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Analysing the motion of a driven, damped pendulum as a function of the amplitude of the

driving force, we show, first, that for moderate values and larger of the amplitude, deviations

from a simple motion with the period of the driving force are bounded by a constant times the

inverse square root of the amplitude, for late times. For amplitudes above a larger threshold

we are able to show that, for late times, the motion becomes a periodic motion with the period

of the driving force. The manner in which this periodic motion is achieved with the passage of

time is analysed.

1 Introduction

A damped pendulum is suspended from a pivot at one end and constrained to move in the

plane perpendicular to the pivot. Its displacement is described by the angle θ giving the

deviation of the pendulum from its stable rest position. When the pendulum is subjected

to a driving force which is sinusoidal in time, its motion is described by the equation

θX λθdω#

!
sin θ¯G sin (ωt). (1.1)

Here λ" 0 is the damping, ω
!
" 0 is the characteristic frequency of the pendulum

(depending on gravity, mass of the pendulum, and moment of inertia of the pendulum), and

G" 0 and ω" 0 are the amplitude and frequency, respectively, of the driving (generalized)

force.

Solutions of (1.1) have been studied extensively. Indeed, the family of such solutions for

different values of the parameters ω, G and λ has served as a paradigm for the discussion

of different regimes of periodic motion, and of phenomena like period doubling,

bifurcation, and chaos [1]. It is the late-time behaviour of solutions of (1.1) which is of

primary interest. This is the behaviour after the effect of initial conditions has disappeared

(as always happens eventually when λ" 0). For small G, this late-time motion is periodic

with period T¯ 2π}ω. As G is increased, there is a point of bifurcation, after which the

period doubles to 2T. Further doublings of the period occur, until one arrives at a state of

apparently chaotic motion.

Some systems of differential equations having chaotic solutions may be studied

experimentally by observing the motion of actual physical devices. There are some electro-

mechanical systems of this type [2]. In the case of the damped driven pendulum, a series of

papers by Blackburn, Smith and coworkers [4–6] have laid the foundation for the

experimental study of solutions of (1.1). Their efforts have resulted in the design of a

pendulum which is commercially available, and which can be used to make very precise
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measurements [3]. Such measurements of the late-time motion of the damped driven

pendulum, for different values G of the amplitude of the driving force, suggest that, as G

increases, the pendulum slips into and out of apparently chaotic motions [7].

One can explore the nature of the late-time motion as G is varied with greater versatility

on the computer. Numerical solution of (1.1) by the fourth-order Runge–Kutta method is

quite appropriate for obtaining such solutions, and these solutions are the basis for much

of the analysis presented by Baker & Gollub [1]. The computer results bear out the

experimental observations of Hammel [7], with regard to the alternating intervals in G of

periodicity and apparent chaos.

Nevertheless, the range of G values for which the motion was studied by Baker and

Gollub computationally, and by Hammel experimentally, was limited. A larger range of G

values was used in the computer simulations of Hinczewski [8]. His results suggested that

at much higher G values than those for which apparent chaotic behaviour first manifested

itself, the apparent chaos disappeared permanently, and the late-time behaviour was

periodic with period T. The mathematical analysis to support such a conclusion is the main

purpose of this paper.

Standard definitions of chaos [2, 9] describe it as the phenomenon associated with a map

F from a metric space M (often a Cantor-like subset of Euclidean space, with its own

metric) into itself, with the following properties : (i) F is unstable in M, with respect to

unlimited repetitions of F, and in fact some repetition of F on any open set in M will

intersect any other open set in M ; (ii) points which are mapped into themselves after a finite

number of applications of F are dense in M. One should check the references above for

further details.

In the context of the pendulum motion, M will be a subset of 2#, consisting of pairs

(θ,Tθd ) at a given time. F will transform a pair (θ,Tθd ) into the corresponding quantities a time

T later. Although the standard definition of chaos given above does not ascribe a ‘size ’ to

the chaos, we can assign such a size as the diameter of M in the Euclidean norm in 2#.

The central observation of this paper is that, for G large, the nonlinear term in (1.1) has

a relatively small effect on the motion. In particular, in the next section (Theorem 2.2) we

will see that, writing θ¯ θ
"
θh , where θ

"
satisfies (1.1) without the nonlinear term, for

ωG&λ#oω#λ# (1.2)

and t& a threshold value dependent upon the parameters of the problem and the initial

conditions ; we have

rθh d (t)r%
A

"

oG
(1.3)

for a constant A
"
¯A

"
(λ,ω,ω

!
,G). In the third section (equation (3.11)) we will find that,

for almost all G sufficiently large and t& another threshold value, we have

rθh (t)®A
#
r%

A
$

oG
, (1.4)

where A
#
and A

$
depend upon the parameters of the problem, and in addition, A

#
depends

upon the initial conditions.

In conformity with the discussion of chaos above, we can say that the magnitude of any

chaotic component of the motion is no more than O(G−"/#) for G sufficiently large. The

https://doi.org/10.1017/S0956792597003355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792597003355


The response of a damped pendulum to a large dri�ing force 107

question naturally arises as to whether Hinczewski’s results [8] actually showed a vanishing

of chaotic motion for G large, or whether they were incapable of discerning a motion with

such a small amplitude. This question is answered in §§4 and 5 of this paper. There we show

(Theorem 5.3) that there is a constant A
%

such that, when G&A
%
,

θ(tT )®θ(t)U 0 as tU¢. (1.5)

In general, the constant A
%

is much larger than the minimum value of G given by (1.2).

(Some numbers are given in the final section of the paper.) It follows from (1.5) that any

components of the motion which are doubly periodic, multiply periodic, or chaotic, are

precisely zero, and not just small. We will see, however, that the larger G is, the longer it

takes for this motion of period T to manifest itself.

At this point we not that, to our knowledge, there is no proof that there is such a thing as

a ‘chaotic pendulum’ satisfying (1.1) for any value of G" 0. For sufficiently small G we

know that the motion becomes periodic with period T as tU¢, and we have shown the

same thing in this paper for large G. For intermediate values of G the results of

computations are suggestive of chaos, but we cannot be sure that we do not have a motion

of period 2#! T, for example.

The methods of analysis we use in this paper are largely standard methods of classical

asymptotic analysis, using for the most part little more than integration by parts. The

asymptotic re! gime we study is considerably different from that studied by Cartwright [10].

In her case, λ and G are both large. Cartwright considers the late-time behaviour of

solutions of a broad class of equations, but our equation (1.1) does not fall into that class.

For example, she requires that the nonlinear term represented here by sin θ – call it g(θ) –

satisfies g(θ) sgn(θ)" 0 for rθr& 1, and also g«(θ)" 0. Cartwright’s starting point is to

multiply the analogue of (1.1) by θd and integrate over time, and to get an energy-type

integral. Our starting point is to use the large amplitude of the oscillations of θ
"

defined

above, and to see how this brings about rapid oscillations in sin θ in (1.1), with consequent

small effect when integrated over time.

2 Domination of pendulum motion by driving force

We decompose the pendulum angle θ in (1.1) into two parts,

θ¯ θ
"
θh , (2.1)

where
θX
"
λθd

"
¯G sin (ωt) (2.2a)

and
θhX λθh d ¯®ω#

!
sin (θ

"
θh ). (2.2b)

The solution of (2.2a) is
θ
"
¯ c

"
e−λtc

#
®Gh cos (ωt®φ), (2.3a)

where

Gh ¯
G

ωoω#λ#

(2.3b)

and

cosφ¯
λ

oω#λ#

, sinφ¯
ω

oω#λ#

. (2.3c)
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We choose c
"

and c
#

so that

θ
"
(0)¯ θ(0) and θd

"
(0)¯ θd (0), (2.4a)

or

c
"
¯

®Gω

λ(ω#λ#)
®

θd (0)

λ
and c

#
¯

G

λω


θd (0)

λ
θ(0). (2.4b)

We shall refer to the solution θ
"
of (2.2a) as a ‘simple harmonic motion’, although strictly

speaking it becomes periodic only as tU¢, and one usually thinks of simple harmonic

motions as involving only small values of the displacement θ, for example, rθr'π}2. That

is not the case here. The angle θh will be called simply the ‘correction’ to the simple

harmonic motion. To the extent that the motion described by (1.1) is ‘chaotic ’, the ‘chaos’

will be contained in the correction θh to the simple harmonic motion θ
"
. In this section we

will obtain some bounds for the correction as a function of the driving amplitude Gh .
First, we note that (2.2b) is a first-order linear differential equation for θh d , with solution

θh d (t)¯®ω#

!& t

!

e−λ(t−ξ) sin (θ
"
(ξ)θh (ξ)) dξ, (2.5)

since θh d (0)¯ 0, by (2.4). Equation (2.5) will be used to bound θh d . The first bound we obtain

is simply

rθh d (t)r%ω#

!& t

!

e−λ(t−ξ) dξ%
ω#

!

λ
. (2.6)

A sharper bound is obtained by breaking the interval of integration [0, t] in (2.5) into two

equal parts :

rθh d (t)r%
ω#

!
e−λt/#

λ
ω#

! )& t

t/#

e−λ(t−ξ) sin (θ
"
(ξ)θh (ξ)) dξ) . (2.7)

The first term on the right of (2.7) is bounded by ω#

!
}(ωoGh ), provided that t is large enough

that

e−λt/#%
λ

ωoGh
. (2.8)

A bound for the second term on the right is provided by the following lemma.

Lemma 2.1 Let Gh and t satisfy the inequalities

Gh &λ#}ω#, (2.9a)

rc
"

λ

ω
e−λt/#r%oGh , (2.9b)

where c
"

is gi�en by (2.4b). Then

)& t

t/#

e−λ(t−ξ) sin (θ
"
(ξ)θh (ξ)) dξ)% )& t

t/#

e−λ(t−ξ) exp (i(θ
"
(ξ)θh (ξ))) dξ)

%
2π

ωoGh
2.7ω

!
}λ

1®e−πλ/ω
.

(2.10)
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Proof For a constant α& 2, let

Sα ¯²ξ ` [t}2, t] r r sin (ωξ® φ)r&αGh −"/#´ . (2.11)

Sα consists of a collection of intervals [a, b] in [t}2, t] over which rsin (ωξ®φ)r&αGh −"/#.
Let us bound the contribution to the second integral of (2.10) of the form

I¯&b

a

e−λ(t−ξ) exp (i(θ
"
(ξ)θh (ξ))) dξ. (2.12)

We note that, over [a, b],

sθd
"
(ξ)r&Gh ω rsin (ωξ®φ) r®oGh ω&Gh ω(1®1}α) rsin (ωξ®φ)r

&
Gh ω
2

rsin (ωξ®φ)r&
α

2
ωoGh , (2.13)

on account of (2.3a), (2.9b), and the restriction α& 2. We integrate (2.12) by parts :

I¯®i e−λ(t−ξ)
eiθ

"
(ξ) eiθ

h

(ξ)

θd
"
(ξ) )b

a

iλ&b

a

e−λ(t−ξ)
eiθ

"
(ξ) eiθ

h

(ξ)

θd
"
(ξ)

dξ

®&b

a

e−λ(t−ξ)
eiθ

"
(ξ) eiθ

h

(ξ)

θd
"
(ξ)

θh d (ξ) dξ

®i&b

a

e−λ(t−ξ)
eiθ

"
(ξ) eiθ

h

(ξ)

(θd
"
(ξ))#

θX
"
(ξ) dξ. (2.14)

The integrated term in (2.14) and the first integral on the right-hand side of (2.14) are

bounded by

4 e−λ(t−b)

αωoGh
and

2 e−λ(t−b)

αωoGh
, respectively, (2.15)

on account of (2.13). With regard to the second integral on the right-hand side of (2.14),

(2.6) and (2.13) give the bound

2ω#

!

λ#αωoGh
e−λ(t−b). (2.16)

Finally, in the last term of (2.14), we have

rθX
"
(ξ)r% 2Gh ω#,

on account of (2.3a) and (2.9). Thus, in view of (2.13), a bound for the last integral is

e−λ(t−b)
8

Gh &b

a

dξ

sin#(ωξ®φ)
%

16

ωαoGh
e−λ(t−b). (2.17)

The bounds in (2.15), (2.16) and (2.17) add up to

1

ωαoGh
022

2ω#

!

λ#
1 e−λ(t−b). (2.18)
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Adding up terms like (2.18) for all the intervals [a, b] contained in Sα results in the bound

)&
Sα

e−λ(t−ξ) exp (i(θ
"
(ξ)θh (ξ))) dξ)% 2

ωαoGh
11ω#

!
}λ#

1®e−πλ/ω
. (2.19)

We have to bound the contributions to the second integral on the left-hand side of (2.10)

for which
rsin (ωξ®φ)r!αGh −"/#. (2.20)

Equation (2.20) implies that

rωξ®φ®nπr%
π

2

α

oGh
for some integer n. (2.21)

Thus, the contributions to the integral for ξ ` [t}2, t]®Sα are bounded by

πα

ωoGh
1

1®e−πλ/ω
. (2.22)

Putting all our results together, we get

)& t

t/#

e−λ(t−ξ) sin (θ
"
(ξ)θh (ξ )) dξ )% 2

ωαoGh
11ω#

!
}λ#

1®e−πλ/ω


πα

ωoGh
1

1®e−πλ/ω
. (2.23)

Letting

α¯ 02π (11ω#

!
}λ#)1"/#!'2

π 0o11
ω
!

λ 1! 2[7
ω
!

λ
(2.24)

gives us the result (2.10). *

Equations (2.10) and (2.7) immediately yield a bound for rθh d r, formalized in the following

theorem.

Theorem 2.2 Let Gh and t satisfy (2.9) and (2.8). Then

rθh d (t)r%
ω#

!
(2π) (3ω

!
}λ)

ωoGh (1®e−πλ/ω)
. (2.25)

The bound (2.25) holds as long as the inequality (2.9a) is satisfied, provided that one waits

long enough, as required in (2.9b) and (2.8). Theorem 2.2 then states that the deviation of

the pendulum angular velocity, chaotic or not, from the angular velocity of a simple

harmonic motion is no more than O(1}oGh ) for Gh large. Thus, even if there is a chaotic

part of the angular velocity, it may not be discernible for large Gh .
No matter how small a bound we have on the size of θh , so long as the bound is positive

there is the possibility of large excursions in the angle θh as the time increases without limit.

The behaviour of θh will be studied in more detail in the sequel.

3 Intervals of attraction for pendulum angle at late times

In this section we shall indicate the mechanism whereby, for almost all values of Gh , the

pendulum correction angle θh is trapped in a certain interval for late times. The width of the

interval, when it exists, is bounded by a multiple of 1}oGh . We will not prove our assertion,
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but our argument can serve as an outline of a proof, which we leave for completion to the

sufficiently interested reader.

Our starting point is the integral equation (2.5), which we rewrite by integration by parts :

θh d (t)¯®ω#

!
e−λt H

"
(t) cos θh (t)®ω#

!
e−λt H

#
(t) sin θh (t)

ω#

!& t

!

e−λ(t−ξ) [®e−λξ H
"
(ξ ) sin θh (ξ)ε−λξ H

#
(ξ ) cos θh (ξ )] θh d (ξ ) dξ, (3.1a)

where

e−λt H
"
(t)¯& t

!

e−λ(t−ξ) sin(θ
"
(ξ )) dξ (3.1b)

and

e−λt H
#
(t)¯& t

!

e−λ(t−ξ) cos (θ
"
(ξ )) dξ. (3.1c)

It is easy to bound e−λt H
"
(t) and e−λt H

#
(t). Clearly,

re−λt H
i
(t)r%

1

λ
, i¯ 1, 2. (3.2a)

Bounds when the conditions (2.9) and (2.8) are satisfied are obtained in the same way we

bounded the right-hand side of (2.5), except that to bound e−λt H
"
(t) we replace θh (ξ ) by 0,

and to bound e−λt H
#
(t) we replace θh (ξ ) by π}2. The result is

re−λt H
i
(t)r%

6π

ωoGh (1®e−πλ/ω)
, i¯ 1, 2. (3.2b)

Thus, in (3.1a) it is clear that the integrated terms are the dominant ones, and that the

integrals left over are no more than O(1}Gh ) in magnitude, on account of (2.25) and (3.2).

We can integrate (3.1a) from t to t2π}ω, to get

θh 0t2π

ω 1®θh (t)¯®ω#

! 0& t+#
π/ω

t

e−λξ H
"
(ξ ) dξ1 cos θh (t)

®ω#

! 0& t+#
π/ω

t

e−λξ H
#
(ξ ) dξ1 sin θh (t)

®ω#

!& t+#
π/ω

t

F
"
(ξ ) sin θh (ξ ) θh d (ξ ) dξω#

!& t+#
π/ω

t

F
#
(ξ ) cos θh (ξ ) θh d (ξ ) dξ


ω#

!

λ
e−λt (1®e−#

πλ/ω )& t

!

[®H
"
(ξ ) sin θh (ξ )H

#
(ξ ) cos θh (ξ )] θh d (ξ ) dξ


ω#

!

λ & t+#
π/ω

t

(e−λξ®e−λ(t+#
π/ω)) [®H

"
(ξ ) sin θh (ξ )H

#
(ξ ) cos θh (ξ )] θh d (ξ ) dξ,

(3.3a)

where

F
i
(ξ )¯& ξ

t+#
π/ω

e−λη H
i
(η) dη, i¯ 1, 2. (3.3b)
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Now we will study an approximate version of (3.3a) which holds for λt and Gh large. From

(3.1b) and (2.3a) we have

e−λt H
"
(t)¯& t

!

e−λξ sin (c
"
e−λ(t−ξ)c

#
®Gh cos (ω(t®ξ )®φ)) dξ

and, with K
"
(t) defined by

K
"
(t)¯&¢

!

e−λξ sin (c
#
®Gh cos (ω(t®ξ )®φ)) dξ, (3.4a)

one easily derives

re−λt H
"
(t)®K

"
(t)r% 0c" t

1

λ1 e−λt. (3.4b)

Similarly, for

K
#
(t)¯&¢

!

e−λξ cos (c
#
®Gh cos (ω(t®ξ )®φ)) dξ, (3.5a)

we have

re−λt H
#
(t)®K

#
(t)r% 0c" t

1

λ1 e−λt. (3.5b)

Note that K
"
(t) and K

#
(t) are periodic in t with period 2π}ω.

Integration of K
"
(t) and K

#
(t) over a period yields

& t+#
π/ω

t

K
"
(ξ ) dξ¯&¢

!

e−λη&#
π/ω

!

sin c
#
cos (Gh cosωξ ) dξdη

¯
2π

λω
sin c

#
J
!
(Gh ), (3.6a)

and & t+#
π/ω

t

K
#
(ξ ) dξ¯

2π

λω
cos c

#
J
!
(Gh ), (3.6b)

where J
!
(Gh ) is the Bessel function of order 0 [11].

On account of the bounds (3.2) on H
"
and H

#
(with corresponding bounds obtained from

(3.3b) for F
"
(ξ ) and F

#
(ξ ) when ξ ` [t, t2π}ω]), the bounds (2.6) and (2.25), the approach

of e−λt H
i
(t) to K

i
(t), i¯ 1, 2, as given by (3.4b) and (3.5b), and formulas (3.6), we are led

to consider the recursion relation

θW 0t2π

ω 1®θW (t)¯
®2πω#

!

λω
J
!
(Gh ) sin (c

#
θW (t)). (3.7)

We anticipate that, for large times and large Gh , the solution of (3.3a) will behave like the

solution of (3.7). Recall [11] that

J
!
(Gh )U' 2

πGh
cos (Gh ®π}4) asGh U¢. (3.8)

https://doi.org/10.1017/S0956792597003355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792597003355


The response of a damped pendulum to a large dri�ing force 113

Suppose Gh is large enough that

2πω#

!

λω
r J

!
(Gh ) r% r. (3.9)

Equation (3.7) is a mapping from θW (t) to θW (t2π}ω). The fixed points of this mapping occur

when sin(c
#
θW (t))¯ 0, or c

#
θW (t)¯ nπ. Suppose that J

!
(Gh )" 0 and sin(c

#
θW (t))" 0. Then

2nπ! c
#
θW (t)! (2n1)π for some integer n. From (3.7), c

#
θW (t2π}ω)! c

#
θW (t) and,

if (3.9) holds, c
#
θW (t2π}ω)" 2nπ. It follows easily that, as NU¢, c

#
θW (t2πN}ω)U

2nπ. If, on the other hand, J
!
(Gh )" 0 and sin(c

#
θW (t))! 0, so that (2n®1)π! c

#
θW (t)!

2nπ, c
#
θW (t)! c

#
θW (t2π}ω)! 2nπ, and c

#
θW (t2πNω)U 2nπ as NU¢. Similar

arguments apply when J
!
(Gh )! 0. We summarize the results as follows:

Lemma 3.1 For the mapping (3.7)

c
#
 lim

NU¢

θh (t2πN}ω)¯ (2nπ

(2n1)π

if J
!
(Gh )" 0

if J
!
(Gh )! 0.

(3.10)

We have seen that equation (3.3a) for the change in θh (t) over a period 2π}ω is the same as

(3.7), with additional terms on the right-hand side which are at most O(1}Gh ), for t

sufficiently large. We may think of the right-hand side of (3.7) as a term causing θW c
#
to be

‘attracted’ to 2nπ if J
!
(Gh )" 0 and to (2n1)π if J

!
(Gh )! 0. As long as r J

!
(Gh )r¯ 0(1}oGh ),

i.e.

rcos(Gh ®π}4)r¯ 0(1)), for ) c#θW ®(2nπ

(2n1)π

J
!
(Gh )" 0

J
!
(Gh )! 0)

more than a sufficiently large multiple of 1}oGh , this attractive term will dominate the

additional terms which appear in equation (3.3a) for θh (t). Hence, we can infer that

rθh (t2πN}ω)c
#
®2nπr¯ 0(1}oGh ) forN sufficiently large and J

!
(Gh )" 0;

(3.11a)

rθh (t2πN}ω)c
#
®(2n1)πr¯ 0(1}oGh ) forN sufficiently large and J

!
(Gh )! 0.

(3.11b)

The ‘ late-time’ behaviour which has just been noted for repeated applications of the

mapping (3.7) is a special case of the late-time behaviour of solutions of the initial-value

problem

φd (t,φ
!
)¯A(t) cosφ(t,φ

!
)B(t) sinφ(t,φ

!
), (3.12a)

φ(t
!
,φ

!
)¯φ

!
, (3.12b)

where A(t) and B(t) are bounded, measurable, and periodic with period 2π}ω.

Lemma 3.2 If, for some φ
!
¯φ* and t

!
¯ t*, the solution of (3.12) satisfies

φ(t*2π}ω,φ*)¯φ*, (3.13)

then for all φ
!

and t
!
, lim

NU¢ φ(t
!
2πN}ω,φ

!
) exists.
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Proof It follows from (3.13) and (3.12a) that there are numbers φ$
−

and φ$
+

such that φ$
−

%φ(t,φ*)%φ$
+
ct. Furthermore, for any t,φ(t,φ

!
)®φ

!
is periodic in φ

!
, with period 2π.

Since the right-hand side of (3.12a) is Lipschitz-continuous with respect to φ, φ(t),φ
!
) has

a Lipschitz-continuous dependence on φ
!
. Specifically,

e−M(t
!
,t) %

¥φ(t,φ
!
)

¥φ
!

% eM(t
!
,t), (3.14a)

where

M(t
!
, t)¯ )& t

t!

((A(ξ ))#(B(ξ ))#)"/#dξ ) . (3.14b)

From (3.14a), we conclude that φ(t,φ
!
) increases monotonically with φ

!
. This monotonicity

is a direct consequence of the fact that (3.12a) is a first-order equation. In contrast, (2.2b)

is a second-order equation which does not generally exhibit such monotonicity. From the

periodicity of A(t) and B(t) it follows that φ(t2π}ω,φ
!
)¯φ(t,φ(t

!
2π}ω,φ

!
)), so if, for

example, φ(t
!
2π}ω,φ

!
)"φ

!
, we get φ(t2π}ω,φ

!
)"φ(t,φ

!
)ct. Choose m as the

smallest integer such that φ*2mπ&φ
!
. The quantities φ(t

!
2πN}ω,φ

!
) are increasing

with increasing N, but are all bounded above by φ$
+
2mπ. Thus lim

NU¢ φ(t
!
2πN}ω,φ

!
)

exists. Similarly, if φ(t
!
2π}ω,φ

!
)!φ

!
, we get a decreasing sequence ²φ(t

!
2πN}ω,φ

!
) r

N¯ 0, 1, 2,…´ which is bounded below by φ$
−
2(m®1)π, and the desired limit exists. If

φ 0t!2π

ω
,φ

!1¯φ
!
, lim

NU¢

φ 0t!2πN

ω
,φ

!1¯φ
!
.

In numerous cases of interest, the condition (3.13) is fulfilled. For example, if A(t)3 0, then

we obtain (3.13) whenever φ*¯ nπ. A similar situation occurs if B(t)3 0. Suppose A(t)

¯®A(2t
!
2π}ω®t) and B(t)¯®B(2t

!
2π}ω®t) for some t

!
. Then (3.13) is satisfied for

all φ*. Suppose A(t)¯A(2t
!
2π}ω®t) and B(t)¯B(2t

!
2π}ω®t) for some t

!
. Then

from (3.12), starting at ‘ initial ’ time, t
!
2π}ω and ‘angle ’ φ

!
π, and running backward

in time for a period 2π}ω, we get

φ 0t!2π

ω
,φ

!1®φ
!
¯φ

"
®(φ

!
π), (3.15)

where φ
"
is the angle for which φ(t

!
2π}ω,φ

"
)¯φ

!
π. Thus, if φ(t

!
2π}ω,φ

!
)®φ

!
" 0

(! 0, resp.), we will have φ(t
!
2π}ω,φ

"
)®φ

"
! 0 (" 0, resp.), and by continuity there is

a φ* such that φ(t
!
2π}ω,φ*)¯φ*, satisfying (3.13).

More generally, one can derive from (3.12a) the bound

)φ0t!2π

ω
,φ

!1®φ
!
®cosφ

!&#
π/ω

!

A(ξ) dξ®sinφ
!&#

π/ω

!

B(ξ) dξ

"

#
cosφ

!
sinφ

! 90&#
π/ω

!

A(ξ) dξ1#0&#
π/ω

!

B(ξ) dξ1#:®&#
π/ω

!

A(ξ)& ξ

!

B(η) dηdξ

cos#φ
! 0&#

π/ω

!

A(ξ) dξ1 0&#
π/ω

!

B(ξ) dξ1)% 1

6 0&#
π/ω

!

(rA(ξ)rrB(ξ)r) dξ1$. (3.16)
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There is no loss of generality in considering the case

&#
π/ω

!

B(ξ) dξ¯ 0, (3.17a)

for we can always achieve this by changing the origin of φ. If (3.17a) holds and, in addition,

if

1

2 0&#
π/ω

!

(rA(ξ)rrB(ξ)r)dξ1#%min 01, )&#
π/ω

!

A(ξ) dξ)1 , (3.17b)

we can deduce from (3.16) that there is an angle φ
!
such that φ(t

!
2π}ω,φ

!
)®φ

!
" 0, there

is an angle φ
"
such that φ(t

!
2π}ω)φ

"
)®φ

"
! 0, and hence by continuity there is a φ* such

that (3.13) holds. For all these cases Lemma 3.2 applies.

4 Evolution of pendulum motion after memory of initial conditions has faded

For late times, defined by the condition t& t
!
, where λt

!
is a large number, the solution θh

of (2.5) and (2.3a) will satisfy approximately

θh d (t)¯®ω#

!&¢

!

e−λξ sin (c
#
®Gh cos (ω(t®ξ)®φ)θh (t®ξ)) dξ. (4.1)

Equation (4.1) suggests that for late times we approximate θh (tt
!
) by

θh (tt
!
)F θh (t

!
)ψ(t), (4.2)

where ψ(t) satisfies

ψd (t)¯®ω#

!&¢

!

e−λξ sin (θ
!
®Gh cos (ω(t®ξ)®φ

!
)ψ(t®ξ)) dξ (4.3a)

and

ψ(0)¯ 0. (4.3b)

For the sake of simplicity, we have written

θ
!
¯ c

#
θh (t

!
) and φ

!
¯φ®ωt

!
(4.4)

in (4.3a). With the translation (4.2), ‘ late ’ time now means t& 0.

In this section we shall show that (4.3) has a unique solution for all time, ®¢! t!¢,

if Gh is large enough. First, for a number λ« ` (0,λ}2], we will let V denote the space of

functions ψ defined for t% 0, satisfying (4.3b), and for which

sψs¯ sup
t%!

1

λ«
reλ«t ψd (t)r!¢. (4.5)

U : VUV is defined as the transformation ψUχ¯Uψ given by

χd (t)¯®ω#

!&¢

!

e−λξ sin (θ
!
®Gh cos (ω(t®ξ)®φ

!
)ψ(t®ξ)) dξ. (4.6a)

χ(0)¯ 0. (4.6b)
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Clearly, if χ `V is in the range of U, then

rχd (t)r%ω#

!
}λ for t% 0. (4.7)

In terms of U, (4.3) takes the form

ψ¯Uψ. (4.8)

In order to prove the existence of a solution of (4.8), we first show that U, when restricted

to functions ψ `V for which rψd r%ω#

!
}λ for t% 0, is a contraction in V, for Gh large enough.

Hence, we shall bound sχ
"
®χ

#
s in terms of sψ

"
®ψ

#
s, where

χ
i
(t)¯U(ψ

i
(t)), i¯ 1, 2. (4.9)

From (4.5), we see that we need to bound, for t% 0,

1

λ«
eλ«t ω#

! )& t

−¢

e−λ(t−ξ) [sin (θ
!
®Gh cos (ωξ®φ

!
)ψ

"
(ξ))

®sin (θ
!
®Gh cos (ωξ®φ

!
)ψ

#
(ξ)] dξ)

%
1

λ«
eλ«t ω#

! )& t

−¢

e−λ(t−ξ) exp (i(θ
!
®Gh cos (ωξ®φ

!
))) (eiψ"®eiψ

#) dξ) . (4.10)

Now our analysis bears a strong resemblance to the proof of Lemma 2.1. Let

Sh β ¯²ξ ` (®¢, t] r rsin (ωξ®φ
!
)r&βGh −"/# ´. (4.11)

Sh β consists of a countable collection of intervals [a, b] in (®¢, t] over which rsin (ωξ®φ
!
)r

&βGh −"/#.
We bound

Ih ¯&b

a

e−λ(t−ξ) e−iG� cos(ωξ−φ
!
) (eiψ"®eiψ

#) dξ (4.12)

by integration by parts.

Equation (4.12) looks like (2.12), with θ
"
replaced by ®Gh cos (ωξ®φ

!
) and eiθ

h

replaced by

eiψ
"®eiψ

#. Thus, the integration by parts yields terms like those on the right-hand side of

(2.14). Before proceeding with the bounds, we observe that (4.5) implies that, for almost all

t% 0,

rψd (t)r%λ« e−λ«t sψs. (4.13)

Since

ψ(t)¯®&!

t

ψd (ξ ) dξ,

on account of (4.3b), we get for t% 0

rψ(t)r% e−λ«
#t sψs. (4.14)

Using (4.11), (4.14), the fact that λ"λ«, and the mean-value theorem for

eiψ
"®eiψ

#, we get for the first term (the integrated term) in the integration by parts the

bound

2 e−λ(t−b)

ωβoGh
e−λ«b sψ

"
®ψ

#
s. (4.15)
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Terms analogous to the second and fourth terms on the right-hand side of (2.14) are

bounded in the same way as in §2. The only term that is different is the term corresponding

to the ‘θh d ’ term. For this we write

ψd
"
eiψ

"®ψd
#
eiψ

# ¯ (ψd
"
®ψd

#
) eiψ

"ψd
#
(iψ"®eiψ

#). (4.16)

Since we are requiring that rψd
#
r%ω#

!
}λ for t% 0, a suitable bound follows immediately :

e−λ(t−b)

ωβoGh
0 λ«
λ®λ«


ω#

!

λ

1

λ®λ«1 e−λ«b sψ
"
®ψ

#
s. (4.17)

For λ«%λ}2, all the contributions to the right-hand side of (4.10) from Sh β are thus

bounded by

ω#

!

λ«
1

ωβoGh
07

2ω#

!

λ#
1 (2e−π(λ−λ«)/ωe−#

π(λ−λ«)/ω…) sψ
"
®ψ

#
s

%
2ω#

!

λ«
1

ωβoGh
07

2ω#

!

λ#
1 1

1®e−πλ/(#
ω)

sψ
"
®ψ

#
s. (4.18)

The contributions to the right-hand side of (4.10) from (®¢, t]®Sh β are bounded in the

same way that similar contributions were bounded in the proof of Lemma 2.1. The bound

in this case is

ω#

!

λ«
πβ

ωoGh
sψ

"
®ψ

#
s

1®e−λπ/(#
ω)

. (4.19)

By choosing

β¯ 02π 07
2ω#

!

λ#
11"/#, (4.20)

we obtain

sUψ
"
®Uψ

#
s%

4ω#

!

λ«

oπ}2 (72ω#

!
}λ#)

ωoGh (1®e−λπ/(#
ω))

sψ
"
®ψ

#
s. (4.21)

We have thus proved the following result :

Lemma 4.1 For 0!λ«%λ}2 and

oGh "
4ω#

!

λ«

oπ}2(72ω#

!
}λ#)

ω(1®e−λπ/(#
ω))

,

the transformation U in (4.6) is a contraction for functions ψ `V satisfying rψd r%ω#

!
}λ when

t% 0, and the coefficient of contraction is

K%
4ω#

!

λ«

oπ}2 (72ω#

!
}λ#)

ωoGh (1®e−λπ/(#
ω))

. (4.22)

We are now in a position to solve (4.3) iteratively when K! 1. Let

Ψ(t)¯ θ
!
ψ(t). (4.23)
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We set

Ψ(!)(t)¯ θ
!
, t% 0, (4.24a)

and for i& 0

Ψ (i+") ¯ θ
!
U(Ψ (i)®θ

!
), (4.24b)

that is,

Ψ~ (i+")(t)¯®ω#

!& t

−¢

e−λ(t−ξ) sin (®Gh cos (ωξ®φ
!
)Ψ (i)(ξ)) dξ, (4.24c)

with

Ψ (i+")(0)¯ θ
!
. (4.24d)

sΨ (!)®θ
!
s¯ 0. To bound sΨ (")®θ

!
s, we have to bound, for t% 0,

ω#

!& t

−¢

e−λ(t−ξ) sin (®Gh cos (ωξ®φ
!
)θ

!
) dξ. (4.25)

A bound is obtained in the same way that we bounded the right-hand side of (4.10), except

that a number of simplifications occur: we delete terms containing ψ
#
or ψd

#
, we replace λ«

by 0, and we delete terms containing ψd
"
. We decompose the integral in (4.25) into integrals

over a set Sh β, as in (4.11), and over (®¢, t]®Sh β. In this case, we can choose β¯o10}π.

Thus we find

sΨ (")®θ
!
s%

2o10πω#

!

λ«ωoGh
1

1®e−πλ/ω
. (4.26)

It follows from (4.24) and Lemma 4.1 that

sΨ (i+")®Ψ (i)s%Ki sΨ (")®θ
!
s, (4.27a)

and

sΨ®θ
!
s¯ lim

iU¢

sΨ (i)®θ
!
s%

1

1®K
sΨ (")®θ

!
s. (4.27b)

Lemma 4.2 When

oGh &
8ω#

!

λ«

oπ}2 (72ω#

!
}λ#)

ω(1®e−λπ/(#
ω))

, (4.28a)

equation (4.3) has a solution ψ with the bound

sψs%
4o10πω#

!

λ«ωoGh
1

1®e−πλ/ω
. (4.28b)

The proof of Lemma 4.2 is a trivial consequence of equations (4.27b) and (4.22).

Now that ψ(t) solving (4.3) has been constructed for t% 0, we are in a position to use

(4.3a) to find ψ(t) for all t ` (®¢,¢). Indeed, once ψ has been determined for t% 0, we

can calculate ψd (0) from (4.3a) immediately, and that information is sufficient to determine

ψ for all time. This is because differentiation of (4.3a) with respect to the time brings us

back to the equation

ψX (t)λψd (t)¯®ω#

!
sin (θ

!
®Gh cos (ωt®φ

!
)ψ(t)). (4.29)
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For the function Ψ introduced in (4.23), we have

Ψ~ (t)¯®ω#

!& t

−¢

e−λ(t−ξ) sin (®Gh cos (ωξ®φ
!
)Ψ(ξ)) dξ, (4.30)

and Ψ(t) is determined for all time from its ‘ initial ’ value Ψ(0)¯ θ
!
. The only other

parameter in (4.30), besides the physical variables of the system, is φ
!
which, through (4.4),

is related to the time t
!
at which ‘ initial ’ conditions are specified for θh . Thus, in a sense the

equation for θh looks like a first-order equation, as opposed to a second-order one, for late

times. For any prescription whereby the specification of a single datum θh (t
!
) enables one

to compute, no matter in how tedious a fashion, θh d (t
!
) and the whole trajectory of θh (t),

before and after t
!
, has to be essentially first-order. This ‘first-order’ character at late times

of the equation for the correction θh to simple harmonic motion has interesting ramifications

with regard to the behaviour of θh (t) as tU¢, not unlike the conclusions drawn for equation

(3.12), and we shall explore them forthwith. First, we will inquire in more detail how it is

that the second-order equation (2.2b) begins looking like a first-order equation at late

times.

One may ask if it is true that θh (tt
!
) really looks like θh (t

!
)ψ(t) for t& t

!
, even if (4.1) is

satisfied approximately at such times. After all, (4.1) is an integral equation which depends

on values of θh at times t! t
!
, which may not be late, and even on values of θh at times t! 0,

before the motion commenced! So, suppose (4.1) applies for t& t
!
. How can we justify

using it to calculate θh for t! t
!
, as was done in the construction which was the essence of

the solution of (4.3)? Well, if (4.1) holds for t& t
!
, it follows from Theorem 2.2 that, for

Gh large, when calculating θh d (T
!
) by (4.1), we can replace θh (t

!
®ξ) on the right-hand side of

(4.1) to a good approximation by θh (t
!
). This should be valid up to ξ¯ 0(oGh ). Suppose ξ

!

is such that we can ignore e−λξ
!, but ξ

!
is still small compared to oGh . θh (t

!
®ξ) will differ from

θh (t
!
) by 0(ξ}oGh ) for 0% ξ% ξ

!
. The error in using θh (t

!
) instead of θh (t®ξ) on the right of

(4.1) will then give an error 0(1}Gh ) in the integral, and thus in θh d (t) for t
!
®ξ

!
% t% t

!
. This

is the essence of the statement of contraction in Lemma 4.1 and given precisely in (4.22).

If θh d (t) is known with error 0(1}Gh ) for t
!
®ξ

!
% t% t

!
, then θh (t) can be determined with the

same accuracy by integrating (4.1) with θh (t
!
) instead of θh (t®ξ) on the right, from t to t

!
.

That the iterative procedure, of which we have just described the first step, converges, and

converges rapidly when Gh is sufficiently large, is what Lemma 4.1 is all about.

Further insight into the significance of Lemma 4.2 may be gained by considering the

effective rate of damping of aperiodic terms in θh . Although the coefficient λ is referred to

as a ‘damping’ coefficient and gives a decay rate for the effect of the past motion on the

present, as in (4.1), a truer measure of the rate of damping is perhaps (in dimensional

quantities) A}oGh , where

A¯
ω#

!

ω
(1ω

!
}λ) (1ω}λ), (4.31)

as given in Theorem 2.2. This is on account of the fact that, if the correction θh is far from

a periodic motion at any time, it will take a time 0(oGh }A) for the motion to adjust in that

direction, just because θh d is so small and θh takes so long to adjust. The converse is that,

in going backward in time, aperiodic motions tend to grow at the rate A}oGh , as opposed to

the much larger λ. This enables the integral in (4.1) to converge rapidly. When K is set equal
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to, say, "

#
, as in (4.28a), it appears that the ‘growth’ rate λ« as time decreases for the

correction θh is 0(A}oGh ). When we look at the approach of solutions of the recursion

relation (3.7) to limits as tU¢, we see once again a characteristic decay rate (ω#

!
}(λoGh )).

(The fact that this rate is less tan A}oGh where A is given by (4.31) is a reflection of some

crude assumptions we made in obtaining the a priori bounds of Theorem 2.2 and Lemma

4.2. For example, the term ω
!
}λ in A comes from the rather gross bounds given by (2.6)

and (4.7).)

Let us return to the late-time behaviour of Ψ(t) in (4.30). We first show the continuous

dependence of Ψ on the initial value Ψ(0)¯ θ
!
. Let Ψ

"
(t) satisfy (4.30) with

Ψ
"
(0)¯ θ

!"
. (4.32)

Ψ
"
(t) is constructed for t% 0 from θ

!"
the way Ψ(t) is constructed from θ

!
in (4.24). Of

course,
rΨ(!)

"
(t)®Ψ (!)(t)r¯ rθ

!"
®θ

!
r, t% 0. (4.33)

To bound sΨ(")

"
®Ψ (")®θ

!"
θ

!
s, we first have to bound

rΨ~ (")
"

(t)®Ψ~ (")(t)r%ω#

! )& t

−¢

e−λ(t−ξ) e−iG� cos(ωξ−φ
!
) (eiθ!"®eiθ

!) dξ) , (4.34)

and a suitable bound is just rθ
!"

®θ
!
r times the bound obtained for the integral (4.25). It

follows that

sΨ(")

"
®θ

!"
®Ψ (")θ

!
s%

2o10πω#

!

λ«ωoGh
rθ

!"
®θ

!
r

1®e−πλ/ω
. (4.35)

Repeated application of Lemma 4.1 and of (4.24b) gives

sΨ
"
®θ

!"
®Ψθ

!
s%

4o10πω#

!

λ«ωoGh
rθ

!"
®θ

!
r

1®e−πλ/ω
(4.36)

when the inequality (4.28a) holds.

In particular, (4.36) gives

rΨ~
"
(0)®Ψ~ (0)r%

4o10πω#

!

ωoGh
rθ

!"
®θ

!
r

1®e−π/λω
. (4.37)

This bound is independent of the angle φ
!
in (4.30). We recall that shifting the time axis by

an amount t
"
has the effect of shifting φ

!
by ωt

"
, as seen already in equation (4.4). Hence

at t
"
we get a relation like (4.37) bounding rΨ~

"
(t

"
)®Ψ~ (t

"
)r in terms of rΨ

"
(t

"
)®Ψ(t

"
)r. Thus,

for any t, Ψ~ (t) is Lipschitz-continuous in its dependence on Ψ(t), with Lipschitz coefficient

C¯
4o10πω#

!

ωoGh
1

1®e−π/λω
. (4.38)

Then a standard argument from the theory of ordinary differential equations shows that

e−C rt
"
−t

#
r rΨ

"
(t

#
)®Ψ(t

#
)r% rΨ

"
(t
"
)®Ψ(t

"
)r% eC rt

"
−t

#
r rΨ

"
(t
#
)®Ψ(t

#
)r. (4.39)

The central result of this section is the following theorem.

Theorem 4.3 For any �alue of Ψ(0), the solution of (4.30) becomes a periodic motion with

period 2π}ω as tU¢.
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Proof The proof will proceed through the establishment of several easily proved lemmas.

Lemma 4.4 The solution of (4.30) increases monotonically with Ψ(0). That is, if

Ψ
"
(0)"Ψ(0), then Ψ

"
(t)"Ψ(t) for all t.

Proof Suppose the result is not true for some t
!
. Then by continuity there is a time

t* ` [min(0, t
!
),max(0, t

!
)] for which Ψ

"
(t*)¯Ψ(t*). By (4.39), we get Ψ

"
(0)¯Ψ(0), giving

a contradiction.

Lemma 4.5 For any integer m and solution Ψ(t) of (4.30), if Ψ
"
(0)¯Ψ(0)2mπ, then

Ψ
"
(t)¯Ψ(t)2mπc t.

Proof This follows by replacing Ψ(t) by Ψ(t)2mπ in (4.30).

Lemma 4.6 If Ψ(2π}ω)"Ψ(0), Ψ(2π}ω)!Ψ(0), or Ψ(2π}ω)¯Ψ(0), respecti�ely, then

for all t Ψ(t2π}ω)"Ψ(t), Ψ(t2π}ω)!Ψ(t), or Ψ(t2π}ω)¯Ψ(t), respecti�ely.

Proof Let

Φ(t)¯Ψ0t2π

ω 1 . (4.40)

Φ(t) satisfies the same equation (4.30) as Ψ(t), and Φ(0)¯Ψ(2π}ω). If Ψ(2π}ω)"Ψ(0),

then Φ(0)"Ψ(0) and, from Lemma 4.4, Φ(t)¯Ψ(t2π}ω)"Ψ(t) for all t. Similar

arguments establish the other cases in the lemma.

Corollary 4.7 If Ψ(2π}ω)"Ψ(0) (Ψ(2π}ω)!Ψ(0), resp.), then the sequence ²Ψ(t2πN}ω)

rN¯ 0, 1, 2,…´ is increasing (decreasing, resp.).

Lemma 4.8 There is a number Ψ*(0) such that, if Ψ*(t) is a solution of (4.30) with initial

�alue Ψ*(0), then

Ψ* 0t2π

ω 1¯Ψ*(t) for all t.

Proof Let Ψ(t) be one solution of (4.30) and let Ψ� (t) be another solution, with Ψ� (0) chosen

so that

Ψ� 0πω1¯®Ψ(0). (4.41)

We see from (4.30) that

Ψ� 0tπ

ω1¯®Ψ(t) for all t. (4.42)

Suppose Ψ(2π}ω)"Ψ(0). Then Ψ� (3π}ω)!Ψ� (π}ω) follows from (4.42) and, according to

Lemma 4.6, Ψ� (2π}ω)!Ψ� (0). By continuity, there must be a number Ψ*(0) between Ψ(0)

and Ψ4 (0) such that the solution Ψ* of (4.30) with initial value Ψ*(0) satisfies Ψ*(2π}ω)¯
Ψ*(0), and hence Ψ*(t2π}ω)¯Ψ*(t)c t. A similar inference can be made if Ψ(2π}ω)!
Ψ(0). The only remaining case if Ψ(2π}ω)¯Ψ(0), and then we can use Ψ(0) for Ψ*(0).
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Let Ψ*(0) be chosen as in Lemma 4.8. Ψ*(t)2mπ is also a solution of (4.30) which is

periodic in time with period 2π}ω. Let Ψ(t) be any solution of (4.30) and let m be chosen

so that Ψ*(0)2mπ%Ψ(0)!Ψ*(0)2(m1)π. It follows from Lemma 4.4 that

Ψ(2πN}ω) lies in the interval [Ψ*(0)2mπ,Ψ*(0)2(m1)π) for all N. We have already

observed in Corollary 4.7 that the sequence ²Ψ(2πN}ω) rN¯ 0, 1, 2,…´ is either

monotonically increasing, monotonically decreasing, or constant. In any case, Ψ(2πN}ω)

approaches a constant as NU¢, and the motion described by Ψ(t) approaches a periodic

motion with period 2π}ω.

5 Passage to periodic motion

In the last section we showed that the solution of the approximate equation (4.1)

approaches a periodic motion, with period 2π}ω, for Gh large enough. The main result of

this section is that, for Gh large enough, the solution θh of equation (2.5) also approaches a

periodic motion for late times.

In accordance with (4.2), let us define, given t
!
" 0, ψh (t) by

ψh (t)¯ (θh (tt
!
)®θh (t

!
)

®θh (t
!
)

t&®t
!
,

t%®t
!
,

(5.1)

where we observe, on account of (2.4a) and (2.1), that ψh (t) as defined is continuous in time,

and ψh d is continuous in time.

Of course, ψh d (t)¯ θh d (tt
!
) for t&®t

!
. Equations (5.1) and (2.5) give

ψh d (t)¯®ω#

!& (t+t
!
)+

!

e−λξ sin (θ
!
c

"
e−λ(t+t

!
−ξ)®Gh cos (ω(t®ξ)®φ

!
)ψh (t®ξ)) dξ, (5.2a)

ψh (0)¯ 0, (5.2b)

where θ
!

and φ
!

are given in (4.4). To compare ψh with the solution ψ of (4.3), we shall

rewrite (5.2a) in the form

ψh d (t)¯®ω#

!&¢

!

e−λξ sin (θ
!
®Gh cos (ω(t®ξ)®φ

!
)ψh (t®ξ)) dξg(t), (5.3a)

where

q(t)¯ω#

!&¢

(t+t
!
)+

e−λξ sin (θ
!
®Gh cos (ω(t®ξ)®φ

!
)ψh (t®ξ)) dξ

ω#

!& (t+t
!
)+

!

e−λξ [sin (θ
!
®Gh cos (ω(t®ξ)®φ

!
)ψh (t®ξ))

®sin (θ
!
c

"
e−λ(t+t

!
−ξ)®Gh cos (ω(t®ξ)®φ

!
)ψh (t®ξ))] dξ. (5.3b)

Equations (5.2b) and (5.3a) are equivalent to

ψh ¯Uψh Q, (5.4a)

where the operator U is given in (4.6) and

Q(t)¯®&!

t

q(ξ) dξ. (5.4b)
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Lemma 5.1 Let s[s be the norm gi�en by (4.5). For 0!λ«%λ}2,

sQr%
ω#

!

λλ«
(1rc

"
r) e−λ«t

!. (5.5)

Proof The first integral on the right-hand side of (5.3b) is bounded by ω#

!
}λ e−λ(t+t

!
)+. We

have to find

sup
t%!

1

λ«
ω#

!

λ
e−λ(t+t

!
)+ eλ«t ¯

ω#

!

λλ«
e−λ«t

!. (5.6)

The second integral on the right-hand side of (5.3b) is bounded by

ω#

!& (t+t
!
)+

!

rc
"
r e−λ(t+t

!
) dξ¯ rc

"
rω#

!
e−λ(t+t

!
) (tt

!
)
+
, (5.7)

on account of the mean-value theorem. A bound on its contributions to sQs now follows

by reasoning similar to that in (5.6), upon use of λ«%λ}2. Adding up the results, we get

(5.5).

We can solve (5.4a) iteratively. Let

ψh (!) ¯ψQ¯UψQ, (5.8a)

on account of (4.8). Then let

ψh (i+") ¯Uψh (i)Q, i& 0. (5.8b)

We have
sψh (!)®ψs¯ sQs (5.9a)

and sψh (")®ψh (!) s¯ sUψh (!)®Uψ s%K sQs, (5.9b)

where K is given in (4.22). Continuing, for i& 1 we get

sψh (i+")®ψh (i)s¯ sUψh (i)®Uψh (i−")s%K sψh (i)®ψh (i−")s%Ki+" sQs. (5.10)

These results are summarized in the following lemma.

Lemma 5.2 Let Gh satisfy the inequality (4.28a). Then

sψh ®ψs% 2 sQs. (5.11)

Before continuing, let us recapitulate the results of the last section. For the function Ψ

given in (4.23) :
Ψ(t)¯ψ(t)c

#
θh (t

!
), (5.12)

we could write
Ψ~ (t

!
)¯&(Ψ(t

!
), t

!
), (5.13a)

where
r&(x

"
, y)®&(x

#
, y)r%C rx

"
®x

#
r (5.13b)

with C given by (4.38),
&(x2π, y)¯&(x, y), (5.13c)

and & 0x, y
2π

ω 1¯&(x, y). (5.13d)
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Integration of (5.13a) over one period of the driving frequency led to

Ψ0t2π

ω 1¯F(Ψ(t), t), (5.14a)

where

e−#
πC/ω (x

"
®x

#
)%F(x

"
, y)®F(x

#
, y)% e#πC/ω (x

"
®x

#
) (5.14b)

when x
"
&x

#
,

F(x2π, y)¯F(x, y)2π, (5.14c)

and F0x, y
2π

ω 1¯F(x, y). (5.14d)

Finally, there was a non-empty set of numbers S
!
(t) such that for, and only for, σ `S

!
(t),

F(σ, t)¯σ. (5.15)

From (5.14) and (5.15) we concluded that

dist(FN(x, t),S
!
(t)) fg

NU¢

0 (5.16)

for any x. (In other words, by waiting a sufficient number N of periods, we can get the

motion as close as we want to a motion with period 2π}ω.)

In addition to S
!
(t), defined in (5.15), we introduce the sets

S
+
(t
!
)¯²x rF(x, t

!
)"x´ and S

−
(t
!
)¯²x rF(x, t

!
)!x´. (5.17)

Note that

S
a0t!2π

ω 1¯S
a
(t
!
), where a¯ 0,, or ®. (5.18)

It follows from (5.14) that components of S
+
(t
!
) consist of open intervals between elements

of S
!
(t
!
). The same holds for components of S

−
(t
!
).

Let us now use the result (5.11) with λ«¯λ}2. It follows from (4.5), (5.5), (5.12) and

(5.13a), that

rθh d (t
!
)®&(θh (t

!
)c

#
, t

!
)r%

2ω#

!

λ
(1rc

"
r) e−λt

!
/#. (5.19)

Hence )θh 0t!2π

ω 1c
#
®F(θh (t

!
)c

#
, t

!
))% 4πω#

!

ωλ
(1rc

"
r) e#πC/ω e−λt

!
/#. (5.20)

Theorem 5.3 Let θh (t) be a solution of (2.5). For Gh large enough, θh becomes periodic in t with

period 2π}ω as tU¢.

Proof First, let Gh be large enough that C, given in (4.38), satisfies C%λ}4. That is,

oGh &
16o10πω#

!

ωλ

1

1®e−πλ/ω
. (5.21)
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Either for all t
!
" 0 the distance ε of θh (t

!
)c

#
from S

!
(t
!
) satisfies

ε!
4πω#

!

ωλ

(1rc
"
r) e#πC/ω

e−#
πC/ω®e−λπ/ω

e−λt
!
/#, (5.22)

in which case we readily conclude from (5.14) and (5.20) that rθh (t
!
2π}ω)®θh (t

!
)rU 0 as

t
!
U¢, or there is a t

!
" 0 such that

4πω#

!

ωλ
(1rc

"
r) e#πC/ω e−λt

!
/#% ε (e−#πC/ω®e−λπ/ω). (5.23)

Let θh (t
!
)c

#
be in the component of S

+
(t
!
) or S

−
(t
!
) consisting of the open interval (σ

−
(t
!
),

σ
+
(t

!
)). We have

θh (t
!
)c

#
®σ

−
(t

!
)& ε, σ

+
(t

!
)®θh (t

!
)®c

#
& ε. (5.24)

It follows from (5.14b) that

dist (F(θh (t
!
)c

#
, t

!
), S

!
(t
!
))& ε e−#

πC/ω, (5.25)

and from (5.20) that

dist 0θh 0t!2π

ω 1c
#
,S

!
(t
!
)1& ε e−#

πC/ω®
4πω#

!

ωλ
(1rc

"
r) e#πC/ω e−λt

!
/#

& ε e−#
πC/ω®ε(e−#

πC/ω®e−λπ/ω)¯ ε e−λπ/ω, (5.26)

on account of (5.23). Thus, the distance ε
"

of θh (t
!
2π}ω)c

#
from S

!
(t
!
) satisfies

4πω#

!

ωλ
(1rc

"
r) e#πC/ω e−(λ/#)(t!+#

π/ω) % ε
"
(e−#

πC/ω®e−λπ/ω), (5.27)

and similar arguments show that the distance ε
n

of θh (t
!
2πn}ω)c

#
from S

!
(t
!
) satisfies

4πω#

!

ωλ
(1rc

"
r) e#πC/ω e−(λ/#)(t!+#n

π/ω) % ε
n
(e−#πC/ω®e−λπ/ω), (5.28)

for n¯ 2, 3,…. Accordingly,

σ
−
(t

!
)! θh 0t!2πn

ω 1c
#
!σ

+
(t

!
), n¯ 0, 1, 2,… . (5.29)

Thus, the set ²θh (t
!
2πn}ω)c

#
r n¯ 0, 1, 2,…´ has at least one limit point. The limit point

is unique, because of (5.20) and the fact that either F(x, t
!
)"x or F(x, t

!
)!x for all

x ` (σ
−
(t

!
), σ

+
(t
!
)). The limit point cannot be in (σ

−
(t
!
),σ

+
(t
!
)), where F(x, t

!
)1x, without

violating (5.20). So the limit point is either σ
+
(t
!
) (for (σ

−
(t
!
), σ

+
(t

!
))ZS

+
(t
!
)) or σ

−
(t
!
) (for

(σ
−
(t
!
), σ

+
(t

!
))ZS

−
(t
!
)). In either case, the theorem is proved.

6 Numbers and conclusions

In their experiments with the Daedalon EM-50 Chaotic Pendulum [3] Hammel and

coworkers [7] have used the values λ¯ 1±85 sec−", ω
!
¯ 8.975979 sec−", and ω¯ 6.102 sec−".

Hinczewski [8] performed his computations for these same parameter values. For these

https://doi.org/10.1017/S0956792597003355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792597003355


126 M. Hinczewski and J. C. W. Rogers

values, we shall express numerically the various conditions we have imposed on Gh in order

to prove the theorems and lemmas of §§2, 4 and 5.

Theorem 2.2 and Lemma 2.1 required only the conditions (2.8) and (2.9). Of these

conditions, (2.8) and (2.9b) are satisfied by choosing t large enough. Equation (2.9a) is

Gh & 0.0919176. (6.1)

Lemma 4.2 depended upon satisfaction of (4.28a), which is

Gh & 7716881.4. (6.2)

Theorem 5.3 was proven when Gh satisfied (5.21), or when

Gh &1085909.3. (6.3)

With regard to how long we have to wait for the estimates in §2 to hold, we note that (2.8)

requires

t&
2

λ
ln 0ωoGh

λ 1 . (6.4)

For the case θd (0)¯ 0, (2.4b) and (2.9b) give

oGh ω
oω#λ#

% eλt/#, (6.5)

a condition which is always satisfied when (2.8) is satisfied. Thus, for example, if G¯
10' sec−#, (6.4) becomes

t& 6.7790 sec, (6.6a)

and if G¯ 10* sec−#, we get

t& 10.5129 sec (6.6b)

as sufficient conditions for the bound (2.25) to hold.

Equation (2.25) takes the form

rθh d (t)r%
1060.5401

oGh
sec−". (6.7)

For G¯ 10' sec−#, (6.7) gives

rθh d (t)r% 6.6152579 sec−" (6.8a)

and for G¯ 10* sec−#, (6.7) gives

rθh d (t)% 0.20919282 sec−". (6.8b)

Some of Hinczewski’s computations [8] were for G¯ 10' sec−# and G¯ 10* sec−#, and that

is why we have given numerical values for the bound (2.25) in these cases.

Our conclusions are these: (1) We do not know if the motion of the damped, sinusoidally

driven, simple nonlinear pendulum ever becomes chaotic, but we do know that, at high

amplitudes of the driving force (cf. (6.2)), it is not chaotic, and in fact becomes periodic with

the period of the driving force; (2) for values of the driving amplitude which do not have

to be excessively large (cf. (6.1)), the effect of the nonlinear term ω#

!
sin θ in (1.1) on the
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angular frequency θd of the pendulum motion is of the order of the inverse square root of

the driving amplitude for late times.
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