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Abstract We explain three methods for showing that the p-adic monodromy of a modular family of
abelian varieties is ‘as large as possible’, and illustrate them in the case of the ordinary locus of the
moduli space of g-dimensional principally polarized abelian varieties over a field of characteristic p. The
first method originated from Ribet’s proof of the irreducibility of the Igusa tower for Hilbert modular
varieties. The second and third methods both exploit Hecke correspondences near a hypersymmetric
point, but in slightly different ways. The third method was inspired by work of Hida, plus a group
theoretic argument for the maximality of �-adic monodromy with � �= p.
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1. Introduction

Let p be a prime number, fixed throughout this note. Our central question is how to
show that the p-adic monodromy of a modular family of abelian varieties is large.

Some clarification is called for.

• A ‘modular family of abelian varieties’ will be interpreted as a subvariety Z of a
modular variety M of PEL type over an algebraically closed field k ⊃ Fp defined by
fixing some invariant for geometric fibres of the Barsotti–Tate group A[p∞] → M
with prescribed symmetries attached to the universal abelian scheme A → M.

• Example of such invariants include the p-rank, Newton polygon, or the isomor-
phism type of the Barsotti–Tate group with prescribed symmetries. Typically such
a subvariety Z is stable under all prime-to-p Hecke correspondences on M; more-
over any two geometric fibres of A[p∞] → Z are isogenous via a quasi-isogeny which
preserves the prescribed endomorphisms and polarizations.

• The étale sheaf of such quasi-isogenies gives rise to a homomorphism ρp = ρp,Z from
the fundamental group of Z to the group of Qp-points of a linear algebraic group
G over Qp, defined up to conjugation. Often the target of the p-adic monodromy
homomorphism ρp is an open subgroup of G(Qp). We abuse notation and denote
this target group by G(Zp).

https://doi.org/10.1017/S1474748007000199 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000199


248 C.-L. Chai

• The expectation is that the p-adic monodromy is ‘large’, or ‘maximal’. In other
words, the image of ρ is expected to be equal to the target group G(Zp), or equal
to an open subgroup of G(Zp) if we are less ambitious.

The first example of maximality of p-adic monodromy is a theorem of Igusa in [18],
when Z is the open dense subset of the modular curve corresponding to ordinary elliptic
curves. See part (i) of Remark 2.3 for the statement of Igusa’s theorem and part (ii)
for comments on generalizations of Igusa’s method based on local p-adic monodromy.
For generalizations to higher-dimensional modular varieties, the best-known examples in
chronological order are the ordinary locus of a Hilbert modular variety and the ordinary
locus of a Siegel modular variety.

In the second example, Z is the open dense subset of a Hilbert modular variety MF

attached to a totally real number field F , which classifies ordinary abelian varieties with
endomorphisms by OF . The target of the p-adic monodromy homomorphism ρp,F is
the group (OF ⊗Z Zp)× of local units. Ribet showed that ρp,F is surjective (see [24]
and [10]). Ribet’s method in [24] and [10] is global and arithmetic in nature; it uses
Frobenii attached to points over finite fields of the moduli space MF .

In the third example, Z is the ordinary locus of a Siegel modular variety Ag,n, and
the p-adic monodromy is equal to GLg(Zp). See Theorem 2.1 for the precise statement
and [11] and [12] for proofs. The proofs of Theorem 2.1 in [11] and [12] are based on
considerations of local p adic monodromy (see Remark 2.3).

In this article we explain three methods for proving the maximality of p-adic mon-
odromy. Instead of pushing for the most general case with each method, we choose to
illustrate the methods for the third example above, when Z is the ordinary locus in the
Siegel modular variety Ag,n. In other word, we offer three proofs∗ of Theorem 2.1. Each
method can be applied to more general situations, such as a leaf or a Newton polygon
stratum in a modular variety of PEL-type. See § 6 for the case of a leaf in a Siegel
modular or the ordinary locus of a modular variety of quasi-split PEL-type U(n, n). See
also [7, § 5] for more information about the irreducibility of non-supersingular leaves and
the maximality of their p-adic monodromy in the case of Siegel modular varieties.

The first of the three proofs of Theorem 2.1 generalizes of an argument of Ribet
in [24] and [10] to the situation when the target of the p-monodromy representation is
noncommutative. The other two proofs follow a common thread of ideas, in that they
both use Hecke correspondences with a given hypersymmetric point (in the sense of [6])
as a fixed point; these Hecke correspondences form the local stabilizer subgroup Hx0 of the
given hypersymmetric point. In the second proof one applies the local stabilizer subgroup
Hx0 of a hypersymmetric point x0 to a modular subvariety B � x0 with known p-adic
monodromy to produce many subvarieties of Z with known p-adic monodromy. In the
third proof one examines the action of the local stabilizer subgroup of a hypersymmetric
point x0 on a tower of finite étale covers of Z which defines the p-adic monodromy
representation ρZ ; the result is that the image of the local stabilizer subgroup Hx0 is
contained in the image of the p-adic monodromy. The second proof was sketched in

∗ In the second proof we assume that p > 2.
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[5]. The third proof was inspired by Hida’s work on p-adic monodromy in [14] (see
also [16]) and drew on an argument in [4]. The three proofs are explained in §§ 3, 4
and 5, respectively. Sketches of the ideas of the proofs can be found at the beginning of
these sections. In § 6 we indicate how the methods in this article can be applied to show
the maximality of p-adic monodromy groups in various situations, including the ordinary
locus of the modular variety of quasi-split PEL-type U(n, n) and leaves in Siegel modular
varieties.

If we compare the above three methods for proving maximality of p-adic monodromy,
the second and the third methods using Hecke correspondences have the aura of a ‘pure-
thought proof’; this is especially true for the third method. Since the last two methods
depend on the existence of ‘hypersymmetric points’ in Z, there are situations when they
do not apply, while Ribet’s method is not burdened by such restrictions (see Remark 6.1).
Together these three methods support the contention that ‘p-adic monodromy of a mod-
ular family of abelian varieties is easy ’.∗

2. Notation

2.1. Let p be a prime number. Let A
(p)
f =

∏′
� �=p Q� be the ring of finite prime-to-p adeles.

Denote by Z(p) the subring of Q consisting of all rational numbers whose denominator is
prime to p.

Let n � 3 be a positive integer, (n, p) = 1. Let Aord
g,n be the moduli space over Fp

of g-dimensional ordinary principally polarized abelian varieties in characteristic p with
symplectic level-n structure.

Let A[p∞]et → Aord
g,n be the maximal étale quotient of the Barsotti–Tate group A[p∞] →

Aord
g,n attached to the universal abelian scheme A → Aord

g,n; it is an étale Barsotti–Tate
group of height g over Aord

g,n.
Let x0 = [(A0, λ0, η0)] be an Fp-point of Aord

g,n, where λ0 is a principal polarization
of an ordinary abelian variety A0 over Fp, and η0 is a level-n structure on A0. Let
T0 = Tp(A0[p∞]et) be the p-adic Tate module attached to the maximal étale quotient
A0[p∞]et of the Barsotti–Tate group A0[p∞] attached to A0. Notice that T0 ∼= Zg

p non-
canonically.

Let
ρp = ρp,Aord

g,n
: π1(Aord

g,n, x0) → GL(T0) ∼= GLg(Zp)

be the p-adic monodromy representation defined by the base point x0 of Aord
g,n. If we view

π1(Aord
g,n, x0) as a quotient of the Galois group GAg,n of the function field of Aord

g,n, then ρp

corresponds to the limit of the natural actions of GAg,n on the generic fibre of the finite
étale group schemes A[pm]et → Aord

g,n, m ∈ N. See § 2.4 for another definition of p-adic
monodromy.

Theorem 2.1. The image of the p-adic monodromy homomorphism ρp,Aord
g,n

is equal to
GL(T0) ∼= GLg(Zp).

∗ In contrast, the important question on the semisimplicity of p-adic monodromy of an ‘arbitrary’
family of abelian varieties in characteristic p seems inaccessible at present.
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Remark 2.2. The special case of Theorem 2.1 when g = 1 is a classical theorem of Igusa
in [18]. See Theorem 4.3 on p. 149 of [19] for an exposition of Igusa’s theorem.

Remark 2.3.

(i) Igusa’s proof uses the local monodromy at a point of A1,n which corresponds to a
supersingular elliptic curve. In this case the image of the local p-adic monodromy
is already equal to the target group Z×

p of the p-adic monodromy representation.

(ii) Ekedahl’s proof in [11] shows that the p-adic local monodromy at a superspe-
cial point of Ag,n (i.e. a point which corresponds to the product of g copies of
a supersingular elliptic curve) is already equal to GLg(Zp). This is an exact gen-
eralization of Igusa’s proof. In [11] Ekedahl used curves of genus two instead of
abelian varieties, but it is clear that one can also use deformation theory of abelian
varieties. See [21] for the case of Picard modular varieties, and [1] for deformations
of p-divisible groups with large local p-adic monodromy. There is one disadvan-
tage of the Igusa–Ekedahl method: substantial effort is required when one uses this
method to compute the p-adic monodromy of a subvariety Z defined by p-adic prop-
erties of the universal Barsotti–Tate groups. The work is in constructing explicit
local coordinates of this subvariety Z at a basic point z and the computation of
the Galois group of suitable finite extensions of the function field of the formal
completion of Z at z.

(iii) The proof in [12] is also based on local monodromy. It uses the arithmetic com-
pactification theory to show that the p-adic local monodromy at a zero-dimensional
cusp of the minimal compactification of Ag,n is equal to SLg(Zp). This method
applies to fewer situations for two reasons. First, the modular variety M may be
proper, i.e. the boundary of M may be empty. Even when the modular variety
has a boundary, the Zariski closure of the modularly defined subvariety Z may not
intersect the boundary of M. Secondly, when the boundary of M is not empty,
the local monodromy at the boundary may be still be ‘too small’. For instance
in the case of a Hilbert modular variety MF,n over Fp with (n, p) = 1, the local
monodromy at a cusp in the minimal compactification of MF,n is the p-adic com-
pletion of the subgroup of units in O×

F which are congruent to 1 modulo n.∗ Notice
that the image of the local monodromy at a cusp is contained in the subgroup
Ker(NF/Q : (F ⊗Qp)× → Q×

p ) of the target group (F ⊗Qp)× of ρp; this ([F : Q]−1)-
dimensional subgroup is the target group of the local p-adic monodromy. A priori,
the dimension of the local p-adic monodromy group at the cusps of a Hilbert mod-
ular variety MF,n may be smaller than [F : Q] − 1, the dimension of its target; it
is equal to [F : Q] − 1 if and only if the Leopoldt conjecture holds for F !

2.2. In the rest of this article, we will take the base point x0 = [(A0, λ0, η0)] of Aord
g,n to

be of the form A0 = E1 ×Spec(Fp) · · · ×Spec(Fp) E1, where E1 is an ordinary elliptic curve
∗ This is what the argument in [2] shows. The statement in [2] about the p-adic monodromy of a

Hilbert modular variety is wrong.
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over Fp, and λ0 is the g-fold product of the principal polarization of E1. Let E1[p∞]mult

(respectively, E1[p∞]et) be the multiplicative part of E1[p∞] (respectively, the maximal
étale quotient of E1[p∞]). Let T := Tp(E1[p∞]et), which is a free Zp-module of rank one.
Then T0 := Tp(A0[p∞]et) is the direct sum of g copies of T, and GLZp

(T0) is canonically
isomorphic to GLg(End(T)) = GLg(Zp).

Let O = End(E1) and K = End(E1) ⊗Z Q. So End(A0) (respectively, End(A0) ⊗Z Q)
is canonically isomorphic to Mg(O) (respectively, Mg(K)). It is well known that K is an
imaginary quadratic field, and O is an order of K such that O ⊗Z Zp

∼= Zp ×Zp. The two
factors of O⊗ZZp correspond to the action of O on E1[p∞]mult and E1[p∞]et respectively.
Via the above isomorphisms, the Rosati involution ∗ attached to the principal polarization
of λ0 corresponds to the involution C �→ tC̄ on Mg(O) and Mg(K). On Mg(O ⊗Z Zp) =
Mg(Zp) × Mg(Zp), the Rosati involution is (C1, C2) �→ (tC2,

tC1), (C1, C2) ∈ Mg(Zp) ×
Mg(Zp).

Denote by H the unitary group attached to the semisimple Q-algebra End(A0) ⊗Z

Q ∼= Mg(K) and the involution ∗. The reductive linear algebraic group H over Q is
characterized by the property that

H(R) = {x ∈ (End(A0) ⊗Z R)× | x · ∗(x) = ∗(x) · x = 1}.

Under the natural isomorphism End(A0) ⊗Z Q ∼= Mg(K) and the isomorphism

End(A0) ⊗Z Qp
∼= Mg(Qp) × Mg(Qp)

induced by K ⊗Q Qp
∼−→ Qp × Qp, H(Q) is identified with the set of all matrices C ∈

Mg(K) such that C · ∗(C) = ∗(C) · C = Idg, and H(Qp) is identified with the subset of
all pairs (C1, C2) ∈ Mg(Qp) × Mg(Qp) such that C1 · tC2 = Idg = C2 · tC1. The second
projection from Mg(O⊗ZZp) to Mg(Zp) induces an isomorphism pr : H(Qp)

∼−→ GLg(Qp).
We abuse notation and write H(Zp) for the compact open subgroup pr−1(GLg(Zp)); it
is the set of all elements β ∈ H(Qp) such that β induces an automorphism of A0[p∞].
Denote by H(Z(p)) the subgroup H(Q) ∩ H(Zp) of H(Q). The image of H(Z(p)) in H(Zp)
is a dense subgroup of H(Zp) for the p-adic topology.

2.3. Two features of the base point x0 deserve attention.

(1) The abelian variety A0 is hypersymmetric in the sense that

End(A0) ⊗Z Qp
∼−→ End(A0[p∞]) ⊗Zp Qp.

See [6] for more discussion on the notion of hypersymmetric abelian varieties.

(2) The order End(A0) of the semisimple Q-algebra End(A0) ⊗Z Q is maximal at p.
In view of (1) above, this means that End(A0[p∞]) is a maximal order of the
semisimple Qp-algebra End(A0[p∞]) ⊗Zp

Qp.
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2.4. Remarks on the definition of p-adic monodromy

Let (B, µ) → S be a principally polarized abelian scheme over an irreducible normal
Fp-scheme S such that all fibres of B are ordinary abelian varieties. Let s0 be a geometric
point of S. When B is ordinary, one can define the p-adic monodromy of B → S to be
the homomorphism π1(S, s0) → GLZp

(Tp(Bs0 [p
∞]et)) attached to the smooth Zp-sheaf

Tp(B[p∞]et) over S, where Bs0 is the fibre of B → S at s0. There is an equivalent
definition which works for more general situations, such as when (B, µ)[p∞] → S is
fibrewise geometrically constant. Let G := Aut((Bs0 , µs0)[p

∞]). Consider the sheaf

I := IsomSperf ((Bs0 , µs0)[p
∞], (B, µ)[p∞]),

which is a right G-torsor over the perfection Sperf of S. Notice that B[p∞] splits uniquely
over Sperf as the direct product of its maximal toric part B[p∞

toric] and its maximal étale
quotient B[p∞

et ]. Then the p-adic monodromy ρB/S : π1(S, s0) → G is the homomorphism
from π1(Sperf , s0) = π1(S, s0) to the profinite p-adic Lie group G attached to the G-torsor
I.

We indicate why the two definitions are equivalent. Let I ′ be the subsheaf of the étale
sheaf IsomS(Bs0 [p

∞]toric, B[p∞]toric)×S IsomS(Bs0 [p
∞]et, B[p∞]et) which are compatible

with the polarizations µs0 [p
∞] and µ[p∞]. Let I ′

et := IsomS(Bs0 [p
∞]et, B[p∞]et). The

subgroup G′ consisting of all elements of Aut(Bs0 [p
∞]toric) × Aut(Bs0 [p

∞]et) which are
compatible with the polarizations is naturally identified with G.

The projection G′ → GL(Tp(Bs0 [p
∞]et)) is an isomorphism because the principal

polarization µs0 identifies Bs0 [p
∞]toric as the dual of Bs0 [p

∞]et. Similarly, the nat-
ural projection map I ′ → I ′

et is an isomorphism. Moreover, the homomorphisms
ρI′ : π1(S, s0) → G′ ∼= G and ρI′

et
: π1(S, s0) → Aut(Bs0 [p

∞]et) ∼= G attached to I ′ and
I ′

et are equal. Notice that the homomorphism ρI′ : π1(S, s0) → G′ ∼−→ GL(Tp(Bs0 [p
∞]et))

is nothing but the p-adic monodromy representation coming from the action of the Galois
group of the function field κ(S) of S on the p-power torsion points B[p∞](κ(S)alg). On
the other hand, because the étale topology is insensitive to nilpotent extensions, the
homomorphisms ρI : π1(S, s0) → G and ρI′ : π1(S, s0) → G are equal. So the two
definitions are equivalent.

3. Ribet’s method revisited

3.1. Sketch of idea

The goal of this section is to prove Theorem 2.1 using Ribet’s method in [10,24]. Since
the target of the p-adic monodromy homomorphism for the ordinary locus of Hilbert
modular varieties is commutative, it was often thought that Ribet’s method would have
difficulty producing information beyond the abelianized p-adic monodromy. This is not
the case at all. Indeed Ribet’s method can be used to compute the p-adic monodromy
of leaves in a Hilbert modular variety MF,n for instance, where the target of the p-adic
monodromy homomorphism may be non-commutative (see [7, Theorem 4.5]).

The proof of Theorem 2.1 in this section consists of a few lemmas in group theory,
followed by the body of the proof in § 3.3. For instance Lemma 3.2 says that a suit-
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able congruence condition modulo p2 on the characteristic polynomial of a semisimple
conjugacy class in GL2(Zp) ensures that the reduction modulo p of such a semisimple
conjugacy class is a non-trivial unipotent conjugacy class in GL2(Fp). According to these
lemmas, we only need to show that the image of ρ contains certain congruent classes
modulo p2, in the case g = 2.

The basic idea of the proof is as follows. Suppose we have two g-dimensional ordinary
principally polarized abelian varieties A1, A2 over a common finite field Fq, then the
‘difference’ FrA1 · Fr−1

A2
gives an element of the geometric fundamental group π1(Aord

g,n, x0),
and its image under the p-adic monodromy homomorphism ρp gives a conjugacy class
of GLg(Zp). See Remark 3.5 for further discussion about Frobenius at closed points. Of
course there is ambiguity when one tries to form the difference between two conjugacy
classes, but if we restrict ourselves to the case when the action of FrA2 modulo pN lies
in the centre of GLg(Z/pNZ), then the difference gives a well-defined conjugacy class in
GLg(Zp) modulo pN .

There is a technical difference with [24] and [10]: we use Honda–Tate [17,26–28] to
produce abelian varieties over finite fields with real multiplications, instead of using [8],
which depends on Honda–Tate. One reason for this choice is to emphasize that Ribet’s
method applies to more general situations where the abelian varieties involved may not
be ordinary.

3.2. Reduction to the case g = 2

The notation here is as in § 2.1. Recall that the target of the p-adic monodromy ρ

is GL(Tp(A0[p∞])) = GLg(End(T)) = GLg(Zp). The group GLg(Zp) contains many
copies of ‘standardly embedded’ GL2(Zp) in block form. For any 1 � i0 < j0 � g,
the associated standardly embedded GL2(Zp) consists of all elements (aij) ∈ GLg(Zp)
such aii = 1 if i 
= i0, j0, and aij = 0 if i 
= j and (i, j) 
= (i0, j0), (j0, i0); denote
by HJ this standardly embedded subgroup of GLg(Zp). In Lie theory these ‘standardly
embedded’ SL2 are called ‘root subgroups’. It is easy to see that the g − 1 standardly
embedded subgroups H{1,2}, . . . , H{g−1,g} of GLg(Zp) generate GLg(Zp) for any g � 2.
A standardly embedded GL2(Zp) inside GLg(Zp) can be realized in terms of geometry
of moduli spaces as follows. If we fix a level-n structure for the elliptic curve E1 over
Fp, then for each subset J ⊂ {1, 2, . . . , g} with two elements of the form J = {j, j + 1}
where j is an integer with 1 � j � g − 1, we have an embedding iJ : A2,n ↪→ Ag,n such
that the image of π1(Aord

2,n, s2) under ρp : π1(Aord
g,n, x0) → GLg(Zp) is contained in the

subgroup of J-blocks of GLg(Zp) which is isomorphic to GL2(Zp). Here s2 denotes the Fp-
point of Aord

2,n which corresponds to the abelian surface E1 ×Spec(Fp) E1 with the product
principal polarization µ1 × µ1 and product level-n structure η1 × η1. This embedding iJ
is defined by the family (E1, µ1, η1)j−1 × (A, λ, η) × (E1, µ1, η1)g−j−1 over A2,n, where
(A, λ, η) → A2,n denotes the universal principally polarized abelian scheme with level-n
structure over A2,n. It is clear that the image of the composition

π1(Aord
2,n, s2) → π1(Ag,n, x0)

ρ−→ GLg(Zp)
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is contained in the J-block subgroup GLg(Zp), and this image subgroup is naturally iso-
morphic to the image of the p-adic monodromy representation π1(Aord

2,n, s2) → GL2(Zp).
Therefore, it suffices to prove Theorem 2.1 in the case when g = 2. This reduction step to
the case g = 2 using the ‘standardly embedded copies of Aord

2,n in Aord
g,n’ already appeared

in [11].

Remark. Although not needed in this article, we note that it is possible to define the
‘standard embedding’ iJ : A2,n ↪→ Ag,n for any subset J ⊆ {1, . . . , g} with two elements,
as follows. Suppose that J = {i0, j0}, 1 � i0 < j0 � g. Consider the principally polarized
abelian scheme (B, λB , ηB) := (A, λ, η) × (E1, µ1, η1)g−2 over A2,n. Change the level-n
structure ηB : B[n] ∼−→ (Z/nZ)2n = (Z/nZ)n × (Z/nZ)n to τ{1,2},{i0,j0}, where τ{1,2},{i,j}
is the symplectic automorphism of (Z/nZ)n × (Z/nZ)n induced by the permutation
σ{1,2},{i0,j0} of {1, . . . , n} which sends 1 to i0, 2 to j0, and σ{1,2}(i) < σ{1,2}(j) if 3 � i <

j � g. The resulting triple (B, λB , τ{1,2},{i0,j0} ◦ ηB) defines the standard embedding iJ .

Lemma 3.1. Denote by ∆ the subgroup of GL2(Zp), isomorphic to Z×
p ×Z×

p , consisting of
all diagonal matrices in GL2(Zp). Let π0 : GL2(Zp) → GL2(Fp) be the natural surjection
given by reduction modulo p. Let H be a closed subgroup of GL2(Zp) which contains the
subgroup ∆ such that π0(H) = GL2(Fp). Then H = GL2(Zp).

Proof. Denote by D the subgroup of M2(Fp) consisting of all diagonal 2×2 matrices with
entries in Fp. Denote by Um the subgroup 1 + pmM2(Zp) of GL2(Zp) for every positive
integer m. A simple calculation show that M2(Fp) is generated by Ad(GL2(Fp)) · D, the
set of all GL2(Fp)-conjugates of D. The last statement implies that the composition

H ∩ (1 + pmM2(Zp)) ↪→ Um → Um/Um+1

is surjective for every m > 0. Hence H surjects to GL2(Z/pmZ) for every m > 0, and
Lemma 3.1 follows. �

Lemma 3.2. Let A be an element of GL2(Zp) such that tr(A) ≡ 2 (mod p2), det(A) ≡ 1
(mod p) and det(A) 
≡ 1 (mod p2). Then the image Ā of A in GL2(Fp) is conjugate to
( 1 1

0 1 ). In other words, Ā is a non-trivial unipotent element in GL2(Fp).

Proof. Since the characteristic polynomial of Ā is equal to T 2 − 2T + 1 ∈ Fp[T ], Ā is
either equal to ( 1 0

0 1 ) or is conjugate to ( 1 1
0 1 ). In particular, after conjugating A by a

suitable element of GL2(Zp), we may and do assume that

A =

(
1 + pa b

c 1 + pd

)

for suitable elements a, b, c, d ∈ Zp. The assumptions on A imply that a+ d ≡ 0 (mod p)
and bc ∈ pZ×

p . The fact that bc ∈ pZ×
p implies that Ā is either an upper-triangular

non-trivial unipotent matrix or a lower-triangular non-trivial unipotent matrix. �

We choose and fix a generator b̄ of the cyclic group F×
p2 . Denote by f̄(T ) the charac-

teristic polynomial of b̄ over Fp.
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Lemma 3.3. Let ∆̄ be the subgroup of all diagonal matrices in GL2(Fp). Let H̄ be
a subgroup of GL2(Fp) containing ∆̄. Assume that H̄ contains a non-trivial unipotent
element ū of GL2(Fp), and also an element v̄ ∈ GL2(Fp) such that f̄(v̄) = 0 in M2(Fp).
Then H̄ = GL2(Fp).

Proof. The assumptions on H̄ implies that it intersects non-trivially with every conju-
gacy class of GL2(Fp). It is a standard exercise in group theory that if a subgroup S of a
finite group G intersects non-trivially with every conjugacy class in G, then S = G. �

Remark 3.4.

(i) The point of Lemma 3.2 is that, by imposing congruence conditions on the charac-
teristic polynomial of a semisimple element of GL2(Qp) which belongs to GL2(Zp),
one can make sure that the reduction of this element is a non-trivial unipotent ele-
ment of GL2(Fp). Of course this is a general phenomenon in the context of reductive
group over local fields and not restricted to GL2.

(ii) The author claims no novelty whatsoever about Lemmas 3.1, 3.2 and 3.3. As pointed
out by the referee, similar statements already appeared in Lemma 5 and Lemma 1
of [25].

3.3. First proof of Theorem 2.1 As explained in § 3.2, it suffices to prove the case
when g = 2. Choose an identification of GL(T0) with GL2(Zp). Moreover, Igusa’s
theorem implies that the image of the p-adic monodromy homomorphism ρp contains
a conjugate of the subgroup ∆ of diagonal matrices in GL2(Zp): Consider the stan-
dard embedding i : Aord

1,n ×Spec(Fp) Aord
1,n → Aord

2,n. The image of the restriction of ρp to
π1(Aord

1,n ×Spec(Fp) Aord
1,n, x0) is (a conjugate of) ∆ by Igusa and the functoriality of π1.

Let H be the image of ρp, and let H̄ be the image of H in GL2(Fp). By Lemmas 3.1
and 3.3, it suffices to show that H̄ contains a non-trivial unipotent element ū ∈ GL2(Fp)
and also an element v̄ such that f̄(v̄) = 0 in M2(Fp).

Choose a quadratic polynomial f(T ) ∈ Z[T ] such that f(T ) splits over R and
f(T ) ≡ f̄(T ) (mod p). Choose a quadratic polynomial g(T ) ∈ Z[T ] such that g(T ) splits
over R and that g(T ) ≡ T 2 − 2T + 1 + p (mod p2). Let Ff = Q[T ]/(f(T )) and let
Fg = Q[T ]/(g(T )); they are the real quadratic fields defined by f(T ) and g(T ) respec-
tively. Let af be the image of T in Ff and let ag be the image of T in Fg. Choose a
positive integer n1 such that (n1, np) = 1 and every element of the strict ideal class group
of Ff is represented by an ideal of OFf

which divides n1OFf
. Similarly, choose a positive

integer n2 such that (n2, np) = 1 and every element of the strict ideal class group of Fg is
represented by an ideal of OFg which divides n2OFg . Choose a suitable power q = pr of p

such that Aord
2,n, Mord

Ff ,n, Mord
Fg,n are all defined over Fq. Here Mord

Ff ,n (respectively, Mord
Fg,n)

denotes the ordinary locus of the Hilbert modular surface with level-n structure attached
to the real quadratic field Ff (respectively, Fg). The p-adic monodromy representation
ρp attached to the modular variety Aord

2,n over Fp extends to a homomorphism ρarith
p

from the arithmetic fundamental group π1(Aord
2,n/Fq

, x) to GL(T0) ∼= GL2(Zp). Analogous
statements hold for the Hilbert modular surfaces Mord

Ff ,n and Mord
Fg,n. Replacing r by a
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suitable multiple if necessary, we may and do assume that q ≡ 1 (mod n2n2
3), where n3

is the least common multiple of n1 and n2.
Apply the argument in [10,24]: choose an element b1 ∈ OFf

such that b1 ≡ af (mod p)
and b1 ≡ 2 (mod n2n2

1). Also, choose an element b2 ∈ OFf
such that b2 ≡ 1 (mod p) and

b2 ≡ 2 (mod n2n2
1). For s sufficiently large, the quadratic polynomials T 2 − b1T + qs ∈

Ff [T ] and T 2 − b2T + qs ∈ Ff [T ] define qs-Weil numbers π1, π2 in totally imaginary
quadratic extensions K1, K2 of Ff such that Ki ⊗Q Qp

∼= (Ff ⊗Q Qp) × (Ff ⊗Q Qp)
for i = 1, 2. Moreover, the image of πi in exactly one of the two factors is congruent
to bi modulo p. The congruence condition modulo n2n2

1 guarantees that (πi − 1)/(nn1)
is integral, i.e. it is an element of OKi

, i = 1, 2. Therefore, we obtain abelian varieties
A1, A2 over Fqs with endomorphism by OFf

. The finite étale group schemes Ai[n] over
Fqs is constant because (πi − 1)/n is integral. Changing Ai by a suitable Fqs -rational
OFf

-linear isogeny, we may assume that the polarization sheaf of Ai is trivial for i = 1, 2.
So we obtain Fqs -points of Aord

2,n/Fq
. The difference FrA1 · Fr−1

A2
of their qs-Frobenius gives

an element of the geometric fundamental group of Aord
2,n whose image in GL2(Fp) is a root

of the irreducible polynomial f̄(T ) over Fp. Hence H̄ contains an element v̄ such that
f̄(v̄) = 0 in M2(Fp).

A similar argument shows that the image of ρp contains an element of GL2(Zp) whose
characteristic polynomial is congruent to g(T ) modulo p2. So H̄ contains a non-trivial
unipotent element by Lemma 3.2. We conclude that H = GL2(Zp) by Lemma 3.3. �

Remark 3.5. At the end of the second-to-last paragraph of the proof in § 3.3, the
statement that the ‘difference’ of two Frobenius elements at closed points gives an element
of the geometric fundamental group is a consequence of the following general fact.

Let G1, G2 be Barsotti–Tate groups over Fq, and consider the natural action of
Gal(Fp/Fq) on the set

I := IsomFp
(G1 ×Spec(Fq) × Spec(Fp), G2 ×Spec(Fq) × Spec(Fp)).

Then the action of the arithmetic Frobenius element φ = φq on I is given by
α �→ FrG2/Fq

◦ α ◦ Fr−1
G1/Fq

for all α ∈ I.

Notice that in the above formula the partial compositions α �→ FrG2/Fq
◦ α and

α ◦ Fr−1
G1/Fq

are quasi-isogenies but not elements of I.
The above assertion can be seen from the following diagram

G1 ×Spec(Fq) Spec(Fp)
β ��

IdG1 ×σ

��

G2 ×Spec(Fq) Spec(Fp)

IdG2 ×σ

��
G1 ×Spec(Fq) Spec(Fp)

α ��

FrG1×Id
Fp

��

G2 ×Spec(Fq) Spec(Fp)

FrG1×Id
Fp

��
G1 ×Spec(Fq) Spec(Fp)

β′
�� G2 ×Spec(Fq) Spec(Fp)
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where β and β′ are defined by the requirement that the diagram commutes. By
definition of the Galois action on I, we have φα = β. On the other hand, the
composition FrGi × IdFp

◦ IdGi ×σ is equal to the absolute q-Frobenius morphism for
Gi ×Spec(Fq) Spec(Fp). The commutativity of the diagram implies that β′ = β. We have
proved the assertion.

In the context of § 3.3, consider the sheaf I := IsomAord,perf
2,n

((As0 , λs0)[p
∞], (A, λ)[p∞])

over the perfection Aord,perf
2,n of Aord

2,n as in § 2.4. Let si be the closed point corresponding to
the principally polarized abelian varieties (Ai, λi), i = 1, 2. Then we obtain two conjugacy
classes Fr−1

A0
· FrAi

, i = 1, 2, in the image of the arithmetic fundamental group π1(Aord
2,n),

both lying above the arithmetic Frobenius element φq. So the image of the geometric
fundamental group π1(Aord

2,n ×Spec(Fp) Spec(Fp)) contains the conjugacy class FrA1 · Fr−1
A2

.
That this ‘difference’ is well defined modulo pN has been explained in § 3.1.

4. Hecke translation of Shimura subvarieties

4.1. Notation and sketch of idea

We follow the notation in § 2.2. In addition, we assume that p > 2. See Remark 4.2 for
the case when p = 2.

The idea of our second proof of Theorem 2.1 is as follows. The unitary group H attached
to the semisimple algebra End(A0) ⊗Z Q ∼= Mg(K) with involution gives rise to Hecke
correspondences on Aord

g,n with x0 as a fixed point. The product of g copies of the modular
curve Aord

1,n is diagonally embedded in Aord
g,n as a subvariety B. The image ρp(π1(B, x0)) of

the fundamental group of B under ρp is the subgroup D of diagonal matrices in GLg(Zp),
D ∼= (Z×

p )g. Take an element γ ∈ H(Z(p)). Such an element γ gives rise to a prime-to-p
Hecke correspondence on Aord

g,n which has x0 as a fixed point; the image of B under this
Hecke correspondence is a subvariety γ · B in Aord

g,n such that ρp(π1(γ · B, x0)) is equal
to Ad(γ) · ∆, the conjugation of D by the image of γ in GLg(Zp). An exercise in group
theory tells us that subgroups of the form Ad(γ) · D generate GLg(Zp). This proof was
sketched in [5].

4.2. Second proof of Theorem 2.1 when p > 2

Let B be the product of g copies of A1,n, diagonally embedded in Ag,n. Recall that
E1 is an ordinary elliptic curve over Fp, A0 is the product of g copies of E1, and
λ0 is the product principal polarization on A0. We have O ⊗Z Zp

∼= Zp × Zp, cor-
responding to the natural splitting of E1[p∞] into the product of its multiplicative
part E1[p∞]mult and its maximal étale quotient E1[p∞]et. So we have an isomorphism
End(A0) ∼= Mg(O), and a splitting End(A0) ⊗Z Zp

∼= Mg(Zp) × Mg(Zp) corresponding
to the splitting of A0[p∞] into the product its multiplicative and étale parts. Denote by
pr : (End(A0) ⊗Z Zp)× → GL(T0) ∼= GLg(Zp) the projection corresponding to the action
of End(A0) ⊗Z Zp on the étale factor A0[p∞]et of A0[p∞]. The Rosati involution ∗ on
End(A0) interchanges the two factors of End(A0)⊗ZZp. Recall that H denotes the unitary
group attached to (End(A0) ⊗Z Q, ∗); in particular H(Zp) is a compact open subgroup
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of H(Qp) isomorphic to GL(T0) under the projection map pr. Moreover, the image of
H(Z(p)) in H(Zp) ∼= GL(T0) is dense in H(Zp).

By Igusa’s theorem in [18], the p-adic monodromy group of the restriction to B, i.e.
ρ(Im(π1(B, x0) → π1(Ag,n, x0))), is naturally identified with the product of g copies of
Z×

p diagonally embedded in GL(T0) ∼= GLg(Zp). Denote by D this subgroup of GL(T0).

Lemma 4.1. The image of the p-adic monodromy homomorphism

ρp : π1(Aord
g,n, x0) → GL(T0)

is a closed normal subgroup of GL(T0) which contains the subgroup D ∼= (Z×
p )g.

Proof of Lemma 4.1. Every element u ∈ H(Z(p)) defines a prime-to-p isogeny from A0

to itself respecting the polarization λ0. Such an element u ∈ H(Z(p)) gives rise to

• a prime-to-p Hecke correspondence h on Ag,n having x0 as a fixed point, and

• an irreducible component B′ of the image of B under h such that B′ � x0.

By the functoriality of the fundamental group, the image of the fundamental group
π1(B′, x0) of B′ in π1(Aord

g,n, x0) is mapped under the p-adic monodromy representation
ρ to the conjugation of D by the element pr(h) ∈ GL(T0). In particular, ρ(π1(Aord

g,n, x0))
is a closed subgroup of GL(T0) which contains all conjugates of D by elements in the
image of pr : H(Z(p)) → H(Zp) ∼= GL(T0).

Recall that the image of H(Z(p)) in H(Zp) is a dense subgroup. So ρ(π1(Aord
g,n, x0)) is

a closed normal subgroup of GL(T0) ∼= GLg(Zp) which contains the subgroup D of all
diagonal elements. �

4.3. End of the second proof

An exercise in group theory shows that the only closed normal subgroup which contains
the subgroup of all diagonal matrices in GLg(Zp) is GLg(Zp) itself. Let N be such a
normal subgroup. Then N contains all matrices of the form h ·u ·h−1 ·u−1 = (Ad(h) ·u) ·
u−1, where h ∈ D is a diagonal matrix in GLg(Zp) and u is an upper triangular unipotent
matrix in GLg(Zp). Since p > 2, not every element of Z×

p is congruent to 1 modulo p,
therefore N contains all upper triangular unipotent matrices in GLg(Zp). Similarly N

contains all lower triangular unipotent matrices in GLg(Zp). These unipotent matrices
and D generate GLg(Zp). �
Remark 4.2. When p = 2, the smallest closed normal subgroup of GLg(Z2) which
contains the group D of all diagonal matrices in GLg(Z2) is the principal congruence
subgroup U1 of GLg(Z2) of level 1, i.e. the subgroup consisting of all matrices in Mg(Z2)
which are congruent to Idg modulo 2. In other words, the 2-adic monodromy generated
by the fundamental group of the Hilbert modular variety attached to E = Q×· · ·×Q and
its Hecke translates by the stabilizer at x0 is equal to the principal congruence subgroup
U1 of GLg(Z2). One way to get the full target group GLg(Z2) is to use Hecke translates
of the Hilbert modular variety attached to a totally real number field F with [F : Q] = g

which is not totally split above p.
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Remark 4.3. In the proof of the key Lemma 4.1 it is important to know the image
of the fundamental group π1(B′, x0) under the p-adic monodromy representation ρp ‘on
the nose’; knowing it only up to conjugation is useless. One function of the chosen base
point x0 is to help identifying the subgroup ρp(π1(B′, x0)) of GLg(Zp); this is possible
because B′ passes through x0. The crucial property of A0 that End(A0) is large allows
us to construct many subvarieties of the form B′. The fact that End(A0) is so large that
the Zp-points of the unitary group attached to (End(A0), ∗) is already isomorphic to the
target GLg(Zp) of the homomorphism ρ has the following consequence. Subgroups of the
form ρp(π1(B′, x0)) generate a normal subgroup of GLg(Zp).

5. Hecke correspondence and p-adic monodromy

5.1. Notation and sketch of idea

We keep the notation that was used in § 2.2. Fix a positive integer m > 0. Consider
the finite étale cover πn;m : Ag,n;m → Aord

g,n over Fp with Galois group GLg(Z/pmZ),
where Ag,n;m is the moduli space which classifies ordinary g-dimensional principally
polarized ordinary abelian varieties (A, λ) with a level-n structure, plus an isomorphism
ψ : (Z/pmZ)g ∼−→ A[pm]et, and the map πm sends (A, λ, η, ψ) to (A, λ, η). We have the
prime-to-p towers Ãg,n(p);m := (Ag,nb;m)b∈I and Ãord

g,n(p) := (Aord
g,nb)b∈I , where the index-

ing set I consists of all positive integers such that (b, p) = 1. Moreover, we have a natural
morphism πm from the tower Ãg,n(p);m to the tower Ãord

g,n(p) which is compatible with
πn;m. The group Sp2g(A

(p)
f ) operates on the two towers, and πm is Sp2g(A

(p)
f )-equivariant.

The Sp2g(A
(p)
f )-action induces prime-to-p Hecke correspondences on Ag,n;m and Aord

g,n,
and the finite étale morphism πm;n is Hecke equivariant.

The statement of Theorem 2.1 is equivalent to the assertion that Ag,n;m is irreducible
for every m > 0, since Aord

g,n is known to be irreducible. It suffices to show that any two
points y1, y2 ∈ Ag,n;m above the base point x0 belong to the same irreducible component
of Ag,n;m. Choose an element h ∈ H(Z(p)) = H(Q) ∩ H(Zp) such that hp,et◦ψ1 = ψ2. Here
ψ1 (respectively, ψ2) is the isomorphism (Z/pmZ)g ∼−→ A0[pm]et attached to y1 (respec-
tively, y2), and hp,et is the automorphism of A0[pm]et induced by the element h ∈ H(Z(p)).
Such an element h exists because H(Z(p)) is dense in H(Zp) for the p-adic topology.

Let h(p) ∈
∏

� �=p H(Q�) be the finite prime-to-p component of h. Then y1 belongs to
the image of y2 under the prime-to-p Hecke correspondence given by h(p). Now one can
apply (the argument of) the main result of [4] to conclude that y1 and y2 lie on the
same irreducible component of Ag,n;m. This finishes the sketch of the third proof of
Theorem 2.1. The actual proof consists of Lemma 5.1 and Proposition 5.2: it is clear that
together they imply Theorem 2.1.

5.2. We recall the notion of abelian varieties up to prime-to-p isogenies. Denote by
AVk the category of abelian varieties over k such that morphisms are homomorphisms
of abelian varieties. Recall that an isogeny α : A → B between abelian varieties is said
to be prime-to-p if Ker(α) is killed by an integer N not divisible by p. Denote by AV

(p)
k

the category of abelian varieties over k up to prime-to-p isogenies, obtained by AVk
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by formally inverting all prime-to-p isogenies. The latter category has the same objects
but more morphisms: Let A, B be abelian varieties over k. Then Hom

AV
(p)
k

([A], [B]) :=
Homk(A, B) ⊗Z Z(p). Composition of morphisms in AV

(p)
k is defined in the obvious way.

In the above [A] (respectively, [B]) denotes the image of A (respectively, B) under the
obvious functor π : AVk → AV

(p)
k . We will use this notation when we want to consider

an abelian variety as an object in AV
(p)
k .

An alternative definition of morphisms in AV
(p)
k is as follows. A morphism from A to B

in AV
(p)
k is a diagram of the form β1α

−1
1 : A

α1←− A1
β1−→ B in AVk, where α1 is a prime-to-

p isogeny and β1 is a homomorphism from A1 to B. Two arrows β1α
−1
1 : A

α1←− A1
β1−→ B

and β2α
−1
2 : A

α2←− A2
β2−→ B are equal if and only if there exists prime-to-p isogenies

A3
γ1−→ A1, A3

γ2−→ A2 such that β1 ◦ γ1 = β2 ◦ γ2. Composition of arrows in AV
(p)
k is

defined, because for every diagram A1
β1−→ B

γ1←− B1 in AVk where γ1 is a prime-to-p
isogeny, there exists a diagram A1

β2←− A2
γ2−→ B1 such that β1 ◦ β2 = γ1 ◦ γ2.

5.3. Hecke correspondence on Ag,n;m

We explain the action of the group Sp2g(A
(p)
f ) on the tower Ãg,n(p);m; the action of

Sp2g(A
(p)
f ) on Ãord

g,n(p) is similar but simpler. See §§ 5, 6 of [20] for further discussion
of prime-to-p Hecke correspondences on the prime-to-p tower of modular varieties of
PEL-type. It is clear that the projective system Ãg,n(p);m is isomorphic to the projective
system Ãg,(p);m := (Ag,N ;m)N∈I′ , where the indexing set I ′ consists of all integers N such
that N � 3 and (N, p) = 1. We will describe geometric points of the tower Ãg,(p);m and
the action of Sp2g(A

(p)
f ) on geometric points of Ãg,(p);m.

Let k ⊇ Fp be an algebraically closed field. We fix an isomorphism χ : Ẑ(p) ∼−→ Ẑ(p)(1)
over Fp. Also we fix a ‘standard symplectic pairing’ 〈· , ·〉 : (Ẑ(p))2g × (Ẑ(p))2g → Ẑ(p)

given by the formula 〈(v1, v2), (w1, w2)〉 = tv1 · w2 − tv2 · w1, for v1, v2, w1, w2 ∈ (Ẑ(p))g.
The set Ãg,(p);m(k) of k-points of the pro-Fp-scheme Ãg,(p);m is the set of isomorphism
classes of quadruples (A, λ, η(p), ψ), where (A, λ) is a principally polarized g-dimensional
ordinary abelian variety,

η(p) : (A(p)
f /Zp)2g =

∏
� �=p

(Q�/Z�)2g ∼−→
∏
� �=p

A[�∞] =: A[non-p]

is a symplectic isomorphism, and ψ : (Z/pmZ)g ∼−→ A[pm]et is an isomorphism. In the
above, the principal polarization λ induces a compatible system of pairings

A[N ] × A[N ] → (Z/NZ)(1)
χ−1

−−→ Z/NZ, (N, p) = 1,

while the standard pairing 〈· , ·〉 on (Ẑ(p))2g induces a compatible system of pairings

〈· , ·〉N : (N−1Z/Z)2g × (N−1Z/Z)2g → Z/NZ,

in the sense that
〈N2v, N2w〉N1 ≡ 〈v, w〉N1N2 (mod N1)
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for all v, w ∈ ((N2N1)−1Z/Z)2g. Identifying A[N ] with H1(A, Z/NN) for (N, p) = 1, a
prime-to-p level structure η(p) as above gives rise to symplectic isomorphisms

η̂ : (Ẑ(p))2g ∼−→ H1(A, Z(p))

and

η̃ : (A(p)
f )2g ∼−→ H1(A, A

(p)
f ).

We will use a slightly different description of the set of geometric points of Ãg,(p);m. Let
k = kalg ⊇ Fp be as above. Then the set of k-points of Ãg,(p),m is in natural bijection with
the set of all isomorphism classes of quadruples ([A], λ̃, η̃, ψ), where [A] is a g-dimensional
ordinary abelian variety regarded as an object of AV

(p)
k , λ̃ is a principal polarization

on [A] (as an object AV
(p)
k , i.e. a separable polarization on A as an object in AVk),

η̃ : (A(p)
f )2g ∼−→ H1(A, A

(p)
f ) is a symplectic isomorphism, and ψ : (Z/pmZ) ∼−→ A[pm]et is

an isomorphism.
In the second description of Ãg,(p),m(k) above, more symplectic isomorphisms η̃ are

allowed, because η̃ is not required to come from an isomorphism

η̂ : (Ẑ(p))2g ∼−→ H1(A, Ẑ(p));

this is compensated by the fact that there are more isomorphisms in the category AV
(p)
k

than in the category AVk. An isomorphism from ([A1], λ̃1, η̃1, ψ1) to ([A2], λ̃2, η̃2, ψ2) is
a prime-to-p isogeny α : A1 → A2 such that α◦ η̃1 = η̃2, α◦ψ1 = ψ2 and αt ◦ λ̃2 ◦α = λ̃1.

We indicate how to go from the second description of Ãg,(p);m(k) to the first description
of Ãg,(p);m(k). Let ([A], λ̃, η̃, ψ) be a quadruple as in the previous paragraph. Then there
exists an abelian variety B over k and a prime-to-p-isogeny α : B → A, both defined
up to unique isomorphisms, such that α−1η̃ : (A(p)

f )2g ∼−→ H1(B, A
(p)
f ) induces an isomor-

phism η̂ : (Ẑ(p))2g ∼−→ H1(B, Ẑ(p)) and an isomorphism η(p) : (A(p)
f /Ẑ(p))2g ∼−→ B[non-p].

Moreover, λB := αt ◦ λ̃ ◦ α is a principal polarization of B as an abelian variety. Let
ψB = α−1 ◦ ψ. Then the quadruple (B, λB , η(p), ψB) is well defined up to unique isomor-
phism and gives a point of Ãg,(p);m(k) according to our first description.

The right action of Sp2g(A
(p)
f ) on Ãg,(p);m(k) is quite easy to describe in terms of the

second description: an element γ ∈ Sp2g(A
(p)
f ) sends a point [([A], λ̃, η̃, ψ)] ∈ Ãg,(p);m(k)

to the point [([A], λ̃, η̃ ◦ γ, ψ)]. Things are a bit more complicated with the first descrip-
tion. Let [(A, λ, η(p), ψ)] be a point of Ãg,(p);m(k) according to the first description.
Let η̂ : (Ẑ(p))2g ∼−→ H1(A, Ẑ(p)) and η̃ : (A(p)

f )2g ∼−→ H1(A, A
(p)
f ) be the symplectic isomor-

phisms attached to η̄. There exists an abelian variety B over k and a prime-to-p isogeny
α : B → A, unique up to unique isomorphisms, such that

α−1 ◦ η̄ ◦ γ : (A(p)
f )2g ∼−→ H1(B, A

(p)
f )

induces symplectic isomorphisms

η̂B : (Ẑ(p))2g ∼−→ H1(B, Ẑ(p)) and η
(p)
B : (A(p)

f /Ẑ(p))2g ∼−→ B[non-p].
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Then λB := αt ◦ λ ◦ α is a principal polarization of B. Let ψB := α−1 ◦ ψ. Then
[(B, λB , η

(p)
B , ψB)] is well defined, and is the image of [(A, λ, η(p), ψ)] under γ.

Lemma 5.1. Notation as above. Recall that x0 = [(A0, λ0, η0)] ∈ Aord
g,n(Fp), A0 =

E1 ×· · ·×E1, λ0 is the product principal polarization on A0, and η0 is a level-n structure
on A0. Let y1 = [(A0, λ0, η0, ψ1)], y2 = [(A0, λ0, η0, ψ2)] be two Fp-points of π−1

m (x0).
Let h be an element of H(Z(p)) such that hp,et ◦ ψ1 = ψ2, where hp,et denotes the
automorphism of A0[pm]et induced by h. Then y2 belongs to the Sp2g(A

(p)
f )-Hecke orbit

of y1 on the GLg(Z/pmZ)-cover Ag,n;m of Aord
g,n.

Proof. The element h ∈ H(Z(p)) is a prime-to-p isogeny from A0 to itself which
respects the polarization λ0. Let η(p) : (A(p)

f /Ẑ(p))2g ∼−→ A0[non-p] be a symplectic iso-
morphism which extends η0. Let η̃ : (A(p)

f )2g ∼−→ H1(A0, A
(p)
f ) be the symplectic isomor-

phism attached to η(p). The Fp-point [([A0], λ0, η̃, ψi)] of the tower Ãg,n(p);m lies above
the Fp-point yi of Ag,n;m, i = 1, 2. Here we have followed the notation in § 5.3, and [A0]
is the object in AV

(p)
k attached to A0.

By definition, the prime-to-p isogeny h induces an isomorphism from ([A0], λ0, η̃, ψ1)
to ([A0], λ0, h

(p) ◦ η̃, ψ2). Since h(p) ◦ η̃ = η̃ · (η̃−1 · h(p) · η̃), we see from the definition of
prime-to-p Hecke correspondences on Ag,n;m that y1 belongs to the image of y2 under the
prime-to-p Hecke correspondence induced by the element η̃−1 · h(p) · η̃ ∈ Sp2g(A

(p)
f ). �

Remark. A prominent feature of the above argument is the similarity to the product
formula: if one changes the prime-to-p level structure η̃ by the prime-to-p component
h(p) of a ‘rational element’ h ∈ H(Z(p)) and the p-power level structure ψ by the p-adic
component hp of h, one gets back to the same point of Ag,(p);m.

Proposition 5.2. Notation as in § 5.1. Let z1, z2 be two Fp-points of Ag,n;m which
belong to the same Sp2g(A

(p)
f )-Hecke orbit on Ag,n;m. Then z1 and z2 belong to the same

irreducible component of the smooth Fp-scheme Ag,n;m.

Notation as in Lemma 5.1. We offer two proofs: one by quoting [4], the other by
explaining the relevant part of the argument in [4].

Proof A. By Proposition 4.5.4 of [4], z1 and z2 belong to the same irreducible component
of the smooth Fp-scheme Ag,n;m. We need to explain why quoting [4] is legitimate. In [4],
the subvariety W is assumed to be a subscheme of Ag,n, while in the present situation
Ag,n;m is a finite étale cover of Aord

g,n. However one can examine the argument in [4] and
convince oneself that the same proof works in the present situation. �

Proof B. Let �1, . . . , �r be distinct prime numbers, all different from p, such that z1

and z2 belong to the same GL-Hecke orbit on Ag,n;m, where GL denotes the prod-
uct group GL := Sp2g(Q�1) × · · · × Sp2g(A�r ). Let L =

∏r
i=1 �i. Consider the L-adic

subtower Ãg,nL∞;m := (Ag,nLj ;m)j∈N of the tower (Ag,nb;m)b∈N−pN, and let π0(Ã) :=
lim←−j

π0(Ag,nLj ;m) be the inverse limit of the set of irreducible components of Ag,nLj ;m.
The group GL operates on the tower Ãg,nL∞;m, inducing the GL-Hecke correspondences
on Ag,n;m.
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Since Ag,n;m is a finite étale cover of Aord
g,n, the image of the L-adic monodromy rep-

resentation attached to the universal abelian scheme over Ag,n;m is an open subgroup of
GL, hence π0(Ã) is a finite set. The action of the group GL on Ã defines a natural action
of GL on π0(Ã).

By [4, Lemma 3.1], every subgroup of finite index in GL is equal to GL itself. Therefore,
GL operates trivially on the finite set π0(Ã). So z1 and z2 belong to the same irreducible
component of Ag,n;m. �

Remark. The above proof of Theorem 2.1 was inspired by Hida’s work on p-adic mon-
odromy in [14].

6. Remarks and comments

Remark 6.1. Let Γ be a finite-dimensional semisimple Q-algebra, and let OΓ be an
order of Γ . Recall that an OΓ -linear abelian variety (A, ι) over Fp is Γ -hypersymmetric
if

EndOΓ
(A) ⊗Z Qp

∼−→ EndOΓ ⊗ZZp(A[p∞]) ⊗Zp Qp

(see [6, Definition 6.4]). Let M be a modular variety of PEL-type over Fp with OΓ

as the ring of prescribed endomorphisms. Then there may exist a Newton stratum Z

(respectively, a leaf) on M with no Γ -hypersymmetric point. This happens when M is a
Hilbert modular variety MF associated to a totally real number field F , Γ = F , and Z

is a Newton stratum in MF (or a leaf in MF ) such that every point of Z corresponds to
an OF -linear abelian variety with some but not all slopes equal to 1

2 . Then the methods
in §§ 4 and 5 do not help in proving maximality of p-adic monodromy for Z ⊂ MF , while
the method in § 3 does (see [7, § 5] and also 6.2).

6.1. We indicate how the methods in §§ 4 and 5 can be used to prove the maximality of
p-adic monodromy, or equivalently the irreducibility of the Igusa tower, for the ordinary
locus of a modular variety of quasisplit U(n, n) type. This irreducibility statement is
useful for constructing p-adic L-functions for GL(n) (see [13]). It is a special case of [14,
Corollary 8.17] (see also [15, § 10]). We refer to [13], [14] and [15] for more information
on the U(n, n) type modular variety and related algebraic groups.

6.1.1. Notation

Let K be a totally imaginary extension of a totally real number field F such that
p is unramified in K and every prime ideal ℘ in OF splits in K. Let m � 3 be an
integer relatively prime to p. The modular variety M = MK,U(n,n),m over Fp classifies
quadruples (A → S, ι, λ, η), where S is a scheme over Fp, A → S is an abelian scheme of
relative dimension 2n[F : Q], ι : OK → EndS(A) is a ring homomorphism, λ : A → At is
a principal polarization such that the Rosati involution induces complex conjugation on
K, and η is a level m-structure. Moreover, one requires that the Kottwitz condition in [20]
is satisfied for the quasisplit U(n, n) PEL-type for K/F . Under the present assumptions
on K and p, the last condition for ordinary abelian varieties can be made explicit as
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follows. Suppose that A → S is ordinary, i.e. the Barsotti–Tate group A[p∞] → S is an
extension of étale Barsotti–Tate group by a multiplicative Barsotti–Tate group. Then
the Kottwitz condition means that the Barsotti–Tate group A[℘∞

w ] → S has relative
dimension n[Kw : Qp] and height 2n[Kw : Qp] for every place w of OK above p.

Let Mord be the locus of M over which the universal abelian scheme is ordinary; it is an
open dense subscheme of M. Let x0 = [(A0, ι0, λ0, η0)] ∈ Mord(Fp) be an Fp-point of the
ordinary locus Mord. Let ∗0 be the Rosati involution on EndOK⊗Zp(A0[p∞]) attached to
the polarization λ0. The central (OK ⊗Z Zp)-algebra End(OK⊗Zp)(A0[p∞]mult) is isomor-
phic to

∏
v|p Mn(OK ⊗OF

OFv
), where v runs through all places of F above p. Similarly

End(OK⊗Zp)(A0[p∞]et) is isomorphic to
∏

v|p Mn(OK ⊗OF
OFv

).

6.1.2. Denote by ν the map

End(OK⊗Zp)(A0[p∞]) = End(OK⊗Zp)(A0[p∞]mult)×End(OK⊗Zp)(A0[p∞]et) → (OK⊗ZZp)

which corresponds to the map( ∏
v|p

Mn(OK ⊗OF
OFv )

)
×

( ∏
v|p

Mn(OK ⊗OF
OFv )

)
→

∏
v|p

(OK ⊗OF
OFv )

defined by
((Bv)v|p, (Cv)v|p) �→

(
det

OK⊗OFv

(Bv) · det
OK⊗OFv

(Cv)
)

v|p

for all elements

((Bv)v|p, (Cv)v|p) ∈
( ∏

v|p
Mn(OK ⊗OF

OFv )
)

×
( ∏

v|p
Mn(OK ⊗OF

OFv )
)

.

Denote by U the group consisting of all elements u ∈ (EndOK⊗Zp(A0[p∞]))× such that
u · ∗0(u) = ∗0(u) · u = 1. Let L be the subgroup of U consisting of all elements u ∈ U

such that ν(u) = 1. We have a product decomposition

L =
∏
v|p

Lv, Lv ⊂ (EndOK⊗OFv
(A0[℘∞

v ]))×,

and Lv is isomorphic to the subgroup of GLn(OFv
) × GLn(OFv

) consisting of all pairs
(u1,v, u2,v) with det(u1,v) · det(u2,v) = 1, for each place v of F above p.

With the above notation, the p-adic monodromy group for Mord is a continuous homo-
morphism

ρp : π1(Mord, x0) → L =
∏
v|p

Lv.

6.1.3. To use the method in § 4 or § 5 to show that ρp is surjective, one needs a point
x0 of Mord(Fp) such that

EndOK
(A0) ⊗Z Zp

∼−→ EndOK⊗ZZp(A0[p∞]).
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To see the existence of such a hypersymmetric point, choose an ordinary elliptic curve
E0 over Fp, a free OK-module N of rank n, and a OK-valued hermitian form ψ on N

which induces an sesquilinear isomorphism from N to its OK-dual. Let (A0, ι0) be the
OK-linear abelian variety A0 = N ⊗Z E0, and let λ0 be the polarization on A0 induced
by ψ and the principal polarization on E0. Choose a level-m structure η0 for (A0, ι0, λ0),
we get a desired hypersymmetric point x0 := [(A0, ι0, λ0, η0)] in Mord.

6.1.4. The relevant group theoretic facts are as follows.

(a) The intersection of the unitary group attached to (End(A0), ∗0) with the derived
group of the quasi-split unitary group GU(n, n) for K/F has good reduction at p,
and the group of Zp-points of this intersection is canonically isomorphic to L.

(b) The derived group of GU(n, n) is simply connected.

6.1.5. The methods of §§ 5 and 4 can now be applied to the present situation.

(i) The method in § 5 is directly applicable in the above setting and gives the surjec-
tivity of the p-adic monodromy homomorphism ρp.

(ii) To use the method in § 4, we need a subvariety Z ⊂ Mord with known p-adic
monodromy. Let E → Aord

1,m be the universal elliptic curve over the ordinary locus
of the modular curve A1,m over Fp. Let Z be the product of n copies of Mord. Then
the construction in § 6.1.3, after choosing an OK-basis of N , gives an embedding
from Z to Mord. By Igusa’s theorem, the image of the restriction to π1(Z, x0) of
the p-adic monodromy homomorphism ρp is a product

∏
v|p Dv, where Dv is a

subgroup of Lv for each place v of F above p. This subgroup Dv is the subgroup of
all diagonal matrices if we identify Dv with a subgroup of GLn(OFv

) × GLn(OFv
).

If p > 2, then the only closed normal subgroup of L which contains
∏

v|p Dv is L

itself. So the method of § 4 implies that ρp is surjective when p > 2.

6.2. We indicate how the three methods can be used to prove maximality of p-adic
monodromy attached to a leaf in Ag,n. We refer to [22] for the notion of leaves (see
also [3,7]).

6.2.1. Let n � 3 be a positive integer prime to p. Let C be a non-supersingular leaf in
Ag,n over Fp; C is a locally closed subscheme in Ag,n which is smooth over Fp such that
C(Fp) is the subset of Ag,n(Fp) consisting of all elements x = [(Ax, λx, ηx)] ∈ Ag,n(Fp)
such that (Ax[p∞], λx[p∞]) is isomorphic to (A0[p∞], λ0[p∞]). Here x0 is a fixed base point
in C, and (A0[p∞], λ0[p∞]) is the polarized Barsotti–Tate attached to x0 = [(A0, λ0, η0)].

The p-adic monodromy homomorphism attached to C is a continuous homomorphism

ρp = ρp,C : π1(C, x0) → Aut(A0[p∞], λ[p∞]).
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6.2.2. Let n � 3 be a positive integer prime to p. Let F be a totally real number field,
let (L,L+) be an invertible OF -module with a notion of positivity, and let MF,L,L+,n be
the Hilbert modular variety over Fp as defined in [9]. Let CF be a non-supersingular leaf
in MF,L,L+,n (see [3], [29] and [7, § 4]). Let x0 = (A0, ι0, λ0, η0) be a fixed base point in
CF , where (A0, ι0) is an OF -linear abelian variety over Fp such that dim(A0) = [F : Q],
λ0 is an (L,L+)-polarization of (A0, ι0) as in [9], and η0 is level-n structure.

The p-adic monodromy homomorphism attached to CF is a continuous homomorphism

ρp = ρp,CF
: π1(CF , x0) → AutOF ⊗Zp(A0[p∞], λ[p∞]).

6.2.3. The method in § 3 can be used to show that the p-adic monodromy homomor-
phism ρp,CF

attached to a non-supersingular leaf in a Hilbert modular variety MF,L,L+,n

is irreducible. See [7, § 4] for details.
We saw in Remark 6.1 that there may not be any F -hypersymmetric point on cer-

tain leaves CF in MF,L,L+,n. For such a leaf the target of the homomorphism ρp,CF
is

non-commutative, while methods in §§ 4 and 5 produce only commutative subgroups
contained in the image of ρp,CF

.

6.2.4. In [7, § 5] the method in § 4 was used to show that the p-adic monodromy homo-
morphism ρp,C attached to a non-supersingular leaf C in Ag,n is surjective; the surjectivity
of ρp,CF

explained in § 6.2.3 supplies the necessary input data. More precisely, one first
proves the surjectivity of ρp,C in the case when C is minimal, i.e. when End(A0[p∞])
is a maximal order in End(A0[p∞]) ⊗Zp Qp; a hypersymmetric point x0 is used as a
base point. See [23] for the notion of minimal Barsotti–Tate groups. The general case is
deduced from the special case when C is minimal.

6.2.5. Let C be a non-supersingular leaf in Ag,n as above. Use a hypersymmetric point
x0 in C(Fp), as a base point. The method in § 5 (Lemma 5.1 and Proposition 5.2) yields
the surjectivity of ρp,C directly. In this case, the method in § 5 is more efficient than the
proof in [7, § 5]; the latter uses the methods in §§ 3 and 4.
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8. P. Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969),

238–243.
9. P. Deligne and G. Pappas, Singularités des espaces de modules de Hilbert, en les
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