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RECURSIVE FORMULAS FOR COMPOUND PHASE DISTRIBUTIONS 
– UNIVARIATE AND BIVARIATE CASES 

BY

JIANDONG REN

ABSTRACT

We fi rst present a simple matrix-based recursive formula for calculating the 
distribution function of  compound phase-type random variables. Then we 
extend the results to the case when the number of claims follows a bivariate 
matrix negative binomial (BMNB) distribution detailed herein. Further, 
extending the results in Hipp (2006), we provide speedy recursive formulas
for both the univariate and the bivariate models when the claim sizes follow 
discrete phase-type distributions. Numerical examples are provided.

1. INTRODUCTION

Let N denote the number of claims occurring in an insurance portfolio within 
a given period, and Xi the amount of the ith claim. Assume that Xi, i  = 1, 2,  ···   
are i.i.d random variables independent of N, the aggregate loss random vari-
able is given by 

 X ,S i
i

N

1
=

=

/  (1)

with S  =  0 when N  =  0. Panjer (1981) introduced a recursive method for com-
puting the distribution of  S when the distribution of  N is in the so called 
(a, b, 0) class. From then on, the recursive formula (Panjer’s recursion) has 
been studied extensively in the risk theory literature. For example, Panjer and 
Wang (1993) analyzed the stability of the recursive algorithm. Willmot (1992) 
derived recursive formulas for compound mixed Poisson probabilities. When 
the claim sizes follow a phase-type distribution, Hipp (2006) developed a 
speedy algorithm, which reduces the computation time of the original Panjer’s 
algorithm from O(n2) to O(n). Eisele (2006) presented recursive formulas 
when the claim number follows a discrete phase-type distribution. Sundt (1999) 
extended Panjer’s recursive formula to the case where one claim event can 
cause several losses. Specifi cally, he derived a recursive formula for the distri-
bution of the aggregate loss random vector 
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where X
"

i  =  {Xi1, Xi2,  ···, Xil } is an l-dimensional random loss vector generated 
by the ith claim event. The loss random vectors {X

"
i }i  ≥  1 are assumed to be i.i.d. 

and independent of the claim number random variable N.
Hesselager (1996) and Vernic (1999) focused on claim number distributions 

and derived recursive formulas for calculating the joint distribution of 

 jX , Yi( ) ,W
i

K

j

M

1 1
=

==

,S e o/ /  (3)

where S  =  0 when K  =  0, and W  =  0 when M  =  0. The claim numbers K and 
M may be dependent but the claim sizes {Xi }i  ≥  1 and {Yj }j  ≥  1 are sequences of 
discrete, i.i.d. random variables, mutually independent, and independent of 
(K, M ).

For a comprehensive review of this topic, one is referred to the recent book 
by Sundt and Vernic (2009).

As in most attempts to extending Panjer’s recursion, the results in both 
Hipp (2006) and Eisele (2006) are based on the rationality of the characteris-
tic functions of the claim number and/or the claim size distributions. However, 
in a recent development, Wu and Li (2010), introduced a matrix generalization 
of the (a, b, 0) class of discrete (claim number) distributions, which notably 
includes discrete phase-type distributions, and derived matrix form recursive 
formulas to evaluate the corresponding compound distributions.

In this paper, we assume that the claim number follows a discrete phase-
type or related distributions and the claim sizes are i.i.d. discrete random 
variables with supports on subsets of �   ,   {0}. As in Wu and Li (2009), we 
make use of the matrix representation of phase-type distributions and present 
simple matrix-based recursive formulas for aggregate loss models (1) and (2). 
In addition, we show that a phase-type mixture of Poisson distribution gives 
a discrete phase-type distribution, so its compound distributions can be read-
ily computed with our recursive formulas. For model (1), as an extension to 
Hipp (2006), we present speedy algorithms when the claim sizes follow a 
phase-type distribution. We also provide one example to compare the compu-
tational speed of the classical Panjer recursion, Hipp’s speedy recursion, as 
well as the fast Fourier transform (FFT) method.

For model (3), we assume that the claim numbers, (K, M), jointly follow a 
bivariate matrix negative binomial (BMNB) distribution, which is a nature 
extension of  the bivariate negative binomial distributions (see for example, 
Chapter 5 of Kocherlakota and Kocherlakota, 1992). This enables us to unify 
two types of bivariate counting distributions (model A and C) in Hesselager 
(1996). With this assumption for the joint distribution of the claim numbers, 
we obtain matrix-based recursive formulas for calculating the joint compound 
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 RECURSIVE FORMULAS FOR COMPOUND PHASE DISTRIBUTIONS 617

probability functions. In addition, as another extension to Hipp (2006),
we present speedy algorithms when the claim sizes follow discrete phase-type 
distributions. The validity of the algorithms is illustrated through an example. 
We argue that the bivariate recursive formulas are particularly useful, because, 
to our knowledge, unlike the univariate case, the accuracy of the numerical bivar-
iate inverse fast Fourier transform is not extensively studied in the literature.

The remaining of the paper is organized as follows. Section 2 briefl y intro-
duces discrete phase-type distributions; Section 3 presents recursive formulas 
for the distribution of the aggregate loss random variables in models (1) and (2). 
Section 4 presents recursive formulas for the joint and marginal distributions 
of the aggregate loss random variables in model (3).

2. DISCRETE PHASE-TYPE DISTRIBUTIONS

Standard defi nition of discrete phase-type distributions can be found in for 
example, Neuts (1981), Section A5 of Asmussen (2000), and Section 2.5 of 
Latouche and Ramaswami (1999). Consider a terminating discrete-time 
Markov chain J with state space {E0,  E1,  ···,  Em }, where state E0 is absorbing and 
E1,  ···, Em are transient. Let the transition probability matrix be denoted by 

 ,Q
Bb

1 0
=

<

e o  (4)

and the initial probability vector given by (a0,  a"<), where a0 denotes the prob-
ability of starting from the absorbing state E0 and the row vector a"< denotes 
the initial state distribution in {E1,  ···, Em}. The number of  transitions, N, 
needed for the process J to get absorbed into state E0 is said to follow a phase-
type distribution with representation (a"<, B). So the probability function is 
given by 

 p(0)   =   �a" (N  =  0)   =   a0, (5)

 p(n)   =   �a" (N  =  n)   =   a"<Bn – 1 b
"

,  for n  ≥  1, (6)

where the subscripts a" indicates the condition under which the probability 
operation is taken, b

"
  =  e"  –  Be" and e" is a column vector of ones. The probabil-

ity generating function (p.g.f.) is given by 

 
1-

( zz � a a) ) ( )Bz z z baN
i

i 0
0= = +

3
<

=

N -P = ( .Iip7 A /  (7)

Two special cases of the initial distributions are worth noticing:

• If  a0  =  0 and a"< e"  =  1, then the phase-type distribution is defi ned only on 
positive integers.
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• If  the initial distribution is given by a"  =  a“"<B with a“"<e"  =  1 and so a0  =  1  –  
a“"<Be"  =  a“"<b

"
, then the distribution can be viewed as that of the number of 

transitions within the set {E1,  ···, Em} needed to reach state E0 given initial 
distribution a"<. In this case,

 p(n)   =   �a" (N  =  n)   =   a“"<Bn b
"

,  for n  ≥  0 (8)

and 
 PN (z)   =   �a" [zN ]   =   a“"<(I  –  zB)– 1  b

"
, (9)

which are somewhat simpler than defi nitions (5) and (6) and the p.g.f. expres-
sion in (7).

The two special cases correspond to the two commonly used defi nitions of 
Geometric random variables — the number of epoches needed to reach the 
fi rst success (zero probability at zero) versus the number of failures before the 
fi rst success (positive probability at zero).

Notice that the defi nition in (5) and (6) allows arbitrary probability mass 
at zero, i.e, any zero-modifi ed discrete phase-type distribution is again phase-
type.

3. COMPOUND PHASE-TYPE DISTRIBUTION

This section derives formulas for calculating the probability functions of the 
loss random variables in models (1) and (2).

3.1. Univariate case

Consider model (1), let N follow a phase-type distribution with representation 
(a"<, B). Let the probability function of  the i.i.d. discrete claim size random 
variables Xi , i  =  1, 2,  ···, be f (n)  =  �(X1  =  n), where n  ≥  0.

Theorem 3.1. For n  ≥  0, let g"(n) be a vector with the ith element gi (n)  =  �(S  =  
n  |  J(0)  =  Ei ), where i  =  1,  2,  ···, m. Then 

 g"(0)   =   (I  –  f (0)B) –1 f (0) b
"

, (10)

and 

 g"(n)   =   (I  –  f (0)B) –1 (i fB f + n( ) ) ,b
i

n

0

1
-

-

=

(in g )e o> H/      n  ≥  1. (11)

Moreover, let g(n)   =   �a" (S  =  n) denote the probability distribution of S given 
initial distribution a" of the Markov chain J. Then, g(0)  =  a0  +  a"< g"(0) and g(n)  = 
a"<g"(n), for n  ≥  1.
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 RECURSIVE FORMULAS FOR COMPOUND PHASE DISTRIBUTIONS 619

This result follows directly from Theorem 1 of  Wu and Li (2010), to which 
readers are referred for a proof. Note however that the number of  compu-
tation required by (11) to calculate g(n) is O(n2). Inspired by Hipp (2006), 
we next present an algorithm that reduces the required number of  computa-
tions to O(n) when the claim sizes also follow a discrete phase-type distribu-
tion.

3.2. A speedy algorithm

Let the claim sizes follow a discrete phase-type distribution with representation 
(b
"<, T), where b

"< is an s dimensional row vector and T an s  ≈  s dimensional 
matrix. Then f (0)  =  1  –  b

"<e" and f (n)  =  b
"< Tn  –  1  t", for n  ≥  1, where t"  =  e"  –  Te". 

In this case, (11) becomes 

 g"(n)   =   (I  –  f (0) B)– 1 [BU(n) t"  +  ( b
"< Tn  –  1  t" ) b

" 
], (12)

where 

 (( ign) ) .U
i

n
n i

0

1
1

=
<

-
- -

=

b T/  (13)

Since 

 ( ( (+( ig g n n=1) ) ) ) ,U Ub T
i

n
n i

0
+ =

< <-

=

bn T/  (14)

the recursion (11) simplifi es to the following two steps:

• Set g"(0) using (10) and set U(1)  =  g"(0)  b
"<.

• For n  ≥  1, using (12) and (14) recursively to evaluate g"(n) and U(n  +  1).

Remark 1: This speedy algorithm requires O(n) matrix multiplications of sizes 
(m  ≈  s) and (s  ≈  s) to obtain g"(n), whereas the recursion in (11) requires O(n2) 
multiplications of a vector with size m and a scalar.

Remark 2: As shown in Theorem 2.2.6 in Neuts (1981), when the claim number 
and the claim sizes are both phase-type, the resulting compound loss random 
variable also follows a phase-type distribution. However, as was pointed there, 
with the dimensions of claim numbers and claim sizes being m  ≈  m and s  ≈  s 
respectively, the dimension of the phase-type distribution resulting from the 
compounding is ms  ≈  ms, which grows very fast and could cause computa-
tional ineffi ciency. In the speedy algorithm provided here, the computations 
only involves matrices of sizes m  ≈  s and s  ≈  s.
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3.3. A numerical example

In this example, we assume that the claim number N is the summation of two Geo-
metrically distributed random variables, N1 and N2, with probability functions 

 �(N1  =  i)   =   p1(1  –  p1)
i,  i  =  0, 1,  ···, 

and 

 �(N2  =  i)   =   p2(1  –  p2) i,  i  =  0, 1,  ··· 

respectively. So the distribution of N has phase-type representation (a"<,  B), 
where 

a"<   =   [1  –  p1,  p1(1  –  p2)]   and   B   =   
p2

2

1- ( )p
p0

1 -

-

p
.

1
1

1
e o

 

The claim size distribution is assumed to be a mixture of exponentials and has 
a continuous phase-type representation ( b

"
c
<, Tc ), where 

b
"

c
<   =   [0.6635948, 0.3114878, 0.02405664, 0.0008425574, 0.00001823254]

and 

Tc   =   – diag [3.675472, 0.7116063, 0.09447445, 0.009322980, 0.0004965620].

As such, the probability density function of the claim sizes is given by 

f (x)   =   b
"

c
< eTc  x  t"c ,

where t"c   =    – Tc  e
".

This claim size distribution was used in Thorin and Wikstad (1973) to approxi-
mate a Pareto distribution.

To discretize the claim size distribution, we use the standard rounding 
method (p. 232 Klugman et al., 2008):

 f F h
20 = b l

and

1, 2, .jh h jh h j2 2j g+ - =f F - F= ,b bl l

With this, the discretized distribution of the claim size has a discrete phase-type 
representation (b

"<, T), where b
"<  =   b

"
c
< ce

h
2 T  and  T  =  ehTc.
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 RECURSIVE FORMULAS FOR COMPOUND PHASE DISTRIBUTIONS 621

Using values p1  =  p2  =  0.5 and h  =  0.1, we calculated probabilities g(0), g(0.1),  ···, 
g(199.9), and g(200) using recursion (11), speedy recursion (12) and the FFT 
method. The actual values of probabilities calculated with the recursive and 
the speedy recursive method agree up to the 17th decimal points and can be 
considered as the same. They agree with the values generated by the FFT 
method up to the 7th decimal point. The average computation time needed 
was 0.09, 0.06 and 0.02 seconds respectively. The speedy algorithm is indeed 
faster than the original Panjer’s algorithm, however FFT was by far the fastest. 
The problem with the FFT method (without tilting) is that it suffers the so 
called “alias error” (see for example, Embrechts and Frei, 2009). For a detailed 
comparison of  Panjer’s recursion and the FFT method in evaluating com-
pound distributions, one is referred to Embrechts and Frei (2009).

Remark: Discretizing a continuous phase-type distribution with the simple 
scheme shown in the example results in a discrete phase-type distribution. 
Therefore, the speedy algorithm is applicable to the example. In addition, for 
many commonly used claim size distributions such as mixture of exponentials 
and generalized Erlang, the matrix T associated with the resultant discrete 
phase-type distribution is highly structured (in the fi rst case, it is diagonal;
in the second case, it is triangular). The structures should be considered in 
programming to reduce computation time.

3.4. Phase-type mixture of Poisson claim numbers

Let Q be a random variable with continuous phase-type distribution associ-
ated with a continuous time Markov chain Jc defi ned on the state space
{E0, E1,  ···, Em }. It is assumed to have representation (b

"<, C) and thus its prob-
ability density function is given by fQ(q)   =   b

"<eCq   c", where c"  =  – Ce". Suppose 
that conditional on Q  =  q, the number of claims, N, follows a Poisson distribu-
tion with mean lq. Then the unconditional probability generating function of 
N is given by

 

( e

1 1l l

1l

l

1

z

z

3
)

C I I C

I C

b

b

b

e cd

c

z c

1

( ) C
N

z 1

0

l

=

= -

= - -

-

-

<

<

<

qq -

-

- -I

q

-

P

.

]

] ]

g

g g

7

7

A

A

#

 (15)

Let D  =  l(lI  –  C) – 1. Then as shown in Example 2.5.4 of Latouche and Ramas-
wami (1999), it is the transition probability matrix among states E1,  ···, Em of  
the process Jc during a random time interval with an exponential distribution 
of rate l. Consequently, it is a sub-probability matrix. Let d

"
  =  e"  –  De", then it 

is easy to verify that d
"

  =  (lI  –  C) – 1 c". Therefore, (15) can be written as 

 PN (z)   =   b
"<[ I  –  zD]– 1 d

"
. (16)
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Comparing with (9), this shows that N has phase-type distribution with
representation (b

"< D, D). We remark that this result coincides with that in 
Example 2.5.4 of Latouche and Ramaswami (1999), which was derived in the 
context of fi nding the distribution of the number of Poisson events before a 
phase-type horizon.

Since the phase-type mixture of a Poisson distribution results in a discrete 
phase-type distribution, the corresponding compound distributions can be 
computed using results in the previous sections.

3.5. Multivariate claim sizes

This section presents a recursive formula for the distribution of  the multi-
variate aggregated loss random vector S

"
 described in model (2). We again 

assume that the claim number N follows a phase-type distribution with repre-
sentation (a"<, B). Let the joint probability function of the i.i.d. discrete claim 
size random vectors {X

"
i , i  = 1, 2,  ···,  l } be f (n")  =  �(X

"
1  =  n"), where n" denotes 

a vector of non-negative integers.

Theorem 3.2. For n"  ≥   0
"

, let g"(n") be a vector with the ith element gi (n")  =
�(S

"
  =  n"  |  J(0)  =  Ei ) for i  =  1,  ···, m. Then 

 g"(0
"

)   =   (I  –  f (0
"

) B)–1  f (0
"

) b
"

, (17)

and for n"  > 0
"

,

 g"(n")   =   (I  –  f (0
"

) B)–1   (f
n<

B i ( )f bn+) )i
i

-n
0#

(g ,c m= G/  (18)

where by i" ≥  0
"

 we mean that the jth elements ij  ≥  0 for j  =  1,  ···, l and by i" <  n" 
we mean that ij   ≤  nj for j  =  1,  ···, l with strict inequality for at least one j.

Moreover, let g(n")  =  �a"
 (S
"

  =  n") denote the probability distribution of S
"

 given 
initial distribution a" of the Markov chain J. Then g(0

"
)  =  a0  +  a"<g"(0

"
) and 

g(n")   =   a"<g"(n") for n" > 0
"

.

Similar procedures to the proof of Theorem 3.1 lead to Theorem 3.2. Details 
are omitted here.

4. BIVARIATE CLAIM NUMBERS

This section considers the bivariate claim numbers and their compound dis-
tributions, i.e, model (3). Hesselager (1996) discussed three types (A, B and C) 
of bivariate claim number distributions, from which we choose to study model A 
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 RECURSIVE FORMULAS FOR COMPOUND PHASE DISTRIBUTIONS 623

and C because they can be nicely unifi ed as shown in the later parts of  this 
section.

4.1. Model A

This is also model A in Hesselager (1996). Here we assume that the claim 
number N follows a phase-type distribution with representation (a"<, B). How-
ever, the claims can be separated into types I and II, the number of which are 
denoted by K and M respectively. Conditional on N  =  n, K follows a Binomial 
distribution with parameters (n, r) and M follows a Binomial distribution with 
parameters (n, 1  –  r).

Following Hesselager (1996), the joint probability generating function of 
( K, M ) is given by 

 

N

(

z
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r r
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 (19)

In the literature (for example, Chapter 5 of Kocherlakota and Kocherlakota, 
1992), a bivariate discrete distribution with p.g.f.

PBG (z1, z2)   =   [1  –  ( r z1  +  (1  –  r) z2 ) p]  – 1,

where p is a constant between 0 and 1, is referred to as a bivariate Geometric 
distribution. The p.g.f. (19) is a matrix generalization of  PBG (z1, z2). So we 
name a distribution with p.g.f. (19) a bivariate matrix negative binomial 
(BMNB) distribution with representation ( r,  a"<, B).

4.2. Model B

This is model C in Hesselager (1996). As in Section 3.4, let Q be a continuous 
phase-type random variable having representation (b

"<, C). Assume that con-
ditional on Q  =  q, the number of type I claims K follows a Poisson distribution 
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with mean l1q; the number of type II claims M follows a Poisson distribution 
with mean l2q. Then the unconditional p.g.f. of ( K, M ) is given by

 
z z( )-

(

( )-
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3
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#

A similar argument to (16) leads to 

 ( , 2 D) DbP z z z z d,K M 1
1

1
1

1 2

1

2
2

1

l l
l

l l
l

= -
+

-
+

< I ,
-

= G  (20)

where D  =  (l1  +  l2) ((l1  +  l2) I  –  C)– 1 is a sub-probability matrix and d
"

 = e"  –
De".

Comparing with (19), we see that (20) is the p.g.f. of a BMNB distribution 
with representation ( , )Db D

1

1

2

<
l l

l
+ , . Thus, Model A and C in Hessellager 

(1996) are unifi ed in this setting. As such, we will treat them as one and discuss 
the marginal distributions in the next subsection.

Remark: To our knowledge, the BMNB distribution proposed here is new.
It is much simpler in form than the famous multivariate phase-type distribu-
tion (MPH) introduced in Assaf  et al. (1984), however, the latter is more 
general. For recursive formulas of  compound MPH, one is referred to Eisele 
(2008).

4.3. Marginal distributions

When the pair ( K, M ) has p.g.f. (19), the marginal p.g.f. of K is given by 
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Let B  =  r(I  –  (1  –  r) B) –1 B and b
"

 =  e"  –  Be", then after some algebraic simpli-
fi cation, we have 
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 (21)

where 

 11 1 ra a a a a1 ( ( )Ibb e0 0= - + = - - -
-- - .1 BrB B )u

This indicates that the marginal distribution of K is discrete phase-type with 
representation (a"r(I  –  (1  –  r) B)– 1, B). The marginal distribution of M may be 
obtained by symmetry. Since both marginal distributions are phase-type, their 
compound distributions can be computed using results in Section 3.1.

4.4. Compound distribution with bivariate claim numbers

Let the number of type I and II claims ( K, M ) follow a BMNB distribution 
with representation ( r, a"<, B), where 0  <  a"<e"  ≤  1. Let a0  =  1  –  a"< e". Let the 
type I and type II claim size random variables be independent i.i.d. sequences 
{Xi }i  ≥ 1 and {Yi }i  ≥ 1 with discrete probability functions fx and fy respectively. 
The sequences {Xi }i  ≥ 1 and {Yi }i  ≥ 1 are assumed to be independent of the claim 
number random variables ( K, M ).

Theorem 4.1. For n1, n2  ≥  0, let g"sw (n1, n2) be a vector with the ith element 
gsw, i (n1, n2)  =  �(S  =  n1, W  =  n2 | J(0)  =  Ei ), where  i  =  1,  ···, m. Then 

     ( () )1r rr r(0,0) ( (0) ( (0)) (0) ( (0))I Bg bsw x y x y= - + - + -
-1 1 ,f ff f)  (22)

and for (n1, n2)  >  (0,0),
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where �(·) is an indicator function.
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Moreover, let gsw(n1, n2)  =  �a" (S  =  n1, W  =  n2 ), where a" is as in the represen-
tation of the BMNB distribution and gives the initial distribution of the Markov 
chain J. Then, gsw (0, 0)  =  a0  +  a"< g"sw (0, 0) and gsw (n1, n2 )  =   a"< g"sw (n1, n2 ) for 
(n1, n2)  >  (0, 0).

Proof: Let p"km (n1, n2) be a vector with the ith element pkm, i (n1, n2)  =  �(K  =
n1, M  =  n2 | J(0)  =  Ei ). Let P

"
SW (z1, z2)  =  00 ( ,i1

3
j =i = ),z z jsw2
3 ji g//  P

"
KM (z1, z2)  =

00 ( ,ik1
3

j =i = ),z z jm2
3 pji//  PX (z)  =  (0 ix

3
i = ),z fi/  and PY (z)  =  (0 iy

3
i = )z fi/  be the 

probability generating functions of  probability functions g"sw, p"km, fx and fy 
respectively. Then following (19), we have
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Pre-multiplying both sides by [ I  –  ( rPX (z1)  +  (1  –  r) PY (z2)) B ] and rearranging, 
we have
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In terms of the polynomials of z, this is
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Comparing the coeffi cients of z1
i  z2

j for i,  j  ≥  0, we have

 r r(0,0) (0) ( ) (0) (0,0) (0) ( ) (0)B bsw x sw xr r= + - + + -y y1 1g f g f ,f f_ _i i

implying (22), and
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implying (23).
The second statement of the Theorem can be obtained by the law of total 

probability. ¬

As in Section 3.2, when the claim size distributions fx and fy are discrete phase-
type with representations, say, (b

"
1
<, T1) and (b

"
2
<, T2) respectively, then the recur-

sion in (23) can be carried out with the following speedy scheme:

1. Set g"sw(0, 0) using (22).

2. For n1  >  0 and n2  >  0,
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where

 g( ( 1, ,n n i n 1

1
n i- -) )U Tsw

i

n

1 1 2
0

2 1

1
1b=

<
-

=

/  (27)

and

 .g , i( ( 2,n n n 1
1

n i- -) )U Tsw
i

n

1 2
0

2 1 2

2
2b=

-

=

</  (28)

The matrices U1 and U2 can be recursively evaluated by

 1,( ( (n+ sw 2 1) , , ,g n n n n1 1 2 1 1 1 1 2b=n ) )U U+
< T  (29)

and 

 ( ( (sw 2, 2) , , .g n n n n11 2 1 1 22 2 2b+ =n ) )U Un +
< T  (30)

This iteration avoids the global iteration required by formula (23), reducing 
computation time when n1 and n2 are large.
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4.5. Example Continued

In this example, we assume that the distribution of the total claim number N is 
given in Section 3.3. Conditional on N  =  n, the number of type I claims, K, fol-
lows a Binomial distribution with parameters (n, 0.5) and the number of type II 
claims, M, follows a Binomial distribution with parameters (n, 0.5). The distribu-
tion of the type I claim sizes is assumed to be the same as the claim size distri-
bution in Section 3.3. The type II claim sizes are assumed to be fi ve times larger 
and so the distribution has the phase-type representation (b

"<
2c, T2c ), where 

b
"<

2c   =   [0.6635948, 0.3114878, 0.02405664, 0.0008425574, 0.00001823254]

and 

T2c  =  –  0.2  ≈  diag[3.675472, 0.7116063, 0.09447445, 0.009322980, 0.0004965620].

Thus the probability density function is given by 

 ( tx 2T x) ey c2
cb= c2f ,<

where t"2c   =   – T2c  e
".

After discretizing claim size distributions in a similar fashion as in Sec-
tion 3.3, a probability matrix for the bivariate aggregate losses 

(S,W )   =   (0,0.1,  ···, 200; 0,0.1,  ···, 200)

are computed using recursion (23) and the speedy recursive (26), consuming 
on average 574 and 386 seconds respectively. Multidimensional FFT calculation 
is not implemented for this example because the method is much less studied 
than the one-dimensional FFT in the literature. In fact, we propose to compare 
the recursive and the FFT methods for computing multivariate probability 
functions in a future project.
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