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Abstract. We prove a multidimensional version of the theorem that every shift of finite
type has a power that can be realized as the same power of a tiling system. We also show
that the set of entropies of tiling systems equals the set of entropies of shifts of finite type.

1. Introduction
In [CGST], Coven et al consider a class of subshifts of AZ defined by finite subsets of
the integers. These subshifts are called tiling systems. The main result in [CGST] shows
that given a one-dimensional shift of finite type, there is a tiling system and a positive
integer m, such that the mth powers of the shift of finite type and of the tiling system are
topologically conjugate. It is also shown that every tiling system is sofic. It then follows
that the set of entropies of tiling systems is equal to the set of entropies of shifts of finite
type. For a thorough introduction to one-dimensional symbolic dynamical systems, see
either [K] or [LM]. In this paper we extend the main result to higher dimensions. In higher
dimensions it is not known whether the set of entropies of shifts of finite type and of sofic
shifts are equal, but we show that the set of entropies of tiling systems equals the set of
entropies of shifts of finite type (Theorem 4.1).

We begin with some definitions. Let A be a finite alphabet, and consider the
compact metric space AZd . For x ∈ AZd and w ∈ Z

d , we will write xw for x(w).
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Let σ : Zd → Homeo(AZd ) be the continuous Z
d -action (the homomorphism from Z

d to
the group of homeomorphisms of AZd ) defined by

(σv(x))w = xw+v
for all v,w ∈ Z

d and all x ∈ AZd . Thus σ is defined by d commuting homeomorphisms
σei , i = 1, 2, . . . , d , where ei is the d-tuple consisting of all 0’s except for a 1 in the
ith position. We call σ the d-dimensional shift. For an integer m we define the mth
power, σm, of σ to be the Z

d -action given by the composition homomorphism from Z
d to

Homeo(AZd ), which is defined by ei �→ mei �→ σmei ; that is,

(σmv (x))w = xw+mv.

A subset X ⊆ AZd is said to be σ -invariant if for all v ∈ Z
d , σv(X) ⊆ X, or equivalently,

if σei (X) ⊆ X for all i = 1, . . . , d . If X is a closed, σ -invariant subset of AZd , we say that

(X, σ) is a subshift of (AZd , σ ).
We define a d-dimensional tiling system in the following way. Let P =

{P1, P2, . . . , PK } be a finite collection of finite subsets of Z
d , called prototiles. Normalize

the prototiles so that the lexicographically smallest point is the origin. A tile is a translate
of a prototile, and a tiling of Z

d by P is an expression of Z
d as a disjoint union of tiles,

Z
d = ⋃

(tj + Pkj ). Corresponding to a tiling is a point x ∈ AZd , A = {1, 2, . . . ,K},
where xv = r if v lies in a tile that is a translate of Pr . Formally, for every x ∈ AZd and for
every v ∈ Z

d , xv = r if and only if v ∈ Pkj + tj and kj = r . Let T (P) denote the set of all

points in AZd corresponding to tilings of Z
d by P . The set T (P) is a σ -invariant, closed

subset of the full shift AZd , i.e. a subshift of AZd . We call (T (P), σ ) a tiling system.
A d-dimensional shift of finite type is a subshift (X, σ) of (AZd , σ ) defined by a finite

list of allowable d-dimensional cubes (see [LM, p. 467]). By moving to a higher block
presentation if necessary, a d-dimensional shift of finite type can be described as a closed,
shift-invariant subspace � of AZd , given by d directed graphs, G1, . . . ,Gd , each of whose
edges is labeled with distinct elements of the alphabet A. For each 1 ≤ i ≤ d , the mapping
from the edges in Gi to the symbols in A is one-to-one. A Z

d -array x = (xv)v∈Zd ∈ AZd
is in � if and only if for each v ∈ Z

d and for each i = 1, 2, . . . , d , the initial vertex of
xv+ei in the graph Gi is the terminal vertex of xv in Gi .

A d-dimensional sofic shift is a factor of a d-dimensional shift of finite type. The factor
map is a block map that, without loss of generality, is defined on d-dimensional cubes.
Again, by going to a higher block representation if necessary, every d-dimensional

sofic shift is an image of a shift of finite type through a (
←d→

1× 1× · · · × 1)-block map.
Unfortunately, no good graph representations of multidimensional sofic shifts are known.
The straightforward extension of the one-dimensional case, changing the labels in the
edge representation of the shift of finite type, does not necessarily represent the sofic shift
(see Example 2.1).

For ease of notation, we state and prove the main theorem only in two dimensions.
An outline of the proof for higher dimensions is included at the end of the paper. In two
dimensions, the graphs representing a given shift of finite type will be denoted by GH and
GV (for horizontal and vertical moves), instead of G1 and G2. Similarly, we denote σe1

and σe2 by σH and σV.
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THEOREM 1.1. Let (�, σ) be a two-dimensional shift of finite type. Then there is a
positive integer m and a two-dimensional tiling system (T (P), σ ) such that:
(1) T (P) = ⋃

0≤i,j≤m−1 Ti,j , where each Ti,j is a closed subset of T (P) and the
collection {Ti,j } is permuted by σ :

σ(k,l)(Ti,j ) = Ti+k,j+l ,

where subscript addition is modulo m;
(2) (�, σm) is topologically conjugate to (Ti,j , σm) for every (i, j).

Using this theorem, we show that the set of topological entropies of multidimensional
tiling systems equals the set of topological entropies of multidimensional shifts of finite
type (Theorem 4.1). In one dimension, both sets are equal to the set of logarithms of roots
of Perron numbers [LM] and to the set of entropies of sofic shifts. On the other hand, little
is known about the set of topological entropies of multidimensional shifts of finite type and
multidimensional sofic shifts.

The outline of the paper is as follows. In §2, we start with an example which illustrates
some of the difficulties in working in more than one dimension and conclude with a proof
that multidimensional tiling systems are sofic. In §3, we show that every shift of finite type
can be realized as a power of a tiling system (Theorem 3.1). Although this result is not
difficult, it helps to introduce the more difficult constructions needed for the proof of the
main theorem. Section 4 contains the proof of Theorem 1.1, including a description of the
prototiles of the two-dimensional tiling system. The modifications needed for the proof of
Theorem 1.1 in higher dimensions are found in §5.

2. Multidimensional tiling and sofic systems
In this section, we show that every tiling system is sofic. The one-dimensional case is
proved in [CGST] using ‘subscripted tiling systems’ and the ‘drop the subscripts’ map.
The proof for the multidimensional case can be done similarly. The idea of ‘dropping the
subscripts’ and the difficulty in presenting two-dimensional sofic shifts with graphs are
illustrated in the example below.

Example 2.1. Let A = {a, b}. Consider � ⊆ AZ2
, a two-dimensional shift of finite type

such that in every point x ∈ �, every appearance of b is surrounded by a’s. Then � is
given by the following set of allowable (2× 2) blocks:

p := a a

a a
q1 := b a

a a
q2 := a b

a a
q3 := a a

b a
q4 := a a

a b
.

By going to the (2 × 2) block presentation, � is topologically conjugate to �̂ ⊆
{p, q1, q2, q3, q4}Z2

, where {p, q1, q2, q3, q4} is the set of five allowable (2 × 2) blocks
in �. Edge graphs representing �̂ may be obtained in the standard way: for the graph GV

associated to vertical movement, let the set of vertices be all allowed rows in the list of
allowed (2× 2) blocks. There is an edge from x1x2 to y1y2, if y1 y2

x1 x2 is one of the allowed
blocks. This edge is given the label of that block. The graph GH associated to horizontal
movement is given similarly, using allowed columns as the vertices. The graphs for �̂ are
given in Figure 1.
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FIGURE 1. Graphs GV and GH representing the SFT �̂.

Now consider the sofic system S obtained as a factor of �̂ using the (1× 1) block map
p �→ p and qi �→ q for i = 1, . . . , 4. In [CGST], this map is called the drop the subscripts
map.

What do the points in S look like? We can answer this by first looking at the points
in �̂. Note that if the symbol q1 appears at a point in �̂, then it must be preceded
horizontally by q2. The symbol q2 must be followed vertically by q4, and q4 must be
followed horizontally by q3. Hence, every appearance of the (1 × 1) block q1 occurs in
an appearance of the (2× 2) block q4 q3

q2 q1 . We come to the same conclusion if we consider
the appearance of any other qi (i = 2, 3, 4). Thus the set of points in �̂ is equivalent to
the set of points obtained by ‘concatenating’ p’s and the block q4 q3

q2 q1 in a Z
2-array. It then

follows that the set of points in S is the same as the set obtained by concatenating p’s and
the block q q

q q in a Z
2-array. So S is the tiling system defined by two prototiles, a p-tile,

P = {(0, 0)}, and a q-tile, Q = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Note that S is not represented by the graphs obtained by dropping the subscripts of the

edge labels of the graphs GH and GV in Figure 1. That presentation allows the following
point, which is not in S (p’s are bold to make them easier to distinguish from q’s).

· · · · · · · · · ·
· p q q p q q p q ·
· q q p q q p q q ·
· q p q q p q q p ·
· p q q p q q p q ·
· · · · · · · · · ·

This example illustrates another difference between the drop the subscripts map in one-
dimensional tiling systems and in multidimensional tiling systems. In one dimension, this
map is finite-to-one and thus entropy-preserving. Our example shows that in more than one
dimension, it can be infinite-to-one. The fixed point of all q’s is in S and has an infinite
number of preimages in �̂. In fact, S cannot be an image of a shift of finite type by a
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finite-to-one map [Q]. However, Theorem 4.1 shows that the drop the subscripts map is
entropy-preserving.

THEOREM 2.2. Every multidimensional tiling system is sofic. There is a two-dimensional
shift of finite type that is not topologically conjugate to a tiling system.

Proof. As mentioned before, the proof is essentially the same as the proof of the one-
dimensional case [CGST]. We present an outline for two dimensions.

Let T (P) be a two-dimensional tiling system with P = {P1, P2, . . . , PK }. Consider
the closed, shift-invariant subset X̃ of {ki,j : 1 ≤ k ≤ K and (i, j) ∈ Pk}Z2

, defined
by x̃ ∈ X̃ if and only if there is a tiling of Z

2 by P such that, for every (r, s) ∈ Z
2,

x̃(r,s) = ki,j , where (r, s) is in the (i, j)th location in Pk . (This is the two-dimensional
version of the one-dimensional subscripted tiling system.) As in the one-dimensional case,
X̃ is a shift of finite type, and the (1× 1)-block map ki,j �→ k maps X̃ onto T (P). (This is
the two-dimensional version of the drop the subscripts map.) Therefore T (P) is a sofic
system.

Consider the shift of finite type � ⊆ {0, 1}Z2
, having exactly two points, x and y,

such that σH(x) = y, σH(y) = x, σV(x) = x, and σV(y) = y. Then for every
k, j , x2k,j = 0 = y2k+1,j and x2k+1,j = 1 = y2k,j , or the same is true with x

and y interchanged. Notice that, except for interchanging the symbols, the only system
topologically conjugate to � is � itself. Suppose that T is a tiling system that contains
two points xT and yT such that σH(xT ) = yT , σH(yT ) = xT , σV(xT ) = xT , and
σV(yT ) = yT . These two points are obtained from a set of two prototiles, a ‘0-tile’ and
a ‘1-tile’. The 0-tile can cover all points (i, j) ∈ Z

2 with i even and therefore it tiles Z
2.

Thus T has to contain the fixed point of all 0’s, and it cannot be conjugate to �. ✷

3. Construction of the two-dimensional tiling systems
From Theorem 2.2, there is a two-dimensional shift of finite type that is not topologically
conjugate to a tiling system. In this section, we show that every two-dimensional shift
of finite type is topologically conjugate to a power of a subsystem of a tiling system.
The proof of the following theorem also introduces the notion of marking the edges of
a tile to reflect the allowed transitions of the shift of finite type. This idea is modified in
the proof of Theorem 1.1.

THEOREM 3.1. Let (�, σ) be a two-dimensional shift of finite type. Then there is a
positive integer m and a two-dimensional tiling system (T (P), σ ) such that:
(1) T (P) = ⋃

0≤i,j≤m−1 Ti,j , where each Ti,j is a closed subset of T (P) and the
collection {Ti,j } is permuted by σ :

σ(k,l)(Ti,j ) = Ti+k,j+l ,

where subscript addition is modulo m;
(2) (�, σ) is topologically conjugate to (Ti,j , σm) for every (i, j).

Proof. The prototiles for the tiling system consist of squares, one associated to each symbol
of A, with ‘markings’ on the sides to indicate which squares can appear next to each other.
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FIGURE 2. Prototiles associated to the SFT presented in Figure 1. The vertices a
a , a

b , b
a in GH and vertices

aa, ba, ab in GV are enumerated 1, 2, 3 respectively.

For convenience in the construction, number the vertices 1, 2, . . . , kH in the horizontal
graph GH and 1, 2, . . . , kV in the vertical graph GV. Let m ≥ 2+max(kH, kV).

The prototile associated to the symbol a is an m × m square, modified as follows:
start with the m × m square {(i, j) : 0 ≤ i, j ≤ m − 1} in Z

2. Above the north edge
of the square, add the points (1,m), (2,m), . . . , (tV(a),m), where tV(a) is the number
associated to the terminal vertex of edge a in the vertical edge shift. To the right of the east
edge, add the points (m,m − 2), (m,m − 3), . . . , (m, tH(a)), where tH(a) is the number
associated to the terminal vertex of edge a in the horizontal edge shift. From the south
face, remove the points (1, 0), (2, 0), . . . , (iV(a), 0), where iV(a) is the number associated
to the initial vertex of edge a in the vertical edge shift. From the west face, remove the
points (0,m− 2), (0,m− 3), . . . , (0, iH(a)), where iH(a) is the number associated to the
initial vertex of edge a in the horizontal edge shift. We end up with a modified square that
(when connected) looks like a jigsaw puzzle piece. This construction gives a one-to-one
correspondence between the symbols in A and the set of prototiles. For the tiling system
considered in Example 2.1, the corresponding prototiles are depicted in Figure 2.

Let (T (P), σ ) be the resulting tiling system, and for 0 ≤ i, j ≤ m − 1, let Ti,j be
the set of points in T (P) such that the southwest corners of the tiles appear at locations
(mk+ i,ml+j). Let ϕ : Ti,j → � be defined by (ϕ(t))k,l = a, if the tile whose southwest
corner is at location (mk + i,ml + j) is the tile associated to symbol a. We leave it to the
reader to verify that ϕ is a topological conjugacy of (Ti,j , σm) onto (�, σ). ✷

4. The Proof of Theorem 1.1

The prototiles necessary for the tiling system described in Theorem 1.1 must be more
complicated than the ones described in Theorem 3.1. The authors in [CGST] use two
kinds of prototiles, called barbells and racks. Here, we also use two kinds of prototiles,
barbells and two-dimensional versions of racks.

4.1. Barbells and one-dimensional racks. In [CGST], racks have three sections: a head,
a center, and a tail. Barbells are used to fill the empty places in the center sections of the
racks, and the number of ways this can be done is equal to the number of blocks of a fixed
length in the given one-dimensional shift of finite type. The heads and tails of the racks are
used to control which racks may sit side-by-side, i.e. the transition rules.
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For the proof of Theorem 1.1 we also use barbells, and the center sections of the racks
are used in the centers of the two-dimensional racks.

For fixed n, the center section of a rack has the form

•3n+i ←2k→. . . • ←2k→. . . •8n−4k−1−i

where k = 1, . . . , n and i = 0, . . . , n. In this notation, • is a point in the lattice of the

two-dimensional integers, •s stands for
←s→• • · · · • • and ‘ ’ denotes an empty space. We will

denote this center section of a rack by r(k, i).
Barbells are of the following form:

• • ←1+2p→. . . • •
where 0 ≤ p ≤ 2n − 2. The gaps in r(k, i) may be filled in exactly k! ways by barbells.
To see this, first imagine partitioning the set of empty places on the left-hand side of the
center into pairs of consecutive places. Then think of the placement of barbells in the rack
as a one-to-one map from this partition onto the corresponding partition of the set of empty
places on the right-hand side of the center. There are exactly k! such maps. By varying i
between 0 and n, we obtain n + 1 different racks, and the centers of each of these racks
can be filled in k! ways.

4.2. Two-dimensional racks. Besides barbells, for the two-dimensional case we use
prototiles that are modified m×m squares, which we call two-dimensional racks. The first
modification uses the idea of side ‘markings’ as described in the proof of Theorem 3.1.
These markings control how the square tiles fit together on each side. An m × m square
tile, intended to correspond to an (m × m) block in the original shift of finite type �, has
its sides marked in such a way that it can be adjacent to another m × m square tile with
marked edges if and only if the symbols on the sides of the corresponding (m×m) blocks
in � can appear side-by-side. We call this first modification ‘side setting’.

The second modification involves leaving spaces in the center of the squares to be
filled in a variety of ways by barbells. The spaces are chosen so that there is a one-
to-one correspondence between the ways of filling these spaces with barbells and the
(m × m) blocks in �. Such a correspondence naturally leads to a block map conjugacy
between the tiling system we construct and the original shift of finite type �. This second
modification is called ‘center setting’.

Step 1: side setting. Recall that the shift of finite type � is described by two edge graphs,
GH and GV. Thus, symbol a can be followed by symbol b in the horizontal or vertical
direction if the terminal vertex of a equals the initial vertex of b in the appropriate graph.
Now consider the (m×m) blocks over alphabet A which are allowed in �. The blockBB ′,
where both B and B ′ are allowed (m×m) blocks, is an allowed block in � if the rightmost
column of B is ‘compatible’ with the leftmost column of B ′. That means: if the rightmost
column of B is (a1, . . . , am)

t and the leftmost column of B ′ is (a′1, . . . , a′m)t, then ai can
be followed by a′i in the horizontal direction for all i = 1, . . . ,m. Let VH and VV be the
sets of vertices of GH and GV, and Vm

H and Vm
V the set of m-tuples of vertices from these

sets. Set Vm = Vm
H ∪ Vm

V .
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FIGURE 3. C(πα) for n = 4 and πα =
(1 2 3 4
2 1 4 3

)
.

• • •
• • • •
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FIGURE 4. C←(πα) and Ĉ→(πα) for πα =
(1 2 3 4
2 1 4 3

)
.

Since the number of vertices is at most one more than the number of edges, we
have |Vm| ≤ 2|A + 1|m < (2|A + 1|)m. Set s = 2|A + 1|. There are at most
|A|m2

< sm
2

allowable blocks of size m × m in �. Because factorial growth is faster
than exponential growth, we may choose n so that s13n < (n!). In fact, choose n so that
|A|(13n)2 < s(13n)2 < (n!)n. Set m = 13n.

Let Sn be the group of permutations of n elements, and note that |Sn| = n!.
Since |Vm| < sm < n!, there is an injection π from Vm into Sn. Denote the permutation
associated with the m-tuple α ∈ Vm by πα . We use πα to create a ‘comb’ in the following
way: let C(πα) be the subset of Z

2 consisting of the set of points {(i, j) : 1 ≤ i ≤ n, 1 ≤
j ≤ πα(i)}. In other words, C(πα) consists of n columns such that the ith column has
height πα(i). We call the set {(i, 1) : 1 ≤ i ≤ n} the base of C(πα).

Figure 3 shows a comb facing north, which we will denote by C↑(πα). We will also
need combs facing south, east and west, which we will denote by C↓(πα), C→(πα), and
C←(πα), respectively.

Associated to each comb C(πα) is its complement Ĉ(πα) = {(i, j) : 1 ≤ i ≤ n,
1 ≤ j ≤ n− πα(i)} (see Figure 4). Note that C↑(πα)∪ Ĉ↓(πβ) creates an n× n square if
and only if πα = πβ , that is if and only if the m-tuples of vertices α and β are equal.

Given the boundary B of an (m×m) block occurring in �, we use combs to ‘mark’ the
edges of an m × m square tile as follows. Let αN, αS, αE, αW be the m-tuples of vertices
associated to the one-dimensional m-blocks that make up the north, south, east, and west
sides of B. So αN, αS ∈ Vm

V and αE, αW ∈ Vm
H .

As described above, παN, παS , παE, παW are permutations and each has associated
to it a comb shape. Suppose P ⊆ Z

2 denotes an m × m square with corner vertices
(0, 0), (m − 1, 0), (0,m − 1), and (m − 1,m − 1). The sides of P are altered by combs
C↑(παN), C

→(παE), Ĉ
←(παW), and Ĉ↓(παS). We place C↑(παN) so that its base is at

points (6n,m), . . . , (7n − 1,m). (Recall that m = 13n.) Place C→(παE) so that its base
is at points (m, 6n), . . . , (m, 7n − 1). Place Ĉ←(παW) and Ĉ↓(παS) so that the base of
Ĉ←(παW) is at points (n − 1, 6n), . . . , (n − 1, 7n − 1), and the base of Ĉ↓(παS) is at
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παW( )

παS
( )

παN
( )C

απ
E

( )C

 

(0,0) (6n,0)

(6n,n−1) (7n−1,n−1)

(n−1,6n)

C

(7n−1,0)

(m−1,m−1)

(m−1,0)

(n−1,7n−1)

C

(0,m−1)

(0,7n−1)

(0,6n)

(6n,m) (7n−1,m)

(m,7n−1)

(m,6n)

FIGURE 5. Side setting; sides of P are marked with combs (m = 13n).

points (6n, n − 1), . . . , (7n − 1, n − 1). This is illustrated in Figure 5 (but is not drawn
to scale).

We construct a square prototile, with edge combs as described above, for each of the
boundaries B that occur in (m×m) blocks in �. It is clear that these tiles can ‘fit together’
horizontally (or vertically) if and only if the corresponding boundaries of (m×m) blocks
in � can occur horizontally (or vertically) adjacent to one another for some point in �.

Step 2: center setting. There may be many (m × m) blocks in � with the same
boundary, and we make our second modification to reflect this. As in the one-dimensional
construction, we introduce spaces into the central portion of the modified tile. This is
done so that there are exactly as many ways of filling in the central spaces in the prototiles
associated with boundary B as there are (m×m) blocks in � with boundaryB. The tile P ,
once it is modified with ‘side setting’ and ‘center setting’, is a two-dimensional rack.

Given a boundary B of an (m × m) block occurring in �, let NB be the number of
allowable (m×m) blocks in � with boundary B. By our choice of n, it is clear that

NB ≤ |A|(13n)2 < s(13n)2 < (n!)n,
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and thus NB can be written uniquely (in base n!) as follows:

NB = d0 + d1(n!)+ d2(n!)2 + · · · + dn−1(n!)n−1,

where 0 ≤ dj < n! for 0 ≤ j ≤ n− 1. As in [CGST], each dj can be written uniquely as

dj = cj,1(1!)+ cj,2(2!)+ · · · + cj,n−1(n− 1)!,
where 0 ≤ cj,k ≤ k and 1 ≤ k ≤ n− 1. Thus

NB =
n−1∑

j=0

dj (n!)j =
n−1∑

j=0

n−1∑

k=1

cj,k(k!)(n!)j .

Begin with the prototile P , altered with combs corresponding to B as illustrated in
Figure 5. For each 0 ≤ j ≤ n − 1 and each 1 ≤ k ≤ n − 1, form a two-dimensional
rack Pi(j, k) obtained from P in the following way. Consider a rectangular section of size
11n × (j + 1) such that the bottom j rows are filled with one-dimensional racks r(n, 0)
and the top row with the rack r(k, i). The two-dimensional rack Pi(j, k) is obtained from
P by replacing the section with corners (n, n + 1), (12n − 1, n + 1), (n, n + j + 1),
(12n− 1, n+ j + 1) with this 11n× (j + 1) rectangular shape.

Observe that by construction of the one-dimensional racks, the bottom j rows can be
filled by barbells in exactly n! ways and the top row can be filled in exactly k! ways.

Thus, the modified prototile Pi(j, k) can have the empty spaces filled with barbells in
exactly (k!)(n!)j ways. By varying i between 1 and cj,k , we obtain cj,k prototiles whose
empty spaces can be filled with barbells in (k!)(n!)j ways.

So, the empty places in the racks P1(j, k), . . . , Pcj,k (j, k) can together be filled with
barbells in cj,k(k!)(n!)j ways. Let P(j, k) = {Pi(j, k) : 1 ≤ i ≤ cj,k}. Then the set of
two-dimensional racks that correspond to the boundary B is PB =

⋃n−1
j=0

⋃n−1
k=1 P(j, k).

Hence, the empty spaces of the racks in PB can be filled by barbells in exactly NB ways.

4.3. Proof of Theorem 1.1. Let (�, σ) be the given two-dimensional shift of finite type.
Choose n large enough so that |A|(13n)2 < (n!)n, and set m = 13n. Take �m to be the
(m × m) power of �. As in the one-dimensional case, �m is defined by (m × m) blocks
that are allowable in �, i.e. �m ⊆ (Am2

)Z
2
. Hence (�m, σ) is topologically conjugate

to (�, σm). We show that the tiling system constructed above with barbells and two-
dimensional racks as prototiles is topologically conjugate to (�m, σ).

First, observe that the barbells can only be used to fill the spaces in the centers of
rack tiles. The barbells, just by themselves, cannot be used to tile any rectangular region,
because they have an odd number of empty spaces in the middle and they cover an even
number of spaces. Clearly, they cannot be used to fill the empty spaces in the combs
marking the edges of the rack tiles. Thus, the only way to tile Z

2 with these tiles is for
racks to sit next to each other with their comb markings compatible, and for barbells to fill
the spaces inside the racks.

Let T be the tiling system with the collection of prototiles P being the barbells and
racks. Let T0,0 denote the collection of all tilings in T that consist of racks occurring with
their southwest corners at points {(km, jm) : k, j ∈ Z}. Clearly T = ⋃

0≤i,j≤m−1 Ti,j ,
where Ti,j = σ(i,j)T0,0. This gives statement (1) of Theorem 1.1.

https://doi.org/10.1017/S014338570200113X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570200113X


The symbolic dynamics of multidimensional tiling systems 457

To prove statement (2) of Theorem 1.1, let Gm
H be the directed graph with vertices Vm

H ,
given bym-tuples of vertices in VH. Let x ∈ �. For each xi,j , let I (xi,j ) and J (xi,j ) denote
the initial and terminal vertices of the edge in GH with label xi,j . For every rack P with the
comb marking on its west side constructed using (I (x0,0), . . . , I (x0,m−1)) ∈ VH and the
comb marking on its east side constructed using (J (xm−1,0), . . . , J (xm−1,m−1)), put
an edge from vertex (I (x0,0), . . . , I (x0,m−1)) to vertex (J (xm−1,0), . . . , J (xm−1,m−1)).
Label this edge P .

Similarly, let Gm
V be the directed graph with vertices Vm

V , the m-tuples of vertices in VV.
In this graph, the edges are determined by the north and south sides of the racks P .

ThenGm
H andGm

V correspond exactly to the directed graphs of (�m, σ). Thus (Ti,j , σm)
is topologically conjugate to the (m×m) power (�m, σ), which is topologically conjugate
to (�, σm), as desired. ✷

THEOREM 4.1. [B]

{h(�, σ) : � is a shift of finite type} = {h(T , σ ) : T is a tiling system}
⊆ {h(S, σ ) : S is a sofic system},

where h(·) denotes two-dimensional topological entropy.

Proof. From Theorem 1.1 and Proposition 13.1 in [S], we have that {h(�, σ) : � is a shift
of finite type} ⊆ {h(T , σ ) : T is a tiling system}. The inclusion {h(T , σ ) : T is a tiling
system} ⊆ {h(S, σ ) : S is a sofic system} follows from Theorem 2.2. The statement of the
theorem will follow if we show that the drop the subscripts map is entropy-preserving.
Again we prove the statement in two dimensions only. The higher-dimensional case
follows similarly.

Let T = T (P) be a two-dimensional tiling system defined by a set of prototiles
P = {P1, . . . , PK }. Let T̂ be the closed, shift-invariant subset of {ki,j : 1 ≤ k ≤ K

and (i, j) ∈ Pk}Z2
described in the proof of Theorem 2.2, and let δ : T̂ → T be

the (1× 1)-block drop the subscripts map. The prototiles that define T̂ are subscripted
prototiles P̂ = {P̂1, . . . , P̂K }. Set s = max{|i1 − i2|, |j1 − j2| : (i1, j1), (i2, j2) ∈ Pr ,
r = 1, . . . ,K}. Then T̂ is a shift of finite type defined by (s × s) blocks.

Consider an allowable ((n+2s)×(n+2s)) blockB in T and ((n+2s)×(n+2s)) blocks
B̂1, B̂2 in T̂ such that δ(B̂1) = δ(B̂2) = B. Let C, Ĉ1 and Ĉ2 be the central n× n portions
of B, B̂1, B̂2 respectively. We show that if B̂1 and B̂2 have equal boundaries of thickness s,
then their central portions must be equal (in other words, the drop the subscripts map ‘has
no diamonds’ (see [QT], [K])).

Since δ(B̂1) = δ(B̂2) = B, it is clear that the entries in the central portions Ĉ1 and
Ĉ2 can differ only in their subscripts. In other words, each entry must be in a translate
of the same prototile. If that translate intersects the s-thick boundary of either B̂i , then
the subscripts clearly must be equal. If neither translated prototile intersects the s-thick
boundary and yet the subscripts of the two entries are different, there must be two different
ways to tile a portion of the centers of the B̂i ’s with the translated prototile.

Let P ∈ P and ti , ri ∈ Z
2 for i = 1, . . . , k. Let Tk = ⋃k

i=1(ti + P) and
Rk =⋃k

i=1(ri + P), where the unions are disjoint. Then

Tk = Rk implies {t1, . . . , tk} = {r1, . . . , rk}. (∗)
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We show (∗) by induction on k. The case k = 1 is trivial. Assume that Tk = Rk .
As mentioned in §1, the prototile P is chosen so that the lexicographically smallest point
in P is (0, 0), and so the smallest point in ti + P is ti . Thus, if v is the lexicographically
smallest point in Tk = Rk , v is in both {t1, . . . , tk} and {r1, . . . , rk}. Without loss of
generality, v = tk = rk . However, then Tk−1 = Rk−1, and (∗) follows from the induction
hypothesis.

Now let ri ∈ Z
2 (i = 1, . . . , k) be such that for some prototile P , ri + P̂ ⊆ B̂1.

Similarly, let ti ∈ Z
2 (i = 1, . . . , k′) be such that ti + P̂ ⊆ B̂2. Then ri and ti are either in

the central portions Ĉ1 and Ĉ2 or in the boundaries with thickness s of B̂1 and B̂2. But B̂1

and B̂2 have the same boundary and δ(B̂1) = δ(B̂2) = B. So we must have k = k′ and⋃k
i=1(ri + P̂ ) =

⋃k
i=1(ti + P̂ ), which by (∗) implies {r1, . . . , rk} = {t1, . . . , tk}. Thus the

central portions Ĉ1 and Ĉ2 are equal.
Now, let N̂n be the number of (n×n) blocks in T̂ (n > 2s), K̂ be the number of symbols

in T̂ , and Nn the number of (n× n) blocks in T . The number of s-thick boundaries for an
(n× n) block in T̂ is at most K̂4s(n−s). Then the theorem follows from the inequality

Nn ≤ N̂n ≤ K̂4s(n−s)Nn−2s

and the fact that since s is fixed, the exponent of K̂ is linear in n. ✷

5. Higher dimensions
The construction of the two-dimensional racks described in the previous section can be
extended inductively to d-dimensional racks. Given a boundary B of an (m × m ×
· · · × m) block occurring in a d-dimensional shift of finite type �, let NB be the
number of (m×m× · · · ×m) blocks with boundary B. The boundary B consists of the
(d − 1)-dimensional faces of the block; there are at most |A+1|md−1

possibilities for each
of these faces. Choose n > 0 large enough so that

NB ≤ |A|(13n)d < |d(A+ 1)|(13n)d < (n!)(nd−1).

Thus, we may write NB uniquely (in base (n!)nd−2
) as follows:

NB = b0 + b1((n!)nd−2
)+ b2((n!)nd−2

)2 + · · · + bn−1((n!)nd−2
)n−1,

where 0 ≤ bj < (n!)nd−2
for 0 ≤ j ≤ n− 1. For each bj , write

bj = cj,1 + cj,2((n!)nd−3
)+ · · · + cj,n((n!)nd−3

)n−1,

where 0 ≤ cj,k < (n!)nd−3
. Thus,

NB =
n−1∑

j=0

n−1∑

k=1

cj,k((n!)d−3)k−1((n!)nd−2
)j .

Set m = 13n.
In the construction of the prototiles at the previous stage, dimension d − 1, the spaces

in the center sections of the (d − 1)-dimensional racks can be filled in with barbells in
b ways, where b is any number between 0 and (n!)nd−2

. These center sections have
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size 11n × (
←d−2→

n× n× · · · × n). (Note that the n at the previous stage may have been
smaller; there is no difficulty in increasing it.) Thus, in d dimensions, for each term in

the sum above, we construct a collection of (
←d→

m×m× · · · ×m)-block prototiles. For each

j , 0 ≤ j ≤ n − 1, we replace a block of size 11n × (
←d−2→

n× n× · · · × n) × (j + 1) in

the center portion of this prototile. The first j ‘sheets’ of size 11n × (
←d−2→

n× n× · · · × n)

are constructed as in the (d − 1)-dimensional case, each to be filled with barbells in
exactly (n!)nd−2

ways. So, all together they can be filled in ((n!)nd−2
)j ways. The last

‘sheet’ of size 11n × (
←d−2→

n× n× · · · × n) is constructed as in the (d − 1)-dimensional
case, to be filled with barbells in exactly ((n!)nd−3

)k−1 ways. By varying k, we obtain
cj,k different d-dimensional racks with center sections that can be filled by barbells in

cj,k((n!)nd−3
)k−1((n!)nd−2

)j ways.
We do this for each j , 0 ≤ j ≤ n − 1, and thus the centers of this collection of

(m×m× · · · ×m) prototiles can be filled with barbells in exactly NB ways.
It only remains to mark the bounding faces of these prototiles with combs appropriate

for B. We note that, due to our choice of n, the number of possibilities for a
(d − 1)-dimensional face of an (m × m × · · · × m) block in � is bounded by
d|A+ 1|(13n)d−1

< (d(|A| + 1))(13n)d−1
< (n!)(nd−2). Thus there is an injection from the

set of faces
⋃d

i=1 V (13n)d−1

i (where Vi is the set of vertices in the ith graph representing
�) into the set Sd−2

n (i.e. the set of (d − 2)-tuples of elements of Sn). We will mark each
(d − 1)-dimensional face of the prototile with the nd−2 combs associated with that face,
each of which represents a permutation in Sn.

It is clear that, as in two dimensions, the barbells can only be used to fill the spaces in
the centers of the d-dimensional racks. Thus the only way to tile the d-dimensional integer
lattice with these tiles is for the d-dimensional racks to sit next to each other with their
comb markings compatible, and for the barbells to fill the spaces inside the d-dimensional
racks. The proof of the theorem in d-dimensions then follows analogously.
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