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The purpose of this paper is to find the zero-gravity equilibrium configurations of
liquid drops or bubbles that have sufficient volume to form large-aspect-ratio bridging
segments or occluding slugs in the eccentric annulus between two cylinders. In zero
gravity, the static problem depends on the contact angle of the fluid segment on the
solid support, and two geometric parameters: the radius ratio and the dimensionless
distance between the cylinder centres. For both non-wetting and wetting liquids,
we find regions of geometric parameter space where only occluding configurations
occur, a bistable region where either configuration can occur, and a region where
only the non-occluding bridging configuration can occur. For the non-occluding
cases, we applied a large-aspect-ratio free-energy minimization approach to predict
the cross-sectional shape of the liquid, and a finite element method was used to
compute the interface shape of the occluding cases. A Surface Evolver model was
used to simulate the three-dimensional shape of both occluding and non-occluding
configurations. The simulation results support the theoretical predictions well. The
fractional open area of the conduit was determined for both highly wetting and highly
non-wetting minority phases. Optimization of the geometric parameters for a given
wetting condition could facilitate the segregation and transport of two fluid phases in
applications involving large aspect ratios and small pressure driving forces.

Key words: drops, liquid bridges

1. Introduction
The formation of liquid slugs in gas-filled channels or gas bubbles in liquid-filled

channels can be detrimental for multiphase fluid systems aboard spacecraft and small-
scale fluidic devices on Earth. This is particularly the case when pressure driving
forces for channel flow are small, such as when they depend on capillary pressure
differences or small manifold pressure differences in parallel-channel devices. Water
slugs in air channels on the cathode side of a fuel cell can cause channel blockage
that reduces fuel cell performance (Zhang, Yang & Wang 2006; Cheah, Kevrekidis &
Benziger 2013). Similarly, carbon dioxide bubbles in liquid fuel channels on the anode
side of a micro direct methanol fuel cell (µDMFC) have been found to block channels
and reduce performance (Litterst et al. 2006; Liang et al. 2017). Bubbles trapped in
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the arterial wick of a heat pipe interrupt the transport of the heat carrier fluid to
the evaporator zone, adversely affecting performance (Schlitt 1994; Faghri 1995). A
channel shape can be chosen to prevent channel blockage for a fluid segment with
given wetting characteristics.

The specific geometry of study in this work is the eccentric annulus between an
outer tube and inner rod originally studied by Smedley (1990). This has the advantage
of wedge-shaped regions within a circular conduit that is simple to construct. This
geometry has been used in making microelectrode or microinjection pipettes by
annealing a small glass rod to the inner wall of the tubing. Without this glass
filament, back-filling pipettes can become difficult, often leading to slow filling or
blockage of the pipette by an air bubble (Oesterle 2015). A very similar geometry to
the eccentric annulus is the vane gap configuration which is common in vane-type
liquid propellant management devices in microgravity. The gap between the vane and
the wall must be sufficiently small to create the necessary wicking flows (Chen &
Collicott 2006).

Finn (1983) extended the criterion of Concus & Finn (1969) and developed
the general existence/non-existence occlusion criterion for cylinders of arbitrary
cross-sectional shape under weightlessness. Smedley (1990) applied the method of
Finn (1983) to the case of an annular geometry, which is topologically different
from the cylindrical geometry for which the method was originally derived. Smedley
considered a wetting fluid in the eccentric annulus between two non-concentric
cylinders and presented the critical values of geometric parameters at which the
transition from occluding to non-occluding configurations occurred for wetting angles
from 1◦ to 85◦.

Several researchers have studied the equilibrium configuration of a minority phase,
like a bubble in a liquid-filled channel or a drop in a gas-filled channel. Collicott,
Lindsley & Frazer (2006) studied the equilibrium shape of liquid volumes in a circular
rigid tube of gas in the absence of gravity for various contact angles and volumes.
They examined three static equilibrium topologies: an annulus, an occluding plug and
a wall-bound drop. They found that the drop topology is the stable solution at the
smallest volumes; the plug is stable for the larger volumes; and the annulus is the low-
energy solution only for one small region near contact angles less than approximately
21◦ for a range of volumes. Heil (1999) investigated the existence and stability of
static liquid bridges in non-axisymmetrically buckled elastic tubes. It was found that,
for a wide range of control parameters, the compressive forces generated by the liquid
bridge are strong enough to hold the elastic tube in a buckled configuration. The
minimum volume of liquid required to form an occluding liquid bridge in such tubes
was also found.

Concus & Finn (1969) first investigated the behaviour of a liquid that partially fills
a wedge-shaped container. They showed that, when the critical geometric wetting
condition is satisfied, γ < π/2− α, where γ is the equilibrium contact angle of the
wetting fluid and α is half of the interior angle of the corner, the liquid spontaneously
spreads along the interior corner. The interior corner flow has been widely used in
many fields especially in the design of fluid management processes in the low-gravity
environment (Wei, Chen & Huang 2011). The wedge built into a channel can help
segregate phases, prevent occlusion and transport the fluid segment along the channel.
Jenson et al. (2014) used an open narrow wedge conduit to passively separate
bubbles from liquid in microgravity. Bubbles escape from the confined region to
recover a more spherical shape which is energetically favourable for them. Manning,
Collicott & Finn (2011) examined a circular conduit with an attached sharp wedge
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(ice cream cone shape) that would avoid occlusion for contact angles that met
the Concus & Finn wetting condition for the wedge. Square-cornered hydrophilic
channels in fuel cells are used to prevent water from occluding the channel and
can remove water from the cell (Zhang et al. 2006). Litterst et al. (2006) designed
tapered flow field channels in a µDMFC for passive removal of gas bubbles. Perfectly
sharp interior corners are ideal for such capillary flows since the fluid will elongate
infinitely and come out of the channel. However, in reality, the interior corners
possess a degree of roundness due to the fabrication, which causes the fluid to form
a finite stable slug (Chen, Weislogel & Nardin 2006).

An alternative to the wedge-shaped corner for creating fluid phase segregation in
large-aspect-ratio geometries is to use bridging between detached solid surfaces or
to constrain the lateral contact line by geometric means or wetting control. Protiere,
Duprat & Stone (2013) experimentally studied the behaviour of a limited volume of
perfectly wetting liquid bridging between two parallel rigid fibres. They reported that,
depending on the fibre radius and spacing, the liquid volume and the liquid–fibre
contact angle, the liquid can adopt either a hemispherical drop shape or a long liquid
column shape. Moreover, they identified a region where both morphologies are stable,
and they found that hysteresis plays a role in transitions from one state to the other.
Reyssat (2015) described experimentally, theoretically and numerically the shapes
of drops trapped between a horizontal plane and a parallel cylinder placed above
it while gravity was neglected. It was found that small droplets adopted a circular
shape, while, as the volume of liquid increased, drops elongated along the cylinder
axis, the most confined region. These geometries often involve wedge-shaped regions.
Such long capillary bridges can also exist by pinning the lateral meniscus on sharp
edges (Brown & Scriven 1980; Langbein 1990), structured surfaces (Gau et al. 1999)
or wires (Lowry & Thiessen 2007). For a fluid in a straight-walled wedge with a
contact angle less than the Concus & Finn critical angle, the curvature of the bridging
meniscus increases as it moves further into the wedge, thus driving a capillary flow
that would cause a volume of fluid to spread indefinitely along the wedge. For bridges
between parallel cylinders, the wedge becomes less extreme as the bridging meniscus
approaches the centreline, thus limiting the driving force for spreading along the gap
and leading to an equilibrium bridge shape.

We consider the geometry of an eccentric annulus between two cylinders and would
like to know the conditions under which the fluid segment can occlude the conduit.
For wetting and non-wetting minority phases, we will find regions of geometric
parameter space where, given sufficient volume, the minority phase cannot occlude
the conduit. There is a second region where the fluid segment will occlude the
channel, and a third region where the fluid configuration can be either occluding or
non-occluding with a free-energy barrier separating the two configurations.

We do not consider the case of wall-bound droplets attached to either the inner
rod or outer tube, but only occluding and bridging configurations, and for the
bridging configuration, we consider large aspect ratios only. The existence of long but
bounded segments of bridging fluid is found by free-energy minimization following
the approach taken by Princen (1970) for the case of liquid columns bridging
between parallel cylinders. A finite element method is used to compute the interface
configuration for selected occluding configurations. Moreover, the Surface Evolver
code (Brakke 1992) is used to find the three-dimensional fluid configurations for
several occluding and non-occluding cases. Numerical and theoretical results are
compared and fluid configurations, including the fractional open area of the conduit,
are determined for minority-phase contact angles of 10◦ and 170◦. From now on, we
assume that the minority phase is a liquid. However, the results are true for the case
of a gas bubble as well.
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FIGURE 1. Cross-section of a non-occluding liquid bridge in the eccentric annulus
between non-concentric cylinders.

2. Theory and methods
2.1. Large-aspect-ratio theory

When a small but sufficient amount of liquid is brought into an annulus with gap
variation, the liquid forms a short bridge between the inner and outer cylinders.
Depending on the contact angle between the liquid and the walls, the liquid in the
channel may move to the wider or narrower gap to minimize its energy and reach
an equilibrium configuration. In some cases, adding more liquid makes the bridge
longer until it forms a long column with a constant cross-section. Figure 1 is the
cross-section of such a long column when it leaves part of the channel open. However,
there are also cases where the liquid phase occludes the channel. Figure 2 illustrates
a three-dimensional view of non-occluding (a,c) and occluding (b,d) configurations
computed for finite volumes of non-wetting (a,b) and wetting (c,d) liquid in an
eccentric annulus using Surface Evolver.

To find the equilibrium shape of a non-occluding liquid bridge in the absence of
gravity, we assume that the liquid column is infinitely long with a constant cross-
section. We apply a large-aspect-ratio free-energy minimization theory on an eccentric
annulus with rigid walls. The surface of the outer cylinder of radius Ro, denoted
by Σo, is parametrized with respect to θ as defined in figure 1, giving

rΣo = Ro(cos θ î+ sin θ ĵ) θ ∈ [0, 2π]. (2.1)

The length scale is taken to be the inner radius and other lengths are made
dimensionless by this radius. The inner cylinder thus has radius 1 and is offset
by a dimensionless vertical distance, y0i, relative to the centre of the outer cylinder.
The inner cylinder surface, denoted by Σi, is given in parametric form with respect
to φ (figure 1) by

rΣi = y0i ĵ+ (cos φ î+ sin φ ĵ) φ ∈ [0, 2π]. (2.2)

Under zero gravity, the meniscus, denoted by Γ , must have constant mean curvature
and is thus the section of a circle. By symmetry, we only need to consider the shape
of the surface in the positive-x half-plane, written parametrically with respect to η as

rΓ = (x0m î+ y0m ĵ)+ |Rm|(cos η î+ sin η ĵ), (2.3)
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(a) (b)
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FIGURE 2. (Colour online) Surface Evolver simulations showing the three-dimensional
shapes and corresponding axial views of the non-occluding (a,c) and the occluding (b,d)
cases of a liquid column in the eccentric annulus between two cylinders for contact angles
of 170◦ (a,b) and 10◦ (c,d), where Ro is 3 and y0i is 0.5.

where Rm is the radius of curvature of the free surface, (x0m, y0m) is the centre of
curvature, and the parameter η is the angle shown in figure 1 measured from the
positive x-axis in the anticlockwise direction. We are interested in shapes that bridge
between the inner and outer cylinders and thus we require that the free surface
intersects both boundaries

rΣi(φc)= rΓ (ηci), rΣo(θc)= rΓ (ηco), (2.4a,b)

where ηco and ηci are the free-surface parameters at the outer and inner contact lines,
respectively, and φc and θc specify the positions of the inner and outer contact lines.
The free-surface shape must match the contact angle condition on each boundary,

−
1

RmRo

(
drΓ
dη

)
ηco

·

(
drΣo

dθ

)
θc

= cos γ , (2.5)

1
Rm

(
drΓ
dη

)
ηci

·

(
drΣi

dφ

)
φc

= cos γ , (2.6)
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where γ is the contact angle of the liquid on both the outer and inner cylinders. The
development that follows for the shape and position of the meniscus is carried out for
the case of liquid occupying the bottom part of the channel (the non-wetting case).

Computation of trial free-surface shapes proceeds by specifying the contact line
position on the outer cylinder, θc, from which we can obtain the contact line position
on the inner cylinder, φc, from the following geometric identity:

φc = arcsin
[

sin θc (1+ ζ 2)− 2ζ
1− 2ζ sin θc + ζ 2

]
, (2.7)

where ζ is a geometric parameter defined as

ζ =
y0i

Ro + 1
. (2.8)

Equation (2.7) is the condition for a line segment that intersects the inner and outer
walls at equal angles, which is necessary for the line connecting the contact points
when contact angles are equal on the inner and outer walls. The limits on η, the free-
surface parameter, are given by

ηco = θc − γ +π

ηci = φc + γ

}
Rm > 0,

ηco = θc − γ

ηci = φc + γ −π

}
Rm < 0,

 (2.9)

where Rm is taken as positive when the meniscus is concave towards the liquid. The
sign of Rm can be found from the identity

sgn(Rm)= sgn[sin(θc − φc − 2γ )]. (2.10)

The radius of curvature and centre of curvature of the meniscus are found from the
boundary contact conditions, equation (2.4):

|Rm| =
Ro cos θc − cos φc

cos ηco − cos ηci
, (2.11)

x0m = Ro cos θc − |Rm| cos ηco, (2.12)
y0m = Ro sin θc − |Rm| sin ηco. (2.13)

Equilibrium liquid configurations occur when the following free energy is minimized:

F= ASLiσSLi + ASLoσSLo + ALVσLV + ASViσSVi + ASVoσSVo. (2.14)

Here ASLi and ASLo are solid–liquid interfacial areas on the inner and outer cylinders,
respectively; ALV , ASVi and ASVo are surface areas of the liquid–vapour, inner solid–
vapour and outer solid–vapour interfaces, respectively; and σSLi, σSLo, σLV , σSVi and σSVo
represent the respective surface energies. By Young’s equation, we have

σSVi = σSLi + cos γ σLV, σSVo = σSLo + cos γ σLV . (2.15a,b)

This allows the elimination of solid–liquid surface energies in favour of contact angles.
We are interested in the case of non-occluding liquid segments of large aspect ratio,
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such that the cross-sectional shape is invariant along the segment except near the
ends. In the limit of very long segments, the surface areas are well approximated by
the arclength of the surface in cross-section times the length of the liquid segment,
similar to the approach used by Princen (1970). The notation here follows that of
Concus & Finn (1969), where |Γ | is the arclength of a hypothetical lateral meniscus
that meets the walls with the prescribed contact angle γ , |Σ | is the total arclength
of the solid boundary of the conduit, |Σ∗| is the arclength of the wetted part of the
conduit boundary for the hypothetical non-occluding liquid section, |Ω| is the cross-
sectional area of the conduit, and |Ω∗| is the cross-sectional area of the hypothetical
non-occluding liquid section:

|Ω| =π(R2
o − 1), |Σi| = 2π, |Σo| = 2πRo. (2.16a−c)

For a liquid segment of fixed volume V with cross-sectional area |Ω∗|, the
dimensionless segment length is

L=
V
|Ω∗|

, (2.17)

and the interfacial areas are

ALV = |Γ |L, ASLi = |Σ
∗

i |L, ASLo = |Σ
∗

o |L. (2.18a−c)

The free energy is then

F= [|Γ | − cos γ |Σ∗i | − cos γ |Σ∗o |]
V
|Ω∗|

σLV + F0, (2.19)

where F0 represents the total solid–vapour free energy for the empty channel,

F0 = |Σi|LTσSVi + |Σo|LTσSVo, (2.20)

with LT denoting the total length of the solid conduit. The condition for equilibrium
for a constrained volume is

min
[
|Γ | − cos γ |Σ∗i | − cos γ |Σ∗o |

|Ω∗|

]
. (2.21)

The arclengths are

|Γ | = 2|Rm(ηco − ηci)|, |Σ
∗

i | = 2(φc +π/2), |Σ∗o | = 2Ro(θc +π/2), (2.22a−c)

and the cross-sectional area of liquid is

|Ω∗| =
1
2

∮
k̂ · (r× t̂) ds, (2.23)

where r and t̂ are the position vector and unit tangent vector, respectively, along the
boundary of the liquid region. A non-wetting liquid moves to the wider section of the
annulus (see figure 1). By symmetry we can integrate around the fluid boundary in
the positive-x domain and double it to get

|Ω∗|=

∫ θc

−π/2
k̂ ·
(

rΣo ×
drΣo

dθ

)
dθ +

∫ ηci

ηco

k̂ ·
(

rΓ ×
drΓ
dη

)
dη−

∫ φc

−π/2
k̂ ·
(

rΣi ×
drΣi

dφ

)
dφ.

(2.24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1010


Equilibrium of drops or bubbles in an eccentric annulus 371

1. Fix the geometry (Ro, y0i) and contact angle γ .
2. Treat θc as the independent variable.
3. Find φc from (2.7).
4. Find ηco and ηci from (2.9)
5. Find Rm, x0m and y0m from (2.11), (2.12) and (2.13), respectively.
6. Compute the relative free energy from (2.28).
7. Vary θc to minimize the free energy.

TABLE 1. Computational steps to find non-occluding equilibria.

This becomes

|Ω∗| = R2
o(θc +π/2)+ |Rm|

2(ηci − ηco)+ |Rm|x0m(sin ηci − sin ηco)

− |Rm|y0m(cos ηci − cos ηco)− (φc +π/2)+ y0i cos φc. (2.25)

The cross-sectional area of liquid for the wetting case where liquid occupies the
narrow section (top of the conduit) is given in appendix A. Table 1 summarizes the
procedure for finding non-occluding equilibria.

In order to judge whether channel occlusion can occur, it is necessary to compare
the free energy of the liquid segment in the non-occluded states to that of the same
volume of liquid in an occluding configuration. Following the same development as
previously, the free energy of the completely liquid-filled channel is

F1 =
|Σi|

|Ω|
V(σSVi − cos γ σLV)+

|Σo|

|Ω|
V(σSVo − cos γ σLV)

+ |Σi|(LT − Lo)σSVi + |Σo|(LT − Lo)σSVo, (2.26)

where we define the length of the occluding liquid segment to be Lo and where

L|Ω∗| = Lo|Ω|, (2.27)

by volume conservation. The difference in free energy between the occluded and non-
occluded states is then

F− F1 =

[
|Γ | − cos γ

(
|Σ∗i | +

|Ω∗|

|Ω|
|Σi| − |Σ

∗

o | +
|Ω∗|

|Ω|
|Σo|

)]
V
|Ω∗|

σLV . (2.28)

Let

Φ(|Ω∗|)≡

[
|Γ | − cos γ

(
|Σ∗i | +

|Ω∗|

|Ω|
|Σi| − |Σ

∗

o | +
|Ω∗|

|Ω|
|Σo|

)]
. (2.29)

Then
F− F1 =Φ(|Ω

∗
|)

V
|Ω∗|

σLV . (2.30)

It should be noted that the expression Φ(|Ω∗|) is the same as one given by Finn
(1983) as part of an existence criterion for surfaces that occlude a channel of arbitrary
shape. When Φ(|Ω∗|) becomes negative, the non-occluded configuration has lower
free energy and an occluding surface will not exist. In such cases, the dimensionless
Laplace pressure is

1P=
1

Rm
. (2.31)
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2.2. Finite element method
The existence of an occluding surface for an extruded channel of arbitrary cross-
sectional shape can be independently confirmed using the finite element method to
find solutions to the interface position, u(x, y), that give a constant mean curvature
that is related to the geometry and the contact angle through equilibrium conditions.
For a surface that can be uniquely described by a function u(x, y), the mean curvature
H is found from (Concus & Finn 1990)

∇ · (Tu)= 2H(x, y, u), (2.32)

where
Tu=

∇u√
1+ |∇u|2

. (2.33)

For the case that the liquid meets the solid at a constant contact angle γ , the function
u must satisfy the boundary condition (Concus & Finn 1990)

ν · Tu= cos γ , (2.34)

where ν is unit exterior normal to the solid on Σ . In the absence of external forces
such as gravity, the surface is subject to the condition of constant mean curvature as
expressed by the Young–Laplace equation

∇ · (Tu)=1P, (2.35)

where 1P denotes the dimensionless Laplace pressure. The condition of equilibrium
on the occluding surface is found from invariance of the free energy and can also be
thought of as an axial force balance on the meniscus (Concus & Finn 1990)

1P=
|Σ | cos γ
|Ω|

. (2.36)

Applying this to the case of the eccentric annulus, we have |Σ | = |Σi| + |Σo| and 1P
is found to be

1P=
2 cos γ
(Ro − 1)

. (2.37)

It should be noted that the only geometric dependence of the Laplace pressure in this
case is on the ratio of outer to inner cylinder radii and not on the offset of their
centres. An occluding surface is thus expected when a solution to (2.35) exists for a
Laplace pressure given by (2.37) that satisfies the boundary condition given by (2.34).

3. Results
Cross-sectional shapes of the bridged fluid configuration from the large-aspect-ratio

theory are compared to the axial view of three-dimensional shapes from Surface
Evolver for several geometries and wetting angles in figure 3. The dimensionless fluid
volume for the Surface Evolver computations was chosen to be 229, which gives an
aspect ratio for the liquid segment ranging from 1.5 to 2 for the occluding cases and
from 2.5 to 3 for the non-occluding cases, where aspect ratio is the maximum axial
dimension over the maximum lateral dimension of the segment. Moreover, Laplace
pressures predicted from theory, equation (2.31), are compared to those from Surface
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170°

© Ro y0i PSE Ptheory Stability region SE Theory

1.5 0.5 2.654 2.655 N

N

B

B

B

170° 3 0.5 1.049 1.047

170° 3 1.5 0.8622 0.8624

170° 6 1.5 0.4366 0.4314

10° 3 0.5 -0.8555 -0.8522

FIGURE 3. Comparing the meniscus cross-sectional shapes and capillary pressures
computed by Surface Evolver (SE) to those from the large-aspect-ratio theory for
non-wetting and wetting liquids and for different radius ratios and offsets. Here N and
B, respectively, represent non-occluding and bistable regions.

Evolver for the cases shown in figure 3. The comparison of results as displayed in
figure 3 is, we think, convincing that the large-aspect-ratio theory can be used to
correctly model these fluid configurations even for fairly modest aspect ratios. As can
be seen from figure 3, the theoretical pressures from the large-aspect-ratio theory are
in agreement within less than 1 % with the pressures computed through the Surface
Evolver simulation.
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FIGURE 4. (Colour online) Occlusion, bistable, no occlusion and non-physical regions for
non-wetting liquids, γ = 170◦ and 110◦, and wetting liquids, γ = 10◦ and 70◦.

Using the large-aspect-ratio theory, we can find a region within the geometric
parameter space of Ro and y0i where non-occluding bridging fluid configurations exist.
This region is shown as the dark and light shaded regions in figure 4 for both wetting
and non-wetting liquids. The lower boundary of this region is simply the boundary
of the geometric space being considered, where the inner cylinder touches the outer
cylinder. At the upper boundary, a minimum free energy ceases to exist within the
range of physically realizable contact line positions. For non-wetting contact angles,
the upper boundary was found to be a physical constraint where the menisci from the
two sides touch at the point of minimum free energy. This would presumably lead to
coalescence and occlusion of the channel. In the wetting cases, the limit represents
the disappearance of the minimum free energy at a saddle node of the free-energy
landscape. The disappearance of the minimum in this case corresponds to a pressure
turning point instability (Roy & Schwartz 1999; Bostwick & Steen 2015) and the
limit of stability of symmetric bridging shapes.

The lower boundary in the diagrams of figure 4 for the existence of occluding
shapes is found from the established existence criterion that the function Φ given by
(2.29) must be positive. This condition on Φ leads to a region of parameter space
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where occluding fluid configurations cannot exist. This non-occluding region is shown
as the dark shaded region for each of the cases shown in figure 4. Above the dark
shaded region, occluding configurations can exist. Thus, in the light shaded region,
the fluid can exist in either the occluding or non-occluding states, and we term this
the bistable region. The results for the existence limit of the occluding configuration
found here for wetting contact angles are in agreement with those presented by
Smedley (1990). Figures 4(c) and 4(d) compare our results with Smedley’s model
for five example cases for 10◦ and 70◦. Note that Smedley did not consider a
non-wetting fluid. Figure 2 shows the three-dimensional shapes for occluding and
non-occluding configurations for both wetting (10◦) and non-wetting (170◦) liquids
for a geometry that falls within the bistable region of both cases. In the region above
the bistable region, only occluding states exist. Upper boundaries for the existence
of non-occluding shapes and lower boundaries for the existence of occluding shapes
were computed for a range of wetting and non-wetting contact angles as seen in
figure 5. The upper limits for non-occlusion are shown in figure 5(a) for non-wetting
cases and in figure 5(c) for wetting cases. The lower limits for occlusion are shown
in figure 5(b) for non-wetting cases and in figure 5(d) for wetting cases. The region
of parameter space over which non-occluding shapes can exist is seen to shrink as
the contact angle approaches 90◦ for both the wetting and non-wetting cases.

The determination of existence limits from free-energy conditions is illustrated for
the case of a 170◦ contact angle and an offset of y0i = 1.5 in figure 6. This plot
shows the free energy of a given volume of minority fluid in the non-occluding
configuration relative to that in the occluding configuration, (F − F1), as a function
of contact line position for a range of Ro values. The minimum point on each
curve represents the contact line position at equilibrium for the corresponding
non-occluding configuration. The lowest curve (Ro = 3) corresponds to a point in the
non-occluding region. The curve that has a minimum of zero (Ro = 4.047) represents
the lower stability limit for occluding shapes and is thus the boundary between the
bistable and non-occluding regions. As Ro increases, the minimum free energy for the
non-occluding shapes occurs at larger values of contact line position. At a value of
Ro= 8.7 the equilibrium configuration occurs at a point where the menisci just touch
each other, thus representing a physical limit on non-occluding shapes. This analysis
applies for all the non-wetting contact angle cases seen in figure 5(a). From the
free-energy curves for the case of 70◦ contact angle and y0i = 1.5, shown in figure 7,
we find a different type of existence limit where the maximum and minimum in the
free-energy curve combine and disappear as Ro increases. Because this point is also
a pressure turning point, the possibility exists for this to be simply a loss of stability
of the symmetric configuration leading to a non-occluding but asymmetrical shape as
occurs for the bistable connected drop system (Bostwick & Steen 2015). An analysis
of the free energy of asymmetric bridging shapes for the 70◦ case with y0i = 1.5
and with Ro = 3.17442, which is the pressure turning point limit, was carried out as
explained in appendix C. The free energy decreased with increasing asymmetry but a
minimum was not found. This suggests that the pressure turning point is the limit of
large-aspect-ratio non-occluding configurations in the 70◦ case. This analysis applies
for all the wetting contact angle cases seen in figure 5(c).

Within the bistable region, the occluding configuration is found to have both a
lower free energy and a lower pressure than the non-occluding configuration. We
note that the curves that lie above zero in figures 6 and 7 are for geometries in
the bistable region and show that the free energy of the non-occluding configuration
is higher than that of the occluding. The fact that the non-occluding configurations
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FIGURE 5. The upper boundaries for non-occluding configurations are seen in (a) for
non-wetting cases and in (c) for wetting cases. The lower boundaries for occluding
configurations are shown in (b) for non-wetting cases and in (d) for wetting cases. The
non-wetting contact angles range from 100◦ to 170◦ by 10◦ and the wetting angles from
10◦ to 80◦ by 10◦. The upper existence limits for non-occluding configurations are found
to be physical limits for the non-wetting cases (solid lines) and pressure turning point
limits for the wetting cases (dashed lines).

represent a local minimum free energy with respect to contact line position (planar
disturbances) suggests an energy barrier between the non-occluding and occluding
configurations that disappears at the lower boundary of the bistable region. Roy
& Schwartz (1999) found that planar modes were the most dangerous modes of
instability of infinite liquid ridges. An examination of the Laplace pressure within the
bistable and non-occlusion regions for the non-wetting case of 170◦ (figure 8) reveals
that the pressure of the occluding configuration is lower than the non-occluding
within the bistable region and the pressures become equal for the two configurations
at the boundary between these regions. Occluding meniscus shapes were found by
solution of (2.35) subject to the contact angle boundary condition, equation (2.34),
using the finite element method (COMSOL Multiphysics). Results for the case of
a 170◦ contact angle and Ro = 3 are shown for y0i = 0.5 in figure 9(a) and for a
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FIGURE 6. (Colour online) Relative free energy versus contact line position for 170◦
contact angle and y0i = 1.5. The minimum in free energy becomes more shallow with
increasing radius ratio; thus the non-occluding configuration would become less stable for
such cases. The upper limit on Ro occurs when the minimum free energy coincides with
the point where the menisci touch. This represents a physical existence limit.
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FIGURE 7. (Colour online) Relative free energy versus contact line position for 70◦
contact angle and y0i= 1.5. In this case the upper limit on Ro occurs when the free-energy
minimum disappears. This also corresponds to a pressure turning point.

point only slightly above the stability limit (y0i= 0.81) in figure 9(b). No solutions to
(2.35) for an occluding surface could be found by the finite element method beyond
the stability limit predicted by theory. The tongue of liquid moving into the wide
part of the gap in figure 9(b) suggests a smooth transition from the occluding to the
non-occluding configurations.

Other observations from figure 8 are that the Laplace pressure for the non-occluding
configuration at fixed Ro is found to drop with increasing eccentricity (figure 8a), a
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FIGURE 8. (Colour online) Comparison of the Laplace pressures of the occluding and
non-occluding cases for (a) changing offset at a constant outer radius and (b) changing
outer radius at a fixed offset.
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FIGURE 9. Meniscus equilibrium shapes for two occluding cases of contact angle 170◦,
Ro = 3 and (a) y0i = 0.5 and (b) y0i = 0.81.

result of the increasing size of the gap being bridged. The drop in Laplace pressure of
both occluding and non-occluding shapes at fixed offset for increasing Ro (figure 8b)
is also a result of the increasing size of the system. It is interesting to note that
the pressures found in finite segments of modest aspect ratio by three-dimensional
simulation (Surface Evolver) are very close to those found from theory for the
occluding (2.37) and non-occluding (2.31) cases as shown in table 2.

It follows from examination of the shaded regions in figure 4 that the region of
parameter space where non-occluding shapes can exist is larger for the highly wetting
and non-wetting cases than for the cases closer to neutral wetting. The highly wetting
or non-wetting walls also lead to greater fractional open area of the conduit for non-
occluding configurations. Contour plots of fractional open area relative to the area of
the outer tube in the non-occluding regimes for contact angles of 170◦ and 10◦ are
shown respectively in figures 10(a) and 10(b). The greatest fractional open area for
the non-wetting case occurs at roughly (Ro = 2, y0i = 0.3) and the fluid configuration
for this case is shown in figure 11(a). A corresponding plot of the percentage of
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FIGURE 10. (Colour online) Fractional open area contour plot of the geometric parameter
space for (a) a highly non-wetting and (b) a highly wetting annulus.

Ro y0i Poccluding Pnon-occluding

Surface Evolver Theory (2.37) Surface Evolver Theory (2.31)

3 0.5 0.9849 0.9848 1.047 1.049
6 1.5 0.3935 0.3939 0.4314 0.4366

TABLE 2. Comparing the Laplace pressure from model and theory for two cases in the
bistable region with contact angle 170◦.

open area versus contact angle for this geometry is shown in figure 12(a), showing a
dramatic increase in open area with increasing contact angle. For the wetting case,
the fractional open area would increase to 100 % as y0i → ∞. A case with open
area greater than 90 % is found for (Ro = 4, y0i = 2.5) giving the fluid configuration
shown in figure 11(b). The greatest open area in this case occurs for a geometry with
a narrow gap between the inner and outer cylinders. The open area is found to be
relatively insensitive to contact angle, as seen in figure 12(b).

There are two options for segregating and transporting a fluid in an eccentric
annular channel, one in which the fluid is non-wetting to the walls, and the other
in which is it wetting. Depending on the application, having the largest percentage
open area may not be optimal. It depends on the desired relative rates of transport
of the two phases. The case of a wetting fluid segment leads to large open area for
the continuous phase, while the case of a non-wetting fluid segment typically has
significantly smaller open areas. On the other hand, if large amounts of minority
phase need to be transported, the non-wetting case could be advantageous. Many
of the fluid configurations found would be only weakly stable to finite disturbances.
Within the bistable region, for the case of significant flow of the continuous phase,
the venturi effect in a constriction caused by a segment of fluid segment could lead
to transition to the occluding configuration.
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FIGURE 11. (a) Example case representing the largest fractional open area (25 %) for
γ = 170◦, and (b) a case with open area greater than 90 % for γ = 10◦.
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FIGURE 12. (Colour online) Open area percentage versus contact angle for (a) the non-
wetting cases with Ro = 2, y0i = 0.3 and (b) the wetting cases with Ro = 4, y0i = 2.5.

4. Discussion and conclusions
We have examined the existence of long fluid segments in the eccentric annulus

between two nested rigidly fixed cylinders with offset centres. A transition between
occluding and non-occluding configurations of the fluid segment was found in
accordance with prior work on this geometry for wetting cases by Smedley (1990).
We have further found a regime of parameter space for both wetting and non-wetting
liquids where the bridging non-occluding shapes are apparently stable but have a
higher free energy than the occluding shapes. The size of this bistable regime is
strongly dependent on the wetting condition of the minority fluid on the walls of
the conduit and is larger for highly wetting and non-wetting conditions than for
cases closer to neutral wetting. The open area in the conduit for a non-occluding
fluid segment is also found to be greater for either the more extreme wetting or
non-wetting contact angles. These results may be important for applications involving
the segregation and transport of two fluid phases in large-aspect-ratio channels.

For the non-occluding configurations, we solved the eigenvalue problem associated
with the second variation of free energy (Bostwick & Steen 2015) to determine the
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stability of the fluid configurations. The form of this problem for free surfaces of
cylindrical section with a free contact line is given in appendix B, following the
development of Roy & Schwartz (1999). The eigenvalues computed for a given
equilibrium shape are associated with particular disturbances of the free surface.
Negative eigenvalues represent unstable eigenmodes. The smallest eigenvalue was
determined for non-occluding shapes in both the bistable region and non-occlusion
region shown in figure 4 for all four contact angles and were all found to be positive,
indicating that these configurations are stable. The stability of occluded shapes in
the bistable region was explored using the Hessian matrix capabilities of Surface
Evolver (Brakke 1996). Code for evolving our surfaces using angular guide plane
constraints in place of convex constraints on the curved boundaries was provided
by (K. A. Brakke, 2018, Personal communication), which allowed the use of the
Hessian analysis within Surface Evolver. After a surface is evolved to equilibrium,
the eigenvalues of the Hessian are found. Stability is indicated if all eigenvalues are
positive. Because of the long computational time required for evolving the surface
with Surface Evolver, only a few cases were tested within the bistable and occluding
regions and these were found to be stable.

Although the occluding configuration is energetically preferred in the bistable region,
it is argued that hysteresis will play a role in determining which configuration exists
at a particular time. For example, in an application where small droplets coalesce to
form a large wall-bound drop in the conduit, the growing drop would initially form a
bridging (non-occluding) configuration and remain in that state unless a large enough
disturbance causes it to transition to the occluding state. Hysteresis would also be
expected for continuous changes in geometry, such as moving the centre rod. If we
start with an occluding configuration above the bistable region and increase the centre
rod offset, y0i, we expect the channel to remain occluded through the bistable window
until the lower boundary of the bistable region is reached, at which point transition to
non-occlusion is expected. This transition is analogous to that seen for a related vane
gap geometry both in drop tower experiments (Chen & Collicott 2006) and in the
CFE-2 VG-1/VG-2 experiments on the International Space Station (Blackmore et al.
2011). Conversely, if the liquid starts in the non-occluded configuration below the
bistable region and the centre rod offset is decreased, we expect the non-occluding
configuration to persist through the bistable region until the upper boundary of the
bistable region is reached and a transition to occlusion would occur. Note that, in
this work, we always assume that contact angles are at their equilibrium values, so
the hysteresis is a configurational hysteresis not dependent on contact line hysteresis.
Hysteresis of the type expected here has been seen recently in experiments on liquid
columns bridging between parallel fibres (Protiere et al. 2013) when the fibre spacing
is changed continuously. Although, in this work, we have studied the equilibrium
configurations for prescribed values of static contact angles, one can model the effect
of hysteresis by a study of the variation of the equilibria with contact angle (Michael
1981).
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Appendix A. Cross-sectional liquid area and wetted boundary for the wetting
fluid segment

For a wetting liquid, the fluid moves to the narrow part of the annulus; thus the
limits of integration for finding the wetted surface arclengths and cross-sectional area
of liquid are changed. The arclengths of the wetted boundary for the wetting case are
then

|Σ∗i | = 2(π/2− φc), |Σ
∗

o | = 2Ro(π/2− θc), (A 1a,b)

and the cross-sectional area of liquid is

|Ω∗| =

∫ π/2

θc

k̂ ·
(

rΣo ×
drΣo

dθ

)
dθ +

∫ ηco

ηci

k̂ ·
(

rΓ ×
drΓ
dη

)
dη+

∫ φc

π/2
k̂ ·
(

rΣi ×
drΣi

dφ

)
dφ.

(A 2)
This becomes

|Ω∗| = R2
o(π/2− θc)− |Rm|

2(ηci − ηco)− |Rm|x0m(sin ηci − sin ηco)

+ |Rm|y0m(cos ηci − cos ηco)− (π/2− φc)− y0i cos φc. (A 3)

The limits on the free-surface parameter η are given by

ηco = θc + γ

ηci = φc − γ +π

}
Rm < 0,

ηco = θc + γ −π

ηci = φc − γ

}
Rm > 0,

 (A 4)

where the sign of Rm is found from

sgn(Rm)= sgn[sin(θc − φc + 2γ )]. (A 5)

Appendix B. The stability of non-occluding shapes

The stability of capillary equilibria can be judged from the sign of the lowest
eigenvalue of an eigenvalue problem associated with the second variation of free
energy, where negative eigenvalues indicate instability of the associated eigenmodes
(Brinkmann, Kierfeld & Lipowsky 2004; Bostwick & Steen 2015). The form of
this eigenvalue problem for general surface shapes can be found, for example, in
Brinkmann et al. (2004) and in Bostwick & Steen (2015). The problem is simplified
for the case of a surface of cylindrical section. The development presented here
follows that of Roy & Schwartz (1999), who examined the stability of liquid ridges
of circular-arc shape on various substrates. The eigenvalue problem is

ηss + ηzz + κ
2η+µ0 +µη= 0, (B 1)

where η represents a normal disturbance to the equilibrium shape, which is a function
of s, the arclength along the free surface in the transverse direction, and z, the axial
distance down the conduit. For the case of a pressure constraint rather than a volume
constraint on the system, we have µ0 = 0 (Brown & Scriven 1980). The pressure
constraint is used in systems with disconnected but identical free surfaces where the
fluid is connected through the volume (Slobozhanin & Alexander 2003), which applies
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in our case. Disturbances are subject to constant contact angle conditions on the inner
(s= s0) and outer (s= s1) cylinder walls given by

−ηs(s0, z)+ α0η(s0, z)= 0, ηs(s1, z)+ α1η(s1, z)= 0, (B 2a,b)

where α is

αi =

[
Sκκ cos γ + Sκwκw

sin γ

]
i

for i= 0, 1, (B 3)

and where κ and κw are the absolute values of the normal curvature of the meniscus
and wall evaluated at the respective contact line (s0 or s1). The signs associated with
the meniscus and wall curvatures are taken as follows:

Sκ = sgn(κ · n̂s), Sκw = sgn(κw · n̂w), (B 4a,b)

where κ and κw are the curvature vectors of the meniscus and wall, respectively, and
n̂s and n̂w are unit exterior normals to the fluid volume for the free surface and wall,
respectively. Note that the curvatures are those within the plane of constant z. The
liquid segment of length L is taken to be bound on the ends by planar walls with 90◦

contact angles, giving the axial boundary conditions

ηz(s, 0)= ηz(s, L)= 0. (B 5)

The stability of the meniscus is determined from the sign of the smallest eigenvalue
µ of this eigenvalue problem. The separation-of-variables solution that satisfies the
boundary conditions at the ends is

η(s, z)= [A cos(ξs)+ B sin(ξs)] cos
(nπz

L

)
. (B 6)

This satisfies the differential equation provided that the eigenvalue is

µ= ξ 2
− κ2
+

(nπ

L

)2
. (B 7)

Applying the boundary conditions at the lateral contact lines and taking s0 = 0 leads
to the requirement that the transverse wavenumber, ξ , satisfies the following condition:

ξ(α1 − α0) cos(ξs1)− (ξ
2
+ α0α1) sin(ξs1)= 0. (B 8)

Because instability is indicated by the presence of a single negative eigenvalue, we
are only interested in the smallest non-zero root of this equation, ξ0. The smallest
eigenvalue will then be

µ0 = ξ
2
0 − κ

2. (B 9)

The smallest eigenvalue was found to be positive for the non-occluding shapes over
their range of existence within the parameter range studied in this work (the light and
dark shaded regions in figure 4).
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Appendix C. Asymmetric non-occluding configurations at the pressure turning
point

The loss of stability of the symmetric solution at a pressure turning point found
for the case of a 70◦ contact angle may lead to channel occlusion or could lead to
a new asymmetric non-occluding configuration. Asymmetric solutions in which the
meniscus advances a different distance on the two halves of the channel would be
mechanically allowed because of the pressure turning point. That is, there are two
positions of the meniscus that give the same pressure, one on either side of the turning
point. Whether such configurations would be stable can be judged by whether a free-
energy minimum is found. Here we develop the free-energy expression for asymmetric
configurations. The function Φ will now be computed for different shapes on the two
halves, left (L) and right (R). The free energy relative to the occluded configuration
for the asymmetric segment would be

F− F1 =ΦL(|Ω
∗

L |)
VL

|Ω∗L |
σLV +ΦR(|Ω

∗

R|)
VR

|Ω∗R|
σLV . (C 1)

The volume of each half can be written in terms of the total segment volume as

VL

V
=

|Ω∗L |

|Ω∗L | + |Ω
∗
R|
,

VR

V
=

|Ω∗R|

|Ω∗L | + |Ω
∗
R|
. (C 2a,b)

The free-energy function can be rewritten as a volume-weighted average of the free
energy per volume for the two sides:

F− F1 =

[
|Ω∗L |F̂L + |Ω

∗

R|F̂R

|Ω∗L | + |Ω
∗
R|

]
VσLV, (C 3)

where

F̂L = σLV
Φ(|Ω∗L |)

|Ω∗L |
, F̂R = σLV

Φ(|Ω∗R|)

|Ω∗R|
. (C 4a,b)

The area and free-energy contributions from a set of shapes with equal pressures but
increasingly different contact line positions on opposite sides of the pressure turning
point are computed to assess how free energy changes with asymmetry.
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