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Axisymmetric displacement flows in
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Displacement flows are common in hydraulic fracturing, as fracking fluids of different
composition are injected sequentially in the fracture. The injection of an immiscible fluid
at the centre of a liquid-filled fracture results in the growth of the fracture and the outward
displacement of the interface between the two liquids. We study the dynamics of the
fluid-driven fracture, which is controlled by the competition between viscous, elastic and
toughness-related stresses. We use a model experiment to characterize the dynamics of the
fracture for a range of mechanical properties of the fractured material and fracturing fluids.
We form the liquid-filled pre-fracture in an elastic brittle matrix of gelatin. The displacing
liquid is then injected. We record the radius and aperture of the fracture, and the position
of the interface between the two liquids. In a typical experiment, the axisymmetric radial
viscous flow is accommodated by the elastic deformation and fracturing of the matrix.
We model the coupling between elastic deformation, viscous dissipation and fracture
propagation, and recover the two fracturing regimes identified for single-fluid injection.
For the viscous-dominated and toughness-dominated regimes, we derive scaling equations
that describe the crack growth due to a displacement flow and show the influence of the
pre-existing fracture on the crack dynamics through a finite initial volume and an average
viscosity of the fluids in the fracture.

Key words: flow-structure interactions, multiphase flow

1. Introduction

Fluid-driven or hydraulic fracturing results from the injection of a pressurized fluid in
low-permeability solid media. The formation and propagation of the fluid-filled tensile
fracture is observed commonly in engineering and natural geophysical processes. For
example, the formation of magma-driven dykes is due to density differences that generate
pressure large enough to propagate a vertical fracture in the surrounding rock (Lister &
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Kerr 1991; Rubin 1995). The most common industrial application of hydraulic fracturing
is well stimulation to facilitate the extraction of oil and gas from shale formations
(Cueto-Felgueroso & Juanes 2013). A fluid is injected at high pressure to expand fractures
initiated with small-scale explosions in unconventional reservoirs. The fractures create
new flow pathways, facilitating fluid transport and storage in low-permeability and
low-porosity rock formations. Other applications leverage the enhanced transport. For
example, fractures connecting wells can be used to extract geothermal energy as the fluid
pumped through the fracture heats up when it travels underground (Murphy et al. 1981;
Caulk et al. 2016; Luo et al. 2017). Fractures are also used for storage, including carbon
sequestration (Huppert & Neufeld 2013; Jia, Tsau & Barati 2019) and disposal of liquid
waste (Bao & Eaton 2016; Alessi et al. 2017).

The complex mechanics of fluid-driven fractures are controlled by the deforming
boundary, fluid flow and stress singularity at the tip of the tensile fracture (Detournay
2016). Field testing, laboratory-scale experiments and predictive modelling evidence
that the fracture propagation is characterized by multiple length and time scales. When
a Newtonian fluid is injected from a point source, in an infinite, homogeneous and
impermeable medium, a single fracture propagates radially. The elastic stress in the
medium leads to the growth of a penny-shaped fluid-filled fracture in the direction of
minimum confining stress. The propagation of such fractures has been studied extensively
as it is essential to the modelling of more complex geological situations, including those
involving a finite medium (Bunger & Detournay 2005), complex fluids (Barbati et al.
2016; Hormozi & Frigaard 2017; Lai et al. 2018) and interacting fractures (O’Keeffe et al.
2018b). Seminal work on the stress distribution in a penny-shaped fracture (Sneddon &
Mott 1946) and the injection of viscous fluids to form fractures (Khristianovic & Zheltov
1955; Barenblatt 1956) led to the development of self-similar solutions for fractures whose
propagation is limited by the viscous dissipation in the fluid (Spence & Sharp 1985).
Further work on the vicinity of the crack front or tip region identified two asymptotic
regimes for the tip geometry and fracture propagation (Desroches et al. 1994; Garagash &
Detournay 2000, 2005; Savitski & Detournay 2002; Detournay & Garagash 2003). In the
viscous-dominated scaling, the viscous dissipation in the flow opposes the elastic stress
of the deformable boundary to control the fracture evolution. In the toughness-dominated
regime, the material toughness opposes the elasticity-driven propagation of the fracture
and determines the system’s behaviour. Laboratory-scale experiments commonly rely on
clear brittle elastic gels to study the crack tip region and the penny-shaped fracture (Takada
1990; Giuseppe et al. 2009; Kavanagh, Menand & Daniels 2013; Baumberger & Ronsin
2020). Injections of water, glycerol and oil in gelatin and polyacrylamide have validated
the existence of two propagation regimes and the corresponding scaling laws (Lai et al.
2015, 2016; O’Keeffe, Huppert & Linden 2018a). The behaviour of the crack tip region
was studied by injecting liquid between two plates of polymethylmethacrylate (PMMA)
glued by an adhesive (Bunger & Detournay 2008).

Most hydraulic fracturing processes involve multiphase flows and, in particular,
displacement flows (Hormozi & Frigaard 2017; Osiptsov 2017; Lai et al. 2018; Wang,
Elsworth & Denison 2018; Bessmertnykh, Dontsov & Ballarini 2021). During hydraulic
fracturing operations, several fluids are injected, ranging from low-viscosity fluids to
high-viscosity polymer solutions (Moukhtari & Lecampion 2018; Bessmertnykh et al.
2021) and proppant slurries (Hormozi & Frigaard 2017; Wang et al. 2018; Barboza, Chen
& Li 2021). This sequence of injections aims at increasing the surface area of the fracture
and at keeping the fracture open during the hydrocarbon extraction. For example, carbon
dioxide injection is a promising strategy to enhance oil recovery after primary production
of shale oil reservoirs (Huppert & Neufeld 2013; Jia et al. 2019). The rapid injection of
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supercritical CO2 in water-filled fractures is followed by the slower permeation of CO2 into
the rock and the migration of the oil into the fracture. This strategy increases the amount
of oil recovered while storing carbon in the rock. Finally, enhanced geothermal systems
rely on fractures in hot rocks to connect the injection and extraction wells (Murphy et al.
1981; Caulk et al. 2016; Parisio & Yoshioka 2020). Fracturing fluids are injected first, and
then the working fluid, commonly water or CO2, is pumped into the fracture to extract
heat.

Displacement flows in porous media can give rise to complex out-of-equilibrium flow
patterns when the invading fluid has a lower viscosity than the fluid that occupies the
porous medium, and is referred to as the displaced or defending fluid. Practically, the
patterns generated by liquid–liquid or gas–liquid displacement flows lead to preferential
flow pathways in the porous medium. Extensive work has therefore been dedicated to
the formation and geometry of the patterns, ranging from experimental to numerical
and theoretical (Saffman & Taylor 1958; Paterson 1981; Park & Homsy 1984; Homsy
1987; Lenormand, Touboul & Zarcone 1988; Chen 1989; Tanveer 1993; Primkulov et al.
2019). Viscous and capillary forces can contribute to fluid/fluid displacement in a porous
medium. A displacement flow is characterized by two dimensionless parameters: the
viscosity or mobility ratio M = μinv/μdef , and the capillary number of the invading fluid
Ca = μinvu/γ , where μinv and μdef are the viscosities of the invading and defending
fluids, respectively, u is the characteristic velocity, and γ is the surface tension of the
interface between the two fluids. The influence of the two dimensionless parameters
on the geometry of the invading front is summarized in Lenormand’s phase diagram
(Lenormand et al. 1988), which was revisited recently by Primkulov et al. (2021) to include
wettability. In summary, for large Ca, the viscous forces control the system dynamics and
the interfacial forces are negligible. If the invading fluid is more viscous than the defending
fluid (M ≥ 1), then a compact front or interface moves through the porous medium. If the
invading fluid is less viscous than the defending one (M � 1), then the Saffman–Taylor
instability leads to an unstable front with the formation of a viscous fingering pattern,
observed in porous media of different complexity, from Hele-Shaw cells (Saffman &
Taylor 1958; Tabeling, Zocchi & Libchaber 1987) to intricate networks of pores and
throats (Lenormand, Zarcone & Sarr 1983; Zhao, MacMinn & Juanes 2016). For low
Ca, the interfacial forces contribute to the system dynamics and result in more complex
patterns at the interface between the two fluids, depending on the local pore geometry
and wettability (Stokes et al. 1986; Cottin, Bodiguel & Colin 2010). The rich dynamics
of displacement flows is reported in various model porous media, including networks of
microchannels and rough fractures (Glass, Rajaram & Detwiler 2003; Chen et al. 2017;
Yang et al. 2019). Yet the system geometry can delay the onset of viscous fingers and
even suppress the Saffman–Taylor instability. In a converging Hele-Shaw cell, the stability
of the interface depends on the mobility ratio, but also the characteristic velocity, the
gradient of cell depth, and the contact angle at the interface (Al-Housseiny, Tsai & Stone
2012; Al-Housseiny & Stone 2013; Lu et al. 2019). Below a critical capillary number, a
compact front is observed in a converging Hele-Shaw cell despite the unfavourable nature
of the displacement. Similar results are reported in flexible cells, whose geometry depends
on elastohydrodynamic interactions, such as displacement flows under elastic membranes
(Pihler-Puzović et al. 2012, 2013, 2015; Peng et al. 2015). Two physical mechanisms
contribute to the stabilization of the interface under an elastic membrane that deforms
as fluid is injected. First, the local increase in cell depth leads to a depth gradient that
has been shown to delay viscous fingering for rigid converging cells. Second, the increase
in depth reduces the characteristic velocity or capillary number corresponding to a given
injection flow rate.
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Figure 1. Schematic of a penny-shaped fracture formed by successively injecting two liquids, first the outer
fluid (dark grey) and then the inner fluid (light grey). The fracture is axisymmetric.

The purpose of the present paper is to model axisymmetric two-phase flows in
fluid-filled growing fractures. Experiments and theoretical modelling focus on immiscible
two-phase flows with a mobility ratio smaller than or of order 1 and a low capillary
number, ensuring the propagation of a compact front. We build on the approach of Savitski
& Detournay (2002) to study the coupling between the two-phase flow and the fracture
growth, in the viscous and toughness regimes (§ 2). We derive new scalings for the radius
and aperture of the fracture and the position of the interface for immiscible displacement
flows in elastic, brittle and impermeable media (§ 3). To test the scalings, we conduct
injection experiments in gelatin, which is a common model medium (§ 4). During the
two consecutive injections, we record the geometrical parameters of the fracture and
compare their time dependence with scalings (§ 5). Finally, we discuss the time scales
of the fracturing displacement flow (§ 6).

2. Theoretical models

In this section, we model the displacement flow that is responsible for the propagation
of a crack during the successive injections of two immiscible fluids. The mathematical
models presented build on the framework introduced originally by Spence & Sharp (1985)
and further developed in recent studies of single-fluid injection (Savitski & Detournay
2002; Lai et al. 2015; O’Keeffe et al. 2018a). Past work has focused on the injection of a
single incompressible fluid in an elastic brittle solid through a point source (see figure 1),
forming a penny-shaped crack. The fracture dynamics depends on the material properties,
such as the Young’s modulus E, Poisson’s ratio ν and toughness KIC, and the injection
parameters, i.e. the constant flow rate Q and liquid viscosity μ. As the injection stops, the
fracture reaches its final configuration and volume V0.

This study addresses the injection of an immiscible liquid in a pre-formed penny-shaped
crack. The fluid is injected through the same point source at the centre of the crack. The
displaced fluid fills an outer annular region of the fracture (see figure 1). In what follows,
we use the subscript ‘in’ to refer to the injected liquid and ‘0’ to refer to the displaced fluid.
The surface tension of the interface is denoted γ , and the contact angle with the solid is
denoted θ . Over the time scale of an experiment, typically a few minutes, the solid is not
porous to the liquids, and the volume of the fracture is equal to the total volume of fluid
injected.
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We make assumptions regarding fluid flow and fracture propagation to model the system
dynamics. As the injection rates are low, we assume that the fracture propagates at
equilibrium, and the liquid and fracture fronts coincide at all times, with no fluid lag.
The fluid injection results in linear elastic deformation of the surrounding material.

To describe the crack aperture w(r, t), radius R(t) and pressure p(r, t), as well as
the position of the interface RI , we need to solve the coupled equations that describe
(a) the viscous flow of the two fluid phases in the time-dependent fracture, (b) the elastic
deformation of the solid material or fracture walls, (c) the stress intensity factor at the
tip of the fracture, and (d) the volume conservation. These sets of equations are coupled
by the net pressure in the fracture. The fluid domain is divided into two regions. The
outer region is composed of the displaced fluid and bound by the liquid–liquid interface at
r = RI and the crack tip at r = R. The injected fluid fills the inner region of the crack from
the injection point to the fluid–fluid interface at r = RI . Both regions are axisymmetric, as
shown in figure 1.

2.1. Fluid flow in the crack

2.1.1. Lubrication theory
The low Reynolds number flow in the elongated fracture allows us to simplify the
Navier–Stokes equation and use lubrication theory. The fluid is injected in a pre-formed
crack whose aspect ratio is small:

w � R. (2.1)

The Reynolds number of the flow through the crack is defined for the injected fluid as

Re = ε
ρUw
μ

= ρinQin w(r = 0)

2πμinR2 ≤ 1, (2.2)

where ε is the aspect ratio of the crack. As a result, the flow of both fluids can be modelled
with the lubrication theory, similarly to the single-phase flows in a penny-shaped fracture
(Savitski & Detournay 2002; Detournay 2004; Detournay & Peirce 2014; Lai et al. 2015;
O’Keeffe et al. 2018a). For the two-fluid system, the lubrication equations are

∂w(r, t)
∂t

= 1
12μin

1
r

∂

∂r

(
r w3(r, t)

∂p
∂r

)
for 0 ≤ r ≤ RI, (2.3)

∂w(r, t)
∂t

= 1
12μ0

1
r

∂

∂r

(
r w3(r, t)

∂p
∂r

)
for RI ≤ r ≤ R. (2.4)

2.1.2. Liquid interface
The interface between the two fluids moves outwards during the injection and is described
by the dynamics boundary condition

n · (−p−I + μin
(∇u− + (∇u−)T)) · n + γ κc

= n · (−p+I + μ0
(∇u+ + (∇u+)T)) · n, (2.5)

where n = er is the vector normal to the interface, and κc is the sum of the principal
curvatures of the interface. The + and − exponents indicate that the value of the variable
is determined at r = RI + δ and r = RI − δ respectively, with δ � RI . We note that
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τ = μ(∇u + (∇u)T). We assume that the fluids are perfectly wetting the gel, and neglect
the thin film deposited by the outer fluid. The normal stress balance is

p− − p+ = σI = γ

(
1
RI

+ 2
wI

)
− n · (τ+ − τ−) · n

= γ

(
1
RI

+ 2
wI

)
− 2μ0

∂u
∂r

∣∣∣∣
r=R+

I

− 2μin
∂u
∂r

∣∣∣∣
r=R−

I

, (2.6)

where wI is the width of the fracture at the interface. The expression can be simplified
further as RI > wI , and the viscous normal stresses are negligible. Indeed, the capillary
number of the invading fluid is

Cain = μinU
γ

= μinQin

2γπR w(r = 0)
� 1. (2.7)

The pressure change across the interface is

p− − p+ ≈ 2γ

wI
. (2.8)

As the fluid–fluid interface moves, we can write the following kinematic condition using
Reynolds equations:

q−=q+= − w3
I

12μin

∂p
∂r

∣∣∣∣
r=R−

I

= − w3
I

12μ0

∂p
∂r

∣∣∣∣
r=R+

I

. (2.9)

2.1.3. Volume conservation
Finally, through volume conservation, the volume of the crack is equal to the volume
injected. We note that V0, the volume of the pre-fracture, is equal to the volume of the
outer fluid. The injection begins at t = 0:

V0 + Qint = 2π

∫ R

0
r w(r, t) dr (2.10)

and

Qint = 2π

∫ RI

0
r w(r, t) dr. (2.11)

2.2. Fracture equations

2.2.1. Linear elasticity
Similarly to the single-fluid fracture (Savitski & Detournay 2002), the linear elasticity
equation is

w(r, t) = 8(1 − ν2)R
πE

∫ 1

r/R

ξ√
ξ2 − (r/R)2

∫ 1

0

x p(xξR, t)√
1 − x2

dx dξ. (2.12)
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Parameter Inner region Outer region

Radius r = RI r̂ r = Rr̃
Width w = W0ŵ w = W0ŵ
Pressure p = P0p̂ p = P0p̂

Table 1. Rescaled parameters.

2.2.2. Fracture propagation
In a small region at the tip of the crack, the material undergoes plastic deformation. The
tensile fracture propagates when the mode I stress intensity factor KI reaches a critical
value called the toughness of the material, KIC =

√
2E′

γS, where γS is the fracture surface
energy of the solid material (Kanninen & Popelar 1985), and E′ = E/(1 − ν2). For a
penny-shaped crack, the stress intensity factor near the tip is defined as (Rice 1968)

KI = 2√
πR

∫ R(t)

0

p(r, t)√
R2 − r2

r dr. (2.13)

2.3. Boundary conditions at the fracture tip and injection point
At the tip of the crack, the width w(R) goes to zero,

w = 0, r = R(t), (2.14a,b)

and the flow rate also goes to zero,

w3(r, t)
∂p(r, t)

∂r
= 0, r = R(t). (2.15a,b)

At the point source, the local flow rate is equal to the injected flow rate:

2π lim
r→0

r q(r, t) = Qin. (2.16)

3. Scaling

The equations are non-dimensionalized by identifying the characteristic scales in both
phases as listed in table 1.

The characteristic radius and aperture of the fracture are R and W0, respectively, with
R the radius of the fracture, and W0 the maximum aperture of the fracture at r = 0. The
position of the interface is RI . The characteristic pressure in both the fluids is taken to
be P0. We define effective material parameters μ′, E′ and K′ as proposed by Savitski &
Detournay (2002):

μ′
in = 12μin, μ′

0 = 12μ0, K′ = 4
(

2
π

)1/2

KIC and E′ = E
1 − ν2 . (3.1a–d)

To compare the viscosity of the two liquids, we introduce the parameter M = μ′
in/μ

′
0.

When the two fluids are present in the fracture, we used a weighted average to define the
resulting viscosity μe and the corresponding effective value μ′

e = 12μe.
Using the characteristic parameters summarized in table 1 and the effective material

properties, we obtain the following set of equations to describe the displacement flow and
fracture propagation.
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(i) Lubrication theory (from (2.3) and (2.4)):

μ′
eR2

W2
0 P0

∂ŵ
∂t

= 1
r̂

∂

∂ r̂

(
r̂ŵ3 ∂ p̂

∂ r̂

)
. (3.2)

(ii) Linear elasticity (from (2.12)):

ŵ = 8R
πE′W0

[
P0

∫ 1

0

∫ 1

0

x p̂(xξR, t)√
1 − x2

dx dξ

]
. (3.3)

(iii) Fracture propagation (from (2.13)):

K′

P0
√

R
= 27/2

√
π

∫ 1

0

p̃r̃√
1 − r̃2

dr̃. (3.4)

(iv) Global mass balance (from (2.10) and (2.11)):

Qint

2πR2
I W0

=
∫ 1

0
r̂ŵ dr̂ (3.5)

and
V0

2πR2W0
=
∫ 1

0
r̃ŵ dr̃ −

(
RI

R

)2 ∫ 1

0
r̂ŵ dr̂. (3.6)

As the fluid is injected, the elastic pressure drives the propagation of the crack, which is
resisted by the viscous dissipation associated with the motion of the injected and displaced
fluids, and the fracture toughness. We first assume that the interfacial pressure is negligible
compared to the viscous and toughness-related stresses. We then assume that one of
the resisting stresses controls the propagation and balances the elastic stress. Studies on
single-fluid injection have validated this approach, with experimental evidence of the two
asymptotic regimes. If the viscous stresses in the fluids are larger than the fracture-opening
stress, then the fracture propagation is said to be in the viscous regime. Alternatively, the
propagation is in the toughness regime. For both regimes, we can derive scaling arguments
from the dimensionless groups derived from (3.2)–(3.6).

3.1. Toughness regime
For the toughness scaling, we set the non-dimensional groups in (3.3)–(3.6) equal to
1. Indeed, the viscous stresses are negligible, and the crack opening is limited by the
toughness of the material. The scaling relations are

W0E′

P0R
= 1, (3.7)

K′

P0
√

R
= 1, (3.8)

Qint

R2
I W0

= 1, (3.9)

V0

W0
= R2 − R2

I . (3.10)

We define the characteristic time scale T = V0/Qin and the corresponding dimensionless
time t̃ = t/T . By combining those groups, we obtain the toughness-dominated scaling of
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the fracture properties:

W0 =
(

K′

E′

)4/5

V1/5
0

(
1 + t̃

)1/5
, (3.11)

R =
(

E′V0

K′

)2/5 (
1 + t̃

)2/5
, (3.12)

RI =
(

E′V0

K′

)2/5

t̃1/2 (1 + t̃
)−1/10 (3.13)

and

P0 = K′
(

K′

E′V0

)1/5 (
1 + t̃

)−1/5
. (3.14)

3.2. Viscous regime
For the viscous scaling, we set the non-dimensional groups in (3.2)–(3.3) and (3.5)–(3.6)
equal to 1. Here, the propagation of the fluids follows the lubrication equation, and the
viscous dissipation limits the propagation of the fracture:

W0E′

P0R
= 1, (3.15)

μ′
eR2

W2
0 P0 (t + V0/Q0)

= 1, (3.16)

Qint

R2
I W0

= 1, (3.17)

V0

W0
= R2 − R2

I . (3.18)

We define the effective viscosity of the volume of fluid in the fracture as a weighted
average. The effective viscosity depends on the viscosities of the two fluids in the fracture
and their relative volumes at time t̃:

μ′
e = μ′

0 + μ′
int̃

1 + t̃
. (3.19)

We obtain the viscous-dominated scaling of the variables:

W0 =
(

μ′
eQin

E′

)2/9

V1/9
0

(
1 + t̃

)1/3 (
α + t̃

)−2/9
, (3.20)

R =
(

E′

μ′
eQin

)1/9

V4/9
0

(
1 + t̃

)1/3 (
α + t̃

)1/9
, (3.21)

RI =
(

E′

μ′
eQin

)1/9

V4/9
0 t̃1/2 (1 + t̃

)−1/6 (
α + t̃

)1/9
, (3.22)

P0 =
(

μ′
eQinE′2

V0

)1/3 (
α + t̃

)−1/3
, (3.23)

with α = Qin/Q0. The results are summarized in table 2.
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Fracture Viscous regime Toughness regime

Radius R ≈
(

E′

μ′
eQin

)1/9

V4/9
0 (1 + t̃)1/3(α + t̃)1/9 R ≈

(
E′V0

K′

)2/5

(1 + t̃)2/5

Interface RI ≈
(

E′

μ′
eQin

)1/9

V4/9
0 t̃1/2(1 + t̃)−1/6(α + t̃)1/9 RI ≈

(
E′V0

K′

)2/5

t̃1/2(1 + t̃)−1/10

Aperture W0 ≈
(

μ′
eQin

E′

)2/9

V1/9
0 (1 + t̃)1/3(α + t̃)−2/9 W0 ≈

(
K′

E′

)4/5

V1/5
0 (1 + t̃)1/5

Table 2. Scaling relations for a penny-shaped fracture driven by a displacement flow. The time evolution of
the geometrical properties of the fracture depends on the dominant resisting stress, which can be viscous or
toughness-related.

3.3. Discussion
We consider the single-fluid limit of the two asymptotic regimes. Indeed, for a pre-fracture
volume equal to zero, V0 = 0, or for large values of the injection time t 	 1, the
expressions derived above should be equal to those obtained previously for single-fluid
injection. In the toughness regime, we recover the single-fluid scaling relations (Savitski
& Detournay 2002; Lai et al. 2016; O’Keeffe et al. 2018a)

W0 =
(

K′

E′

)4/5

(Qint)1/5 , (3.24)

R =
(

E′

K′

)2/5

(Qint)2/5 (3.25)

and

P0 = K′
(

K′

E′Qint

)1/5

. (3.26)

In the viscous regime, we also recover the scaling relations for a single-fluid injection:

W0 =
(

μ′
in

E′

)2/9

Q1/3
in t1/9, (3.27)

R =
(

E′

μ′
in

)1/9

Q1/3
in t4/9 (3.28)

and

P0 =
(

μ′
inE′2

t

)1/3

. (3.29)

The fluid and matrix properties determine whether the fracture propagation is in the
viscous or toughness regime. Past studies in single-fluid injection have defined criteria to
predict the propagation regime. The regime is defined by the largest of the two stresses
that oppose the elastic stress: the toughness-related stress 
Pm ≈ K′/

√
R, and the viscous

stress 
Pv = μ′Q/W3
0 . In the viscous regime, we can use the scaling relations for R and
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W0 to estimate the ratio:

(

Pm


Pv

)
v

=
(

K′9t
E′13/2Q3/2μ′5/2

)1/9

=
(

t
tmk

)1/9

= κ, (3.30)

where

tmk =
(

E′13/2Q3/2μ′5/2

K′9

)
(3.31)

is the characteristic time scale of the system, and κ is the dimensionless toughness.
Similarly, we can define the relative magnitude of both stresses in the toughness regime
using the corresponding scaling relations:

(

Pm


Pv

)
m

=
(

t
tmk

)2/5

= κ18/5. (3.32)

The viscous-dominated propagation is therefore associated with small values of κ , i.e.
κ or t/tmk � 1, and the toughness-dominated dynamics for κ or t/tmk 	 1.

Similarly, we can define the propagation regime of the fracture formed by a displacement
flow. The toughness-related stress remains 
Pm ≈ K′/

√
R, while the viscous stress

becomes 
Pv = μ′
eQinR2(R2

I W3
0 + αV0W2

0 )−1 as defined in (3.8) and (3.16).
In the viscous regime, we substitute R, RI and W0 by the scaling relations defined in

table 2: (

Pm


Pv

)
v

= K′V1/9
0 (α + t̃)5/18

E′13/18μ
′5/18
e Q5/18

in (1 + t̃)1/6
. (3.33)

Similarly, in the toughness regime, we estimate the ratio to be

(

Pm


Pv

)
m

=
(


Pm


Pv

)18/5

v

. (3.34)

The ratio of the viscous and toughness-related stresses is a function of time that increases
as t̃1/9 for large values of t̃. In consequence, the propagation becomes toughness-controlled
for long-time or large-volume injections. This result is consistent with what is known for
a single-fluid injection. Contrary to the single-fluid criterion however, there is no explicit
solution for the threshold injection time in the case of displacement flow. We can determine
the propagation regime at time t̃ by comparing the pressure ratio with 1.

4. Experiments

Laboratory-scale experiments commonly use hydrogels as rock analogues to study
hydraulic fracturing in brittle elastic materials (O’Keeffe & Linden 2017; Baumberger
& Ronsin 2020). In particular, gelatin is a clear gel whose elasticity can be tuned easily by
varying the volume fraction of gelatin powder in water (Giuseppe et al. 2009; Kavanagh
et al. 2013; Lai et al. 2015). Because gelatin expands as it sets in the container, the material
is spontaneously compressed, which furthers the analogy with soft rocks for fracture
studies.
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Pre-fracture - oil-filled Injection

Exp.
Gel E
(kPa) μ0 (Pa s) Q0 (ml min−1) V0 (ml) Fluid μin (Pa s) Qin (ml min−1)

1 30 0.01 0.3 5.6 Water 0.001 0.5
2 30 0.01 0.3 6.2 Water 0.001 1
3 30 0.01 0.15 5.1 Water 0.001 0.15
4 30 0.01 0.15 6.3 Water 0.001 1
5 15 0.02 0.1 7.1 Water 0.001 0.25
6 30 0.01 0.3 3.9 Water 0.001 1.8
7 30 0.01 0.15 4 Water 0.001 1.8
8 30 0.01 0.5 6.2 Water 0.001 3.6
9 30 0.01 0.15 2.9 Water 0.001 0.54
10 15 0.01 0.25 6.1 Water 0.001 0.5
11 88 10.26 10 10 Glycerol 1.2 10
12 88 10.26 10 15 Glycerol/water 0.3 10
13 88 10.26 10 15 Glycerol 1.2 10
14 88 10.26 10 5 Glycerol 1.2 10
15 88 10.26 10 6.5 Syrup 8.6 10
16 88 10.26 10 8 Syrup 8.6 10

Table 3. List of experiments: symbols and parameters.

4.1. Material preparation and characterization
The properties of the gelatin and the injected fluids control the fracture dynamics and are
therefore characterized systematically. The gelatin is prepared by first heating ultra-pure
water to 60 ◦C. While stirring the heated water, we slowly add gelatin powder (Gelatin type
A; Sigma-Aldrich, USA) at a mass fraction of 10 % to 30 % to vary Young’s modulus of the
resulting gel. The gelatin then cools down to room temperature and sets over 24 hours prior
to testing or fracturing. The Young’s modulus of gelatin is measured with a custom-built
displacement-controlled load frame. The sample is compressed by a ballscrew stage whose
speed is set by a stepper motor Parker Compumotor OS22B controlled by a controller
Parker Compumotor ZL6104. A load cell, Eaton 3108-10 (10 lb capacity) measures the
force generated by the compressed sample. We record force–displacement values for
cylindrical samples of gelatin of diameter and height equal to 1 in, and compute the
stress–strain curves of the material. At small strain, all gelatin samples exhibit a linear
elastic response to the compression. As listed in table 3, Young’s modulus ranges between
15 and 116 kPa with a measurement error of ±10 %. The fracture energy and Poisson’s
ratio of the gelatin are assumed constant in our experiments, with γS ≈ 1 J m−2 and
ν ≈ 0.5 (Menand & Tait 2002).

To study displacement flows in fluid-filled fractures, we use immiscible Newtonian
liquids. Silicone oils of different viscosity are used to form the pre-fracture. An aqueous
solution composed of water, glycerol or corn syrup is then injected. The silicone oil
is displaced outwards, further expanding the fracture in the gelatin. We measure the
viscosity of the fluids and the surface tension at the oil/water and oil/syrup interfaces.
Viscosity measurements are conducted using an MCR 92 Anton Parr rheometer with a
parallel plate measuring system at 20 ◦C. The values obtained have a measurement error
of ±1 % and are listed in table 3. Surface tension measurements are conducted using
the pendant drop method with an Attension Theta Flex tensiometer: the surface tension
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between silicone oil and water is γo/w ≈ 35 ± 2 mN m−1, and between silicone oil and
syrup is γo/s ≈ 50 ± 2 mN m−1. The fluid properties are selected to study the propagation
of the pre-fracture and fracture in a single regime during the experiment. For example,
the values of κ at the end of the injection forming the pre-fracture, for experiments 1–10,
vary as 35 ≤ κ ≤ 55. Those experiments are expected to be in the toughness-dominated
regime. Similarly, for experiments 11–16, 1.7 ≤ κ ≤ 1.9 at the end of the formation of the
pre-fracture: these experiments target the viscous-dominated propagation. These values
are consistent with previous work on the formation of fluid-driven fractures in a block of
gelatin. During the formation of the fracture through the displacement flow, we estimate
the pressure ratio in the viscous regime (
Pm/
Pv)v at the end of the injection. The ratio
varies between 24 and 58 for experiments 1–10, which are therefore expected to be in the
toughness regime. The ratio varies between 1.9 and 2.5 for experiments 11–16, which are
therefore expected to be in the viscous regime.

4.2. Set-up
The injection experiments are conducted in a large block of gelatin to avoid boundary
effects on the propagation of the fracture. The gelatin is set in a cubic clear container
(15 cm × 15 cm × 15 cm) around a blunt needle as represented in figure 2(a). We use a
thin needle (inner diameter ID = 1 mm) for low-viscosity injections, and a wider needle
for high-viscosity injections (ID = 2.15 mm). In our system, the fracture propagates
horizontally, in the direction that opposes the least resistance. To avoid small tilts of
the fracture that would compromise the quality of the recording, a plastic washer (outer
diameter OD = 6.5 mm) is placed at the tip of the needle to initiate the fracture in the
horizontal plane. Two fluids are successively pumped into the gelatin. For each fluid, we
use a kdScientific® Legato 200 syringe pump to set the injection flow rate at a value
between 0.1 and 20 ml min−1 with accuracy ±0.35 %. Both fluid-filled syringes are
connected to the same injection needle using a switch valve. First, a silicone oil of viscosity
μ0 is injected at a constant volumetric flow rate Q0 in the gelatin matrix to form the
pre-fracture. The injection stops when a volume V0 of silicone oil has been dispensed. The
valve is then switched to inject the aqueous phase of viscosity μin into the pre-fracture
at flow rate Qin. The injection stops when the fracture tip is within 2 cm of the container
walls to avoid confinement effects (Bunger, Gordeliy & Detournay 2013). The two fluids
are dyed to allow visualizing the propagation of the fracture and interface between the two
liquids in the clear gelatin: we use a blue water-based food dye for the aqueous phase, and a
red oil-based food dye for the oil phase, as shown in figure 2. The propagation is recorded
using a Nikon D5300 camera with a Phlox® LED panel ensuring uniform backlighting.
The images are processed using a custom-made MATLAB code to determine the radius of
the fracture R and the position of the interface between the two liquids RI .

4.3. Measurement of the fracture width
To measure the thickness of the fracture during the propagation, we use a light absorption
method (Bunger 2006; Bunger & Detournay 2008). This method consists in selecting a
soluble dye and the corresponding optical filter. The filter should transmit light to the
camera at the wavelength at which the dye absorbance A is maximum, Aλ. The absorbance
follows Beer’s law:

Aλ = − log10

(
Iλ

Iλ,0

)
= ελch, (4.1)
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Q0

150 mm

Camera

Gelatin

Fluid 1 Fluid 2

Needle

(ID = 1 mm

Washer

(OD = 6.5 mm)

L = 100 mm)

(a) (b) (c)

(d ) (e)

5 cm

Qin

Figure 2. (a) Schematic of the experimental set-up. (b–e) Time evolution of the fracture formed in
experiment 1. The water dyed with blue food colour is injected at Qin = 0.5 ml min−1 in a pre-fracture formed
with silicone oil dyed with red food colour. The recording starts when the water injection begins, and the
experimental images are taken at (b) t = 50 s, (c) t = 300 s, (d) t = 1300 s, and (e) t = 2800 s. Supplementary
movies 1 and 2 (available at https://doi.org/10.1017/jfm.2022.954) show the complete time evolution of the
pre-fracture and fracture, respectively.

where Iλ,0 is the background intensity, and Iλ is the intensity when light passes through a
liquid layer of thickness h, with dye concentration c. The parameter ελ characterizes the
absorbance of the dye at the selected wavelength and is obtained through calibration. To
measure the thickness of both liquids in the fracture, we use two dyes, one water-soluble
and one oil-soluble, and record the absorbance using a single optical filter. To get accurate
measurements, we select dyes with a large absorbance at the same wavelength. In all
experiments, the water-soluble dye is nigrosin (Sigma-Aldrich) at 0.05 g l−1. Nigrosin is a
black dye that absorbs at all wavelengths. We use different dyes depending on the viscosity
of the silicone oils, because of their solubility limit. We dilute Sudan red (Sigma-Aldrich)
in the low-viscosity silicone oils, i.e. 10 and 20 mPa s silicone oils, at 0.05 g l−1, and Nile
red (Sigma-Aldrich) in high-viscosity silicone oils, i.e. 10 300 and 30 000 mPa s silicone
oils, at 0.2 g l−1. For experiments with Sudan red in the oil phase and nigrosin in the
aqueous phase, we use a 520 nm optical filter. When Nile red dyes the oil phase and
nigrosin the aqueous phase, we use a 632 nm optical filter.

To measure the thickness of the fracture, we first conduct calibration experiments for
each dye solution. For the low-viscosity solutions (water, 10 and 20 mPa s silicone oils),
we use a glass wedge with an aperture that increases linearly from 0 to 10 mm, as shown
in figure 3. The wedge is placed on the LED panel and the light intensity is obtained
by taking a picture of the wedge with the optical filter mounted on the camera. The
background intensity corresponds to an empty wedge. The light intensity of a liquid-filled
wedge decreases as the thickness of the aperture increases (see figure 3b). The grey values
are used to determine the absorbance as a function of the liquid thickness, as plotted
in figure 3(c). Using a linear fit, we get 1/ελc = 47.2 mm for Sudan red in oil, and
1/ελc = 32.6 mm for nigrosin in water, for λ = 520 nm. For the high-viscosity samples,
we use rectangular cells that are easier to fill. The cell thickness or height ranges from
0.3 to 3 mm. For each cell, we measure the background intensity of the empty cell and
the intensity of the cell filled with the viscous fluid, i.e. syrup, or 10 000 or 30 000 mPa s
silicone oil. We obtain the absorbance for a set of thickness values as shown in figure 3.
Using a linear fit, we get 1/ελc = 56.5 mm for Nile red in oil, and 1/ελc = 44 mm for
nigrosin in water, for λ = 632 nm. The fitting parameters obtained are then used to obtain
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Liquid-filled

wedge

1 2 3 4 50

0.05

0.10

0.15

1 cm
LED panel

Filter lens

Camera

(a) (b) (c)

A

h (mm)

Figure 3. Calibration. (a) Schematic of the calibration experiment for low-viscosity fluids. (b) The intensity
gradient was recorded for a wedge filled with water dyed with nigrosin at 0.05 g l−1 through the 520 nm filter.
(c) Absorbance measured for nigrosin-dyed water at λ = 520 nm (�), nigrosin-dyed syrup at λ = 632 nm (•),
Sudan-red-dyed 10 mPa s siliconeoil at λ = 520 nm (�), and Nile-red-dyed 10 Pa s silicone oil at λ = 632 nm
(◦). The solid lines are the best linear fit for each calibration data set.

the width of the fracture using Beer’s law:

h = Aλ
ελc

=
− log10

(
Iλ

Iλ,0

)
ελc

. (4.2)

The concentrations of dyes chosen for this study, some of which are limited by solubility,
are all sufficiently low for the absorbance to vary linearly with the sample thickness or
fracture aperture. The accuracy of the measurements is limited by the noise due to low
absorbance values.

5. Results

In this section, we present the results of the experiments listed in table 3. We measure the
radius and aperture of the pre-fracture and fracture, and compare the data with the scalings
obtained for the viscous and toughness regimes.

The fracture propagates radially upon injection of the fluid. Viscous fingering is not
observed in our experiments, as illustrated in figures 2(b–e). The viscosity ratio M =
μin/μout varies between 0.05 and 1, and the thickness of the crack is of the order of a few
millimetres, so the characteristic wavelength of the instability is larger than the perimeter
of the injected fluid region. We estimate the experimental error by conducting an error
analysis based on the scaling laws and the measurement error of the various parameters:
10 % for the Young’s modulus E, 10 % for the fracture toughness K, 0.35 % for the flow
rate Q, 1 % for the viscosity μ, and 5 % for the volume V0. In the toughness regime, the
experimental error on the radius is estimated to be ∼10 %. In the viscous regime, the error
is ∼4 %.

5.1. Single-fluid injection
We prepare the pre-fracture by injecting silicone oil into the gelatin cube. After an initial
pressure build-up, the oil propagates rapidly over the washer at the tip of the needle.
A radial fracture then forms around the washer, propagating more slowly with the oil filling
the gap between the two gelatin surfaces. The homogeneous properties of the gelatin result
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Figure 4. Dynamics of the pre-fracture for low-viscosity oils. (a) Dependence of rescaled fracture radius on
time for experiments 1–10 (see table 3 for corresponding injection parameters). The radius is rescaled using
(3.25) in the toughness scaling for single-fluid injection. The origin for time is set when the oil enters the
gelatin. The black curve represents the best linear fit with slope 2/5. Inset: dependence of the radius R on time t.
(b) Rescaled fracture thickness profiles based on (3.24) and (3.25) at t = 245, 370, 495, 620, 745 s, with time
increasing from clear to dark grey. Experimental parameters: E = 30 kPa, μ0 = 10 mPa s, Q0 = 0.3 ml min−1.

in axisymmetric fractures for both low- and high-viscosity fluids. The radius of the fracture
is measured during the injection and compared with the scaling for the toughness- and
viscous-dominated regimes for a single fluid ((3.25) and (3.28), respectively). Experiments
1–10 are in the toughness regime as low-viscosity silicone oil is injected in soft gelatin
(see table 3). Experiments 11–16 are in the viscous regime as high-viscosity silicone oil
is injected in harder gelatin. In figure 4(a), we plot the results of the experiments in the
toughness regime. The radius increases with time, and the rescaled radius follows a t2/5

power law, which is consistent with (3.25). In the log-log scale, the best fit line with
slope 2/5 has a prefactor k = 0.7, which is in agreement with the theoretical prefactor
0.85 derived by Savitski & Detournay (2002). These results are also consistent with
previous experimental data in this regime (Lai et al. 2016; O’Keeffe et al. 2018a). In
figure 5(a), we report the data obtained in the viscous regime. The experimental conditions
for those experiments are similar, and the results demonstrate the high reproducibility of
the experiments (Lecampion et al. 2017). The radius increases as a power law of time.
Upon rescaling the radius with the viscous scaling parameter, the data collapse on a line
of slope 4/9 with prefactor k = 0.36. This result differs from the theoretical prefactor 0.7,
yet it is comparable to the values obtained in previous experimental studies in the viscous
regime (Lai et al. 2015; O’Keeffe et al. 2018a). Due to the initiation transient and finite
size of the container, the power-law fits span about a decade of the log-log plots, which is
common for laboratory-scale experiments.

For each regime, we measure the fracture aperture using a dye whose absorbance
varies linearly with the aperture. The results presented show the evolution of the fracture
cross-section over time for one experiment in the toughness regime (see figure 4b) and one
in the viscous regime (see figure 5b). For both experiments, the curves show the aperture
as a function of the radial position at different injection times. Because the needle disturbs
the absorbance measurement near the centre of the fracture, the aperture is not measured
near the needle, i.e. for small values of the radius. Upon integration of the thickness
curve recorded when the injection is complete, we obtain the value of V0 ± 0.5 ml.
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Figure 5. Dynamics of the pre-fracture for high-viscosity oils. (a) Dependence of rescaled fracture radius on
time for experiments 11–16 (see table 3 for corresponding injection parameters). The radius is rescaled using
(3.28) in the viscous scaling for single-fluid injection. The black curve represents the best linear fit with slope
4/9. Inset: dependence of the radius R on time t. (b) Rescaled fracture thickness profiles based on (3.27) and
(3.28) at t = 9, 11.5, 14, 16.5, 19 s, with time increasing from clear to dark grey. Experimental parameters:
E = 88 kPa, μ0 = 10 Pa s, Q0 = 10 ml min−1.

The aperture-radius curves are rescaled using the scaling for the aperture and radius. In
both regimes, the curves collapse on a self-similar profile. The two data sets presented
here are representative of the pre-fracture obtained for all the experiments conducted in
this study, and are similar to results reported previously (Lai et al. 2016; O’Keeffe et al.
2018a).

5.2. Displacement flow
Once the pre-fracture is formed, the valve is immediately switched to the second
immiscible to avoid further propagation of the pre-fracture (Möri & Lecampion 2021).
The material properties of the gelatin contribute to the definition of the propagation
regime. Low-stiffness gelatin allows the observation of the toughness regime, while the
viscous regime is most commonly reached in stiffer hydrogel. Thus we characterize the
displacement flow and fracture propagation in the toughness regime with the experimental
systems 1–10 (see table 3), in which the pre-fracture is also formed in the toughness
regime. The injected fluid is water. Similarly, we investigate the viscous regime in
experiments 11–16. The displacing fluid is a syrup whose high viscosity is of the same
magnitude as the silicone oil in the pre-fractures. During the displacement flow, the
fracture continues its radial expansion but with a different dynamic from the one observed
during the formation of the pre-fracture. To study the radial expansion of the fracture
during the injection, we track the position of the interface between the two fluids, RI , and
the radius of the fracture, R, over time. In figure 6, we plot the results of the experiments
in the toughness regime. The radial position of the interface increases with time, similarly
to what was observed for a single-fluid injection. The annular region of displaced fluid
between RI and R moves outwards, and its radius R − RI decreases over time. Using the
equations in table 2, we plot the rescaled radii with respect to the relevant dimensionless
time on the log-log scale. The rescaled radial positions of the interface collapses on a line
of slope 1 with prefactor 1. The rescaled radii of the fracture collapse on a line of slope 1
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Figure 6. Dynamics of the fracture for the low-viscosity aqueous phase. (a) Dependence of the position of
the interface on time for experiments 1–10 (see table 3 for corresponding injection parameters). (b) Rescaled
interface position as a function of rescaled time, based on the toughness scaling laws in table 2. (c) Dependence
of the fracture radius on time. (d) Rescaled radius as a function of rescaled time, based on the toughness scaling
laws in table 2. The black curves represent the best linear fit with slope 1.

with prefactor 0.3. We note that for large values of time t̃ 	 1, the fracture dynamics for
the displacement flow is expected to become similar to the fracture dynamics for a single
fluid. Indeed, if we plot the dimensionless radius as R5/2(K′/E′V0), then the prefactor 0.3
for the displacement flow is comparable with the prefactor for a single fluid 0.75/2 ≈ 0.4.
In figure 7, we plot the results of the displacement flow experiments in the viscous regime.
The results can be rescaled using equations in the corresponding column of table 2. We
plot the rescaled radii with respect to the relevant functions of the dimensionless time
on the log-log scale. The rescaled radial positions of the interface collapse on a line of
slope 1 with prefactor 0.37. The rescaled radii of the fracture collapse on a line of slope
1 with prefactor 0.36. We note that for large values of time t̃ 	 1, the fracture dynamics
for the displacement flow is expected to become similar to the fracture dynamics for a
single fluid. Since at large values of t̃, (1 + t̃)1/3(α + t̃)1/9 ≈ t̃4/9, the identical prefactor
for the scaling of the radius for the pre-fracture and the fracture indicates that indeed
the single-fluid behaviour is recovered for large injection times. We also note that for
large values of the fracture radius, the experimental data fall below the trend line. This
is due to the slow down of the growth due to the confinement of the gelatin block.

953 A36-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.954


Axisymmetric displacement flows in fluid-driven fractures

100 101 102 103
10–2

10–1

100 101 102 103
10–3

10–2

10–1

10–1 100
10–2

10–1

100

100

100

t (s)

t (s)

t̃ 1/2(1 + t̃ )–1/6 (α + t̃ )1/9

(1 + t̃ )1/3 (α + t̃ )1/9

R I 
(m

)
R 

(m
)

R I 
(

)1
/9

μ
e′ Q

in
E′

V
4 0

R 
(

)1
/9

μ
e′ Q

in
E′

V
4 0

(a) (b)

(c) (d )

Figure 7. Dynamics of the fracture for the high-viscosity aqueous phase. (a) Dependence of the position of
the interface on time for experiments 11–16 (see table 3 for corresponding injection parameters). (b) Rescaled
interface position as a function of rescaled time, based on the viscous scaling laws in table 2. (c) Dependence of
the fracture radius on time. (d) Rescaled radius as a function of the rescaled time, based on the viscous scaling
laws in table 2. The black curves represent the best linear fit with slope 1.

Experimentally, this is associated with the tilting of the fracture and the formation of
finger-like structures.

For the displacement flows, we measure the fracture aperture in the two fluids
simultaneously, relying on two different dyes (see figures 8 and 9). Since the two dyes
absorb the light differently, the absorbance profile presents a discontinuity across the
interface. The absorbance values are converted to thickness measurements using Beer’s
law and the calibration parameters. The experimental results plotted in figures 8(a)
and 9(a) show that the aperture is a continuous function of the radial position. The
aperture–radius curves are rescaled using the scalings for both aperture and radius. In the
toughness regime, both the rescaled aperture and radius collapse, resulting in overlapping
profiles; see figure 8(b). In the viscous regime, the rescaled profiles collapse onto a single
curve; see figure 9(b). The two data sets presented here are representative of all the
experiments. In summary, the experimental observations establish the existence of two
regimes and validate the respective scaling relations.
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Figure 8. Fracture profile for the low-viscosity aqueous phase. (a) Fracture profiles at t = 150, 250, 350 s,
with time increasing from clear to dark grey. (b) Rescaled fracture profiles using the toughness scaling laws
in table 2. Experimental parameters: E = 30 kPa, μ0 = 10 mPa s, Q0 = 0.3 ml min−1, V0 = 2.5 ml, μin =
1 mPa s, Qin = 1.8 ml min−1.
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Figure 9. Fracture profile for the high-viscosity aqueous phase. (a) Fracture profiles at t = 5, 10, 40 s, with
time increasing from clear to dark grey. (b) Rescaled fracture profiles using the viscous scaling laws in table 2.
Experimental parameters: E = 88 kPa, μ0 = 10 Pa s, Q0 = 10 ml min−1, V0 = 8 ml, μin = 8.6 Pa s, Qin =
10 ml min−1.

6. Conclusion

In this study, we model the properties of fractures driven by displacement flows by
revisiting the theoretical framework established for single-fluid injections. We derive
scaling relationships for the position of the interface between the two fluids, the radius
and the aperture of the fracture in a brittle elastic matrix in the viscous-dominated and
toughness-dominated regimes. We define a dimensionless time, which is equal to the
ratio of the volume of displacing fluid injected over the volume of the pre-fracture. In
the toughness regime, the propagation dynamics is independent of the fluid properties.
As a result, the fracture dynamics for the displacement flow is the same as the dynamics
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for a single fluid, with the addition of initial finite volume V0. In the viscous regime,
however, the two fluids that fill the fracture contribute to the viscous dissipation. Over
time, the relative volume of the two fluids changes. To describe the viscous dissipation
in the fracture, we therefore define an average viscosity that accounts for the relative
volume of displaced and displacing fluid. The scalings are compared to experimental
results obtained by successively injecting an oil phase and an aqueous phase in a gelatin
block. The experiments confirm the existence of two regimes of fracture propagation, and
are in good agreement with the derived relationships.

This study focuses on displacement flows of immiscible fluids with comparable
viscosities. Other types of displacement flows are common in fractures. For example,
industrial applications involve the sequential injection of miscible aqueous fluids, some
of which can be complex fluids such as suspensions of particles or polymer solutions.
Recent and future efforts to characterize and model multiphase flows in fractures should
ultimately support efficient hydraulic fracturing operations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.954.
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