Robotica (1997) volume 15, pp 99-103. © 1997 Cambridge University Press

A graphical robot language developed in Japan
Tamio Arai,* Toshiyuki Itoko,{ and Hidetoshi Yago::

SUMMARY

A graphical robot programming system has been
developed. This system with a graphical interface is
user-friendly and easy-to-learn for low-skill users. It has
been developed as a prototype system under a project by
the Japan Robot Association (JARA) since 1994. The
system runs on a personal computer and consists of a
graphical user interface and an editing system. It is
designed for programming an arc welding robot in small
batch production and is expected to provide low-skill
users with a means to use industrial robots with ease.

KEYWORDS: Robot
welding.

language; Graphical interface; Arc

1. INTRODUCTION

From a viewpoint of investment returns the introduction
of industrial robots into mass production works resulted
in lower product costs. However, recently the market for
industrial robots seems to have become saturated. On
the other hand, the processing capability of personal
computers and consequent software environments,
especially in the field of graphical user interface, have
remarkably progressed, so that they could play a key role
in expanding the industrial robot market.'?

The Japan Robot Association (JARA) established a
Professional Committee of Software Development in
1994, responding to environmental changes and software,
and circulated a questionnaire about the need for small
to medium-size companies. The results showed that there
was a strong need for a simplification of programming
and elimination of special skills for robot programming.’

In order to meet this need, the JARA started a
challenging project to develop technologies to realize a
task-level* programming system with a graphical user
interface with which a robot user can construct a
program with ease and without any skill; such a system is
desired but not yet realized for practical use.’

2. ROBOT PROGRAMMING SIMPLIFICATION
PROJECT

The challenging project started as a 3-year project in
1995 to develop a robot programming simplification
system, which runs with a graphical user interface on a
personal computer. This project, called ‘“Robot Prog-
ramming Simplification Project’ is progressing under the
Information Technology Consortium (ITC) as a project
of the Information-technology Promotion Agency (IPA).

*The University of Tokyo (Chairman of the Professional
Committee of Software Development of the JARA), Tokyo
(Japan).

+ Kawasaki Heavy Industries, Ltd. (Japan).

1 Matsushita Industrial Equipment Co., Ltd. (Japan).

https://doi.org/10.1017/50263574797000118 Published online by Cambridge University Press

In the project, the target users are workers who are
not familiar with industrial robots in small batch
production works, especially in small to medium-size
companies. The objective is to produce a means for
workers to construct a robot program by using a platform
of a personal computer with a graphical user interface at
a high cost performance.

A schematic diagram of the robot programming
simplification system is shown in Figure 1. The special
features of this concept are as follows:

* Making it possible for users to teach the robot
behavior not at a motion instruction level but at a
task instruction level by a graphical interface.

* Automatic motion program generation from a
task-level program and a knowledge database for
robot programming and task accomplishment.

Recently, a graphical programming system, by which
the users can make robot language programs, has been
proposed.® But such a system seems merely to replace
the robot programming language in texts by iconic
symbols, while the robot program simplication system
endeavours to reduce the teaching process by enhancing
the programming language level from a motion
instruction level to a task instruction level.

Consequently, it is necessary to automatically deploy a
task-level program for a robot-language program, as used
in present actual industrial robots; this necessitates
advanced information processing.

3. PROTOTYPE SYSTEM

3.1 System development

A prototype of the robot programming simplification
system has been developed by Kawasaki Heavy
Industries, Ltd. and Matsushita Electric Industrial Co.,
Ltd. for JARA.

The project focused the development for the first year
on ‘“the efficiency of the task-level teaching for
simplification of robot motion programming”. The main
target was a simplified task-level teaching method using a
graphical interface. Therefore, simple pattern processing
was employed to convert a task-level program to a
motion-level program in the prototype.

The feasibility of the generated robot motion program
has been verified by the prototype system, using a robot
simulator. A method to generate efficient motion
incorporating the operator’s skill will be developed in the
future in the project.

3.2 System configuration

a. Hardware configuration The hardware configuration
is shown in Figure 2. The teaching system is constructed

https://doi.org/10.1017/S0263574797000118

100

SERVICE Task-Level Teaching Section
ENGINEER
r Kernel
Input of

environment Application 1 ‘Application n

(Arc Welding)| (...)i

I OPERATOR I
—

Task-level
teaching

DISPLAY [*]

MOUSE &
KEYBOARD

Model Database [l

Motion Program Generatign
Section

+

Kernel

Application 1 EApplication né
Application 1 (Arc Welding) ()

(Arc Welding Database)

Task Database

Motion Database

I ROBOT |

Fig. 1. Schematic robot

simplification system.

diagram of the

programming

on a PC (IBM-compatible). The basic specifications of
the PC are as follows:

— CPU (Pentium 133 MHz)

— Memories (64 MB)

— Color display (17")

— Others: Hard disk, CD-ROM, mouse, keyboard

The system is connected to a 3D-CAD computer or a
robot simulator by LAN to create a work model or to set

Teaching
ROBOT system ROBOT
SIMULATOR CONTROLLER
LAN Ethernet LAN S0 RS232-C <10
color?i’ll‘
3D-CAD) %m -~ ROBOT
LAN
mouse
PC[memories]
(64MB)

Fig. 2. Hardware configuration.

https://doi.org/10.1017/50263574797000118 Published online by Cambridge University Press

Graphical robot language

up a motion environment. By providing a serial
connection to a robot controller using RS232C, it allows
us to transfer the created motion-level programs.

b. Software configuration. The software configuration is
shown in Figure 3. This system uses Microsoft Windows
NT3.51 as the OS and Microsoft Visual C++ as a
development language.
The software is composed of the following five
modules:
e System kernel:
management
* 3D-display & part selecting: work model display &
welding parts selection
e Graphical sequence editor:
editing
* Welding condition editor: welding condition setting
* Main tool: display menu and select functions
Each module is an independent process and performs
data communication by means of socket function.
Communication is controlled by the system kernel. The
system kernel also controls access to the files including
work models and all robot programs.
The remaining four modules control the display
windows for the operator to operate on the screen.

communication and file access

task-level program

3.3 Task-level teaching method

a. Teaching flow. The overall teaching flow in the case
of task-level teaching is shown in Figure 4. A work
model and environment setting data which specify the
robot and work positions will be created and input will
be by a general-purpose 3D modeler on a separate
device from this system.

Once all the data are loaded on this system, a welding

‘ 0S Windows NT 38.51 H SIO&IAN control
I

System kernel
data flow control

& file management

socket communication |Main tool file access
3D-display File access
* &part
selecting Welding task
generator
Graphical
[sequence Welding task
editor simulator
Welding Translator to
=1 condition motion-level
editor language
—
Motion Arc welding
database database

Fig. 3. Software configuration.

https://doi.org/10.1017/S0263574797000118

Graphical robot language

Model Creating & Environment Setting
{ Work models J._I 3D-CAD | IEnvironment datal
i I

1 |

TEACHING SYSTEM

Task-Level Teaching
Part selecting
1
Welding conditions Selectec'l Part
. & conditions
put
/ data
Welding task
Q;gﬁt;‘gg \
Welding task Task-level
simulation program
Task Program /
editing
Motion Program Generation
rLang'uage translator I Motion-level
program
] 1
i !
{ROBOT SHVIULA’I‘OR] ROBOT CONTROLLER

‘ Sensors]_—l ROBOT*|

Fig. 4. Task-level instruction flow.

part of the work model displayed on the screen is taught.
Then welding conditions of the selected welding part are
set. This procedure is repeated for every and all welding
parts.

From the specified welding parts and condition data, a
task-level welding program is automatically created. The
task here includes necessary robot operations, such as
detection of work deviation, torch approach at a welding
start point, and torch removal at a welding end-point, in
additon to welding operations.

Then the created task-level program is checked for its
procedure with a task simulator on this system. If a part
of the procedure needs to be corrected, the program is
corrected accordingly. The simulation and correction of
the program are repeated until an appropriate procedure
is created.

The completed task-level program is then transferred
to the motion program generation section to be
converted into a motion-level program. The motion-level
program is also generated automatically with the
environment data set. The motion-level program is then
transferred to a robot simulator or a robot itself to check
the actual motion.

b. Windows structure. This section describes the struc-
ture and operation of display windows for individual
tasks.

All four displays used for this system are shown in

https://doi.org/10.1017/50263574797000118 Published online by Cambridge University Press

101

Figure 5. These four windows are displayed on the same
screen at the start-up. Figure 6 shows the structure of the
windows shown in Figure 5.
* Main tool window: consists of a title part and a
menu bar.
* 3D-display window: displays a 3D picture.
* 3D control panel: is a child window of the
3D-display window to choose the 3D operation.
* Graphical sequence window: displays a task
program.
* Welding condition editor: displays conditions.
The functions of individual display windows are as
follows:

(i) Main tool window: The main tool window displays
menus to select functions, such as motion-level program
generation, file open/close, and display change.

(ii) 3D-display window: The 3D-display window dis-
plays work models. The operator teaches welding paths
by selecting the start and end-points of the weld line
segment with the mouse. Line data, such as linear or
circular, and path data, such as path completion and
deletion, are controlled by the control panel shown in
Figure 5. The color of the weld portion is changed once
teaching has been completed, so that the selected line is
distinguished from the other parts of the model.

(iii) Graphical sequence window: The graphical se-
quence window is used to carry out graphical editing of a
task-level program. A program is described with blocks
(leaf), which indicate individual tasks, horizontal lines
(branch), which indicate paths, and vertical line (trunk),
which indicates the flow of welding operations. Thus, the
operator can easily understand the construction of the
program.

Each block indicates a welding line segment; therefore,
a welding path with multi-line segment data can be
described as a horizontal line with multiple blocks.

To change the program sequence, the position of the
intended item is changed on the screen with the mouse.
The selection of items on the 3D-display window and the
specifications on the sequence window complement each
other, i.e. an item selected on the 3D-display window will
be specified on the sequence window.

(iv) Welding conditions window: The welding conditions
window requests the operator to set conditions to carry
our welding operations if necessary. It also displays and
sets conditions pertaining to each task-level command,
i.e. if the command is “welding”, then welding conditons
such as leg length, thickness of the work, and direction
are displayed. If the command is “detection”, then the
detection pattern and position are displayed.

c. Task simulation. This function is provided to check
the sequence of developed task-level program on the
screen with the windows mentioned above. Once the
simulation is executed, the welding part on the

https://doi.org/10.1017/S0263574797000118

102 Graphical robot language

welding task teaching

WD REED

sequence window

standby start
— welding

sense

T

weld

stop corner
welding

point

EE

m [B vem[Jm Path
leg length [] e l:l path choice
- method
b Y] [
direction \ i at
classification GANCEL
pattern
O delete

Fig. 5. An example of displayed graphical interface. (Captions are given in Japanese and English).

3D-display window and the command block on the
sequence window are highlighted in the sequence. The
set conditons are shown on the welding conditions
window.

4. EVALUATION AND DISCUSSION

JARA carried out evaluation tests for the prototype
system developed to verify the usefulness of the task
teaching concept by using a robot simulator in February
1996. Many persons who were not familiar with robot
programming tried to construct a robot program for arc
welding tasks for the rather simple work shown in
Figures 5 and 7, after a brief instruction period.

The usefulness of the proposed task-level teaching has
been confirmed. In the case of corrugation welding for
the work shown in Figure 7, the results obtained showed
that the time for teaching by the task-level teaching

| Main tool window |

3D-display
window
Graphical
sequence
window Welding 3D control
conditions panel
window

Fig. 6. Windows structure.

https://doi.org/10.1017/50263574797000118 Published online by Cambridge University Press

system could be reduced to about one-sixth by using a
teaching aid. Also, various subjects to be improved have
been pointed out, such as enhancement of the expression
capability of the task-level language, expression of
routine tasks, conditional expressions, and so on.
Through evaluation tests, the validity of the concept
proposed and the fact that the task level teaching system
developed is easy to use for beginners and is a
user-friendly, for easy-to-learn robot programming
system have been clarified.
The authors think that the reasons are as follows:
e The interface is familiar to a user who has
experience in operating a personal computer.
* A graphical display makes it easy for the user to
understand intuitively the instructing task.
* Only a minimum number of instructions guided by
the system are required to produce the robot-
language program.

5. CONCLUSION

A prototype teaching system for an arc welding robot,
which enables an operator to construct a robot program
by teaching task-level instructions through the graphical
user interface, has been developed, and the usefulness of
the system has been verified. In 1996, according to the
results, practical technologies to automatically deploy a
task-level program into a motion-level robot program,
which needs advanced information processing technol-

https://doi.org/10.1017/S0263574797000118

Graphical robot language

e L

project(P) window (W) tool(T) help(H)

edit(E) list(ly view(Y)

103

BB
e(l) echt(ly) view (V) mode(M) help(H)

V) BHEE— F(M) ALTH)

weldi su
“ mm X picking
e __Jm
ze[___ Jm

segment

Fig. 7. An example of displayed graphical interface in evaluation tests. (Captions are given in Japanese and English).

ogies, is to be developed. Improving the prototype
system for arc welding and evaluation tests with an actual
industrial robot are to be carried out in 1997.

The authors hope that the robot programming
simplification system developed under the project will
provide a solution to realize a practical and easy-to-use
programming system and consequently expand the robot
market, especially in small batch production works.

Acknowledgement

This project has been carried out under contract with the
Information Technology Consortium (ITC) as a project
of “The Research and Development on Technological
Succession and Promotion Systems for Advanced
Production Corresponding to Saving Energy”’ sponsored
by the Information-technology Promotion Agency (IPA).

https://doi.org/10.1017/50263574797000118 Published online by Cambridge University Press

References

1. A. Matsumoto and T. Arai, “The present and Future of
Robot Languages” J. Robotics Society of Japan 11, No. 1,
36-39 (1993).

2. T. Ogasawara, “‘Software Platform for Robotics Research”
J. Robotics Society of Japan 14, No. 1, 2-5 (1996).

3. Japan Robot Association The Report of the Development of
Indistrial Robot Programming Technologies in FY1994
(April, 1995).

4. H. Inoue ‘“Research Subjects on Robot Languages” J.
Robotics Society of Japan 2, No. 2, 87-90 (1984).

5. Japan Robot Association The Report of the Development of
Industrial Robot Programming Technologies in FYI1995
(April, 1996).

6. M. Weck and R. Dammertz, “OPERA-A New Approach to
Robot Programming” Annals of the CIRP 44, 389-392 (Jan.,
1995).

https://doi.org/10.1017/S0263574797000118

