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Abstract

M. Bezem defined an extensional semantics for positive higher-order logic programs. Recently,

it was demonstrated by Rondogiannis and Symeonidou that Bezem’s technique can be

extended to higher-order logic programs with negation, retaining its extensional properties,

provided that it is interpreted under a logic with an infinite number of truth values.

Rondogiannis and Symeonidou also demonstrated that Bezem’s technique, when extended

under the stable model semantics, does not in general lead to extensional stable models. In

this paper, we consider the problem of extending Bezem’s technique under the well-founded

semantics. We demonstrate that the well-founded extension fails to retain extensionality

in the general case. On the positive side, we demonstrate that for stratified higher-order

logic programs, extensionality is indeed achieved. We analyze the reasons of the failure

of extensionality in the general case, arguing that a three-valued setting cannot distinguish

between certain predicates that appear to have a different behaviour inside a program context,

but which happen to be identical as three-valued relations.

KEYWORDS: Extensional higher-order logic programming, Negation in logic programming.

1 Introduction

Recent research (Wadge 1991; Bezem 1999, 2001; Kountouriotis et al. 2005; Char-

alambidis et al. 2013, 2017; Rondogiannis and Symeonidou 2016) has investigated

the possibility of providing extensional semantics to higher-order logic programming.

Under an extensional semantics, predicates denote sets, and therefore one can use

standard set theory in order to understand programs and reason about them. Of

course, extensionality comes with a price: to obtain an extensional semantics, one

usually has to consider higher-order logic programs with a relatively restricted

syntax. Actually, this is a main difference between the extensional and the more

traditional intensional approaches to higher-order logic programming such as those

described by Miller and Nadathur (2012) and Chen et al. (1993): the latter languages

have a richer syntax and expressive capabilities but they are not usually amenable

to a standard set-theoretic semantics.
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There exist two main research directions for providing extensional semantics to

higher-order logic programs. The first one (Wadge 1991; Kountouriotis et al. 2005;

Charalambidis et al. 2013, 2014) has been developed using domain-theoretic tools,

and resembles the techniques for assigning denotational semantics to functional

languages. The second approach (Bezem 1999, 2001; Rondogiannis and Symeonidou

2016) relies on the syntactic entities that exist in a program, and is based on

processing the ground instantiation of the program. The two research directions are

not unrelated: it has recently been shown by Charalambidis et al. (2017) that for

a broad class of positive programs, the two approaches coincide with respect to

ground atoms.

In this paper, we focus exclusively on the second extensional approach. This

approach was initially proposed by Bezem (1999; 2001) for positive (i.e., negationless)

higher-order logic programs. Recently, it was demonstrated by Rondogiannis and

Symeonidou (2016) that by combining the technique of Bezem (1999; 2001) with

the infinite-valued semantics of Rondogiannis and Wadge (2005), we obtain an

extensional semantics for higher-order logic programs with negation. In the extended

version (2017) of the paper by Rondogiannis and Symeonidou (2016), a negative and

unexpected result is established: by combining the technique of Bezem (1999; 2001)

with the stable model semantics (Gelfond and Lifschitz 1988), we get a semantics that

is not necessarily extensional! It remained as an open problem of Rondogiannis and

Symeonidou (2016; 2017) whether the combination of the technique of Bezem (1999;

2001) with the well-founded approach (Gelder et al. 1991) leads to an extensional

semantics. It is exactly this problem that we undertake to solve in the present paper.

We demonstrate that the well-founded extension of Bezem’s technique fails to

retain extensionality in the general case. On the positive side, we prove that for

stratified higher-order logic programs, extensionality is indeed achieved. We analyze

the reasons of the failure of extensionality in the general case, and claim that this is

not an inherent shortcoming of Bezem’s approach but a more general phenomenon.

In particular, we argue that restricting attention to three-valued logic appears to

“throw away too much information” and makes predicates that are expected to

have different behaviours, appear as identical three-valued relations. The main

contributions of the present paper can be summarized as follows:

• We demonstrate that the well-founded adaptation of Bezem’s technique does

not, in general, lead to an extensional model. In particular, we exhibit a

program with a non-extensional well-founded model. This result, despite its

negative flavour, indicates that the addition of negation to higher-order logic

programming is not such a straightforward task as it was possibly initially

anticipated. Notice that, as it was recently demonstrated by Rondogiannis and

Symeonidou (2017), the stable model adaptation of Bezem’s technique is also

non-extensional in general.

• Despite the above negative result, we prove that the well-founded adaptation

of Bezem’s technique gives an extensional two-valued model in the case of

stratified programs. This result affirms the importance and the well-behaved
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nature of stratified programs, which was, until now, only known for the

first-order case.

• We study the more general question of the possible existence of an alterna-

tive extensional three-valued semantics for higher-order logic programs with

negation. We indicate that in order to achieve such a semantics, one has to

make some (arguably) non-standard assumptions regarding the behaviour of

negation.

The rest of the paper is organized as follows. Section 2 introduces the basic notions

and the advantages of the extensional approach to the semantics of higher-order logic

programming. Section 3 presents in an intuitive way the main concepts and results of

the paper. Section 4 introduces the syntax, and Section 5 the semantics of our source

language. Section 6 demonstrates that Bezem’s approach is not extensional under

the well-founded semantics. In Section 7, it is established that stratified programs

have an extensional, two-valued, well-founded semantics. Section 8 concludes by

discussing the restrictions that any reasonable three-valued semantics would have

with respect to extensionality. The proofs of all results are given in corresponding

appendices, included in the supplementary material accompanying the paper at the

TPLP archive.

2 Extensional higher-order logic programming

Wadge (1991) suggested that if we appropriately restrict the syntax of higher-

order logic programming, then we can obtain languages that can be assigned a

standard denotational semantics in which predicates denote sets. In other words, for

such syntactically restricted languages one can apply traditional domain-theoretic

notions and tools that have been used extensively in higher-order functional

programming. The most crucial syntactic restriction imposed by Wadge [and also

later independently by Bezem (1999)] is the following:

The extensionality syntactic restriction: In the head of every rule in a program, each

argument of predicate type must be a variable, and all such variables must be distinct.

Example 1

The following is a legitimate program that defines the union of two relations P, Q

(for the moment we use ad-hoc Prolog-like syntax):

union(P,Q)(X):-P(X).

union(P,Q)(X):-Q(X).

However, the following program does not satisfy Wadge’s restriction:

q(a).

r(q).

because the predicate constant q appears as an argument in the head of a rule.

Similarly, the program

p(Q,Q):-Q(a).
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is problematic because the predicate variable Q is used twice in the head of the

rule.

The advantages of extensionality were identified by Wadge and Bezem in their

respective papers. First of all, under the extensional approach, program predicates

can be understood declaratively in terms of extensional notions. For example, the

program

map(R,[],[]).

map(R,[H1|T1],[H2|T2]):-R(H1,H2), map(R,T1,T2).

can be understood in a similar way as the well-known map function of Haskell. More-

over, since under the extensional approach predicates denote sets, two predicates that

are true of the same arguments, are considered indistinguishable. So, for example,

if we define two sorting predicates merge sort and quick sort that have the same

type, say τ, and that perform the same task (possibly with different efficiency), it is

guaranteed that any predicate which operates on relations of type τ will have the

same behaviour whether it is given merge sort or quick sort as an argument. As

mentioned by Wadge (1991), “extensionality means exactly that predicates are used

as black boxes - and the “black box” concept is central to all kinds of engineering”.

It is this property that makes extensional languages so appealing (and is actually

one of the greatest assets of traditional functional programming).

Another important advantage of this declarative approach to higher-order logic

programming is that many techniques and ideas that have been successfully de-

veloped in the functional programming world (such as program transformations,

optimizations, techniques for proving program correctness, and so on), could be

transferred to the higher-order logic programming domain, opening in this way

promising new research directions for logic programming as a whole.

3 An intuitive overview of the proposed approach

In this paper, we consider the semantic technique for positive higher-order logic

programs proposed by Bezem (1999; 2001) and we investigate whether it can be

applied in order to provide an extensional well-founded semantics for higher-order

logic programs with negation in clause bodies. In this section, we give an intuitive

description of Bezem’s idea and we outline how we use it when negation is added

to programs.

Given a positive higher-order logic program, the starting idea behind Bezem’s

approach is to take its “ground instantiation”, in which we replace variables with

well-typed terms that can be created using syntactic entities that appear in the

program. For example, consider the higher-order program below:

q(a).

q(b).

p(Q):-Q(a).

id(R)(X):-R(X).
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In order to obtain the ground instantiation of this program, we consider each clause

and replace each variable of the clause with a ground term that has the same type

as the variable under consideration (the formal definition of this procedure will be

given in Definition 8). In this way, we obtain the following infinite program:

q(a).

q(b).

p(q):-q(a).

id(q)(a):-q(a).

id(q)(b):-q(b).

p(id(q)):-id(q)(a).

· · ·

One can now treat the new program as an infinite propositional one (i.e., each

ground atom can be seen as a propositional variable). This implies that we can use

the standard least fixed-point construction of classical logic programming [see for

example Lloyd (1987)] in order to compute the set of atoms that should be taken as

“true”. In our example, the least fixed-point will contain atoms such as q(a), q(b),

p(q), id(q)(a), id(q)(b), p(id(q)), and so on.

Bezem demonstrated that the least fixed-point semantics of the ground instanti-

ation of every positive higher-order logic program of the language considered by

Bezem (1999; 2001) is extensional in a sense that can be explained as follows. In our

example, q and id(q) are equal since they are both true of exactly the constants

a and b. Therefore, we expect that (for example) if p(q) is true, then p(id(q))

is also true, because q and id(q) should be considered as indistinguishable. This

property of “indistinguishability” is formally defined by Bezem (1999; 2001) and it

is demonstrated that it holds in the least fixed-point of the immediate consequence

operator of the ground instantiation of every program that abides to the simple

extensionality syntactic restriction given in the previous section (and formally

described by Definition 5 later in the paper).

The key idea behind extending Bezem’s semantics in order to apply to higher-

order logic programs with negation is straightforward to state: given such a program,

we first take its ground instantiation. The resulting program is a (possibly infinite)

propositional program with negation, and therefore we can compute its semantics

in any standard way that exists for obtaining the meaning of such programs.

For example, one could use the well-founded semantics (Gelder et al. 1991),

the stable model semantics (Gelfond and Lifschitz 1988) or the infinite-valued

semantics (Rondogiannis and Wadge 2005), and then proceed to examine whether

the well-founded model (respectively, each stable model, or the minimum infinite-

valued model) is extensional in the sense of Bezem (1999; 2001) (informally described

above).

An open problem posed by Rondogiannis and Symeonidou (2017) was whether

Bezem’s technique, under the well-founded semantics, always leads to an extensional

well-founded model. As we are going to see in the subsequent sections, this is not

the case. In particular, we exhibit a program containing three predicates s, p and

q, such that p and q are extensionally equal under the well-founded semantics, but
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s(p) and s(q) have a different truth value. On the positive side, we prove that every

stratified higher-order logic program with negation has an extensional well-founded

model. In this sense, we identify a broad class of programs that are well-behaved in

terms of extensionality.

4 The syntax of H

In this section, we define the syntax of the language H that we use throughout the

paper. H is based on a simple type system with two base types: o, the boolean

domain, and ι, the domain of data objects. The composite types are partitioned

into three classes: functional (assigned to function symbols), predicate (assigned to

predicate symbols) and argument (assigned to parameters of predicates).

Definition 1

A type can either be functional, predicate or argument, denoted by σ, π and ρ,

respectively, and defined as

σ := ι | (ι→ σ)

π := o | (ρ→ π)

ρ := ι | π

We will use τ to denote an arbitrary type (either functional, predicate or argument).

As usual, the binary operator→ is right-associative. A functional type that is different

than ι will often be written in the form ιn → ι, n � 1. Moreover, it can be easily seen

that every predicate type π can be written in the form ρ1 → · · · → ρn → o, n � 0

(for n = 0 we assume that π = o). We proceed by defining the syntax of H:

Definition 2

The alphabet of H consists of the following: predicate variables of every predicate

type π (denoted by capital letters such as Q,R, S, . . .); individual variables of type ι

(denoted by capital letters such as X,Y,Z, . . .); predicate constants of every predicate

type π (denoted by lowercase letters such as p, q, r, . . .); individual constants of type ι

(denoted by lowercase letters such as a, b, c, . . .); function symbols of every functional

type σ �= ι (denoted by lowercase letters such as f , g, h, . . .); the inverse implication

constant ←; the negation constant ∼; the comma; the left and right parentheses;

and the equality constant ≈ for comparing terms of type ι.

Arbitrary variables will usually be denoted by V and its subscripted versions.

Definition 3

The set of terms of H is defined as follows: every predicate variable (respectively,

predicate constant) of type π is a term of type π; every individual variable

(respectively, individual constant) of type ι is a term of type ι; if f is an n-ary

function symbol and E1, . . . ,En are terms of type ι, then (f E1 · · ·En) is a term of type

ι; if E1 is a term of type ρ → π and E2 a term of type ρ, then (E1 E2) is a term of

type π.
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Definition 4

The set of expressions of H is defined as follows: a term of type ρ is an expression

of type ρ; if E is a term of type o, then (∼E) is an expression of type o; if E1 and

E2 are terms of type ι, then (E1 ≈ E2) is an expression of type o.

We will omit parentheses when no confusion arises. To denote that an expression

E has type ρ, we will often write E : ρ. We will write vars(E) to denote the set of

all the variables in E. Expressions (respectively, terms) that have no variables will

be referred to as ground expressions (respectively, ground terms). Terms of type o

will be referred to as atoms. Expressions of type o that do not contain negation,

i.e., expressions of the form (E1 ≈ E2) or atoms, will be called positive literals, while

expressions of the form (∼E) will be called negative literals. A literal is either a

positive literal or a negative literal.

Definition 5

A clause ofH is a formula p V1 · · ·Vn ← L1, . . . , Lm, where p is a predicate constant

of type ρ1 → · · · → ρn → o, V1, . . . ,Vn are distinct variables of types ρ1, . . . , ρn,

respectively, and L1, . . . , Lm are literals. The term p V1 · · ·Vn is called the head of

the clause, the variables V1, . . . ,Vn are the formal parameters of the clause and the

conjunction L1, . . . , Lm is its body. A program P of H is a finite set of clauses.

Example 2

The program below defines the subset relation over unary predicates:

subset S1 S2 ← ∼(nonsubset S1 S2)

nonsubset S1 S2 ← (S1 X), ∼(S2 X)

Given unary predicates p and q, subset p q is true iff p is a subset of q.

Example 3

For a more “real-life” higher-order logic program with negation, assume that we

have a unary predicate movie M and a binary predicate ranking M R which returns

the ranking R of a given movie M. Consider also the following first-order predicate

that defines a preference over movies based on their ranking:

prefer M1 M2 ← movie M1, movie M2, ranking M1 R1, ranking M2 R2, R1>R2.

The following higher-order predicate winnow [see for example Chomicki (2003)]

can be used to select all the “best” tuples T out of a given relation R based on a

preference relation P:

winnow P R T ← R T, ∼(bypassed P R T).

bypassed P R T ← R T1, P T1 T.

Intuitively, winnow returns all the tuples T of the relation R such that there does

not exist any tuple T1 in the relation R that is better from T with respect to the

preference relation P. For example, if we ask the query ?- winnow prefer movie

T., we expect as answers all those movies that have the highest possible ranking.

Notice that since winnow is a higher-order predicate, it can be invoked with different
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arguments; for example, it can be used to select out of a book relation, all those

books that have the lowest possible price, or out of a flight relation all those

flights that go to London, and so on.

The ground instantiation of a program is described by the following definitions:

Definition 6

A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En} where the Vi’s are

different variables and each Ei is a term having the same type as Vi. We write dom(θ)

to denote the domain {V1, . . . ,Vn} of θ. If all the terms E1, . . . ,En are ground, θ is

called a ground substitution.

Definition 7

Let θ be a substitution and E be an expression. Then, Eθ is an expression obtained

from E as follows:

• Eθ = E if E is a predicate constant or individual constant;

• Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;

• (f E1 · · ·En)θ = (f E1θ · · ·Enθ);

• (E1 E2)θ = (E1θ E2θ);

• (∼E)θ = (∼Eθ);

• (E1 ≈ E2)θ = (E1θ ≈ E2θ).

If θ is a ground substitution such that vars(E) ⊆ dom(θ), then the ground expression

Eθ is called a ground instance of E.

Definition 8

Let P be a program. A ground instance of a clause p V1 · · ·Vn ← L1, . . . , Lm of P

is a formula (p V1 · · ·Vn)θ ← L1θ, . . . , Lmθ, where θ is a ground substitution whose

domain is the set of all variables that appear in the clause, such that for every

V ∈ dom(θ) with V : ρ, θ(V) is a ground term of type ρ that has been formed with

predicate constants, function symbols and individual constants that appear in P.

The ground instantiation of a program P, denoted by Gr(P), is the (possibly infinite)

set that contains all the ground instances of the clauses of P.

5 The semantics of H

Bezem (1999; 2001) developed a semantics for higher-order logic programs which

generalizes the familiar Herbrand-model semantics of classical (first-order) logic

programs. In this section, we extend Bezem’s semantics to the case of higher-order

logic programs with negation.

In order to interpret the programs of H, we need to specify the semantic

domains in which the expressions of each type τ are assigned their meanings. The

following definition is a slightly modified version of the corresponding definition of

Bezem (1999; 2001), and it implies that the expressions of predicate types should

be understood as representing functions. We use [S1 → S2] to denote the set of

(possibly partial) functions from a set S1 to a set S2. The possibility to have a partial

function arises due to a technicality which is explained in the remark just above

Definition 11.
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Definition 9

A functional type structure S forH consists of two non-empty sets D and A together

with an assignment �τ� to each type τ of H, so that the following are satisfied:

• �ι� = D;

• �ιn → ι� = Dn → D;

• �o� = A;

• �ρ→ π� ⊆ [�ρ�→ �π�].

Given a functional type structure S, any function v : �o�→ {false, 0, true} will be

called a three-valued valuation function (or simply valuation function) for S. We will

use the term two-valued valuation functions to distinguish the subset of valuation

functions which do not assign the value 0 to any element of �o�, i.e., the functions

v : �o�→ {false, true}.
It is customary in the study of the semantics of logic programming languages

to restrict attention to Herbrand interpretations. Given a program P, a Hebrand

interpretation is one that has as its underlying universe the so-called Herbrand

universe of P:

Definition 10

For a program P, we define the Herbrand universe for every argument type ρ,

denoted by UP,ρ to be the set of all ground terms of type ρ that can be formed

out of the individual constants, function symbols, and predicate constants in the

program. Moreover, we define U+
P,o to be the set of all ground expressions of type o,

that can be formed out of the above symbols, i.e., the set U+
P,o = UP,o ∪ {(E1 ≈ E2) |

E1,E2 ∈ UP,ι} ∪ {(∼E) | E ∈ UP,o}.

Following Bezem (1999; 2001), we take D and A in Definition 9 to be equal to

UP,ι and U+
P,o respectively. Then, for each predicate type ρ → π, each element of

UP,ρ→π can be perceived as a function mapping elements of �ρ� to elements of �π�,

through syntactic application mapping. That is, E ∈ UP,ρ→π can be viewed as the

function mapping each term E′ ∈ UP,ρ to the term (E E′) ∈ UP,π . Similarly, every

n-ary function symbol f appearing in P can be viewed as the function mapping each

element (E1, . . . ,En) ∈ Un
P,ι to the term (f E1 · · · En) ∈ UP,ι.

Remark: There is a small technicality here which we need to clarify. In the case

where ρ = o, E ∈ UP,o→π is a partial function because it maps elements of UP,o (and

not of U+
P,o) to elements of UP,π; this is due to the fact that our syntax does not

allow an expression of type o → π to take as argument an expression of the form

(E1 ≈ E2) nor of the form (∼E). In all other cases (i.e., when ρ �= o), E represents a

total function.

Definition 11

A (three-valued) Herbrand interpretation I of a program P consists of the following:

(1) the functional type structure SP, such that D = UP,ι, A = U+
P,o and �ρ → π� =

UP,ρ→π for every predicate type ρ→ π, called the Herbrand-type structure of P;
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(2) the assignment to each individual constant c in P, of the element I(c) = c; to

each predicate constant p in P, of the element I(p) = p; to each function symbol

f in P, of the element I(f) = f;

(3) a valuation function vI (·) for SP, assigning to each element of U+
P,o an element

in {false, 0, true}, while satisfying the following:

• for all E1,E2 ∈ UP,ι, vI ((E1 ≈ E2)) =

{
false, if E1 �= E2

true, if E1 = E2

;

• for all E ∈ UP,o, vI ((∼E)) =

⎧⎪⎪⎨
⎪⎪⎩

false, if vI (E) = true

0, if vI (E) = 0

true, if vI (E) = false

.

We call vI (·) the valuation function of I and omit the reference to SP, since the

latter is common to all Herbrand interpretations of a program. In fact, individual

Herbrand interpretations are only set apart by their valuation functions. If the

valuation function vI (·) is two-valued, then I will also be called a two-valued Herbrand

interpretation.

Definition 12

A Herbrand state (or simply state) s of a program P is a function that assigns to

each variable V of type ρ an element of UP,ρ.

Given a Herbrand interpretation I and state s, we can define the semantics of

expressions with respect to I and s.

Definition 13

Let P be a program. Also, let I be a Herbrand interpretation and s a Herbrand

state of P. Then, the semantics of expressions with respect to I and s is defined as

follows:

• �c�I,s = I(c) = c, for every individual constant c;

• �p�I,s = I(p) = p, for every predicate constant p;

• �V�I,s = s(V), for every variable V;

• �(f E1 · · · En)�I,s = (I(f) �E1�I,s · · · �En�I,s) = (f �E1�I,s · · · �En�I,s), for every n-

ary function symbol f;

• �(E1 E2)�I,s = (�E1�I,s �E2�I,s);

• �(E1 ≈ E2)�I,s = (�E1�I,s ≈ �E2�I,s);

• �(∼E)�I,s = (∼�E�I,s).

It is easy to see that the semantic function �·� is well defined, in the sense that, for

every Herbrand state s and every expression E of every argument type ρ, we have

�E�I,s ∈ �ρ�. Note that this makes �E�I,s a ground expression of the language. Also,

note that if E is a ground expression, then �E�I,s = E; therefore, if E is a ground

literal, we can write vI (E) instead of vI (�E�I,s). Stretching this abuse of notation a

little further, we can extend a valuation function to assign truth values to ground

conjunctions of literals; this allows us to define the concept of Herbrand models for

our higher-order programs in the same way as in classical logic programming.
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Definition 14

Let P be a program and I be a Herbrand interpretation of P. We define vI (L1, . . . , Ln) =

min{vI (L1), . . . , vI (Ln)} for all L1, . . . , Ln ∈ U+
P,o. Moreover, we say I is a model of P

if vI (�A�I,s) � vI (�L1�I,s, . . . , �Lm�I,s) holds for every clause A ← L1, . . . , Lm and every

Herbrand state s of P.

Bezem’s semantics is based on the observation that, given a positive higher-

order program, we can use the minimum model of its ground instantiation as a

(two-valued) valuation function defining a Herbrand interpretation for the initial

program itself. We follow the same idea but now for programs with negation: we

can use as the valuation function of a given H program, the Herbrand model

defined by any semantic approach that applies to its ground instantiation. Actually,

we demonstrate (see Theorem 1 below) that any interpretation I of the higher-order

program P will be a minimal model of P, if its chosen valuation function is a

minimal model of Gr(P).

We consider two different notions of minimality, based on the truth ordering �
and the Fitting ordering � of truth values, respectively. Recall that � is the partial

order defined by false � 0 � true, while � is the partial order defined by 0 � false

and 0 � true.

Definition 15

If I and J are two Herbrand interpretations of a higher-order program P, we say

I � J (respectively, I � J) if, for all atoms A in UP,o we have vI (A) � vJ(A) (resp.,

vI (A) � vJ(A)). If M is a model of P, then we say it is �-minimal (resp., �-minimal)

if there does not exist a different model N of P, such that N � M (resp., N � M).

Theorem 1

Let P be a program and let Gr(P) be its ground instantiation. Also, let M be a

partial interpretation1 of Gr(P) and letM be the Herbrand interpretation of P, such

that vM(A) = M(A) for every A ∈ UP,o. Then, M is a Herbrand model of P if and

only if M is a model of Gr(P). Moreover,M is �-minimal (respectively, �-minimal)

if and only if M is �-minimal (respectively, �-minimal).

As an application of the above developments, we define two special Herbrand in-

terpretations of higher-order programs, employing the well-known perfect model (Apt

et al. 1988; Gelder 1989) and well-founded model (Gelder et al. 1991) of the ground

instantiation of a program, as valuation functions.

Definition 16

Let P be a program and let Gr(P) be the ground instantiation of P. Also, let NGr(P)

be the perfect model1 (if this exists) and MGr(P) be the well-founded model1 of

Gr(P). We define NP to be the two-valued Herbrand interpretation of P such that

vNP
(A) = NGr(P)(A) for every A ∈ UP,o. Similarly, we defineMP to be the three-valued

Herbrand interpretation of P such that vMP
(A) = MGr(P)(A) for every A ∈ UP,o.

1 See the supplementary material accompanying the paper at the TPLP archive for the relevant definitions.
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Clearly, by Theorem 1, NP (if it exists) is a two-valued minimal model and MP

is a three-valued minimal model of P. In the following sections, we investigate their

suitability for providing extensional semantics for H programs. In particular, we

examine if each of them enjoys the extensionality property, formally defined by

Bezem (1999; 2001) through relations ∼=v,τ over the set of expressions of a given

type τ and under a given valuation function v. These relations intuitively express

extensional equality of type τ, in the sense discussed in Section 3. For the purposes

of this paper, only extensional equality of argument types will be needed, for which

the formal definition is as follows:

Definition 17

Let S be a functional type structure and v be a valuation function for S. For every

argument type ρ, we define the relations ∼=v,ρ on �ρ� as follows: Let d, d′ ∈ �ρ�; then

d ∼=v,ρ d′ if and only if

(1) ρ = ι and d = d′, or

(2) ρ = o and v(d) = v(d′), or

(3) ρ = ρ′ → π and d e ∼=v,π d′ e′ for all e, e′ ∈ �ρ′�, such that e ∼=v,ρ′ e
′ and d e, d′ e′

are both defined.

One can easily verify that, for all d, d′ ∈ �ρ1 → · · · → ρn → o�, e1, e
′
1 ∈ �ρ1�, . . . ,

en, e
′
n ∈ �ρn�, if d ∼=v,ρ1→···→ρn→o d

′, e1
∼=v,ρ1

e′1, . . . , en
∼=v,ρn e

′
n and d e1 · · · en, d′ e′1 · · · e′n

are both defined, then v(d e1 · · · en) = v(d′ e′1 · · · e′n).
Generally, it is not guaranteed that such relations will be equivalence relations;

rather they are partial equivalences [they are shown by Bezem (1999) to be

symmetric and transitive]. Whether they are moreover reflexive, depends on the

specific valuation function.

The above discussion leads to the notion of extensional interpretation:

Definition 18

Let P be a program and let I be a Herbrand interpretation of P with valuation

function vI . We say I is extensional if for all argument types ρ the relations ∼=vI ,ρ are

reflexive, i.e., for all E ∈ �ρ�, it holds that E ∼=vI ,ρ E.

The above notion will be extensively used in the following two sections.

6 Non-extensionality of the well-founded model

In this section, we demonstrate that the adaptation of Bezem’s technique under the

well-founded semantics does not in general preserve extensionality. In particular, we

exhibit below a program that has a non-extensional well-founded model.

Example 4

Consider the higher-order program P:

s Q ← Q (s Q)

p R ← R

q R ← ∼(w R)

w R ← ∼R
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where the predicate variable Q is of type o → o and the predicate variable R is of

type o. Before stating formally the non-extensionality result, certain explanations

at an intuitive level are in order. Consider first the predicate p of type o → o.

One can view p as representing the identity relation on truth values, i.e., as the

relation {(v, v) | v ∈ {false, 0, true}}. It is not hard to see that the predicate q of type

o→ o, represents exactly the same relation. However, the definition of q involves two

applications of negation, while p is defined directly (without the use of negation).

Consider now the predicate s of type (o→ o)→ o which can take as a parameter

either p or q. When s takes p as a parameter, we get the following two clauses (by

substituting p for Q and (s p) for R in the above program):

s p ← p (s p)

p (s p) ← (s p)

A recursive definition of this form assigns to (s p), under the well-founded

semantics, the value false. Consider on the other hand the case where s takes

q as a parameter. Then, by doing analogous substitutions, we get the following three

clauses:

s q ← q (s q)

q (s q) ← ∼(w (s q))

w (s q) ← ∼(s q)

Under the well-founded semantics, (s q) is assigned the value 0. In other words,

despite the fact that p and q are extensionally equal (see also below), (s p) and

(s q) have different truth values. In conclusion, the adaptation of the well-founded

semantics under Bezem’s technique does not lead to an extensional model in all

cases.

Of course, the above discussion is based on intuitive arguments, but it is not hard

to formalize it. The main difficulty lies in establishing that p and q are extensionally

equal because the above program has an infinite ground instantiation Gr(P) (see

Appendix B in the supplementary material). The following lemma, whose detailed

proof is given in Appendix B, suggests thatMP, i.e., the Herbrand interpretation of

our example program P defined by using the well-founded model MGr(P) of Gr(P) as

the valuation function, is not extensional.

Lemma 1

The Herbrand interpretation MP of the program of Example 4 is not extensional.

The consequences that the above lemma has for the investigation of alternative

extensional three-valued semantics for higher-order logic programs with negation

will be discussed in Section 8.

A natural question that arises is whether there exists a broad and useful class of

programs that are extensional under the well-founded semantics. The next section

answers exactly this question.
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7 Extensionality of stratified programs

In this section, we present the notion of stratified higher-order programs, originally

introduced by Rondogiannis and Symeonidou (2016), and argue that the well-

founded model of such a program enjoys the extensionality property defined in

Section 5. In the following definition, a predicate type π is understood to be greater

than a second predicate type π′, if π is of the form ρ1 → · · · → ρn → π′, where n � 1.

Definition 19

A program P is called stratified if and only if it is possible to decompose the set

of all predicate constants that appear in P into a finite number r of disjoint sets

(called strata) S1, S2, . . . , Sr , such that for every clause H ← A1, . . . ,Am,∼B1, . . . ,∼Bn

in P, where the predicate constant of H is p, we have the following:

(1) for every i � m, if Ai is a term that starts with a predicate constant q, then

stratum(q) � stratum(p);

(2) for every i � m, if Ai is a term that starts with a predicate variable Q, then for

all predicate constants q that appear in P such that the type of q is greater than

or equal to the type of Q, it holds stratum(q) � stratum(p);

(3) for every i � n, if Bi starts with a predicate constant q, then stratum(q) <

stratum(p);

(4) for every i � n, if Bi starts with a predicate variable Q, then for all predicate

constants q that appear in P such that the type of q is greater than or equal to

the type of Q, it holds stratum(q) < stratum(p);

where stratum(r) = i if the predicate constant r belongs to Si.

One may easily see that the stratification for classical logic programs (Apt et al.

1988; Gelder 1989) is a special case of the above definition.

Example 5

It is straightforward to see that the program

p Q ← ∼(Q a)

q X ← (X≈a)

is stratified. However, it can easily be checked that the program

p Q ← ∼(Q a)

q X Y ← (X≈a), (Y≈a), p (q a)

is not stratified because if the term (q a) is substituted for Q, we get a circularity

through negation. Notice that the type of q is ι → ι → o and it is greater than the

type of Q which is ι→ o.

As it turns out, stratified higher-order logic programs have an extensional well-

founded model. The proof of the following theorem can be found in Appendix C in

the supplementary material accompanying the paper at the TPLP archive.

Theorem 2

The well-founded model MP of a stratified program P is extensional.
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Despite the fact that stratified programs lead to an extensional well-founded

model, we have not been able to verify that the same property holds for locally

stratified higher-order logic programs [for a formal definition of the notion of local

stratification for H programs, please see Rondogiannis and Symeonidou (2016)].

On the other hand, our attempts to find a locally stratified program with a non-

extensional well-founded model have also been unsuccessful, and therefore it is not

at present clear to us whether this class of programs is well-behaved with respect to

extensionality, or not.

8 The restrictions of three-valued approaches

In this section, we re-examine the counterexample of Section 6 but now from a

broader perspective. In particular, we indicate that in order to achieve an extensional

three-valued semantics for higher-order logic programs with negation, one has

to make some (arguably) non-standard assumptions regarding the behaviour of

negation in such programs. On the other hand, a logic with an infinite number of

truth values appears to be a more appropriate vehicle for achieving extensionality.

In the following discussion, we assume some basic familiarity with the main intuition

behind the approaches described by Rondogiannis and Symeonidou (2016) and by

Charalambidis et al. (2014).

Consider again the program of Section 6. Under the infinite-valued adaptation of

Bezem’s approach given by Rondogiannis and Symeonidou (2016) and also under

the domain-theoretic infinite-valued approach by Charalambidis et al. (2014), the

semantics of that program is extensional. The reason is that both of these approaches

differentiate the meaning of p from the meaning of q. The truth domain in both

approaches is the set

V = {Fα | α < Ω} ∪ {0} ∪ {Tα | α < Ω}

where Fα and Tα represent different degrees of truth and falsity, and Ω is the first

uncountable ordinal. Under this truth domain, predicate p (intuitively) corresponds

to the infinite-valued relation:

p = {(v, v) | v ∈ V }

while predicate q corresponds to the relation

q = {(Fα, Fα+2) | α < Ω} ∪ {(0, 0)} ∪ {(Tα, Tα+2) | α < Ω}

Obviously, the relations p and q are different as sets, and therefore it is not a

surprise that under both the semantics of Rondogiannis and Symeonidou (2016)

and Charalambidis et al. (2014), the atoms (s p) and (s q) have different truth

values. Notice, however, that if we collapse p and q in three-valued logic (i.e., if we

map each Fα to false, each Tα to true, and 0 to 0), the collapsed relations become

identical.

Assume now that want to devise an (alternative to the one presented in this

paper) extensional three-valued semantics forH programs. Under such a semantics,
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it seems reasonable to assume that p and q would correspond to the same three-

valued relation, namely {(v, v) | v ∈ {false, 0, true}}. Notice, however, that from a

logic programming perspective, p and q are expected to have a different operational

behaviour when they appear inside a program. In particular, given the program

s Q ← Q (s Q)

p R ← R

we expect the atom (s p) to have the value false (due to the circularity that occurs

if we try to evaluate it), while given the program

s Q ← Q (s Q)

q R ← ∼(w R)

w R ← ∼R

we expect the atom (s q) to have the value 0 due to the circularity through negation.

At first sight, the above discussion seems to suggest that there is no way we can

have a three-valued extensional semantics for all higher-order logic programs with

negation.

However, the above discussion is based mainly on our experience regarding the

behaviour of first-order logic programs with negation. One could argue that we

could devise a semantics under which (s q) will also return the value false. One

possible justification for such a semantics would be that the definition of q uses two

negations which cancel each other, and therefore we should actually expect q to

behave exactly like p when it appears inside a program. Despite the fact that such a

proposal seems somewhat unintuitive to us, we cannot exclude it as a possibility. It is

worth noting that such cancellations of double negations appear in certain semantic

approaches to negation. For example, for certain extended propositional programs,

the semantics based on approximation fixpoint theory has the effect of cancelling

double negations [see, for example, Denecker et al. (2012, page 185, Example 1)].

It is possible that higher-order logic programs with negation behave similarly to

extended propositional programs, and it is conceivable that one could construct an

extensional three-valued semantics for all higher-order logic programs with negation,

using an approach based on approximation fixpoint theory. This research direction

certainly deserves further investigation.

It is our belief, however, that the most rigorous approach to extensionality

for higher-order logic programs with negation is through the use of the infinite-

valued approach. It is worth noting that recently some advantages of the infinite-

valued approach versus the well-founded one were identified in a different context.

More specifically, as it was recently demonstrated by Ésik (2015) and Carayol

and Ésik (2016), the infinite-valued approach satisfies all identities of iteration

theories (Bloom and Ésik 1993), while the well-founded semantics does not. Since

iteration theories (intuitively) provide an abstract framework for the evaluation of

the merits of various semantic approaches for languages that involve recursion, the

results just mentioned give an extra incentive for the further study and use of the

infinite-valued approach.
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