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A RIGID KUREPA TREE FROM A FREE SUSLIN TREE

JOHN KRUEGER

Abstract. We analyze a countable support product of a free Suslin tree which turns it into a highly
rigid Kurepa tree with no Aronszajn subtree. In the process, we introduce a new rigidity property for trees,
which says roughly speaking that any non-trivial strictly increasing function from a section of the tree into
itself maps into a cofinal branch.

§1. Introduction. In this article we introduce a method of turning a free Suslin
tree into a Kurepa tree by a countable support product forcing. The standard way to
add a cofinal branch to a Suslin tree is by forcing with the tree itself (with the order
reversed). There are a variety of possible outcomes after forcing with a Suslin tree,
ranging from adding exactly one cofinal branch, as is the case with a free Suslin tree,
to adding more than �1 many cofinal branches. In particular, a Suslin tree which
becomes a Kurepa tree after forcing with it is sometimes called an almost Kurepa
Suslin tree in the literature, and some recent examples can be found in [2] and [6].

A more direct albeit naive way to try to turn a Suslin tree into a Kurepa tree would
be to force with the tree repeatedly enough times to produce the desired number
of branches. However, in some cases even adding two cofinal branches to a Suslin
tree will collapse �1. This happens, for example, when the tree is self-specializing,
which means that adding a cofinal branch specializes the rest of the tree outside of
the branch. On the other hand, if a Suslin tree S is 2-free, then after forcing with it
there exists a dense set of x ∈ S for which Sx (the part of the tree above x) is still
Suslin. More broadly, for any n < �, a normal Suslin tree S is (n + 1)-free iff after
forcing with Sn-many times, there are densely many x in S such that Sx is Suslin.

These facts suggest considering free Suslin trees as candidates for a type of Suslin
tree which could turn into a Kurepa tree after repeatedly forcing with it via a product
forcing. As a first attempt, one could consider a finite support product of a free Suslin
tree, with the idea that the product might be c.c.c. However, by a result of Jensen
and Schlechta [3], after Lévy collaping a Mahlo cardinal to become �2, there does
not exist any c.c.c. forcing which adds a Kurepa tree, and free Suslin trees can exist
in such a model.

It turns out that a countable support product of a free Suslin tree is a reasonable
and effective forcing for turning a Suslin tree into a Kurepa tree. Such a product
forcing is proper, countably distributive, and (2�)+-c.c. In particular, assuming CH,
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2 JOHN KRUEGER

it preserves all cardinals (and in fact, in the absence of CH it collapses 2� to become
�1). In addition, the Kurepa tree thus obtained has nice properties. For example,
it has no Aronszajn subtree, and the cofinal branches of the tree are exactly the
generics for the factors of the product forcing.

But the standout feature of this Kurepa tree is a very strong rigidity property
which in particular implies the non-existence of injective strictly increasing and level
preserving maps from the tree into itself other than the identity function. More
specifically, after forcing with a countable support product of a free Suslin tree R,
any strictly increasing map from a dense subset of Rx into Ry , where x and y are
incomparable, collapses into a branch above densely many elements of its domain.

§2. Preliminaries. All of the trees in this article are assumed to have height �1.
The reader should be familiar with Aronszajn and Suslin trees, as well as the basics
of forcing. We describe some of the notation and terminology which we will use,
and prove two known lemmas which we will need later.

An �1-tree is a tree of height �1 whose levels are countable. A Kurepa tree is an
�1-tree with at least �2 many cofinal branches. If b is a cofinal branch of a tree T,
we will write b(α) for the unique element of b of height α. Let htT (x) denote the
height of x in the tree T, and for any � ≤ htT (x), x � � is the unique element of T
below x of height �. Let Tα denote level α of T, which is the set of elements of T
with height α, and let T � � :=

⋃
α<� Tα .

A tree is normal if it has a root, every element has at least two immediate successors,
any distinct elements of the same limit height have different sets of elements below
them, and every element has elements above it at any higher level. A subtree of a
tree T is any subset of T considered as a tree with the order induced by<T (we note
that this differs from the terminology of some authors who require a subtree to be
downwards closed). The downward closure of a set U ⊆ T is the set of x such that
for some y ∈ U , x ≤T y. For any x ∈ T , Tx is the subtree {y ∈ T : x ≤T y}.

For trees T0, ... , Tn–1, T0 ⊗ ··· ⊗ Tn–1 is the tree consisting of all n-tuples
(a0, ... , an–1) ∈ T0 × ··· × Tn–1 such that a0, ... , an–1 have the same heights in their
respective trees, ordered componentwise. An n-derived tree of a tree T is a tree of
the form Tx0 ⊗ ··· ⊗ Txn–1 , where x0, ... , xn–1 are distinct elements of T of the same
height. A tree T is n-free if all of its n-derived trees are Suslin, and is free if it is n-free
for all 0 < n < �.

When we consider a Suslin tree as a forcing notion, we implicitly mean the forcing
with the tree order reversed, and use standard forcing terminology such as “dense”
or “dense open” with the reverse order. If T is a Suslin tree and D ⊆ T is dense
open, then there exists some � < �1 such that T� ⊆ D. When we refer to a cardinal
� being “large enough”, we mean that it is large enough so that H (�) contains all
parameters under discussion.

Lemma 2.1. Assume that S is a Suslin tree. Let � be a large enough regular cardinal
and let M be a countable elementary substructure ofH (�) with S ∈M . Suppose that
X ∈M is a subset of S, x ∈ SM∩�1 , and there exists some z ∈ X with x ≤S z. Then
there exists some y <S x with y ∈ X .

Proof. Define D as the set of a ∈ S such that either there exists some y ∈ X
with y ≤S a, or else a is incomparable with every member of X. It is easy to check
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A RIGID KUREPA TREE FROM A FREE SUSLIN TREE 3

that D is dense open in S. So there exists a least � < �1 such that S� ⊆ D. Note
that by elementarityD ∈M , so � < M ∩ �1, and x � � is in D. Since x � � <S x ≤S
z ∈ X , by the definition of D there exists some y ∈ X such that y ≤S x � �, and
so y <S x. �

Lemma 2.2. Let T be an �1-tree. If T has an Aronszajn subtree, then T has a
downwards closed Aronszajn subtree.

Proof. Assume that U is an uncountable subtree of T with countable levels, and
let W be the downward closure of U. We claim that if U is Aronszajn, then so is
W, or equivalently, if W has a cofinal branch, then so does U. Suppose that b is a
cofinal branch of W. We will prove that b ∩U is uncountable, which implies that U
contains a cofinal branch.

Suppose for a contradiction that b ∩U is countable. Then there exists some
α < �1 such that b ∩U ⊆ T � α. As U has countable levels, we can find some
� < �1 greater than α such that U � (α + 1) ⊆ T � � .

Since b is uncountable, fix some x ∈ b with htT (x) > � . Then x ∈W , so let y be
of least height such that y ∈ U and x ≤T y. Then the height of y in T is greater
than � , which implies that y is not in U � (α + 1).

Let z∗ be the αth member (according to the tree ordering) of the set {z ∈ U :
z <U y}. Then obviously the height of z∗ in T is at least α. As b ∩U ⊆ T � α
and z∗ ∈ U , it follows that z∗ /∈ b. Now x ≤T y and z∗ <T y, so x and z∗ are
comparable in T. By the minimal height of y, z∗ <T x. But x ∈ b, so z∗ ∈ b and we
have a contradiction. �

§3. Turning a free tree into a Kurepa tree. For the remainder of the article we
assume that R is a normal free Suslin tree and κ is a non-zero ordinal number. The
existence of such a tree follows from � (see [1, Chapter V]). We will define a forcing
poset which adds no new countable sets of ordinals, is (2�)+-c.c., forces CH, and
adds distinct cofinal branches bi to R for each i < κ (and those are all of the cofinal
branches). In particular, when κ ≥ �2, then R is forced to become a Kurepa tree.
We will also show that in the forcing extension, R has no Aronszajn subtree and
satisfies a strong rigidity property. In fact, the forcing is just a countable support
product of κ-many copies of R.

Definition 3.1. Let
∏
�,κ R be the forcing poset consisting of all functions p :

dom(p) → R such that dom(p) is a countable subset of κ and for each i ∈ dom(p),
p(i) ∈ R. Define q ≤ p if dom(p) ⊆ dom(q) and for all i ∈ dom(p), p(i) ≤R q(i).

The following lemmas are straightforward to check.

Lemma 3.2. For any i < κ and � < �1, the set of p ∈
∏
�,κ R such that i ∈ dom(p)

and the height of p(i) in R is greater than � is dense open in
∏
�,κ R.

Lemma 3.3. For all distinct i and j in κ, the set of p ∈
∏
�,κ R such that i and j are

in dom(p) and p(i) and p(j) are incomparable in R is dense open.

Lemma 3.4. If κ ≥ �1, then for all x ∈ R, the set of p ∈
∏
�,κ R such that for some

i ∈ dom(p), x <R p(i), is dense open.
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4 JOHN KRUEGER

Suppose that G is a generic filter on
∏
�,κ R. In V [G ], define for each i < κ

bi := {y ∈ R : ∃p ∈ G, i ∈ dom(p) ∧ y ≤R p(i)}.
A straightforward argument using the previous lemmas shows that in V [G ], each bi
is a cofinal branch of R, and for any distinct i and j in κ, bi �= bj . Consequently, in
V [G ] the tree R has at least |κ| many cofinal branches. Moreover, if κ ≥ �1, then⋃
i<κ bi = R. Let ḃi be a name for the branch bi described above, and conversely,

whenever G is a generic filter on
∏
�,κ R, bi will denote ḃGi .

Proposition 3.5. The forcing poset
∏
�,κ R is (2�)+-Knaster.

Proof. Let {pi : i < (2�)+} be a family of conditions. Applying the Δ-system
lemma to the domains of the conditions, we can find an unbounded set X ⊆ (2�)+

and a countable set r such that for all i < j in X, dom(pi) ∩ dom(pj) = r (see [5,
Lemma III.6.15], namely, the case when � = �1 and κ = (2�)+). Now each pi � r is
a function from a countable set into a set of size �1, so there are at most ��1 = 2�

many possibilities for such a function. So find a set Y ⊆ X of size (2�)+ such that
for all i < j in Y, pi � r = pj � r. It is easy to see that for all i < j in Y, pi ∪ pj is a
condition below both pi and pj . �

Now we start working toward showing that
∏
�,κ R is proper and countably

distributive. The following lemma is easy.

Lemma 3.6. Let � be a large enough regular cardinal, M ≺ H (�) countable,
and assume that

∏
�,κ R ∈M . Let 	 :=M ∩ �1. Suppose that 〈pn : n < �〉 is a

descending sequence of conditions in M ∩
∏
�,κ R and 〈zn : n < �〉 is a sequence of

elements of R	 satisfying:

∀i ∈
⋃

n

dom(pn) ∃ki < � ∃ni < � ∀m ≥ ni pm(i) <R zki .

Define q to be the function with domain equal to
⋃
n dom(pn) satisfying that for all

i ∈ dom(q), q(i) := zki . Then q ∈
∏
�,κ R and q ≤ pn for all n.

Lemma 3.7. Let � be a large enough regular cardinal, M ≺ H (�) countable, and
assume that

∏
�,κ R ∈M . Let 	 :=M ∩ �1. Suppose that D ∈M is a dense open

subset of
∏
�,κ R, p ∈M ∩

∏
�,κ R, i0, ... , in–1 ∈ dom(p), and z0, ... , zn–1 are distinct

elements of R	 such that p(ik) <R zk for all k < n. Then there exists some r ≤ p in
M ∩D such that for all k < n, r(ik) <R zk .

Proof. Since R is normal, we can find some � < 	 so that for all k < m < n,
zk � � �= zm � �, and � is greater than the height of p(ik) for all k < n. Define q with
the same domain as p by letting q(ik) := zk � � for all k < n, and q(j) := p(j) for
any other j in dom(p). Clearly q ≤ p and q ∈M .

Define s as follows. The domain of s equals the domain of q, s(ik) := zk for all
k < n, and s(j) := q(j) for all other j in dom(q). Now fix t ≤ s in D. By extending
further if necessary, we may assume without loss of generality that the elements
t(i0), ... , t(ik) all have the same height.

Since R is free, the tree S := Rz0�� ⊗ ··· ⊗Rzn–1�� is Suslin. Define X to be the set
of all n-tuples (yk : k < n) in S for which there exists some r ∈ D such that r ≤ q
and r(ik) = yk for all k < n. Note that X ∈M by elementarity. Also observe that t
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A RIGID KUREPA TREE FROM A FREE SUSLIN TREE 5

is a witness to the fact that (t(ik) : k < n) is in X, and this n-tuple is greater than or
equal to (zk : k < n) in S.

By Lemma 2.1 applied to the Suslin tree S, there exists some (yk : k < n) in
X ∩M which is below (zk : k < n) in S. Fix a witness r ∈ D ∩M with r ≤ q such
that r(ik) = yk for all k < n. Then r is as required. �

Theorem 3.8. The forcing poset
∏
�,κ R is proper and countably distributive.

Proof. Let � be a large enough regular cardinal and consider a countable
elementary substructure M ≺ H (�) with

∏
�,κ R ∈M . Let 	 :=M ∩ �1. We will

show that for all p ∈M ∩
∏
�,κ R, there exists some q ≤ p such that for every dense

open subset D of
∏
�,κ R in M, there exists some s ∈M ∩D with q ≤ s . By standard

arguments, it follows that
∏
�,κ R is proper and countably distributive.

Let 〈Dn : n < �〉 enumerate all dense open subsets of
∏
�,κ R in M and let 〈ik :

k < �〉 enumerateM ∩ κ. Consider p ∈M ∩
∏
�,κ R. By induction we define:

(1) a descending sequence of conditions 〈pn : n < �〉;
(2) a sequence 〈zn : n < �〉 of elements of R	 .

The following inductive hypotheses will be satisfied for all n:

(a) pn+1 ∈ Dn;
(b) in ∈ dom(pn+1);
(c) for all m ≥ n + 1, pm(in) <R zn.

Let p0 := p. Now consider n < � and assume that pn is defined together with
zk for all k < n. Let p′n be equal to pn if in ∈ dom(pn), and otherwise let p′n :=
pn ∪ {(in, xroot)} where xroot is the root of R. Note that for all k < n, p′n(ik) =
pn(ik) <R zk . Since R is normal, we can fix some zn ∈ R	 such that p′n(in) <R zn
and zn is different from zk for all k < n. Applying Lemma 3.7, fix pn+1 ≤ p′n in
M ∩Dn such that for all k ≤ n, pn+1(ik) <R zk .

This completes the construction. Define q as follows. Let the domain of q be equal
to M ∩ κ, and for each n < � define q(in) := zn. By Lemma 3.6, q is a condition
and q ≤ pn for all n < �. Clearly, q is as required. �

Corollary 3.9. Assuming CH,
∏
�,κ R is proper and �2-c.c., and hence preserves

all cardinals.

If CH does not hold, then
∏
�,κ R will collapse 2� to become �1, provided that

κ ≥ �1.

Proposition 3.10. Assuming κ ≥ �1, the forcing poset
∏
�,κ R forces CH.

Proof. For each ordinal � ≤ α < �1, fix a bijection gα : � → Rα . For each
x ∈ R, let hx be a bijection from � onto the set of elements of RhtR(x)+� which are
above x.

For each ordinal � ≤ α < �1, define a (
∏
�,κ R)-name ḟα for a function from �

to � as follows. Consider n < �, and let x := gα(n). Let i be a name for the least
ordinal in κ such that x ∈ ḃi , which exists by Lemma 3.4. Define ḟα(n) := m, where
ḃi(α + �) = hx(m).

We claim that
∏
�,κ R forces that the sequence 〈ḟα : � ≤ α < �1〉 includes every

function from � to �. So let f : � → � and p ∈
∏
�,κ R be given. Fix � ≤ α < �1

greater than the height of every member of the range of p. Let 〈in : n < �〉 enumerate
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6 JOHN KRUEGER

the first �-many elements of �1 \ dom(p) (which is possible since κ ≥ �1). Define
q so that q � dom(p) := p and for all n, q(in) := xroot where xroot is the root of R.
Now define r ≤ q with the same domain as q so that r(in) := gα(n) for all n, and
r(j) is some element of Rα above q(j) for all other j in the domain of q.

For each n, let jn be the least member of dom(r) such that r(jn) = gα(n) (which
exists because of the choice of r(in)). It is easy to see that r forces that jn is the
minimal j ∈ κ such that gα(n) ∈ ḃj . Now define s with the same domain as r by
letting s(jn) := hgα(n)(f(n)) for all n, and s(j) := r(j) for all other j ∈ dom(r).
Then easily s forces that ḟα = f. �

Proposition 3.11. Assuming that κ ≥ �1, the forcing poset
∏
�,κ R forces that for

every uncountable downwards closed subsetW ⊆ R, there exists some i < κ such that
ḃi ⊆W .

Proof. Suppose for a contradiction that p is a condition which forces that Ẇ is
an uncountable downwards closed subset of R which does not contain the cofinal
branch ḃi for all i < κ. Since Ẇ is forced to be downwards closed, it easily follows
that p forces that for all i < κ, there exists an ordinal 	̇i < �1 such that every member
of Ẇ with height at least 	̇i is not in ḃi .

Fix a large enough regular cardinal �, and let M be a countable elementary
substructure of H (�) which contains as members the objects

∏
�,κ R, p, Ẇ , and

〈	̇i : i < κ〉. Let 	 :=M ∩ �1. Enumerate R	 as 〈yn : n < �〉 and enumerateM ∩ κ
as 〈jn : n < �〉.

We will define by induction sequences 〈pn : n < �〉, 〈mn : n < �〉, 〈in : n < �〉,
〈zn : n < �〉, and 〈	n : n < �〉 as follows. Let p0 := p and m0 := 0.

Let n be given and assume that pn andmn are defined, as well as ik , zk , and 	k for
all k < mn. We assume as an inductive hypothesis that pn(ik) <R zk for all k < mn.

The next step of the construction will consist of two stages. In the first stage, we
consider yn.

Case 1: yn /∈ {zk : k < mn}. Choose some ordinal imn ∈M ∩ κ which is not in
dom(pn) (which is possible sinceκ ≥ �1) and definep′n := pn ∪ {(imn , xroot)}, where
xroot is the root of R. Define zmn := yn. Define m′

n := mn + 1.
Case 2: yn = zk for some k < mn. Define p′n := pn and m′

n := mn.
Note that in either case, for all k < m′

n, ik ∈ dom(p′n) and p′n(ik) <R zk .
In the second stage, we consider jn.
Case a: jn ∈ {ik : k < m′

n}. Define mn+1 := m′
n and p∗n := p′n.

Case b: jn ∈ dom(p′n) \ {ik : k < m′
n}. Define im′

n
:= jn. Let zm′

n
be some element

of R	 such that p′n(jn) <R zm′
n

and which is not equal to zk for all k < m′
n (which is

possible since R is normal). Define mn+1 := m′
n + 1 and p∗n := p′n.

Case c: jn /∈ dom(p′n). Define im′
n

:= jn. Let zm′
n

be some element of R	 which
is not equal to zk for all k < m′

n. Define p∗n := p′n ∪ {(jn, xroot)}, where xroot is the
root of R. Define mn+1 := m′

n + 1.
Note that for all k < mn+1, ik ∈ dom(p∗n ) and p∗n (ik) <R zk .
Now apply Lemma 3.7 to fix pn+1 ≤ p∗n in M which decides 	̇ik as some ordinal

	k ∈M , for each mn ≤ k < mn+1, and satisfying that for all k < mn+1, pn+1(ik)
<R zk .
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A RIGID KUREPA TREE FROM A FREE SUSLIN TREE 7

This completes the definition of the sequences. It is easy to check by cases that
every jn is equal to ik for some k, that is, {ik : k < �} = {jn : n < �} =M ∩ κ,
and whenever ik ∈ dom(pm), then pm(ik) <R zk . Moreover, every yn equals zk for
some k, that is, {zk : k < �} = {yn : n < �} = R	 . Define q with domain equal to
M ∩ κ such that for all n, q(in) := zn. By Lemma 3.6, q is a condition and q ≤ pn
for all n.

Now for all n, q forces that zn ∈ ḃin and 	̇in = 	n < 	. Extend q to r which decides
for some n that zn ∈ Ẇ , which is possible since Ẇ is forced to be uncountable and
downwards closed. Now we have a contradiction since r forces that every member
of Ẇ with height at least 	̇in = 	n is not in ḃin , but on the other hand r forces that
zn ∈ ḃin ∩ Ẇ ∩R	 . �

Corollary 3.12. Assuming that κ ≥ �1, the forcing poset
∏
�,κ R forces that R

contains no Aronszajn subtree.

Proof. Immediate from Lemma 2.2 and Proposition 3.11. �
Corollary 3.13. Assuming thatκ ≥ �1, the forcing poset

∏
�,κ R forces that every

cofinal branch of R is equal to ḃi for some i < κ.

Proof. Immediate from Proposition 3.11 and the fact that any cofinal branch of
R is a downwards closed subset of R. �

Recall that a tree T is rigid if it has no automorphism other than the identity
function, and is totally rigid if for all distinct x and y of T, Tx and Ty are not
isomorphic. We will show that after forcing with

∏
�,κ R the tree R is totally rigid,

and in fact, has an even stronger rigidity property.
A map f : S → T between trees is strictly increasing if x <S y implies f(x) <T

f(y). In general, this property is strictly weaker than the property when “implies” is
replaced with “iff”. Suppose that T has a cofinal branch b. Then there always exists
a (trivial) strictly increasing map f : S → T , namely, the map f(x) := b(htT (x))
for all x ∈ S. Let us say that a strictly increasing map f : S → T maps S into a
branch if f(x) and f(y) are comparable for all x, y ∈ S. In this case, f[S] is an
uncountable chain of T.

Definition 3.14. An�1-tree T is essentially rigid if for all incomparable elements
x and y of T and any dense subset U of Tx , iff : U → Ty is strictly increasing, then
there are densely many z ∈ U such that f maps Tz ∩U into a branch of Ty .

Theorem 3.15. The forcing poset
∏
�,κ R forces that R is essentially rigid.

Proof. Let x and y be incomparable elements of R. Fix a generic filter G on∏
�,κ R. In V [G ], let U be a dense subset of Rx and let f : U → Ry be strictly

increasing. Suppose for a contradiction that there exists some x∗ ∈ U such that for
all z >R x∗ in U, f does not mapRz ∩U into a branch, which means that there exist
distinct elements a and b of Rz ∩U such that f(a) and f(b) are incomparable.

Consider the forcing poset
∏
�,κ+1R, which is isomorphic to the two-step product

(
∏
�,κ R) ×R. Fix a V [G ]-generic filter H on R with x∗ ∈ H . Then H is a cofinal

branch of Rx , and in V [G ][H ], H = bκ. Since U ∈ V [G ] is dense in Rx and H is
V [G ]-generic, U ∩H is uncountable. Let b be the downward closure of f[H ∩U ],
which is a cofinal branch of Ry . By Corollary 3.13 applied to the forcing

∏
�,κ+1R,
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b is equal to bi for some i ≤ κ. But b contains y, and hence cannot contain x since
x and y are incomparable. So b �= bκ. Therefore, b is equal to bi for some i < κ.

In the model V [G ], define D as the set of all c ∈ Rx ∩U such that f(c) /∈ bi . We
claim that D is dense below x∗. Consider z >R x∗. Since U is dense in Rx , we may
assume without loss of generality that z ∈ U . By the choice of x∗, there exist distinct
elements a and b of Rz ∩U such that f(a) and f(b) are incomparable. Then f(a)
and f(b) cannot both be in the branch bi . Let c ∈ {a, b} be such that f(c) /∈ bi .
This completes the argument that D is dense below x∗. Since x∗ ∈ H and H isV [G ]-
generic, there exists some c ∈ H ∩D. Then f(c) /∈ bi and f(c) ∈ f[H ∩U ] ⊆ bi ,
which is a contradiction. �

In [4] we proved that if R is a free Suslin tree, then for any n < �, there exists a
c.c.c. forcing which forces that R is n-free but for all m > n, every m-derived tree is
special. Combined with the results of this article, we see that free Suslin trees can
acquire a wide variety of properties by forcing.

As mentioned in the introduction, there are limitations to turning a free Suslin
tree into a Kurepa tree via c.c.c. forcing. So the best we can ask for is a consistency
result.

Question 3.16. Is it consistent that there exists a free Suslin tree and for any
normal free Suslin tree R, there exists a c.c.c. forcing poset which forces that R is a
Kurepa tree?

Funding. This material is based upon work supported by the Simons Foundation
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