρu′′k )A(ξ ′′)B + (u′′k )A(ρξ ′′)B

]( ∂ψ̃
∂rk

)
+
[
(ρu′′k )B(ψ ′′)A + (u′′k )B(ρψ ′′)A

]( ∂ξ̃

∂rk

)

︸ ︷︷ ︸
T1

−
[
(ψ ′′)A(ρξ ′′)B − (ρψ ′′)A(ξ ′′)B

](∂Ũk
∂rk

)

︸ ︷︷ ︸
T2

− ∂

∂rk

[
(ρψ ′′u′′k )A(ξ ′′)B + (ψ ′′u′′k )A(ρξ ′′)B

]
+ ∂

∂rk

[
(ρψ ′′)A(u′′k ξ ′′)B + (ψ ′′)A(ρξ ′′u′′k )B

]

︸ ︷︷ ︸
T31

− (ρξ ′′)B
(
ψ ′′

∂u′′k
∂xk

)

A

− (ρψ ′′)A
(
ξ ′′
∂u′′k
∂xk

)

B︸ ︷︷ ︸
T32

+ (ρ′A − ρ′B)(ξ ′′)B
(
∂ψ̃

∂t
+ Ũk

∂ψ̃

∂xk

)

A

+ (ρ′B − ρ′A)(ψ ′′)A
(
∂ξ̃

∂t
+ Ũk

∂ξ̃

∂xk

)

B︸ ︷︷ ︸
T4

= (ω̇ψ )A(ξ ′′)B + (ω̇ξ )B(ψ ′′)A︸ ︷︷ ︸
T51

+ (ω̇ψ/ρ
)

A (ρξ
′′)B +

(
ω̇ξ /ρ

)
B (ρψ

′′)A︸ ︷︷ ︸
T52

+ (Dψ )A(ξ ′′)B + (Dξ )B(ψ ′′)A︸ ︷︷ ︸
T61

+ (Dψ/ρ
)

A (ρξ
′′)B +

(
Dξ /ρ

)
B (ρψ

′′)A︸ ︷︷ ︸
T62

. (3.40)

The similarities between (3.40) and (3.25) are obvious. Likewise, the physical
interpretation of the various terms in (3.40) is also similar to those in (3.25), with
only subtle differences: T1 represents the contribution of mean scalar gradients;
T2 represents the interaction between mean flow and scalar–scalar correlations; T3
represents the contribution of scalar–scalar–velocity triple correlations; T4 represents
the influence of fluctuating density coupled with mean velocity and mean scalar
gradients; T5 represents the contributions of chemical reactions; and T6 represents
the dissipative terms due to molecular diffusion. Also, it can be readily shown that,
upon applying the Fourier transform operation, the term T31 will be identically zero
when integrated over all wavenumbers, and, hence, it has the same role as T31 in
(3.25), i.e. transferring scalar fluctuations between wavenumbers. Also, the role of
chemical reactions is now simply encapsulated in term T5. In some respects, it can
be considered analogous to the pressure–velocity correlation term in (3.25), since
both terms are expected to be most significant at high wavenumbers corresponding
to chemical scales.

4. Results
As evident from the description of the DNS database, the simulations correspond

to a statistically one-dimensional case with moments varying only in the transverse
direction and in time. Accordingly, spectra are constructed from a fixed temporal
snapshot and at fixed transverse distance relative to the midplane. Furthermore,
statistical symmetry about the midplane is exploited and samples from equidistant
positive and negative transverse planes are considered as statistically equivalent. It is
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FIGURE 3. (Colour online) The typical one-dimensional flame brush from the DNS.
(a) The Favre turbulent kinetic energy t̃.k.e. normalised by U2

j (red online) and Favre
progress variable c̃ (blue online) as functions of normalised transverse coordinate y/H for
the Da− (solid) and Da+ (dashed) cases at t/tj= 15. (b) The t̃.k.e. (red online) and Favre
fluctuations of hydrogen mass fraction (blue online) plotted against c̃ for the Da− case
at t/tj = 15.

convenient to map the transverse distance to a mean progress variable, since the latter
readily refers to a location in the flame brush. The progress variable, c, is defined
based on normalised oxygen mass fraction as

c≡ YO2,u − YO2

YO2,u − YO2,b
, (4.1)

such that it assumes the value zero in the unburnt mixture, denoted by subscript u,
and unity in the fully burnt mixture, denoted by subscript b. The progress variable
could alternatively be defined using mass fractions of hydrogen or water. Oxygen
was chosen here because it is the excess reactant and has non-zero values on both
the unburnt and fully burnt regions and hence the definition is numerically cleaner.
Figure 3 shows the typical flame brush, in physical as well as progress variable space,
from the Da− and Da+ cases for the temporal snapshot corresponding to t/tj = 15.
Since the streamwise and spanwise homogeneous directions exist, the spectra could
be constructed as a function of wavenumber magnitude, k, either by performing
two-dimensional Fourier transforms and averaging all ensembles of equal k, or by
performing one-dimensional Fourier transforms along one direction and averaging
along the other direction. Here the latter is adopted for two reasons. The numerical
convergence of the one-dimensional transforms is better since there are a sufficient
number of samples for a given value of k to perform the ensemble averaging. For
two-dimensional transforms, since the grid is rectangular Cartesian, the number of
samples becomes progressively smaller with decreasing k. The second reason is that
the domain size, and hence the length scale of periodicity, is different in the two
directions and therefore the two-dimensional transforms are slightly ambiguous. As
a consequence of the density weighting in the definitions of correlation tensors and
spectrum functions, the one-dimensional spectrum, of say velocity component u′′1,
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FIGURE 4. (Colour online) A sample one-dimensional turbulent kinetic energy spectrum
for the Da+ case corresponding to c̃= 0.5 at time t= 15tj. (a) Comparison of the spectra
constructed with the full set of samples with that constructed using only samples from the
bottom plane and samples only from the top plane. Since the curves coincide, the former
is plotted as a solid line (red online) and the latter using dashed lines. (b) Comparison of
the spectra constructed with (red online) and without (blue online) the density-weighted
definitions, along with the transfer function (dashed) for the tenth-order filter used in the
DNS.

is computed as

Eu1 =
1

2ρ

[
F {ρu′′1} F ∗{u′′1} +F {u′′1} F ∗{ρu′′1}

]

= 1
2ρ

[
1

2Nz

2Nz∑

k=1

(
Fk{ρu′′1} F ∗

k {u′′1} +Fk{u′′1} F ∗
k {ρu′′1}

)]
, (4.2)

where Fk and F ∗
k denote the Fourier transform and its complex conjugate,

respectively, of each streamwise line signal from the two equidistant planes, and
2Nz is the total number of line samples. The mean density, ρ, is computed from an
average over both planes.

4.1. Turbulence kinetic energy spectra

Figure 4 shows a sample one-dimensional kinetic energy spectrum, that is, E1D ≡
0.5(Eu1 + Eu2 + Eu3), from the Da+ case corresponding to transverse planes of
c̃ = 0.5 at time t = 15tj. It is evident that there is a large range of dynamic scales,
with a clear inertial range, attesting to the high quality of the DNS dataset. The
statistical convergence is assessed on the plot on the left by comparing the spectrum
from the full set of samples with that constructed from samples only from the
bottom plane, y = −4.9 mm, and that constructed from samples only from the
top plane, y= 4.9 mm (see figure 1). The two planes are separated by a distance of
9.8 mm, which is over six times greater than the integral scale, Λ, which is 1.49 mm
for this case. Hence the samples from the bottom plane can be deemed statistically
independent from those on the top plane. As is evident, the three spectra are barely
distinguishable, indicating statistical convergence. Also shown is the comparison
between the density-weighted and the conventional unweighted spectra. The latter is
constructed as described in (4.2), but without the density terms. It is interesting to
note that including the density weighting does not seem to influence the spectrum
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c̃ Da− Da+
0.1 0.5 0.9 0.1 0.5 0.9

Ret 428.4 90.8 15.7 354.2 103.9 19.4
Reλ 80.2 36.9 15.3 72.9 39.5 17.1
Ka 0.71 0.2 0.05 0.16 0.05 0.02
η̃ ∗ kmax 2.2 4.15 8.44 2.33 4.0 6.9

TABLE 2. Relevant DNS parameters of the cases for which spectra are studied.

in the low-wavenumber (energy-containing and inertial) range, but a difference is
apparent in the high-wavenumber range. The latter is traditionally referred to as the
dissipative range, but, as the ensuing discussion will show shortly, it might more
appropriately be viewed instead as a ‘reactive–dissipative’ range in the current case.
This comparison should not be viewed as the efficacy, or lack thereof, of the density
weighting in the spectra definitions. It is likely that factors such as the density jump
across the premixed flame front (which is relatively low for the present preheated
lean hydrogen cases) and the wavenumber characteristic of density fluctuations will
determine the extent of the differences that arise due to the density-weighted definition.
Furthermore, as we showed in § 3, the density weighting makes the interpretation of
the spectrum balance equations much simpler and more meaningful.

It is worth commenting on some numerical aspects that can influence computation
of the spectra. As mentioned earlier, the DNS employs a tenth-order filter to improve
stability. The filter, described in detail by Kennedy & Carpenter (1994), is an explicit
central-difference filter and is purely dissipative. The spectral transfer function of the
filter, shown as a dashed line in figure 4, indicates that it is monotonic and confirms
its dissipative nature at high wavenumbers. Consequently the filter will only remove
energy at these high wavenumbers and will not add energy spuriously. Another
potential numerical artefact concerns aliasing. It was shown in Hawkes et al. (2012)
that for the temporal snapshots being considered (t/tj = 15) the mean Kolmogorov
length scale is greater than at least half the grid size, η̃ > 0.51x, which is considered
sufficient resolution for turbulent flow DNS (Yeung & Pope 1989). Hence we believe
the contribution from aliasing errors is negligible in the current results. Finally, it
is a conventional practice to pre-multiply signals with windowing functions before
performing a discrete Fourier transform to avoid spectral leakages. In the present
study, however, no windowing functions were employed since the one-dimensional
line signals on which the Fourier transform was performed were guaranteed to be
periodic owing to the DNS boundary conditions.

The one-dimensional spectra from the Da− and Da+ cases at three locations
spanning the flame brush (c̃= 0.1, 0.5 and 0.9) are shown in figure 5. The relevant
non-dimensional DNS parameters for these locations are listed in table 2. These
parameters are calculated using the following expressions

turbulent Reynolds number, Ret = u′′Λ
ν̃
, (4.3)

Taylor-scale Reynolds number, Reλg =
u′′λg

ν̃
, (4.4)

Karlovitz number, Ka=
(
νu/sL

η̃

)2

, (4.5)
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FIGURE 5. (Colour online) The one-dimensional turbulent kinetic energy spectra for the
(a) Da− and (b) Da+ cases corresponding to three flame brush locations, c̃ = 0.1 (red
online), 0.5 (green online), 0.9 (blue online).

where the integral length and velocity scales, Λ and u′′, respectively, the Taylor
microscale, λg, and the Kolmogorov scale, η̃, are evaluated using

u′′ = (2 t̃.k.e./3)1/2, Λ= u′′3/ε̃ (4.6a,b)

λg = (15ν̃u′′2/ε̃)1/2, η̃= (ν̃3/ε̃)1/4. (4.7a,b)

Note that Favre-averaged kinematic viscosity is ν̃ and Favre-averaged turbulent
kinetic energy dissipation rate is ε̃. The parameter η̃kmax in table 2, where kmax
is the Nyquist wavenumber, denotes the level of resolution of the smallest flow
scales. Figure 5 reveals the classical spectrum shape with distinct energy containing,
inertial and dissipative ranges evident for all the cases. It is interesting to note the
high-wavenumber shape of the spectra. While the shape at high k for the most part
resembles the exponential drop-off characteristic of a typical dissipation range, an
unmistakable inflection occurring in the vicinity of k≈105 in the Da− and k≈5×104

in the Da+ cases is present. The temporal evolution of the shear layer and the flame
brush are such that in both cases the peak t̃.k.e. and turbulent Reynolds numbers, Ret,
occurred at locations where c̃ is just less than 0.1 (see figure 3). Hence the values
of t̃.k.e. and Ret progressively decrease from c̃ of 0.1 to 0.9, a trend clearly evident
in the spectra. This trend differs from that shown by Furukawa et al. (2002), who
construct kinetic energy spectra conditioned on fresh versus burnt gas fluid and report
that the turbulent kinetic energy conditioned on the burnt gas is higher than that of
the fresh gas, indicating flame-generated turbulence. This difference is probably due
to two reasons. First, the flames investigated by Furukawa et al. (2002) have much
higher Damköhler numbers (O(100)) compared to the present flames (O(0.1)) and
hence they could be in vastly different regimes. Second, the conditional sampling
used to construct the spectra by Furukawa et al. (2002) ensures that the velocity
fluctuations induced by large-scale flame flapping are discounted. The unconditional
spectra presented here include this effect.

Knaus & Pantano (2009) report kinetic energy spectra from DNS of a non-premixed
flame in a temporally evolving shear layer, a configuration nearly identical to the
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FIGURE 6. (Colour online) (a) Normalised one-dimensional turbulent kinetic energy
spectra plotted against the normalised wavenumber for all locations in the Da− and Da+
cases. (b) Compensated kinetic energy spectra.

present DNS. They find a surprisingly good scaling of the spectra when normalised
using Favre-averaged quantities. They examined the scaling of the normalised one-
dimensional energy spectra,

E1D
norm ≡ ε̃−2/3η̃−5/3E(k), (4.8)

as a function of the normalised wavenumber, kη̃. The rationale behind expecting such
a scaling is that the Kolmogorov hypothesis yields for energy spectra a function of
the form

E(k)=Cε2/3k−5/3f (kη), (4.9)

with the function f (kη) capturing the exponential, presumably universal, high-
wavenumber drop-off. A good collapse based on Favre-averaged quantities led Knaus
& Pantano (2009) to suggest that spectra in reacting flows follow the conventional
Kolmogorov scaling in terms of Favre-averaged quantities, an encouraging prospect.
We examine this scaling by plotting the normalised energy spectra against the
normalised wavenumber, for all cases in figure 6(a). The compensated spectra for
the corresponding cases, (kη̃)5/3 × E1D

norm, are shown in figure 6(b). At the outset, the
compensated spectra show the presence of nearly one decade of an inertial range
with a −5/3 scaling in almost all the cases, except for Da + c̃ = 0.9, which has
the lowest Ret of all. More interestingly, the normalised spectra show a very good
collapse in the inertial range, but deviate noticeably in the dissipative range. Evidently,
a Kolmogorov-type scaling involving Favre-averaged quantities is not applicable over
the entire wavenumber range for the current cases. Also, the value of the Kolmogorov
scaling constant (C in (4.9)), which can be inferred from the inertial range plateau in
the compensated spectra, is around 0.2 for the current cases, which is somewhat lower
than that reported by Knaus & Pantano (2009) for non-premixed flames. However,
there is possibly some uncertainty in assuming that Favre-averaged quantities, ε̃ and
η̃, will yield a perfect Kolmogorov scaling. While the turbulent quantities, and spectra,
vary significantly in space, the temporal evolution is considerably slower. Figure 7
shows the raw and normalised kinetic energy spectra from three temporal snapshots,
t/tj = 12, 15 and 18, for the Da− case at the c̃= 0.5 location.
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FIGURE 7. (Colour online) Temporal evolution of one-dimensional turbulent kinetic energy
spectra for the Da− case at c̃ = 0.5 location. (a) Raw spectra from temporal snapshots
corresponding to t/tj = 12, 15 and 18; (b) corresponding normalised spectra.

The discussion in § 3 on the energy balance in wavenumber space provides some
intuition here. As discussed before, a major difference between the incompressible
and variable-density reactive flows involves the pressure–velocity correlations, term
T5 in (3.25). We anticipate that this term could be a significant source for t̃.k.e.,
mainly through the pressure–dilatation coupling. It is well known that premixed
flame fronts are accompanied by a much stronger local dilatation due to the density
jump, as compared to non-premixed flames (Bilger 2004). The contributions of
the two pressure–velocity terms, T51 and T52, are shown in figure 8 for the case
of Da+, c̃ = 0.1. Shown in the same figure is the spectral coherence between
fluctuating pressure, p′, and one component of fluctuating velocity, u′′1. This figure
presents strong evidence of the role of the pressure–velocity terms. Both terms
are of identical magnitude at all wavenumbers and a strong ‘spike’ in these terms
at high wavenumbers coincides nearly perfectly with the inflection in the kinetic
energy spectrum. Furthermore, the fluctuating pressure and velocities seem to be
significantly coherent at the same wavenumber, indicating a strong signature from the
pressure–velocity correlations.

Premixed flame fronts introduce strong dilatational fluctuations at scales comparable
to laminar flame thickness, and we speculate that the pressure–velocity term introduces
energy into the flow at the same scales. Depending on the relative strength of the
other terms in the energy balance, this energy might be transferred both forwards and
backwards in wavenumber space. In the current simulations, the unstrained laminar
flame thickness, defined based on the maximum temperature gradient as

δL = Tb − Tu

(∇T)max
, (4.10)

is 5.025× 10−4 m, while the Kolmogorov scale, η̃, for all the cases lies in the range
of 1.2 × 10−5 to 8 × 10−5 m, which suggests a strong overlap of the dissipative
range with the chemical scales. Accordingly, the high-wavenumber range is no
longer characterised only by viscous dissipation, but rather also by the influence of
chemical reactions, which in the case of kinetic energy manifests itself through the
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FIGURE 8. (Colour online) (a) One-dimensional kinetic energy spectra for the Da+, c̃=
0.1 case, along with the pressure–velocity terms, T51 and T52 in (3.25). (b) Total pressure–
velocity term, T5, and the spectral coherence between p′ and u′′1 .

pressure–velocity term. At the very least, the high-wavenumber exponential drop-off
needs to be revised to include the flame thickness δL. Hence, we examine a revised
normalisation of the energy spectra based on δL instead of η̃ as

Enorm ≡ ε̃−2/3δ
−5/3
L E(k), (4.11)

and plot it against a normalised wavenumber kδL, as shown in figure 9. When thus
normalised, it now appears that the location of the inflection in the kinetic energy
spectrum coincides for a given Da. Furthermore, this location is at (kδL/2π) ≈ 5
for the Da+ case and (kδL/2π) ≈ 10 for the Da− case, lending further credence
to the hypothesis that the inflection arises due to the pressure–velocity term at the
laminar flame scales. Further evidence of the contribution of this term is presented
in figure 10 for all the cases. One can spot a direct correlation between both the
magnitude and location of the ‘spike’ in this term at high wavenumber and the
inflection in the corresponding kinetic energy spectra. It is worth emphasising, as
is evident from figure 9, that the normalisation based on δL, while improving the
collapse in the viscous range, disrupts the collapse in the inertial range. This merely
suggests that, for an appropriate scaling to be valid over the entire wavenumber
range, it would have to involve both η̃ and δL. We envision suitably incorporating
the Karlovitz number, which, being related to the ratio of η̃ and δL, quantifies the
extent of overlap (or lack thereof) between the viscous range and the reactive range.
However, the derivation of the revised scaling is a topic for future study.

4.2. Reacting scalar spectra
In this section the auto-spectra of reactive scalars are interpreted based on the
balance (3.40), which more generally, can be used to study both co-spectra and
auto-spectra. The latter is often of interest in modelling methodologies that employ
a ‘laminar flamelet’ hypothesis, which attempt to capture the evolution of the entire
chemical manifold through the evolution of a single, or sometimes two, reactive
scalar(s). Figure 11 shows the one-dimensional auto-spectra of hydrogen and oxygen
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FIGURE 9. (Colour online) The one-dimensional turbulent kinetic energy spectra
normalised using the laminar flame thickness, Enorm ≡ ε̃−2/3δ

−5/3
L E(k), plotted against the

normalised wavenumber, kδL, for all locations in the Da− and Da+ cases.
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FIGURE 10. (Colour online) The total pressure–velocity term, T5 in (3.25), plotted against
the normalised wavenumber, kδL, for the (a) Da+ and (b) Da− cases.

mass fractions for the Da− case at the three locations, c̃ = 0.1, 0.5 and 0.9. In
comparison to the kinetic energy spectra, the scalar spectra show a subtle difference:
the curve corresponding to the middle of the flame brush (c̃ = 0.5) is higher than
those corresponding to the flame brush edges (c̃= 0.1, 0.9). This is a reflection of the
scalar fluctuations peaking in the flame brush middle whereas the turbulent kinetic
energy peaks near the unburnt side, as shown in figure 3. The hydrogen spectrum
exhibits a shoulder, again in the high-wavenumber reactive range, which is not so
prominent for the oxygen spectrum. Curiously, for hydrogen, the shoulder exists at
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FIGURE 11. (Colour online) One-dimensional auto-spectra of fluctuations of (a) hydrogen
and (b) oxygen mass fractions for the Da− case at three locations; c̃= 0.1, 0.5 and 0.9.

(kδL/2π) ≈ 10, which is the wavenumber where the pressure–velocity term has a
signature. This is at least partly explained by the fact that for the current simulations
the length scale corresponding to hydrogen reactions in the unstrained laminar flame
is 3.6× 10−4 m, which is very close to δL. This thickness is estimated as the thickness
of the hydrogen reaction-rate profile at 10 % of its maximum.

We now consider the scaling for scalar spectra. The spectrum of a unity Schmidt
number scalar is expected to have an inertial–convective wavenumber range where
the spectral transfer is simply by convection with the well-known Obukhov–Corrsin
scaling,

Eψ(k)∼ εψε−1/3k−5/3, (4.12)

where εψ is the scalar dissipation rate. It is only if the Schmidt number is sufficiently
different from unity that one can expect either a viscous–convective range (Sc� 1)
or an inertial–diffusive range (Sc� 1). For the present case the Schmidt number for
hydrogen is ≈0.2 and that for oxygen is ≈0.8 throughout the flame, so it is unlikely
that either limit would apply. As for the influence of chemical reactions, the only
guidance is from the analysis of Corrsin (1961), which yields, for a velocity-decoupled
scalar undergoing a first-order chemical reaction, a scaling

Eψ(k)∼ Aψ ′′2ε−1/3k−5/3 exp (3Aε−1/3k−2/3), (4.13)

where A is a time scale of the first-order chemical reactions. Corrsin’s analysis shows
the interesting behaviour that the influence of chemical reactions on the shape of
the spectrum in the inertial–convective range diminishes as wavenumber increases.
However, the applicability of this analysis too is unclear for the present study since
the two central assumptions – scalar decoupled from velocity, and first-order chemical
reactions – are violated. Nonetheless, following Knaus & Pantano (2009), we examine
the Obukhov–Corrsin scaling for the reactive scalars. Figure 12 shows the hydrogen
spectra normalised using the Obukhov–Corrsin scale, η̃H2 ≡ η̃Sc−3/4, as

Enorm ≡ ε̃−1
H2
ε̃1/3η̃

−5/3
H2

EH2 (4.14)

and normalised using the laminar flame thickness (on the right) as

Enorm ≡ ε̃−1
H2
ε̃1/3δ

−5/3
L EH2 . (4.15)
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FIGURE 12. (Colour online) One-dimensional hydrogen spectra normalised using (a) the
Obukhov–Corrsin scale Enorm≡ ε̃−1

H2 ε̃
1/3η̃

−5/3
H2

EH2 and (b) the laminar flame thickness Enorm≡
ε̃−1

H2 ε̃
1/3δ

−5/3
L EH2, plotted against the normalised wavenumber for the Da− case.

As in the case of the kinetic energy spectra, normalising with laminar flame thickness
seems to give a better collapse compared to normalising with the Obukhov–Corrsin
scale. However, this collapse should not be treated as conclusive since the range of
variation of the other normalising quantities is not very large between the three curves.
Nonetheless, it is evident that the Obukhov–Corrsin scale does not collapse the spectra
in the high-wavenumber range, which is consistent with the findings of Knaus &
Pantano (2009).

It was noted earlier that the reaction source term, T5 in (3.40), is analogous to
the pressure–velocity term in (3.25). Both terms primarily represent the influence of
chemical reactions. The reaction source terms for the hydrogen and oxygen spectra
are shown in figure 13. Again, the two terms, T51 and T52, are of similar magnitude
and the presence (absence) of the shoulder in the auto-spectra for hydrogen (oxygen)
correlates remarkably well with a corresponding strong (weak) contribution from one
of the terms, T51. Curiously, the term T52 does not have such a spike. Furthermore,
the bump in the hydrogen spectra is strongest for c̃ = 0.5, followed by 0.1 and 0.9
(see figure 11), and this corresponds well with the magnitude of the T51 term for these
three locations shown in figure 14. Figure 15 shows the hydrogen–oxygen co-spectra
and the spectral coherence. The co-spectra, too, show a shoulder at exactly the same
wavenumber. Furthermore, the spectral coherence distribution is quite interesting. The
coherence between these two major species is high at the low-wavenumber inertial
range and it gradually becomes negligible, a consequence of the homogenisation of the
scalar fluctuation correlations over the inertial range. However, the coherence abruptly
increases at the wavenumber where the reactions are significant, clearly suggesting that
the chemical reactions introduce thin fronts with a coherent variation of the species
in a direction locally normal to the fronts.

5. Concluding remarks
The principal contributions of the present study are twofold. First, we have

presented a mathematical framework for a rigorous analysis of turbulent kinetic energy
and scalar variances in spectral space for combusting flows with variable density.
Although the primary focus was on turbulent reacting flows, this framework is equally
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FIGURE 13. (Colour online) The reaction source terms, T51 and T52, in (3.40), for the
(a) hydrogen and (b) oxygen auto-spectra for the Da−, c̃ = 0.5 case.
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FIGURE 14. (Colour online) Reaction source term, T51, in (3.40), for the hydrogen auto-
spectra for the Da− case for the three c̃ locations.

applicable to non-reacting flows where density variation can be significant, such as
high-Mach-number turbulent flows. The cornerstone of the framework is a newly
proposed density-weighted definition for two-point velocity and scalar correlation
tensors that retains the essential properties of their incompressible counterparts while
also being consistent with Favre-averaged Reynolds stresses and scalar covariances.
The density weighting formally leads to balance equations in wavenumber space
for kinetic energy and scalar variance spectrum functions, hitherto only derived
for constant-density flows (Hinze 1975). The balance equations clearly highlight
the physics arising out of variable density, such as the role of pressure–dilatation
correlations in turbulent kinetic energy balance.

The second contribution of this study is the evidence of high-wavenumber physics
in turbulent reacting flows that results in spectra that do not adhere to classical
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FIGURE 15. (Colour online) One-dimensional co-spectra for fluctuating hydrogen–oxygen
mass fractions, and their spectral coherence, for the Da−, c̃= 0.5 case.

incompressible scaling laws. High-fidelity large-Reynolds-number DNS datasets are
used to construct kinetic energy spectra that clearly show that, while Kolmogorov
scaling may be applicable in the inertial range, the high-wavenumber range should
be construed as a ‘diffusive–reactive’ range where a proper scaling would have to
incorporate a suitable length scale characteristic of chemical reactions. Likewise, the
classical Obukhov–Corrsin scaling for near-unity Schmidt-number scalar spectra is
not strictly applicable for reactive scalars particularly at high wavenumbers where
chemical reactions occur. The DNS spectra substantiate the results from the spectral
space balance analysis: pressure–dilatation correlations and reaction–scalar fluctuation
correlations are high-wavenumber sources of kinetic energy and scalar variance,
respectively. However, these results are by no means conclusive since the DNS
datasets have a somewhat limited scope. The Damköhler numbers of the DNS cases
are relatively low (O(0.1)) and vary only by a small factor across the datasets. Future
work will focus on performing order-of-magnitude analyses on the spectral space
balance equations to determine the relative contributions of various terms and the
underlying scaling in different wavenumber ranges. The aim will be to assess the
underlying assumptions of various subgrid models and determine their regime of
applicability for large-eddy simulations. The framework can also enable a rigorous
analysis of energy transfer in spectral space and study issues such as backscatter,
another topic for future study. We will also attempt to glean spectra and assess
the scaling by performing DNS over a much broader range of relevant parameters
(Damköhler and Karlovitz numbers), and isolating parametric influences by utilising
simplified global chemical kinetics in future studies.
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Appendix A. Balance equation for velocity fluctuation u′′i
We seek a balance equation for the velocity fluctuation about its Favre average, u′′i .

The continuity equation, in its original and averaged forms is, respectively,

∂ρ

∂t
+ ∂ρuk

∂xk
= 0, (A 1)

∂ρ

∂t
+ ∂ρŨk

∂xk
= 0. (A 2)

Subtracting the latter from the former yields

∂ρ ′

∂t
+ ∂ρ

′Ũk

∂xk
+ ∂ρu′′k

∂xk
= 0. (A 3)

On the other hand, the momentum equation can be expanded as

ρ
∂u′′i
∂t
+ ρ ∂Ũi

∂t
+ ρŨk

∂Ũi

∂xk
+ ρu′′k

∂Ũi

∂xk
+ ρŨk

∂u′′i
∂xk
+ ρu′′k

∂u′′i
∂xk
=−∂(P+ p′)

∂xi
+ ∂τik

∂xk
, (A 4)

where τik is the viscous stress tensor. In the above, the conventional decompositions
for density and pressure are used, i.e. ρ = ρ + ρ ′ and p = P + p′. Multiplying (A 3)
by u′′i and adding to (A 4) yields

ρ
∂u′′i
∂t
+ ∂ρ

′u′′i
∂t
+ ρ ∂Ũi

∂t
+ ρŨk

∂Ũi

∂xk
+ ρu′′k

∂Ũi

∂xk
+ ρŨk

∂u′′i
∂xk
+ ∂ρ

′u′′i Ũk

∂xk
+ ∂ρu′′i u′′k

∂xk

=−∂(P+ p′)
∂xi

+ ∂τik

∂xk
. (A 5)

It is straightforward to show that (A 5), upon averaging and making use of (A 2) and
the relation

ρ ′u′′i =���>
0

ρu′′i − ρu′′i , (A 6)

yields the averaged form of the momentum equation

ρ
∂Ũi

∂t
+ ρŨk

∂Ũi

∂xk
+ ∂ρu′′i u′′k

∂xk
=− ∂P

∂xi
+ ∂τ ik

∂xk
. (A 7)
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Subtracting (A 7) from (A 5) and simplifying yields the desired density-weighted
balance equation for u′′i :

∂ρu′′i
∂t
+ ρ ′ ∂Ũi

∂t
+ ρ ′Ũk

∂Ũi

∂xk
+ ρu′′k

∂Ũi

∂xk
+ ∂ρu′′i Ũk

∂xk
+ ∂

∂xk
(ρu′′i u′′k − ρu′′i u′′k)

=−∂p′

∂xi
+ ∂τ

′
ik

∂xk
. (A 8)

The veracity of (A 8) is easily verified. Multiplying the equation for u′′i by u′′j , and the
equation for u′′j by u′′i , adding the two and averaging the results yields, when (A 6) and
(A 7) are used, the exact balance equation for the Favre-averaged Reynolds stresses
(Jones 1993):

∂ρũ′′i u′′j
∂t
+ ∂ρŨkũ′′i u′′j

∂xk
+ ρũ′′i u′′k

∂Ũj

∂xk
+ ρũ′′j u′′k

∂Ũi

∂xk
+ ∂ρu′′i u′′j u′′k

∂xk

=−u′′i
∂P
∂xj
− u′′i

∂p′

∂xj
− u′′j

∂P
∂xi
− u′′j

∂p′

∂xi
+ u′′j

∂τik

∂xk
+ u′′i

∂τjk

∂xk
. (A 9)

Appendix B. Balance equation for scalar fluctuation ψ ′′

The derivation for the scalar fluctuation equation proceeds along similar lines as for
velocity. We start by expanding the balance equation for ψ as

ρ
∂ψ ′′

∂t
+ ρ ∂ψ̃

∂t
+ ρŨk

∂ψ̃

∂xk
+ ρu′′k

∂ψ̃

∂xk
+ ρŨk

∂ψ ′′

∂xk
+ ρu′′k

∂ψ ′′

∂xk
= ω̇ψ +Dψ , (B 1)

where ω̇ψ is the reaction source term and Dψ is the molecular diffusion term.
Multiplying (A 3) by ψ ′′ and adding the result to (B 1) gives

ρ
∂ψ ′′

∂t
+ ∂ρ

′ψ ′′

∂t
+ ρ ∂ψ̃

∂t
+ ρŨk

∂ψ̃

∂xk
+ ρu′′k

∂ψ̃

∂xk
+ ρŨk

∂ψ ′′

∂xk
+ ∂ρ

′Ũkψ
′′

∂xk
+ ∂ρu′′kψ

′′

∂xk

= ω̇ψ +Dψ . (B 2)

Averaging (B 2) yields the exact balance equation for ψ̃ ,

ρ
∂ψ̃

∂t
+ ρŨk

∂ψ̃

∂xk
+ ∂ρu′′kψ ′′

∂xk
= ω̇ψ +Dψ , (B 3)

which, when subtracted from (B 2) and simplified, yields the desired balance equation
for ψ ′′:

∂ρψ ′′

∂t
+ ρ ′ ∂ψ̃

∂t
+ ρ ′Ũk

∂ψ̃

∂xk
+ ρu′′k

∂ψ̃

∂xk
+ ∂ρψ

′′Ũk

∂xk
+ ∂

∂xk
(ρu′′kψ

′′ − ρu′′kψ ′′)= ω̇′ψ +D ′ψ .

(B 4)
Note the similarity of (B 4) to (A 8).
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