
The Journal of Symbolic Logic

Volume 80, Number 2, June 2015

LOWER BOUNDS FOR DNF-REFUTATIONS OF A RELATIVIZED
WEAK PIGEONHOLE PRINCIPLE

ALBERT ATSERIAS, MORITZ MÜLLER, AND SERGI OLIVA

Abstract. The relativized weak pigeonhole principle states that if at least 2n out of n2 pigeons fly
into n holes, then some hole must be doubly occupied. We prove that every DNF-refutation of the CNF

encoding of this principle requires size 2(log n)
3/2−ε

for every ε > 0 and every sufficiently large n. By reducing
it to the standard weak pigeonhole principle with 2n pigeons and n holes, we also show that this lower

bound is essentially tight in that there exist DNF-refutations of size 2(log n)
O(1)
even in R(log). For the lower

bound proof we need to discuss the existence of unbalanced low-degree bipartite expanders satisfying a
certain robustness condition.

§1. Introduction.
1.1. Weak pigeonhole principles. The pigeonhole principle PHPmn expresses the
fact that there is no injection from m pigeons into n holes whenever m is bigger
than n. As usual, we formulate PHPmn as a contradictory CNF in the propositional
variables Pu,v with u ranging over an m-element set [m] of pigeons and v ranging
over an n-element set [n] of holes. The formula has clauses ¬Pu,v ∨ ¬Pu′ ,v for
u, u′ ∈ [m] with u �= u′ and v ∈ [n] forcing different pigeons to fly to different
holes, and clauses

∨
v∈[n] Pu,v for u ∈ [m] forcing every pigeon to fly to some hole.

Estimating the refutation-complexity of this set of clauses in various proof systems
has a long history in proof complexity dating back to Cook and Reckhow’s seminal
article [14].
One of the most quoted results of propositional proof complexity is that PHPn+1n
does not have short proofs in the standard propositional proof systems that “lack
the ability to count”. This is confirmed by the seminal results of Haken [18] for reso-
lution, and Ajtai [1] for standard proof systems manipulating formulas of bounded
depth (i.e., AC0-Frege), followed by the great quantitative improvements by Beame,
Impagliazzo, and Pitassi [8] and Krajı́ček, Pudlák andWoods [22] on Ajtai’s result.
In contrast, short polynomial-size proofs exist as soon as the proof system are
allowed formulas that express counting properties, such as arbitrary propositional
formulas [12] (i.e., NC1-Frege), or even threshold formulas of bounded depth
(i.e., TC0-Frege).
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LOWER BOUNDS FOR DNF-REFUTATIONS 451

From the above, the ability to count looks like an essential ingredient for proving
PHPn+1n . On the other hand, since approximate counting is available in AC

0 via
explicit polynomial-size formulas [2], one may speculate that weaker pigeonhole
principles with a much bigger gap between the number of pigeons and the number
of holes, such as PHPn

2

n or PHP
2n
n , may havepolynomial-size bounded-depth proofs.

However, this is a notorious 25-year old open problem [25], the main obstacle being
that although the known AC0-formulas for approximate counting are explicit, their
correctness seems hard to prove. The only known superpolynomial lower bounds are
for resolution in the case of PHPn

2

n [28, 29], and for proofs manipulating k-DNFs
with k ≤ ε log n/ log log n for some ε > 0 in the case of PHP2nn [6, 30,34].
Indeed, for those weaker pigeonhole principles some positive results are

known: Paris, Wilkie, and Woods [25] proved that PHPn
2

n and PHP
2n
n do have

quasipolynomial-size bounded-depth proofs, in fact, proofs of barely superpolyno-
mial size (cf. [4, 25]). Their proof does not rely on approximate counting. Instead,
they prove PHPn

2

n by a clever diagonalization argument and employ an amplifica-

tion argument to reduce PHP2nn to PHP
n2

n . Analyzing their argument in bounded
arithmetic, Kraj́ıček [19, 20] got quasipolynomial-size proofs of the onto-version
of PHP2nn by depth-2 formulas. Indeed, he obtained quasipolynomial size R(log)-
refutations (cf. [20]), i.e., refutations by k-DNF formulas for k logarithmic in the
size of the proof. This was later improved by Maciel, Pitassi, and Woods [23] who
gave nO((log n)

2)-size such proofs of the original version. The main question remains
open: do PHPn

2

n or PHP
2n
n have polynomial-size bounded-depth refutations? This is

an important problem.
From the perspective of mathematical logic, the problem is tightly connected to

the question whether IΔ0 refutes a certain first-order formulation of the principle
in the language of arithmetic augmented by a relation symbol for (the graph of)
the alleged injection from [2n] into [n]. The standard Paris–Wilkie translation
(cf. [24]) translates such refutations into polynomial-size bounded-depth refuta-
tions of PHP2nn (see [19]). Conversely, sufficiently uniform such refutations would
show that IΔ0 refutes the first-order formulation. By an argument due to Paris,
Wilkie and Woods, this would also imply that the infinitude of primes is prov-
able in IΔ0 [25], which is another standing open problem. A negative answer
would establish a new independence result for a weak fragment of arithmetic and
this is of possible interest, e.g. in [26] Pudlák asked for methods to prove such
results.
From the perspective of computational complexity theory, a negative answer

could have consequences for our understanding of approximate counting as a com-
putational problem. In short, it would mean that approximate counting cannot be
solved by polynomial-size bounded-depth circuits with elementary (i.e., comparably
complex) proofs of correctness. We refer to Section 6 for a discussion.

1.2. Our results. With the hope of contributing some progress on these open
problems, we study the following modified weak pigeonhole principle: if at least
2n out of n2 pigeons fly into n holes, then some hole must be doubly occupied.
Note that, intuitively, the ability to approximately count should still be enough to
prove this principle. To formulate this principle we use additional propositional
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variables Ru for u ∈ [n2] intended to express that pigeon u decides to fly. Formally,
the relativized weak pigeonhole principle PHPn

2,2n
n has clauses

¬Ru ∨ ¬Ru′ ∨ ¬Pu,v ∨ ¬Pu′ ,v for u, u′ ∈ [n2] with u �= u′ and v ∈ [n],
¬Ru ∨

∨
v∈[n] Pu,v for u ∈ [n2],

together with a set of threshold clauses

TH2n(R,S)

in the set of Ru-variables R and some set of auxiliary variables S disjoint from the
sets of Ru-variables R and Pu,v-variables P. These threshold clauses express that at
least 2n pigeons decide to fly.More precisely, TH2n(R,S) is a polynomial-size (in n)
set of clauses such that for every assignment α to the variables R the following
holds: there exists an assignment � to the auxiliary variables S such that α ∪ �
satisfies TH2n(R,S) if and only if α sets at least 2n many variables in R to true.
We are ready to state the main result of this paper:
Theorem 1.1. For every real ε > 0 and every sufficiently large n, every strongly
sound semantic DNF-refutation of PHPn

2,2n
n has size at least 2(log n)

3/2−ε
.

We stress the fact that the lower bound holds for any choice of TH2n(R,S) that
satisfies the above properties. For this to be true, it is important that S is disjoint
from P since otherwise the clauses of TH2n(R,S) could be coding a polynomial-
size Frege refutation in its extension variables S that could then be simulated
in resolution. At any rate, what we need for our argument is that, for the rele-
vant assignments for the variables R, the formula TH2n(R,S) can be made true
by extending this assignment to the variables S while leaving those in P intact.
As this is a rather subtle point, we will indicate the use of this property in due time.
By a semantic DNF-refutation we mean a sequence of DNFs ending in the empty
clause such that each DNF in the sequence either is a clause from PHPn

2,2n
n , or is

an elementary tautology (X ∨ ¬X ) for some variable X , or is logically implied
by at most two DNFs appearing earlier in the sequence. Thus, semantic refutations
abstract away from a particular choice of inference rules. Being strongly sound is a
property shared by most common inference rules (cf. [33,34]).
Second, we show that the lower bound in Theorem 1.1 is essentially tight, namely,
we show that for a particular natural choice of the threshold clauses TH2n(R,S),
the set PHPn

2,2n
n has quasipolynomial size refutations even in R(log).

Theorem 1.2. For a particular choice of threshold clauses TH2n(R,S) with the
properties described above, there existR(log)-refutations ofPHPn

2,2n
n of size 2(log n)

O(1)
.

This is not hard to prove via bounded arithmetic, here is a sketch of such a proof:
we give a first-order formula �n

2,2n
n in the language of arithmetic plus some addi-

tional symbols whose Paris–Wilkie translation is PHPn
2,2n
n for a particular choice

of threshold clauses. The mentioned quasipolynomial size R(log)-refutations of
PHPn

2,2n
n given by Maciel, Pitassi, and Woods are sufficiently uniform to actually

establish that Buss’ bounded arithmetic theoryT 22 refutes the first-order formulation
�2nn of PHP

2n
n [23]. This refutation is readily transformed into a T

2
2 refutation of our

principle �n
2,2n
n via a simple (i.e., Δb1-) first-order interpretation. Theorem 1.2 then

follows by standard means applying the Paris–Wilkie translation to this refutation.
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Let us also point out that all the results of this paper would hold without any
essential modification for PHPn

c ,dn
n for any two constants d > 1 and c > 1.We focus

on d = c = 2 for concreteness.

1.3. Relevance of the results. In the previous section we expressed the hope
that our study of the relativized weak pigeonhole principle could lead to some
progress on the main questions about the standard weak pigeonhole principle. Let
us discuss how.
First, the mentioned first-order interpretation of �2nn in �

n2,2n
n also shows that

PHPn
2,2n
n has polynomial-size bounded-depth refutations if and only if so does

PHP2nn (the if direction is given by the interpretation and the only if direction
is even easier). As already said the latter is an important open problem, so our
lower bound for depth-2 is of potential relevance for the eventual resolution of this
problem. The fact that our methods yield quasipolynomial lower bounds where
comparably big upper bounds exist is particularly encouraging. To our knowledge,
this is the first natural occurrence of this phenomenon. However, our lower bound
falls short of making explicit progress on whether polynomial-size bounded-depth
proofs exist. We refer to Section 6 for a discussion.
Second, let us note that Theorem 1.1 gives the first superpolynomial lower bound

for strongly sound semantic DNF-refutations. Previously known lower bounds for
refutations handling arbitrary DNFs come from principles exponentially hard for
bounded-depth Frege systems, and there are essentially only two such principles
known, namely PHPn+1n and the so-called counting principles (cf. [19]). These lower
bounds do not hold for strongly sound semantic refutations but hold only relative
to a fixed choice of finitely many inference rules.
Finally, we find it worthwhile to point out that there is no “complexity gap”

[31] for R(log), which is to be put in contrast with those known for tree-like sys-
tems [15, 21, 31]. Indeed, PHPn

2,2n
n can be seen as the Paris–Wilkie translation of a

suitable first-order sentence without “built-in” arithmetical symbols (cf. [15] for a
discussion), and our lower and upper bounds state that PHPn

2,2n
n has intermediate

proof complexity in R(log), i.e., superpolynomial but not exponential.

1.4. Proof outline and comparison to previouswork. Ourproof follows the random
restriction method, so successfully used in previous works in propositional proof
complexity, with some additional ideas. The typical skeleton of a proof by the
random restriction method goes as follows: Assume a short proof of F is given.
Apply a random restriction from a suitable distribution in such a way that, with
high probability, every formula in the proof simplifies significantly, but the proved
formula F remains hard. Finally argue directly that the restricted F cannot have a
short proof with such simple formulas.
For an example, suppose PHP2nn has polynomial-size resolution refutations.

For the random restriction we choose an assignment that describes a 1-1 map-
ping from n/2 randomly chosen pigeons onto n/2 randomly chosen holes, and
leaves all the other variables unset. With these parameters, the restricted PHP2nn
becomes PHP1.5·n0.5·n, and each complex clause of the proof has been made true with
high probability. Now a direct prover-adversary argument shows that a proof of
PHP1.5·n0.5·n with noncomplex clauses only is impossible.
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Trying to apply this argument to DNF-refutations hits several difficulties. First,
a random matching restriction as above is not likely to simplify an arbitrary DNF
formula, even if this formula is small. Indeed, the DNF could be the negation
of PHP2nn itself, and the point of the argument above was precisely that this
formula does not simplify much. Here is where our modified version PHPn

2,2n
n

enters the picture. By choosing 2n out of n2 pigeons at random and setting all
the variables about the other pigeons completely at random, it is very likely that
each DNF in the proof simplifies into one all whose terms mention very few of
the 2n chosen pigeons. This sort of restriction comes inspired by the so-called
Dantchev–Riis restrictions [15], and its analysis for our case requires arguments of
the type Furst, Saxe, and Sipser introduced in their seminal work on bounded-depth
circuits [17]1.
Continuing with the sketch of the proof, the application of the Dantchev–Riis
restriction to PHPn

2,2n
n leaves an instance of PHP2nn . Unfortunately, a termmention-

ing very few pigeons need not be short itself, which means that we are not yet at
a contradiction with the known lower bounds for PHP2nn in k-DNF resolution for
k ≤

√
log n/ log log n from [34] which were later improved to k ≤ ε log n/ log log n

for some ε > 0 [30]. Following the ideas in [10], as adapted to k-DNF proofs
in [6,34], this suggests that we restrict the principle further to a low-degree bipartite
expander G (with left vertices [2n] and right vertices [n]) to get a short proof of
PHP(G). Recall (cf. [10, 33]), this formula is obtained from PHP2nn by zeroing out
all Pu,v with (u, v) not an edge of G .
The low-degree condition on G guarantees that whenever a term mentions very
few pigeons we can also assume that the term is short, resulting in a k-DNF
refutation of PHP(G) for small k. This would seem to open the door to using the
methods in [34].
Unfortunately, the sort of bipartite expanders that are needed for the rest of the
argument require degree at least as large as log n, leaving k well above the quantity
that a direct application of the methods in [34] can afford. Here comes the second
main idea in our proof: we use a logarithmic degree expander G , but reduce our
problem to proving lower bounds for a related formula BPHP(G) in which the
flights of the pigeons along the edges of the graph are encoded in binary. This takes
us from k = Ω(log n) in the unary encoding to k = O(log log n) in the binary
encoding (at least in the case that we start with polynomial-size proofs), well below
the critical

√
log n/ log log n.

Now, we would like to call the small restriction switching lemma from [34] to get
a restriction turning all formulas into formulas representable by shallow decision
trees. Such refutations can be ruled out by an adversary argument. Unfortunately,
the move from PHP(G) to BPHP(G) increases the depth of the formulas and this
blocks a direct application of the switching lemma. This difficulty is sidestepped
via a third idea in our proof, which is to use an appropriate weaker notion of
representation by decision trees.

1It is interesting to point out that, in view of Theorem 1.2, the stronger switching-lemma sort of
argument (e.g. Håstad-style) cannot work for this because this is the only essential point in the argument
where we use that the given proof has quasipolynomial size.
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Putting all these ideas together into a proper argument requires a fair amount
of technical work and this is what the rest of the paper is devoted to. After a few
preliminaries in the Section 2, in Section 3, we discuss the sort of expander graphs
we need, and in Section 4, we use them for the proof of the main theorem. Section 5
proves Theorem 1.2 and Section 6 gives some final discussion.

§2. Preliminaries. For a natural n ∈ N, we write [n] := {0, . . . , n − 1} and
|n| := �log(n + 1)�. All our logarithms are base 2. Note that, for n > 0, the natural
|n| is the length of the binary representation of n without leading zeros. For b ∈ N

we write bit(b, n) for the (b + 1)-th least significant bit in the binary representation
of n; formally, bit(b, n) := 	n/2b
 mod 2. Note that if b ≥ |n|, then bit(b, n) = 0.

2.1. Bipartite graphs. Let G = (U,V,E) with E ⊆ U × V be a bipartite graph.
For a vertex u ∈ U ∪V let NG(u) be the set of neighbors of u in G and for a set of
vertices A ⊆ U ∪V , let NG (A) :=

⋃
u∈A NG (u). A setM ⊆ E is a matching (in G)

if no two edges inM share an endpoint. Note that matchingsM are bijections and
thus have an image Im(M ) and a domain Dom(M ).
We say G is a (U,V, dL, dR)-graph if for every u ∈ U we have that |NG (u)| ≤ dL

and for every v ∈ V we have that |NG (v)| ≤ dR. With such a graph we associate a
bijection φG with Dom(φG) ⊆ U × [dL] such that for every u ∈ U and every v ∈
NG (u) there is (exactly one) i ∈ [dL] such that (u, i) ∈ Dom(φG) and φG(u, i) = v.
For a subset C ⊆ U ∪ V we let G ∩ C denote the subgraph of G induced by the
vertices ofC ; if φG is associated toG , thenG ∩C is a (U ∩C,V ∩C, dL, dR)-graph
and themap associated toG∩C is (as a set of pairs)φG∩C := φG∩((C×[dL])×C ).
We also write G \ C for G ∩ ((U ∪V ) \ C ).

2.2. Propositional formulas. Propositional variables are also called atoms. A lit-
eral is an atom X or its negation ¬X . A formula is built from literals by means of
∨ and ∧. Note that we allow the negation symbol only in front of atoms. The nega-
tion ¬F of a formula F is defined as the formula obtained from F by interchanging
∧ and ∨, and replacing every literal by its complementary literal (i.e., X by ¬X and
¬X by X ). If Γ is a set of formulas, we write

∧
Γ (resp.

∨
Γ) for the conjunction

(resp. disjunction) of the formulas in Γ; the elements in Γ are the conjuncts (resp. dis-
juncts). We allow the empty disjunction 0 and the empty conjunction 1, and refer
to them as constants. Note that ¬1 = 0 and ¬0 = 1. A (k-)term is a conjunction
of (at most k many) literals; and a (k-)clause is a disjunction of (at most k many)
literals. A (k-)CNF is a conjunction of (k-)clauses, and a (k-)DNF is a disjunction
of (k-)terms.
By |F | we denote the size of the formula F : literals and constants have size 1, and

|(F ∧ G)| = |(F ∨ G)| = 1 + |F |+ |G |. Note that |F | = |¬F |.

2.3. Restrictions and substitutions. An assignment is a functionmapping all atoms
to truth values 0 and 1. A restriction � is a partial assignment, i.e., a function
mapping some atoms into {0, 1}. For a formula F we let F � � denote the formula
obtained fromF by first “substituting” literals by their truth values under �and then
“eliminating” constants. To define this we blur the distinction between truth values
{0, 1} and constants {0, 1} and view a restriction or assignment as a substitution
mapping atoms to constants.More generally, a substitution is a partial function from
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atoms to formulas. Let S be a substitution. For a formula F let F S denote the result
of substituting in F the formula S(X ) for X and ¬S(X ) for ¬X , simultaneously
for all X ∈ Dom(S). For a restriction � then define

F � � := E(F �),
where E is the function that eliminates constants and is defined as follows: If F is a
literal or a constant, set E(F ) := F . For F = (G ∧H ), set E(F ) := 0 if E(G) = 0
or E(H ) = 0; set E(F ) := E(G) if E(H ) = 1; E(F ) := E(H ) if E(G) = 1; and
otherwise set E(F ) := (E(G)∧E(H )). For F = (G ∨H ), define E(F ) analogously
with the roles of 0 and 1 switched. If Γ is a set or sequence of formulas we write ΓS

for the result of applying the substitution to every formula in Γ. The notation Γ � �
is defined analogously.
If Γ is a set of formulas and F is a formula, we say that Γ logically implies F if
every assignment � with G � � = 1 for all G in Γ satisfies F � � = 1. We say that Γ
strongly implies F if the same is true for restrictions �. In case Γ is a singleton {G}
we say that G logically or strongly implies F . We say that F and G are (strongly)
equivalent if they (strongly) imply each other. Of course, if F strongly implies G
then F logically implies G but the converse need not be true; e.g. (X ∨ ¬X ) is
logically but not strongly implied by 1.
Lemma 2.1. Let Γ be a set of formulas, F a formula, � a restriction, and S a
substitution. Then
1. if Γ strongly implies F , then Γ � � strongly implies F � �, and
2. if Γ strongly implies F , then ΓS strongly implies F S .
Proof. For restrictions, the statement follows directly from the definitions. For
substitutions, we need a couple of technical observations, both with easy proofs by
induction on the structure of formulas:

Claim. For every formula F and every substitution S the following hold:
1. E(F S) = E(F E◦S),
2. E(F S) = E(F )S if constants do not appear in Im(S).
Another observationwe need is that, in order to prove the lemma, one can assume
that S is defined on all variables appearing in Γ ∪ {F }: in case S is undefined on a
variable X , extend it to map X to itself.
For a restriction � let S� be the substitution mapping X ∈ Dom(S) to S(X )� ,
and let S � � be the substitution mapping X ∈ Dom(S) to S(X ) � �. Observe
that S � � is the disjoint union of a restriction � and a substitution S′ such that
constants do not appear in Im(S′). Then for everyH ∈ Γ ∪ {F } we have

HS � � = E(HS� ) = E(HS��) = E((H�)S′ ) = (H � �)S′ . (1)

The first equality holds because, by the comment after the claim, S is defined on
all variables of H , the second holds by part 1 of the Claim noting E ◦ S� = S � �,
the third holds because S � � is the disjoint union of � and S′, and the fourth holds
by part 2 of the Claim.
We are ready to show that ΓS strongly implies F S . Let � be a restriction and
assume GS � � = 1 for every G ∈ Γ. By (1) we have (G � �)S′ = 1 and hence
G � � = 1 for everyG ∈ Γ.SinceΓ strongly impliesF thus 1 = F � � = (F � �)S′ =
F S � � where the last equality holds again by (1). �
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Remark 2.2. Let F be a CNF and let F ′ be the DNF that is obtained by
distributing the conjunctions over the disjunctions in the straightforward way.
In other words, if F =

∧
i Ci , where each Ci is a clause, then F

′ is the disjunction
of all the terms that are obtained by conjoining exactly one literal from each Ci .
Obviously,F andF ′ are logically equivalent.Wepoint out that they are also strongly
equivalent. To see this just note that a restriction that makes F true must make true
at least one literal from each clause, and that a restriction that makes F ′ true must
make true all the literals of at least one of its terms.

2.4. Semantic refutations and strongly sound refutations. A semantic proof of F
fromΓ is a sequence F0, . . . , Fm−1 of formulas such thatF = Fm−1 and for every i ∈
[m] either Fi is in Γ, or Fi is an elementary tautology (X ∨¬X ) for some variableX ,
or there is a set Δ ⊆ {Fj | j ∈ [i ]} with at most two elements such that Δ logically
implies Fi . The proof is strongly sound (cf. [34]) if in the third case Δ strongly implies
Fi (see the previous section). We speak of a (k-)DNF-proof if all Fi with i ∈ [m] are
(k-)DNFs. A refutation is a proof of 0. The proof has size

∑
i∈[m] |Fi | and lengthm.

Remark 2.3. Length is not a very interesting measure for strongly sound seman-
tic DNF-refutations because if Γ is a contradictory set of clauses, or even a
contradictory set of DNFs, then there always is a short strongly sound seman-
tic DNF-refutation of Γ. To see this, suppose that G0, . . . , Gm−1 enumerates Γ,
wherem = |Γ|. The refutation is F0, . . . , Fm with F0 := G0 and Fm := 0, and Fi+1 a
DNF that is strongly equivalent to (Fi ∧Gi+1) for 0 < i < m− 1. More precisely, if
Fi =

∨
j Tj for termsTj andGi+1 =

∨
k T

′
k for termsT

′
k , thenFi+1 =

∨
j,k(Tj∧T ′

k).
It is easy to see that Fi and Gi+1 strongly imply Fi+1. The length of this refutation
is m + 1, where m is the cardinality of Γ (but its size is exponential in the size∑
i∈[m] |Gi | of Γ).

For a natural k ≥ 1, an R(k)-refutation of Γ is a refutation of Γ such that every
formula is a k-DNF that either is in Γ, or is an elementary tautology (X ∨ ¬X )
for some variable X , or is obtained from earlier formulas by an application of the
cut rule or the weakening rule or the ∧-introduction rule (cf. [20] for a definition).
An R(log)-refutation is an R(k)-refutation with k ≤ log s , where s is the size of
the proof. Note that R(k)-refutations, and hence R(log)-refutations are strongly
sound.

2.5. Decision trees. A decision tree is a finite, rooted, ordered tree whose inner
vertices are labeled by atoms, whose leafs are labeled by 0 or 1, and such that no
atomoccurs twice in a branch (i.e., a path from the root to some leaf); we say the tree
queries an atom if the atom occurs as a label. Each inner vertex has two successors
(i.e., immediate successors on a branch). Since the tree is ordered we can distinguish
between a left and a right successor of an inner vertex. By a 0-branch (1-branch) we
mean a branch leading to a leaf labeled 0 (labeled 1). Every path � from the root
to some vertex corresponds to the following restriction that we also denote by �: if
an atom occurs as a label of a vertex p in the path �, then the restriction sets this
atom to 0 if the left successor of p is in � and to 1 if the right successor of p is in
�; if � contains no successor of p, then the restriction does not evaluate the atom.
When we say that a restriction or a branch extends the path � we mean extension as
restrictions.
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A decision tree T represents a formula F if F � � = b for every b ∈ {0, 1} and
every b-branch � of T . We let h(F ) denote the minimal height of a decision tree
representing F . A decision tree could represent a formula but query variables that
do not even appear in the formula. However there is not much point in doing that:

Lemma 2.4. Every formula F is represented by a decision tree of height at most
h(F ) that queries only variables appearing in F .

The following lemma is also easy to verify.

Lemma 2.5. Let T0 andT1 be decision trees of heights h0 and h1, respectively. Then
there exists a decision tree T of height at most h0 + h1 such that

(a) every 0-branch ofT extends a 0-branch ofT0 or it extends a 0-branch ofT1; and
(b) every 1-branch of T extends both a 1-branch of T0 and a 1-branch of T1.

Although we do not actually use it, we remark that if T0 and T1 represent the
formulas F0 and F1, then the decision tree T of Lemma 2.5 represents F0 ∧ F1.

§3. Resilient expanders. In this section we discuss the sort of expander graphs
that we need. In short, these are unbalanced low-degree bipartite expanders that
satisfy an additional robustness condition: for at least half the subsets of vertices
of some fixed size on the right-hand side, the graph remains an expander if these
vertices are removed. Let us note that a similar definition was implicit in [6] which
was later revisited in [34]. However, both these concepts were very tied to their
specific application to proof complexity. Here we provide a more systematic and
general treatment.

3.1. Definition and some basic properties. Let G = (U,V,E) be a bipartite graph
with |U | = t and |V | = n, where t ≥ n. Let b be a positive real and let q and r
be naturals such that 0 ≤ q ≤ n/(1 + b) and 0 ≤ r ≤ n. Recall that G is a (q, b)-
expander if |NG(S)| ≥ (1 + b)|S| for every q-element subset S ⊆ U . We say thatG
is a (q, b, r)-resilient expander if for a random r-element subset B ⊆ V we have that
G \ B is a (q, b)-expander with probability bigger than 1/2.
The choice of 1/2 here is arbitrary; any constant in the open interval (0, 1) would
serve our purposes. However, observe that if we were to require that G \ B is a
(q, b)-expander with probability 1 over the choice ofB, then the minimum degree of
G would have to exceed r. Later we will see that for the less demanding requirement
of probability strictly smaller than 1 we can afford a much smaller degree.
A first property to note is that if G is a (q, b, r)-resilient expander, then G ∩ C
is also a (q, b, r)-resilient expander for every C ⊆ U . In other words, the property
is hereditary under taking subsets of the left-hand side. Similarly, if it is a (q, b, r)-
resilient expander then it also is a (q′, b′, r′)-resilient expander for all q′ ≤ q,
all positive b′ ≤ b, and all r′ ≤ r. The Lemma 3.1 proves the only nontrivial case
of this statement.

Lemma 3.1. If G is a (q, b, r)-resilient expander, then G is a (q, b, s)-resilient
expander for all s ≤ r.
Proof. Fix s ≤ r. Call a set B ⊆ V good if G \ B is a (q, b)-expander. Observe
that any subset of a good set is good. Assume at least half the r-element subsets ofV
are good. Each good r-element set contains exactly

(
r
s

)
many good s-element sets,
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and each such s-element set appears in at most
(
n−s
r−s
)
many good r-element sets.

Therefore, the number of good s-element sets is at least 12
(
n
r

)(
r
s

)
/
(
n−s
r−s
)
. Expanding

the binomials, one sees this is precisely 12
(
n
s

)
. �

3.2. Existence. We prove that random bipartite graphs with the appropriate
parameters are resilient expanders. For naturals t, n, and d , let G = G(t, n, d )
be the random bipartite graph (U,V,E) with U = [t] and V = [n] defined by the
following random experiment: for each u ∈ U choose a d -element subset Nu of V
uniformly and independently at random, and declare each v ∈ Nu a neighbor of u.
Lemma 3.2. Let ε and b be positive reals, let t, n, q, r, and d be naturals such

that t ≥ n > 1 + 2/ε, q ≤ n/12(1 + b), r ≤ n/12, and n ≥ d ≥ (log t + (3 + b)
log n)/(log n − log(3(1 + b)q + 3r)), and let G = G(t, n, d ). Then

P[ G is a (q, b, r)-resilient expander ] > 1− ε.

Before we prove this, let us look at some special cases to illustrate the complicated
expressions in the hypothesis. Think of ε and b as positive constants and think of
all other parameters as functions of n. If t = O(n), q = Ω(n), and r = Ω(n),
then the required lower bound on the degree d is O(log n). On the other hand,
if still t = O(n) but q = n1−Ω(1) and r = n1−Ω(1), then the required lower bound
on the degree is only O(1). For our application we will have t = 2n, q = n1−Ω(1)

and r = Θ(n/ log n), in which case the required lower bound on the degree is
O(log n/ log log n).
To prove Lemma 3.2 we rely on the following probabilistic fact. Let X be a

random variable that takes all of its values x with positive probability. Given an
event E , recall that P[ E | X ] is the random variable f ◦X , where f is the function
defined by f(x) = P[ E | X = x ] for every value x of X .
Lemma 3.3. Let p be a real such that 0 < p < 1, let E be an event and let X be a

random variable. Then

P[ P[ E | X ] > p ] ≥ 1
1− p · (P[ E ]− p) .

Proof. Since P[ E | X ] takes values in [0, 1] we have

E[ P[ E | X ] ] ≤ P[ P[ E | X ] > p ] · 1 + (1− P[ P[ E | X ] > p ]) · p.

On the other hand, direct calculation shows E[ P[ E | X ] ] = P[ E ]. This implies
the lemma. �
Proof of Lemma 3.2. Let B be an r-element subset of V chosen uniformly at

random and independently from G. In the following we let B range over values of
B. Let E be the event thatG\B is a (q, b)-expander. Observe that the event thatG is
a (q, b, r)-resilient expander equals the event that P[ E | G ] > 1/2. By Lemma 3.3
it thus suffices to show that

P[ E ] > 1− ε
2
. (2)

Fix B and let EB denote the event thatG\B is a (q, b)-expander. Further, fix two
sets S ⊆ U and T ⊆ V \ B of cardinalities i ≤ q and j < (1 + b)i , respectively.
Recall thatNG(S) denotes the neighbors of S in the random graph G. Then
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P[ NG(S) ⊆ T ∪ B ] ≤
((
j+r
d

)(
n
d

)
)i

≤
(
(j + r)e
n

)di
;

here we use
(
j+r
d

)
≤
(
(j + r)e/d )

d
and

(
n
d

)
≥ (n/d)d . By the union bound over

(nonempty) S ⊆ U and T ⊆ V \ B of the appropriate cardinalities we have

P[ EB ] ≤
q∑
i=1

(
t

i

) �(1+b)i�∑
j=1

(
n

j

)(
(j + r)e
n

)di
. (3)

The term
(
n
j

)
· ((j + r)e/n)di in the internal sum in (3) is bounded by nj ·

((j + r)e/n)di , which is an increasing function of j. Plugging in the largest possible
j and multiplying by the number of terms, the internal sum in (3) is at most

(1 + b)i · n(1+b)i ·
(
(1 + b)ie + re

n

)di
≤
(
n2+b ·

(
3(1 + b)q + 3r

n

)d)i
.

Hereweuse 1 ≤ i ≤ q and q ≤ n/12(1+b) so that (1+b)i ≤ n and (1+b)i ·n(1+b)i ≤
n(2+b)i . Crudely bounding

(
t
i

)
by ti , we conclude that (3) is bounded by

q∑
i=1

(
t · n2+b ·

(
3(1 + b)q + 3r

n

)d)i
.

From q ≤ n/12(1 + b) and r ≤ n/12 we conclude that the fraction is bounded by
1/2 and hence is strictly smaller than 1. From d ≥ (log t + (3 + b) log n)/(log n −
log(3(1 + b)q + 3r)) we conclude that (3) is bounded by

∞∑
i=1

(
1
n

)i
=

1
n − 1 .

At this point we proved that P[ EB ] ≤ 1/(n − 1) for every B. This implies (2),
because

P[ E ] =
∑
B

P[ EB and B = B ] =
∑
B

P[ EB ] · P[ B = B ] ≤ 1
n − 1 <

ε

2
.

Here, the second displayed equality is due to the independence of the events EB and
B = B, and the last inequality is due to n > 1 + 2/ε. �

3.3. Left and right degrees. Besides being a resilient-expander, we often need
our graph to have low right-degree. This is guaranteed in a random graph by the
following easy calculation:

Lemma 3.4. Let ε be a positive real, let t, n, d and d ′ be naturals satisfying
t ≥ n ≥ d and n(tde/nd ′)d ′ < ε, and let G = G(t, n, d ). Then

P[ G has right-degree smaller than d ′ ] > 1− ε.

Proof. For fixed vertices u ∈ U and v ∈ V , the probability that (u, v) is an edge
in G is

(
n−1
d−1
)
/
(
n
d

)
= d/n. Moreover, for fixed v ∈ V , these events are mutually

independent as u ranges over U . By the union bound over all d ′-element subsets
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of U , this means that the probability that the degree of v is at least d ′ is bounded
by
(
t
d ′
)
(d/n)d

′
. By the union bound over v, the probability that the right-degree

is at least d ′ is bounded by n
(
t
d ′
)
(d/n)d

′
. The lemma follows from the bound(

t
d ′
)
≤ (te/d ′)d ′ and the hypothesis that n(tde/nd ′)d ′ < ε. �
As mentioned earlier, in our application of Lemma 3.2 we will have b = O(1),

t = 2n, q = n1−Ω(1), and r = Θ(n/ log n), in which case the required lower bound
on d is O(log n/ log log n). Setting d = �log n� satisfies this lower bound and
Lemma3.4 gives right-degreed ′ = O(log n). Therefore, for the setting of parameters
b, t, q, and r of our interest, there exists a (q, b, r)-resilient expander with left-
degreeO(log n) and right-degreeO(log n). Let us argue now that having a (q, b, r)-
resilient expander with right-degree O(log n) but left-degree o(log n/ log log n) is
impossible.
Suppose G is an (t, n, dL, dR)-graph that is a (q, b, r)-resilient expander where b,

t, q, and r are as above and dR = O(log n). Then there exist at least t/(dL · dR)
vertices in U with pairwise disjoint neighborhoods in V . Let B̃ be a random subset
of V obtained by placing each vertex in it independently with probability r/n.
For a fixed vertex u ∈ U , the probability that B̃ contains all the neighbors of u is
at least (r/n)dL . Moreover, these events are mutually independent for vertices from
U that have pairwise disjoint neighborhoods in V . Therefore, the probability that
B̃ does not contain all the neighbors of any vertex in U is bounded by

(
1−

( r
n

)dL) t
dL·dR

≤ exp
(
−
( r
n

)dL
· t

dL · dR

)
.

The probability of this event for a random r-element subset B ⊆ V is at most a
multiplicative factor 3

√
r bigger (see equation (6) in Section 4). SinceG is a (q, b, r)-

resilient expander, the probability of this event for B is at least 1/2. But since t ≥ n,
r = Ω(n/ log n) and dR = O(log n), this is possible only if dL is Ω(log n/ log log n).

§4. Lower bound. In this section we develop the proof of Theorem 1.1 as outlined
in the introduction.

4.1. Killing large conjunctions. Let t be a natural such that n < t < m. Let
� = �(t) be the random restriction2 on the variables of PHPm,tn defined by the
following random experiment:

1. choose a subset A ⊆ [m] uniformly at random among all t-element subsets
of [m];

2. let � be the restriction that maps every Ru to 1 if u ∈ A and to 0 otherwise;
3. extend � to the auxiliary variables S such that THt(R,S) is satisfied;
4. extend � bymapping everyPu,v with u ∈ [m]\A and v ∈ [n] to 1 independently
with probability 1/2 and to 0 otherwise.

In the following, by a pigeon variablewemean a variablePu,v foru ∈ [m] and v ∈ [n];
we say Pu,v mentions pigeon u; a formulamentions a pigeon if so does some variable

2Of course, by a random restriction we mean a random variable whose values are restrictions.
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occurring in it. For later use, note that if � is a realization of �, then PHPm,tn � �
and PHPtn are the same formula up to renaming of pigeons

3.

Lemma 4.1. Let p be a natural such that p < t and p < m − t, and T be a term
that mentions at least p many pigeons. Then

P
[
T � � �= 0

]
≤
(
1
2
+

t

m − p

)p
.

Proof. Choose p literals in T mentioning pairwise different pigeons. Let P be
the set of pigeons mentioned by these literals, and for every u ∈ P let 
u be the
literal chosen for pigeon u. Consider the events E := “�(
u) �= 0 for all u ∈ P \A”,
and Fi := “|P \ A| = i”, where i ∈ {0, . . . , p}. Note that P[ T � � �= 0 ] ≤ P[ E ]
and

P[ E ] =
p∑
i=0

P[ E | Fi ] · P[ Fi ] =
p∑
i=0

1
2i

·
(
p
i

)(
m−p
t−p+i

)
(
m
t

) .

For naturals m ≥ k we write mk for the falling factorial mk := m · (m − 1) · · ·
(m − k +1). Note that our assumptions on p ensurem − p > t − p+ i > 0. Using
0 ≤ i ≤ p and noting mp = mi · (m − i)p−i , we have(

m−p
t−p+i

)
(
m
t

) =
(m − t)i
mi

· tp−i

(m − i)p−i
≤ tp−i

(m − i)p−i
≤
(
t

m − p

)p−i
.

Replacing, and using the binomial formula, the probability we want is bounded by

p∑
i=0

(
p

i

)(
1
2

)i (
t

m − p

)p−i
=
(
1
2
+

t

m − p

)p
. �

Lemma 4.2. Let p and s be naturals such that s < p < t, and T be a term that
mentions at most p many pigeons. Then

P
[
T � � mentions more than s many pigeons

]
≤
(
p

s + 1

)( t
m

)s+1
.

Proof. For any s+1pigeon variables inT mentioning pairwise different pigeons,
the probability that they all remain unset by � is(

m−s−1
t−s−1

)
(
m
t

) =
ts+1

ms+1
≤
( t
m

)s+1
.

The claim thus follows by the union bound. �

4.2. Restriction to a graph and binary encoding. Let t be a natural such that
n < t < m and let G = (U,V,E) be a bipartite graph with U = [t] and V = [n].
Consider the following restriction �G : it maps every variable Pu,v to 0 if (u, v) /∈ E

3For this to be true, and even for step 4 in the definition of � to be well-defined, it is crucial that the
auxiliary variables S are disjoint from the pigeon variables P; cf. the discussion after the statement of
the main theorem in Section 1.
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and is undefined on all other variables. Then PHPtn � �G is the CNF with clauses
(1 and) ∨

v∈NG (u) Pu,v for u ∈ U,
¬Pu,v ∨ ¬Pu′ ,v for (u, v), (u′, v) ∈ E with u �= u′.

This formula is commonly denoted by PHP(G) (cf. [10,33]).
Now assume that G is a (U,V, dL, dR)-graph with associated function φG . Write


 := |dL − 1|
for the length of the binary representation of the largest number in [dL].We introduce
a new set of binary pigeon variables Pu;b for u ∈ U and b ∈ [
]. Again, we say that
Pu;b mentions pigeon u, and that a formula mentions the pigeons mentioned by
some atom occuring in it. The intuitive meaning of an assignment to the binary
pigeon variables is that pigeon u flies to hole φG(u, j), where j is the number whose
binary representation is given by the truth values Pu;
−1, . . . , Pu;0, where the truth
value of Pu;0 is the least-significant bit. The formula BPHP(G) has domain clauses
and collision clauses:∨

b∈[
] ¬bit(b,j)Pu;b for (u, j) ∈ U × [2
 ] such that (u, j) �∈ Dom(φG),∨
b∈[
] ¬bit(b,j)Pu;b for (u, j) ∈ Dom(φG) and (u′, j′) ∈ Dom(φG)

∨
∨
b∈[
]¬bit(b,j

′)Pu′ ;b such that u �= u′ and φG(u, j) = φG(u′, j′).

Here, for a variable X we write ¬0X := X and ¬1X := ¬X .
The unary encoding PHP(G) and the binary encoding BPHP(G) are closely

related. Indeed, the formula obtained from PHP(G) by substituting every variable
Pu,v by the term

∧
b∈[
] ¬1−bit(b,j)Pu;b , where j ∈ [2
 ] is such that φ(u, j) = v, is the

conjunction of the collision clauses of BPHP(G) and sporadic axioms:∨
j∈JG (u)

∧
b∈[
] ¬1−bit(b,j)Pu;b for u ∈ U with JG(u) := {j ∈ [2
 ] | (u, j) ∈ Dom(φG)}.

The following lemma states that these sporadic axioms are redundant:

Lemma 4.3. Every sporadic axiom has a strongly sound semantic DNF-proof from
the domain clauses of BPHP(G). The length of the proof is at most 3 · 2
 and every
term appearing in the proof mentions only one pigeon.
Proof. Fix u ∈ U . For 1 ≤ i ≤ 
 , let Fi be the DNF formula

∨
j∈[2i ]

∧
b∈[i]

¬1−bit(b,j)Pu;b . Then F1 = (Pu;0 ∨¬Pu;0) and, for 1 ≤ i ≤ 
 − 1, the formula Fi+1 is
strongly implied by Fi and the elementary tautology (Pu;i ∨ ¬Pu;i ). It follows that
F
 has a strongly sound proof of length 2
 − 1.
The sporadic axiom is obtained from F
 by eliminating the terms for j such

that (u, j) /∈ Dom(φG) one after the other. Note that a DNF with a term∧
b∈[
] ¬1−bit(b,j)Pu;b such that (u, j) /∈ Dom(φG) together with the domain clause
for (u, j) strongly implies theDNF obtained by deleting the term. In total this needs
at most another 2 · 2
 steps. �
We note also that the elementary tautologies (Pu,v ∨¬Pu,v) for (u, v) ∈ E become

DNFs that we call assignment tautologies:

(
∧
b∈[
]¬1−bit(b,j)Pu;b) ∨ (

∨
b∈[
] ¬bit(b,j)Pu;b) for (u, j) ∈ Dom(φG).
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These assignment tautologies are also redundant:

Lemma 4.4. Every assignment tautology has a strongly sound semantic DNF-proof
from no assumptions. The length of the proof is 2
 − 1 and every term appearing in
the proof mentions only one pigeon.

Proof. Fix (u, j) ∈ Dom(φG). For 1 ≤ i ≤ 
 , let Gi be the formula (
∧
b∈[i]

¬1−bit(b,j)Pu;b)∨(
∨
b∈[i] ¬bit(b,j)Pu;b). ThenG1 = (Pu;0∨¬Pu;0) andG
 is the assign-

ment tautology corresponding to (u, j). Moreover, for 1 ≤ i ≤ 
 − 1, the formula
Gi+1 is strongly implied byGi and the elementary tautology (Pu;i ∨¬Pu;i ). It follows
that G
 has a strongly sound proof of length 2
 − 1. �

4.3. Killing large disjunctions. Let t be a natural such that n < t < m and let
G = (U,V,E) be a (t, n, dL, dR)-graph with associated function φG . Let r be a
natural such that 1 ≤ r ≤ n. We define a random restriction � = �(G, r) on the
variables of BPHP(G) by the following random experiment:

1. independently for every v ∈ V , choose a pigeon Qv ∈ NG (v) uniformly at
random;

2. independently, choose an r-element subset B ⊆ V uniformly at random;
3. letM := {(Qv, v) | v ∈ B andQv �= Qv′ for all v′ ∈ B \ {v}};
4. let � be the restriction associated with the matchingM.

Here, the restriction � associated with a matchingM ofG maps for every (u, v) ∈
M and b ∈ [
] the variable Pu;b to bit(b, j), where j is such that φG(u, j) = v; it
is undefined on all other variables. Call a formula F matching-satisfiable (in G) if
F � � = 1 for some such restriction �.
Two formulas F and F ′ are very disjoint (in G) if NG (P) and NG (P′) are dis-
joint, where P ⊆ U and P′ ⊆ U are the sets of pigeons mentioned by F and F ′,
respectively.

Lemma 4.5. Let s and w be naturals such that r ≥ s ≥ 1 and w ≥ 1. Further,
let F =

∨
Γ where Γ contains at least w matching-satisfiable, pairwise very disjoint

formulas each mentioning at most s pigeons. Then

P
[
F � � �= 1

]
≤ 3

√
r · exp

(
−w ·

(
r

dR · n

)s
·
(
1− r
n

)dL·s)
.

Proof. Define the random variables B̃, (Q̃v)v∈V , M̃, �̃ similarly as above but
letting B̃ be the random subset of V that contains every v ∈ V independently with
probability r/n. Let B̃v denote the indicator variable for the event that v ∈ B̃; note
that the indicator variables are independent.
Fix a matching-satisfiable formula F ′ ∈ Γ mentioning at most s pigeons. Choose
a minimal matchingM such that F ′ � � = 1, where � is the restriction associated
with M . Write M0 := Dom(M ) and M1 := Im(M ). Then, by minimality of M ,
the domainM0 is included in the set of pigeons P ⊆ U mentioned by F ′. Observe
that the event that F ′ � �̃ = 1 is implied by the event thatM ⊆ M̃. The latter event
is implied by the intersection of

E1 := “B̃v = 1 for every v ∈M1”, and
E2 := “Q̃v =M−1(v) for every v ∈M1”
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and the event that Q̃v /∈ M0 for every v ∈ B̃ \ M1. Thus, it is implied by the
intersection of E1, E2 and

E3 := “B̃v = 0 for every v ∈ NG (M0) \M1”.
Now, the probability of E1 is at least (r/n)s , the probability of E2 is at least (1/dR)s ,
and the probability of E3 is at least (1− r/n)dL·s , the last because |NG (M0) \M1| ≤
dL · s . These three events are independent. Hence

P[ E1 ∩ E2 ∩ E3 ] ≥
( r
n

)s
·
(
1
dR

)s
·
(
1− r
n

)dL·s
=: p.

The event E1 ∩ E2 ∩ E3 depends only on the variables Q̃v and B̃v with v ∈
NG (M0) ⊆ NG(P). Thus, for a family of pairwise very disjoint formulas in Γ, the
events are independent. Using the assumption of the lemma,

P[ F � �̃ �= 1 ] ≤ (1− p)w ≤ exp(−wp). (4)

Writing B(m, q)(k) =
(
m
k

)
qk(1− q)m−k for the binomial distribution, we have

P[ F � �̃ �= 1 ] ≥ P[ |B̃| = r ] · P[ F � �̃ �= 1 | |B̃| = r ] = B
(
n,
r

n

)
(r) · P[ F � � ].

(5)

UsingRobbins’ [32] version of Stirling’s formula, one can derive the following bound
(see also [11, p.4, Eq. (1.5)]):

B
(
n,
r

n

)
(r) ≥ 1

e1/6
· 1√
2�

·
(

n

r(n − r)

)1/2
≥ 1
3
1√
r
. (6)

Combining (4), (5), and (6) yields the lemma. �

4.4. Switching lemma. Associate with a DNF F the hypergraphH(F ) which has
as universe the set of variables of F and which has for each term T in F a hyperedge
consisting in the variables of T . The covering number cv(F ) of F is the size of a
smallest hitting set ofH(F ).
Lemma 4.6. Let F be a k-DNF in the binary pigeon variables. Then F contains at

least cv(F )

·k·dL·dR many pairwise very disjoint terms.

Proof. Let T be a maximal family of very disjoint terms in F . Let P be the set of
pigeons mentioned by

∨
T . Then the set of all pigeon variables mentioning pigeons

in NG (NG(P)) is a hitting set of H(F ). Noting that NG(NG (P)) has cardinality at
most |P| · dL · dR and |P| ≤ |T | · k we get

cv(F ) ≤ 
 · |NG(NG (P))| ≤ |T | · 
 · k · dL · dR

and the lemma follows. �
Interest in the covering number stems from the following lemma proved by

Segerlind, Buss, and Impagliazzo [34] (see also the survey [33, Corollary 9.3]).
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Lemma 4.7 ([34]). Let k, h, and c be positive naturals and let 
 be a positive real.
Let Γ be a set of k-DNFs that is closed under restrictions and assume that � is a
random restriction such that P[ F � � �= 1 ] ≤ c · 2−
·cv(F ) for every F in Γ. Then

P
[
h(F � �) > h

]
≤ c · k · 2−(
/4)k·h

for every F in Γ.
In the above statement, recall h(F ) denotes the minimal height of a decision tree
representing the formula F . For what follows, we need to define a generalization
of the notion of representation by decision trees, and the corresponding notion of
height.
Let F be a formula, let C be a set of restrictions, and let T be a decision tree. We
say that T C-represents F if it queries only variables from F and
1. for every 1-branch � of T and every � ∈ C extending � we have F � � = 1,
2. for every 0-branch � of T and every � ∈ C extending � we have F � � �= 1.
The minimal height of a decision tree that C-represents F is denoted h(F ; C).
Remark 4.8. If C′ ⊆ C then every tree that C-represents F also C′-represents F ;
in particular, h(F ; C′) ≤ h(F ; C). For all C wehaveh(F ; C) ≤ h(F ) (by Lemma 2.4).
If C = ∅, then h(F ; C) = 0. A formula without variables is C-represented by and
only by the one node tree labeled with its truth value.

We need some notation. For a matching M in G let �M denote the restriction
associated with M (cf. Section 4.3); the set of restrictions of this form isM(G).
If G is clear from context andM is a matching in G , we write

M(M ) :=M(G \ (Dom(M ) ∪ Im(M ))).
Observe that � belongs toM(M ) if and only if � ∪ �M belongs toM(G).
For a DNF-formula F in the variables of BPHP(G), let FM(G) be the disjunction
of all terms T of F for which there exists a � inM(G) such thatT � � = 1. Observe
that the terms of FM(G) are precisely the matching-satisfiable (in G) terms of F .
We need the following lemma:
Lemma 4.9. Let M be a matching in G and F a DNF. Every decision tree that

M(M )-represents FM(G) � �M alsoM(M )-represents F � �M .
Proof. Let T M(M )-represent FM(G) � �M .
Let � be a 1-branch of T and let �N inM(M ) be such that �N ⊇ �. Since T

M(M )-represents FM(G) � �M we have that (FM(G) � �M ) � �N = 1. Since FM(G)
is obtained by deleting some terms from F we get also (F � �M ) � �N = 1.
Let � be a 0-branch of T and let �N inM(M ) be such that �N ⊇ �. Assume
for contradiction that (F � �M ) � �N = 1. Then there is a term T in F such that
(T � �M ) � �N = 1. But M ∪ N is a matching in G and (T � �M ) � �N = T �
�M∪N . Hence T is matching-satisfiable (in G) and thus appears in FM(G). Hence
(FM(G) � �M ) � �N = 1 and this contradicts the fact that T M(M )-represents
FM(G) � �M . �
4.5. Matching game. In the next section we show that if G is a good expander,
then all the refutations of BPHP(G) involve some formula that cannot be repre-
sented by a shallow decision tree. For its proof we use the matching games from [9]
later simplified in [5]. Here we provide even cleaner proofs.
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LetG be a (U,V, dL, dR)-graph.ForS ⊆ U andT ⊆ V , we say thatS is matchable
into T if there exists a matching M of G with S ⊆ Dom(M ) and Im(M ) ⊆ T .
If S is not matchable into T but every proper subset of S is, we call it minimally
nonmatchable. For a matchingM and a natural q > 0, we say thatM is q-extendible
if every S ⊆ U \Dom(M ) of cardinality at most q is matchable into V \ Im(M ).
Lemma 4.10. Let q > 0 be a natural. IfM is a q-extendible matching and (u, v) is

an edge inM , thenM \ {(u, v)} is a q-extendible matching.
Proof. Write M0 := Dom(M ) and M1 := Im(M ) and note that u ∈ M0 and

v ∈ M1. Let S′ be a subset of U \ (M0 \ {u}) of cardinality at most q. We need to
show that S′ is matchable into V \ (M1 \ {v}). We consider two cases: u ∈ S′ and
u �∈ S′. In case u ∈ S′, using that u ∈M0, we have thatS′ \{u} is a subset ofU \M0
of cardinality at most q. SinceM is q-extendible, S′ \ {u} is matchable into V \M1.
But then, using that v ∈ M1, the set S′ is also matchable into V \ (M1 \ {v}) by
adding (u, v) to the matching that witnesses this. In case u �∈ S′ then S′ is a subset
of U \M0 of cardinality at most q. SinceM is q-extendible we conclude that S′ is
matchable into V \M1, and hence into V \ (M1 \ {v}). �
For a natural q > 0 and a real b > 0, the graph G is a (q, b)-expander if

|NG (S)| ≥ (1 + b)|S| for every S ⊆ U of cardinality at most q.
Lemma 4.11. Let q > 0 be a natural and b > 0 a real. If G is a (q, b)-expander,

M is a q-extendible matching with |M | < 	qb/dL
 and u ∈ U \Dom(M ), then there
exists v ∈ NG (u) \ Im(M ) such thatM ∪ {(u, v)} is a q-extendible matching.
Proof. Again write M0 := Dom(M ) and M1 := Im(M ). Let v1, . . . , vl be an

enumeration of NG(u) \M1. SinceM is q-extendible and q ≥ 1, we have that {u}
is matchable into V \M1, so l ≥ 1. Clearly,M ∪ {(u, vi)} is a matching for every
i ∈ {1, . . . , l}. Assume for contradiction thatM ∪ {(u, vi)} is not q-extendible for
any i ∈ {1, . . . , l}. For every i ∈ {1, . . . , l} let Si be a subset of U \ (M0 ∪ {u})
of cardinality at most q that is minimally nonmatchable into V \ (M1 ∪ {vi}). By
Hall’s Theorem and the minimality of Si we have |NG(Si )\ (M1∪{vi})| < |Si |, and
hence |NG (Si)| < |Si | + (qb/dL − 1) + 1. On the other hand |Si | ≤ q, and hence
|NG (Si )| ≥ (1 + b)|Si | by expansion of G . These together imply |Si | < q/dL and
hence |Si | < q/l because 1 ≤ l ≤ dL. Since this holds for every i ∈ {1, . . . , l}we get
|S| ≤ q forS :=

⋃l
i=1 Si∪{u}. SinceM is q-extendible andS ⊆ U \M0 we conclude

that S is matchable into V \M1. A matchingM ′ witnessing this matches u to vi for
some i ∈ {1, . . . , l}. AsM ′ matches Si into V \M1 while Si is nonmatchable into
V \ (M1∪{vi}), necessarilyM ′ matches some ui ∈ Si to vi . SinceM ′ is a matching,
u = ui ; an absurdity since ui ∈ Si while u /∈ Si . �

4.6. Adversary argument. Let G be a (U,V, dL, dR)-graph. We derive a lower
bound on the height of formulas in a refutation of BPHP(G) providedG is suitably
expanding. This is done by an adversary argument (cf. [27]) based on Lemmas 4.10
and 4.11.
Recall thatM(G) denotes the set of restrictions �M associated with matchings

M in G (cf. Section 4.4).

Lemma 4.12. Let q > 1 be a natural and b > 0 a real and letG be a (q, b)-expander.
Assume F0, . . . , Fs−1 is a strongly sound refutation of BPHP(G) such that every
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Fi with i ∈ [s] is a formula in the variables of BPHP(G). Then there exists i ∈ [s]
such that

h(Fi ;M(G)) > 1
3	qb/dL
.

Proof. For the sake of contradiction assume that for every i ∈ [s] there exists
a decision tree Ti of height at most 13	qb/dL
 that M(G)-represents Fi . Since
Fs−1 = 0, the tree Ts−1 is the tree with one node labeled 0.

Claim. Let i ∈ [s] be such that Fi is neither a clause in BPHP(G) nor an
elementary tautology of the form (Pu;b ∨ ¬Pu;b) for a u ∈ U and b ∈ [
]. Further
assume that M is a q-extendible matching of size |M | ≤ 1

3	qb/dL
 such that �M
extends some 0-branch of Ti . Then there exists i ′ ∈ [i ] and a q-extendible matching
M ′ of size |M ′| ≤ 1

3	qb/dL
 such that �M ′ extends some 0-branch of Ti′ .

Proof of the Claim. Let i and M accord the assumption. In particular Fi �
�M �= 1. Then Fi is not strongly implied by ∅. Hence there exist (not necessarily
distinct) j and k in [i ] such that Fi is strongly implied by {Fj, Fk}. Choose T for Tj
andTk according Lemma 2.5. In particular,T has height atmost 23	qb/dL
. Given a
path � in T starting at the root, call a matching appropriate for � if it is q-extendible,
containsM , its associated restriction extends �, and its domain is Dom(M )∪P(�),
where P(�) is the set of pigeons mentioned by some variable queried in �.

Subclaim. There exists a branch � of T and a matchingM� appropriate for �.

The Subclaim implies the Claim: by M� ⊇ M we have �M� ⊇ �M , so �M�
extends a 0-branch of Ti (as �M does). Since Ti M(G)-represents Fi , we have
Fi � �M� �= 1. As Fi is strongly implied by {Fj, Fk} there is i ′′ ∈ {j, k} such that
Fi′′ � �M� �= 1. Then �M� and hence � does not extend a 1-branch of Ti′′ . By choice
of T (Lemma 2.5 (a)) thus, � is a 0-branch. Then there is i ′ ∈ {j, k} such that
� extends a 0-branch �′ of Ti′ (Lemma 2.5 (b)). Let M ′ be the restriction of M�
to P(�′). ThenM ′ is a q-extendible matching (by Lemma 4.10), |M ′| ≤ 1

3	qb/dL

(as |P(�′)| ≤ 1

3	qb/d
), and clearly �M ′ extends �′, that is, M ′ and i ′ satisfy the
Claim.
We are left to prove the Subclaim. Observe thatM is an appropriate matching
for the path � consisting only in the root of T . To prove the subclaim it thus suffices
to show that if we have a path � with appropriate matching M� such that � does
not lead to a leaf of T then we can extend � by one node t such that there is an
appropriate matching M�t for the path �t. So let � and M� be as stated, say, �
leads to an inner node t of T querying the variable Pu;b . We distinguish two cases.
In case u ∈ Dom(M�) then �M� evaluates Pu;b ; in this case we prolong � by the
corresponding successor t′ of t and letM�t′ :=M�. In case u /∈ Dom(M�) we look
for some v such thatM� ∪ {(u, v)} is a q-extendible matching and then proceed as
in the first case. Such a v can be found because Dom(M�) = Dom(M ) ∪ P(�) has
cardinality at most

|Dom(M )|+ |P(�)| ≤ 1
3	qb/dL
+

2
3	qb/dL
 − 1 < 	qb/dL
,

and Lemma 4.11 applies. Here we use that |P(�)| is bounded by the length of �,
and this is at most 23	qb/dL
 − 1 because � leads to an internal node of T and T
has height at most 23	qb/dL
. �
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We observe that M := ∅ and i := s − 1 satisfy the assumptions of the Claim:
Fs−1 = 0 is neither a clause in BPHP(G) nor an elementary tautology, Ts−1 is
the tree with one node labeled 0, so �∅ = ∅ extends a 0-branch of Ts−1, and
obviously |∅| = 0 ≤ 1

3	qb/dL
; finally, that ∅ is q-extendible follows from G being a
(q, b)-expander and Hall’s Theorem.
The Claim implies that there exist i ∈ [s] and M such that Fi is a clause in

BPHP(G) or an elementary tautology of the form (Pu;b ∨ ¬Pu;b) for a u ∈ U and
b ∈ [
], andM is a q-extendible matching such that �M extends a 0-branch of Ti .
ByM(G)-representation there is no matching M ′ ⊇ M such that Fi � �M ′ = 1.
We get the desired contradiction by showing that such M ′ indeed exists. We have
three cases.
Case 1. Fi is a domain clause, say for (u, j) /∈ Dom(φG). Since M is q- and

hence 1-extendible there exists a matchingM ′ ⊇M such that u ∈ Dom(M ′). Then
there is j′ such that φ(u, j′) =M ′(u) and in particular (u, j′) ∈ Dom(φG). Hence
j �= j′ and there is b ∈ [
] such that bit(b, j) �= bit(b, j′). Then �M ′ evaluates Pu;b
to bit(b, j′), and hence ¬bit(b,j)Pu;b � �M ′ = 1. Then Fi � �M ′ = 1.
Case 2. Fi is a collision clause, say for u, u′, j, j′ with u �= u′ and φG(u, j) =

φG(u, j′). Since M is q- and hence 2-extendible there exists a matching M ′ ⊇
M such that u, u′ ∈ Dom(M ′). Since M ′ is a matching, M ′(u) �= φG(u, j) or
M ′(u′) �= φG(u′, j′). Assume the first and choose j′′ such thatM ′(u) = φG(u, j′′).
Then j �= j′′, so bit(b, j) �= bit(b, j′′) for some b ∈ [
]. As above, this implies
¬bit(b,j)Pu;b � �M ′ = 1, so Fi � �M ′ = 1.
Case 3. Fi is an elementary tautology of the form (Pu;b ∨ ¬Pu;b) for u ∈ U and

b ∈ [
]. SinceM is q- and hence 1-extendible there exists a matchingM ′ ⊇M such
that u ∈ Dom(M ′). Then �M ′ is defined on Pu;b and Fi � �M ′ = 1 follows. �
4.7. Proof size lower bound. We prove Theorem 1.1. Let ε > 0 be arbitrary and

write
m := n2, t := 2n, s := (log n)1/2−ε.

Assume for the sake of contradiction that there exists infinitely many n such that
PHPm,tn has a strongly sound semantic DNF-refutation R = Rn of size at most n

s .
For Claim 1 recall the random restriction � = �(t) from Section 4.1.

Claim 1. There exists a realization � of � such that every term in every DNF in
R � � mentions at most s pigeons.
Proof of Claim 1: Call a term long if it mentions more than p := 2s log(n)

pigeons, and short otherwise. By Lemma 4.1, a long term T does not restrict to 0
(under �) with probability at most(

1
2
+

t

m − p

)p
≤ 1
2p

· e
tp

2(m−p) .

But this is smaller than n−s ·1/2 noting tp
2(m−p) ≈ 0 for large enough n. By the union

bound, with probability bigger than 1/2 every long term ofR restricts under � to 0.
ByLemma 4.2, a short term restricts to onementioningmore than smany pigeons

with probability at most (
p

s + 1

)
·
( t
m

)s+1
≤
(pt
m

)s+1
.

https://doi.org/10.1017/jsl.2014.56 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.56


470 ALBERT ATSERIAS, MORITZMÜLLER, AND SERGI OLIVA

But this is smaller than n−s · 1/2 for sufficiently large n. By the union bound, with
probability bigger than 1/2 every short term of R restricts to one mentioning at
most s pigeons. The claim follows. �
Choose � according Claim 1.We already observed in Section 4.1 that, up to some
renaming of pigeons, R � � is a DNF-refutation of PHPtn of size at most ns .
Set

b := 1, q := �
√
n�, r := �n/ log n�, dL := �log n�, dR := 7�log n�.

Recall for later use that 
 := |dL − 1| and therefore 
 is O(log log n). Assuming n is
sufficiently large, the hypotheses of Lemmas 3.2 and 3.4 are satisfied for ε := 1/2 and
imply the existence of a (U,V, dL, dR)-graph G that is a (q, b, r)-resilient expander,
where U = [t] and V = [n].
Recall the restriction �G from Section 4.2. There we observed that PHP

t
n � �G is

PHP(G), so (R � �) � �G is a strongly sound semantic refutation of PHP(G) of size
and hence length at most ns (Lemma 2.1 (1)). Let φG be a map associated with G
as in Section 2.1. To (R � �) � �G apply the substitution mapping Pu,v to the 
-term∧
b∈[
] ¬1−bit(b,j)Pu;b , where j is such thatφG(u, j) = v. By the discussions just before
Lemmas 4.3 and 4.4, the substitution turns the clauses in PHP(G) into collision
clauses of BPHP(G) and sporadic axioms, and the elementary tautologies (Pu,v ∨
¬Pu,v) for (u, v) ∈ E into assignment tautologies. By Lemmas 4.3 and 4.4 we can
add proofs of the sporadic axioms from the domain clauses of BPHP(G), and of the
assignment tautologies from no assumptions; this way we get a semantic refutation
R′ of BPHP(G) of length at most nc1·s for some constant c1. By Lemma 2.1 (2)
and since the added proofs are strongly sound, this refutation R′ is again strongly
sound.
Every term in every DNF in (R � �) � �G mentions at most s pigeons and
becomes, after the substitution, an 
-CNF mentioning at most s pigeons. The
additional proofs added for the sporadic axioms and the assignment tautologies
mention only one pigeon. Hence, all the formulas in R′ are disjunctions of 
-CNFs
each mentioning at most s pigeons. By Remark 2.2, each such formula is strongly
equivalent to a DNF with terms that mention at most s pigeons. Since there are at
most s · 
 binary pigeon variables mentioning some fixed set of at most s pigeons,
this DNF is an 	s · 

-DNF whose terms still mention at most s pigeons. Let R′′ be
the strongly sound semantic refutation that results from replacing each formula in
R′ by its strongly equivalent 	s · 

-DNF whose terms mention at most s pigeons.
Note this does not increase the length, so R′′ has length at most nc1·s .
For Claim 2, let B and � be random variables defined for G as in Section 4.3.

Claim 2. There exists a realization (B,�) of (B,�) such that
(a) h(FM(G) � �) ≤ 1

3	qb/dL
 for all F in R′′, and
(b) G \ B is a (q, 1)-expander.
Proof of Claim 2.Note a random B satisfies (b) with probability bigger than 1/2
because G is (q, b, r)-resilient. It thus suffices to show that for any F in R′′ we have

nc1·s · P[ h(FM(G) � �) > 1
3	qb/dL
 ] ≤

1
2 . (7)

To prove this we intend to apply Lemma 4.7 taking the random restriction � for �
and taking as Γ the set of k-DNFs in the variables of BPHP(G) all of whose terms
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are matching-satisfiable (in G) and mention at most s pigeons. It is easy to see that
Γ is closed under restrictions. Observe that if F is a k-DNF all of whose terms
mention at most s pigeons, then FM(G) belongs to Γ. By Lemmas 4.5 and 4.6, the
assumptions of Lemma 4.7 are satisfied for

k := 	s · 

, h := 	 13qb/dL
, c := �3
√
r�,

and


 :=
(
r

dR · n

)s
·
(
1− r
n

)dL·s
· log(e)

 · k · dL · dR

.

Thus, by Lemma 4.7, we have that P[ h(FM(G) � �) > 1
3	qb/dL
 ] is at most c · k ·

2−(
/4)
k ·h . Note that if n is sufficiently large, then (1 − r/n)dL·s ≥ (1/e)c2·s for

some constant c2 > 0. It is then easy to see that 
/4 ≥ (1/ log n)c3·s , and
hence (
/4)k ≥ (1/ log n)c3·s2·
 ≥ n−1/(log n)ε for some other constant c3 > 0.
As h ≥ n1/3 we get (
/4)k · h ≥ n1/4 for sufficiently large n. Noting c · k ≤ n, then
(7) follows. �

Choose (B,�) according to Claim 2 and recall � = �M for some matching M
in G . Let G ′ := G \ (Dom(M ) ∪ Im(M )), and let U ′ := U \ Dom(M ) and
V ′ := V \ Im(M ). Recall further that R′′ is a strongly sound semantic refutation
of BPHP(G).

Claim 3. R′′ � �M is a refutation of the union of the set of collision clauses of
BPHP(G ′) and the set of disjunctions of at most two domain clauses of BPHP(G ′).

Proof of Claim 3. We analyze how every clause C of BPHP(G) and every
elementary tautology (Pu;b ∨ ¬Pu;b) for u ∈ U and b ∈ [
] restricts under �M .
Assume C is a collision clause for (u, j) ∈ Dom(φG) and (u′, j′) ∈ Dom(φG)

with u �= u′ and φG(u, j) = φG(u′, j′) = v. If v is not in Im(M ) and neither u
nor u′ are in Dom(M ), then C is a collision clause of BPHP(G ′) since (u, j) and
(u′, j′) both belong to Dom(φG′) and φG′(u, j) = φG′(u′, j′) = v. This is ensured
by the definition of the map associated to a restricted graph (see Section 2.1). If v is
in Im(M ), we need to distinguish four cases. If both u and u′ are outside Dom(M ),
thenC is a disjunction of twodomain clauses ofBPHP(G ′) since (u, j) �∈ Dom(φG′)
and (u′, j′) �∈ Dom(φG′). If exactly one of u and u′ is in Dom(M ), say u, and
M (u) �= v, then C � �M = 1 since if j′′ is such that φG(u, j′′) = M (u) then the
binary representations of j and j′′ differ in at least one bit. If exactly one of u and
u′ is in Dom(M ), say u, and M (u) = v, then C � �M =

∨
b∈[
] ¬bit(b,j

′)Pu′ ;b and
this is a domain clause of BPHP(G ′) again because (u′, j′) /∈ Dom(φG′). Finally,
if both u and u′ are in Dom(M ), then C � �M = 1 sinceM (u) �=M (u′) and if j′′
and j′′′ are such that φG(u, j′′) = M (u) and φG(u, j′′′) = M (u′), then the binary
representations of j and j′′ differ in at least one bit, or the binary representations
of j′ and j′′′ differ in at least one bit.
It remains to analyze domain clauses and elementary tautologies. Assume C is

a domain clause for (u, j) �∈ Dom(φG). If u is not in Dom(M ), then C is also a
domain clause of Dom(φG′). If u is in Dom(M ), then C � �M = 1 since if j′ is
such that φG(u, j′) =M (u) then the binary representations of j and j′ differ in at
least one bit. Finally, if C is an elementary tautology (Pu;b ∨ ¬Pu;b) for u ∈ U and
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b ∈ [
], then if u is not in Dom(M ) then u is in U ′, and if u is in Dom(M ) then
C � �M = 1. �

The refutation R′′ � �M from Claim 3 can be turned into a refutation R′′′ of
BPHP(G ′) by deriving the disjunctions of two domain clauses of BPHP(G ′) that
appear in R′′ in one strongly sound step from either of the two domain clauses.
Thus, R′′′ is a strongly sound semantic refutation of BPHP(G ′) (Lemma 2.1 (1)).
Since Im(M ) ⊆ B, Claim 2 (b) implies that G ′ is a (q, 1)-expander. By
Lemma 4.12 there is a formula F ′ in R′′′ such that

h(F ′;M(G ′)) > 1
3	qb/dL
. (8)

In particular F ′ cannot be a domain clause of BPHP(G ′) because otherwise
h(F ′;M(G ′)) ≤ 
 , and for sufficiently large n, this is smaller than the right-hand
side in (8). By the definition of R′′′, it follows that F ′ = F � �M for some F in R′′.
Now, by Remark 4.8, Lemma 4.9, and recallingM(M ) =M(G ′), we have

h(FM(G) � �M ) ≥ h(FM(G) � �M ;M(M )) ≥ h(F � �M ;M(M )) = h(F ′;M(G ′)).

Hence, (8) contradicts Claim 2 (a).

§5. Upper bound. In this section we prove Theorem 1.2 as outlined in the intro-
duction. We assume some elementary familiarity with Buss’ bounded arithmetic
theories (cf. [13, 19]): given a relational language α, its relativized i-th level is
denoted by T i2 (α) and is given by Buss’ theory BASIC and the induction scheme
for Σbi (α)-formulas. In the following let P

′, P, and E be binary relation symbols,
and let R be a unary relation symbol.
We define the first-order formula �mn in the language ofT

2
2 (P

′) as the conjunction
of the following bounded formulas with free first-order variables m and n:

∀x < m ∃y < n P′(x, y),
∀x < m ∀y < m ∀z < n (P′(x, z) ∧ P′(y, z)→ x = y).

Next, we define the first-order formula �q,mn in the language of T 22 (E,R,P) as the
conjunction of the following bounded formulas:

Bq,m1 := ∀x < m ∃y < q E(x, y),
Bq,m2 := ∀x < m ∀y < q ∀z < q (E(x, y) ∧ E(x, z)→ y = z),
Bq,m3 := ∀x < m ∀y < m ∀z < q (E(x, z) ∧ E(y, z)→ x = y),
Bq,m4 := ∀x < m ∀y < q (E(x, y) → R(y)),
Bq,n5 := ∀x < q (R(x)→ ∃y < n P(x, y)),
Bq,n6 := ∀x < q ∀y < q ∀z < n (R(x) ∧R(y) ∧ P(x, z) ∧ P(y, z)→ x = y).

Note that Bq,m1 , B
q,m
2 , B

q,m
3 , and B

q,m
4 havem and q as free first-order variables, and

that Bq,n5 and B
q,n
6 have q and n as free first-order variables.

We give a Δb1-interpretation of �
m
n in �

q,m
n as follows. Set

�(x, y) := ∃z < q (E(x, z) ∧ P(z, y)),

(x, y) := ∀z < q (E(x, z)→ P(z, y)).
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These formulas have q, x and y as free first-order variables. It is straightforward to
check that

|= �q,mn → �mn [P′/�], (9)

|= Bq,m1 ∧ Bq,m2 → ∀x < m ∀y < n (�(x, y)↔ 
(x, y)), (10)

Here, [P′/�] indicates the substitution of atomic subformulas P′(t, t′) for terms
t and t′ by �(t, t′). From [23] we have that T 22 (P

′) |= ¬�2nn . This implies
T 22 (P

′)[P′/�] |= ¬�2nn [P′/�]. By (10),T 22 (E,R,P)∪{Bq,m1 , B
q,m
2 } |= T 22 (P′)[P′/�],

so T 22 (E,R,P) |= (B
q,m
1 ∧ Bq,m2 → ¬�2nn [P′/�]), and hence by (9)

T 22 (E,R,P) |= ¬�n
2,2n
n . (11)

Now note that ¬�n2,2nn is a DNF1-formula in the sense of Theorem 3.1 from [20].
This theorem and (11) implies that the Paris–Wilkie translation of �n

2,2n
n as a set

of clauses has R(log)-refutations of size 2(log n)
O(1)
. It is straightforward to check

that this translation produces our set PHPn
2,2n
n , the threshold clauses being the

Paris–Wilkie translation of Bq,m1 , . . . , B
q,m
4 .

§6. Discussion.
6.1. Lower bounds for PHP2nn ?. Besides the Δ

b
1-interpretation of �

m
n in �

q,m
n from

the previous section, there is an obvious quantifier-free interpretation in the reverse
direction: define �(y) := (y < m), ε(x, y) := (x = y), and �(x, y) := P′(x, y) and
check that

|= �mn → �q,mn [R/�,E/ε, P/�]. (12)

Note also that all the formulas �, ε, �, �, and 
 that define the interpretations
are Δ0. So (9), (10), and (12) imply that IΔ0 proves the equivalence of �n

2,2n
n and

�2nn . Similarly, one sees that PHP
2n
n has polynomial-size bounded-depth refutations

if and only if so does PHPn
2,2n
n . We have a closer look.

Given a refutation of PHPn
2,2n
n one can apply a suitable restriction to turn it

into a refutation of PHP2nn . This transformation preserves depth and size. For the
other direction, assume you have a polynomial size refutation of PHP2nn , say written
in the variables P′

u;v . Substitute in every formula every positive P
′
u;v by the 2-

CNF translating 
(u, v) and every negative ¬P′
u;v by the negation of the 2-DNF

translating �(u, v). The result can be “filled up” to a polynomial size refutation
of PHPn

2,2n
n . If the original PHP2nn -refutation used only DNFs, i.e., disjunctions of

1-CNFs, then the PHPn
2,2n
n -refutation obtained uses disjunctions of 2-CNFs. Hence

a superpolynomial lower bound for such refutationswould entail a superpolynomial
lower bound for DNF-refutations of PHP2nn . This would constitute considerable
progress on the main open question concerning the existence of polynomial-size
bounded-depth refutations of PHP2nn .

6.2. Approximate counting and WPHPs. Fix a real r ≥ 1. The problem of
r-approximate counting asks, for a given string x = x0 · · ·xm−1 ∈ {0, 1}m, to
compute ŵ ∈ [m + 1] such that ŵ/r ≤

∑
i∈[m] xi ≤ ŵ · r. We are looking for a

family of polynomial-size bounded-depth circuits C1, C2, . . . solving this problem:
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Cm has m input gates and m + 1 output gates and on input x precisely the ŵ-th
output gate gets value 1.
This is a fundamental problem in computational complexity. In 1981, Furst,
Saxe, and Sipser [16] showed that the case r = 1 of exact counting does not admit
a solution. Two years later, Stockmeyer [35] found for any r > 1 probabilistic cir-
cuits doing the job, and these could be derandomized by methods of Ajtai and
Ben-Or [3]. Since it relies on the probabilistic method, this derandomization pro-
duces a nonuniform circuit family. A decade later, Ajtai [2] found a uniform (even
FO- or DLOGTIME-uniform [7]) solution through an impressive though intricate
construction. The problem has been repeatedly revisited until quite recently [36,37].
As pointed out in the introduction, approximate counting seems sufficient to
refute PHP2nn , or even PHP

n2,2n
n . We have a closer look. We focus on PHP2nn since

the discussion for the relativized version is similar. Given a solution C1, C2, . . . to
r-approximate counting let F im be a bounded-depth formula expressing that the
(i + 1)-th output bit of Cm is 1. Recall that PHP

2n
n has m = 2n

2 variables Pu;v .
On the one hand, the subset LPHP2nn of the clauses of PHP

2n
n that say that each

pigeon flies to some hole implies that at least 2n many variables are true, namely for
each u ∈ [2n] at least one of Pu;v for v ∈ [n]; thus, for i0 := �2n/r�,

LPHP2nn |= F i0m ∨ F i0+1m ∨ . . . ∨ Fmm . (13)

On the other hand, the subset RPHP2nn of the clauses of PHP
2n
n that say that each

hole receives at most one pigeon implies that at most n variables are true, namely
for each v ∈ [n] at most one of Pu;v for u ∈ [2n]; thus, for i1 := �nr�,

RPHP2nn |= ¬F i1m ∧ ¬F i1+1m ∧ . . . ∧ ¬F mm . (14)

Specifically, for r =
√
2 we have i0 = i1 and the two formulas become negations

of each other. To get short bounded-depth refutations of PHP2nn it would thus be
sufficient to find a solution to the

√
2-approximate counting problem such that the

implications (13) and (14) have short bounded-depth derivations. This amounts to
verify a weak form of correctness of the solution.

§7. Acknowledgments. The first and third authors would like to thank the
CICYT for its support through projects TIN2010-20967-C04-04 (TASSAT) and
TIN2007-66523 (FORMALISM), respectively. The second author would like to
thank the FWF (Austrian Science Fund) for its support through Project P 24654
N25.

REFERENCES

[1] M. Ajtai, The complexity of the pigeonhole principle, Proceedings of the 29th Annual Symposium
on the Foundations of Computer Science (FOCS ′88), IEEE Computer Society, White Plains, New York,
pp. 346–355, 1988.
[2] , Approximate counting with uniform constant-depth circuits, Advances in computational

complexity theory, DIMACS Series in DiscreteMathematics and Theoretical Computer Science, vol. 13,
pp. 1–20, 1993 .
[3] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth computations, Proceed-

ings of the 16th Annual ACM Symposium on Theory of Computing (STOC ′84), pp. 471–474,
http://doi.acm.org/10.1145/800057.808715, ACM, New York, NY, 1984.

https://doi.org/10.1017/jsl.2014.56 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.56


LOWER BOUNDS FOR DNF-REFUTATIONS 475

[4] A. Atserias, Improved bounds on the weak pigeonhole principle and infinitely many primes from
weaker axioms. Theoretical Computer Science, vol. 295 (2003), no. 1–3, pp. 27–39.
[5] , On sufficient conditions for unsatisfiability of random formulas. Journal of the ACM,

vol. 51 (2004), no. 2, pp. 281–311.
[6] A. Atserias, M.L. Bonet, and J.L. Esteban, Lower bounds for the weak pigeonhole principle and

random formulas beyond resolution. Information and Computation, vol. 176 (2002), no. 2, pp. 136–152.
[7] D. A. M. Barrington, N. Immerman, and H. Straubing, On uniformity within NC. Journal of

Computer and System Sciences, vol. 41 (1990), no. 3, pp. 274–306.
[8] P. Beame, R. Impagliazzo, and T. Pitassi, Exponential lower bounds for the pigeonhole principle.

Computational Complexity, vol. 3 (1993), no. 2, pp. 97–140.
[9] E. Ben-Sasson and N. Galesi, Space complexity of random formulae in resolution. Random

Structures and Algorithms, vol. 23 (2003), no. 1, pp. 92–109.
[10] E. Ben-Sasson and A.Wigderson, Short proofs are narrow – resolution made simple. Journal of

the ACM, vol. 48 (2001), no. 2, pp. 149–169.
[11] B. Bollobás, Random Graphs, second edition, Cambridge University Press, Cambridge, UK,

2001.
[12] S. R. Buss, Polynomial size proofs of the propositional pigeonhole principle, this Journal, vol. 52

(1987), no. 4, pp. 916–927.
[13] , First-Order Proof Theory of Arithmetic,Handbook of Proof Theory (S. R. Buss, editor),

Elsevier, 1998, pp. 79–147.
[14] S. A. Cook and R. A. Reckhow, The relative efficiency of propositional proof systems, this

Journal, vol. 44 (1979), no. 1, pp. 36–50.
[15] S.Dantchev and S.Riis,On relativisation and complexity gap for resolution-based proof systems,

Proceedings of 17th Annual Conference of the European Association for Computer Science Logic (CSL),
Lecture Notes in Computer Science, vol. 2803, pp. 142–154, Springer, Berlin, 2003.
[16] M. L. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierar-

chy, Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (FOCS ′81),
pp. 260–270, IEEE Computer Society, Washington, DC, 1981.
[17] , Parity, circuits, and the polynomial-time hierarchy. Theory of Computing Systems, vol. 17

(1984), no. 1, pp. 13–27.
[18] A.Haken, The intractability of resolution, Theoretical Computer Science, vol. 39 (1985), no. 2–3,

pp. 297–308.
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