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Systems based on secondary surveillance radar (SSR) downlink signals, both with directional and with omni-directional
antennae (such as in multilateration), are operational today and more and more installations are being planned. In this
frame, high-density traffic leads to the reception of a mixture of several overlapping SSR replies. By nature, SSR sources
are sparse, i.e. with amplitude equal to zero with significantly high probability. While in the literature several algorithms per-
forming sources separation with an m-element antenna have been proposed, none has satisfactorily employed the full poten-
tial of sparsity for SSR signals. Most sparsity algorithms can separate only real-valued sources, although we present in this
study two algorithms to separate the complex-valued SSR sources. Recorded signals in a live environment are used to demon-
strate the effectiveness of the proposed techniques.
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I . I N T R O D U C T I O N

Originally denominated “Identification Friend or Foe” (IFF)
during the Second World War, the secondary surveillance
radar (SSR) operates on an interrogation–reply basis (while
primary radars are based on echo-location). The radar emits
an interrogation, eliciting from the air-planes in the illuminat-
ing beam a reply generated by an on-board SSR transponder
and emitted by an omni-directional antenna. The interroga-
tion and the reply are modulated, finite-length signals at
carrier frequencies of 1030 and 1090 MHz [1]. Two oper-
ational protocols currently co-exist: previously unaddressed
mode A/C and newer mode S, in which the ground station
selectively addresses the aircraft and permits short data com-
munications between the ground interrogating station and the
aircraft [2]. This new standard is intended to reduce the reply
rate and will ultimately replace the mode A/C. Recently, a dis-
tributed network of receive-only stations may be added to the
conventional SSR system [3, 4], which permits multilateration
and enhanced message detection; see Fig. 1.

However, with distributed systems there is a dramatic
increase of received replies per unit time, causing overlapping
between replies and/or unsolicited replies called “squitters”. In
such conditions, very often the message transmitted by the air-
craft is corrupted and cannot be recovered by conventional
decoders, nor can the aircraft be located and identified.

Source separation can be based on an array response
matrix [6], high-order statistics [7, 8], deterministic properties
[9, 10] that involve joint diagonalization of a collection of
symmetrical third-order tensors [11], or the usage of the

sparsity of sources [12, 13]. Sparsity refers to algorithms
that use the fact that a source may in fact be off a substantial
percentage of time: either in the time domain or after a trans-
formation (Fourier, wavelets, etc.) [14–16]. In [13], due to
different times of arrival for the sources, sparsity arises at
the beginning and the end of the data batch under investi-
gation. Figure 2 presents a typical case of mixed replies,
where actually two mode S (in boxes) and one mode A/C
(not visible) are present.

But sparsity also arises when the two sources are over-
lapping; indeed all SSR sources are off half the time by
design. Therefore, we propose two different algorithms
based on sparsity: The first algorithm is a global one that
behaves roughly as a generalized Hough transform [17], as
it attempts to map every sample over a parameter space.
The second algorithm estimates and stores the parameters
of interest in an inline fashion for a group of consecutive
samples, and then by clustering identifies the right ones. We
will demonstrate its effectiveness on a set of real data acquired
by an experimental platform that we designed in TU Delft.

Section II recalls the SSR model, whereas Section III intro-
duces the sparsity concept and how it applies to SSR. In
Section IV the global algorithm is presented, and in Section V
the inline one is shown, Section VI analyzes the results of the
algorithms on experimental data, before concluding in
Section VII.

I I . D A T A M O D E L

We consider the reception of d independent source signals on
an m-element antenna array (of arbitrary response). The base-
band antenna signals are sampled at frequency 1/TS greater than
the signal bandwidth and stacked in vectors x[n] (size m). After
collecting N samples, the observation model is

X ¼ M � SþN, (1)
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where X ¼ [x[1], . . . , x[N]] is the m � N received signal
matrix. S¼ [s[1], . . . , s[N]] is the d � N source matrix,
where s[n] ¼ [s1[n], . . . , sd[n]]T is a stacking of the d source
signals (superscript T denotes transpose). N is the m � N
noise matrix, whose elements are temporally and spatially
white. M is the m � d mixing matrix that contains the array sig-
natures and the complex gains of the sources. We assume that
the replies are independent; hence Efsisj

�g ¼ 0 for i = j.
Independently of their protocol, mode A/C or S, the sources.
si[n], 8i [ f1, . . . , dg, consist of a binary sequence, bi[n] with
alphabet f0, 1g, modulated by a complex exponential due to a
residual carrier frequency, fi:

si[n] ¼ bi[n] exp�j2pfinTS : (2)

Moreover, the two reply modes, i.e. mode A/C or S, are packet-
wise of different lengths, resp. 21.7 and 64/120 ms. Therefore, it is
always possible to isolate a data batch that contains the sources
(see Fig. 2).

I I I . T H E S P A R S I T Y C O N C E P T A N D
O U R P R O P O S E D M E T H O D O L O G Y

A source is sparse if either in the time domain or after a trans-
formation, it has a significant probability to be equal to zero.
Such sources can produce a mixture needing to be separated,
as in, for instance, music, speech, and seismic data [14–16].

A typical problem, such as the one presented in Fig. 3, is the
case of several sources with possibly less sensors (so an unde-
termined problem). Indeed, here we have only two sensors for
three sources. Because the sources are sparse, in the X–Y
domain, we can actually visually separate them. Several

algorithms can then cluster and assign each source (see [18]
for a survey).

Because mode S replies have a Manchester modulation, we
are assured that within any time interval we take at least half of
the time the source is off. For mode A/C, this ratio is even
bigger by construction. So the SSR sources are naturally
sparse.

Figure 4 represents in three dimensions the I and the
Q channel of the first antenna as x and y (real and imaginary
parts), and the I channel of the second antenna as z of a mode
S reply.

We observe that, up to the noise, the points are included in
a two-dimensional subspace, i.e. a plane in a three-
dimensional space. First, for an m-element array antenna,
the data from a single reply are always included in a two-
dimensional subspace, over a real 2m-dimensional space.
Indeed let

x[n]
y[n]
z[n]

2
4

3
5 ¼

Re{x1[n]}
Im{x1[n]}
Re{x2[n]}

2
4

3
5:

Replacing xi[n] in the noiseless case using Equations (1–2) and
simplifying,

x[n]
y[n]
z[n]

2
4

3
5 ¼ b[n](a cos(2pfnTS)þ b sin(2pfnTS))

b[n](g cos(2pfnTS)þ d sin(2pfnTS))
b[n](e cos(2pfnTS)þ h sin(2pfnTS))

2
4

3
5:

Fig. 2. A record overlapped replies (case W5).

Fig. 1. The distributed SSR system (from [5]).

Fig. 3. Mixture of three sparse sources onto two sensors fX, Yg: (a) time
domain, and (b) X–Y domain.

Fig. 4. One SSR mode S reply in cartesian coordinates.
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Choosing a pair fa, bg such as

a
b

� �
¼

a b

g d

� ��1
e

h

� �

yields z ¼ axþ by, which is a plane equation containing the
origin.

Second, the measured data are consistent with the sparsity
assumption: we have two clouds of data, the outer ring when
the source is emitting a pulse, and the central cloud that is
noise only. Note that the distribution of the absolute value
of the reply is almost bi-modal, except for the leading and
the trailing edge of the pulses.

Figure 5 presents the synthetic mixture of two mode S
replies, q10 and s21. Given that the two sources impinge
from different directions of arrival, their samples, when
alone, lie on two different planes (the proof is trivial, and
skipped for lack of space).

Concept of the algorithms: We want to detect the direction
of each plane on which the replies lie, in order to be able to
separate them.

Unlike the algorithms described in [14–16, 18], which are
designed for real-valued sources and detection of lines in a
two-dimensional space, the most important improvement of
our proposition is the ability to work with complex sources
that lie on a two-dimensional plane in a 2m-dimensional
space.

In this paper, we restrict ourselves to the three-dimensions
case, i.e. three real dimensions over 2m, for several reasons:
(1) sake of space and simplicity, (2) the global algorithm is
computationally intensive to work with three dimensions in
which we have to calculate a two-dimensional cost function,
(3) fx, y, zg is graphically simple to visualize, so it helps
to better understand the algorithm and the problem, and
(4) we can take advantage of the well-known parameterization
of the subspace.

But it is not a limitation; indeed the, second algorithm can
be extended over more dimensions at a relatively low cost.

I V . T H E G L O B A L A L G O R I T H M

Idea: For every possible plane in fx, y, zg space, we compute
the number of samples that might belong to it, above the
noise. Later, we keep as potential source plane, the ones
with the highest count.

We can parameterize the planes with two angles: the polar
angle and the azimuth angle, which define a vector n

!
. As we

use a space of dimension 3, the orthogonal subspace to this
vector is a plane; therefore we can define any plane by its
orthogonal vector n

!
. So counting for each possible plane

means to discretize the parameter pair fu, fg defining n
!

,
and calculating the count of the samples on all the pairs of
this grid.

The noise may displace some samples out of their correct
plane of interest, and the discretization may be too crude.
Therefore, we rather do a “soft-counting” via a cost function

C(u, f) ¼
XN�1

n¼0

exp �
(/(x[n], xp[n])2

2s2
a

� �
,

where xp[n] is the projection of the sample x[n] on the plane
with normal vector in the direction (u, f), and sa is the
accepted error on /(.) between the projection and the
initial sample. One example of the cost function is presented
in Fig. 6, where we can observe the cost function associated
to each source and their mixture. One can observe already
the main problem, which is the creation of spurious peaks.

The algorithm follows the steps below:

(1) Perform a singular value decomposition (SVD) on the
raw data.

(2) Select the real and imaginary parts of the first component,
and the real part of the second component of the data.

(3) Evaluate C(u, f) for each fui, fjg.
(4) Search for the dþ 1 maximum values C(u, f).
(5) Collect the samples belonging to each plane, and use it to

derive an array signature vector.
(6) By some statistical decision method, decide the d direc-

tions to be preserved.
(7) Project the data onto the directions of each plane.

Step (1) reduces the complexity of the data (we had four
sensors) and whitens the data.

Step (2) is arbitrary in the choice of the components.
Step (5): first, for each estimated maximum of C(u, f), we

collect the samples that exactly lie on this plane in Xi, the sub-
matrix of X that contains these samples. Figure 7 draws the
full set of samples, and X1, X2 as circles or squares for both
sources.

Next, the main eigenvector of the SVD of Xi, is the source
array signature vector: mi (see for instance [12, 13].

Step (6): several tests exist to decide if the detected planes
are artifact or real:

† Probability distribution.
† Kurtosis equal to zero [8].
† Bimodal distribution of the absolute value.
† Test on the eigenvalues of the previous SVD.

In this paper, we choose to keep the two directions that
produce the smallest condition number for the matrix M ¼
[mi,mj].

Fig. 5. Two sources mixed, q10 and s21, in cartesian coordinates. Circles
represent the positions of their outer rings alone.
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Step (7) is done by a Moore–Penrose pseudo-inversion:

Ŝ ¼ MyX:

V . I N L I N E A L G O R I T H M

The inline algorithm aims at reducing the computational cost
by assuming that if a sample contains only a source, consecu-
tive samples may also contain only the same source: let their
number be L. Therefore the parameters of the plane contain-
ing these samples can be derived (see Fig. 8), and later
compared.

The algorithm follows the following steps:

(1) Perform an SVD on the raw data.
(2) For all n [ f1, . . . , N – Lg, gather the sub-matrix

Xn ¼

x[n] . . . x[nþ L� 1]
y[n] . . . y[nþ L� 1]
z[n] . . . z[nþ L� 1]

2
4

3
5

and evaluate the pair fui, fjg of this plane.
(3) Perform a cluster analysis to get the most significant

directions.
(4) Statistically, decide the d directions to preserve.
(5) Project the data onto the directions of each plane.

Steps (1), (4), (5): same as the global algorithm.

Step (2) is done by an SVD; indeed the orthogonal vector to
the plane is the last eigenvector of the SVD (only true in fx, y,
zg space). The fui, fjg of the vector are the ones of the plane.

Step (3) is the source of computational improvement over
the global solution. Indeed, step (3) of the global solution
needs to discretize the parameter space of a possible plane:
as the dimension increases, so does the needed number of
points discretize the parameter space (in fact the number
of samples is directly proportional to twice the number
of samples in one dimension to the power of the number of
dimensions). Conversely, adding dimensions to the clustering
step is just changing the definition of the distance (between
two pairs), which is just linear with the number of dimensions.

An example of the output of step (3) can be seen in Fig. 9,
where the pairs calculated by step (2) are shown. Moreover,
the result of the clustering is symbolized by two circles.

V I . E X P E R I M E N T A L R E S U L T S

A) Setup and conditioning of the data
In this seminal study, we only investigated the mixture of two
mode S replies. Preliminary studies performed at TU Delft on
the earlier prototypes have shown that the receivers are linear
for the used dynamic range. Consequently, it is acceptable to
consider the addition of two different time slots containing
different mode S replies as an almost real case. The use of

Fig. 6. Cost function for the case s21, q10, and their mixture.

Fig. 7. Two sources mixed, q10 and s30 in cartesian coordinates: the dots are
the full set of samples, whereas the squares and the circles represent the set of
samples lying on the two main planes. Fig. 8. Plane detection for the s24 case alone with L ¼ 4.
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these semi-synthesized cases of overlapping mode S replies
allows us to perform a general performance analysis of any
algorithm (without being just simulations). In this exper-
iment, we used pairs with the best initial signal to noise
ratio (SNR); we mixed them so that the sources are equipow-
ered and with a ratio to the noise of 20 dB (SNR). Thus they
have an input signal to interference plus noise ratio (SINR)
slightly below 0 dB (note that for one source, the other is an
interference; hence the ratio is below 0 dB). We varied the
time delay between the leading and the trailing reply on the
range [0, 10] ms. We left the remaining frequency shift
unchanged

Given the different time of execution, we only used 72 pairs
for the global algorithm. We first had to remove, out of these
72 pairs, four pairs that had a mixing matrix M ill-
conditioned. i.e. with a bad condition number. Physically, it
means that the two sources were coming from directions of
arrival too near to be separated. Figure 10 presents the
average replies output SINR for the global algorithm as a func-
tion of their condition number for the case of 10 ms delay; note
the presence of four outliers. As this delay is large enough to
ensure that there will be enough non-overlapped samples for
each source, it is a measure of how well the algorithm can
perform in the best condition. To compare. the PA [13] also
works very well in such conditions.

For the inline algorithm, we could use 42 of our recorded
signals. Therefore, we had 1722 potential pairs, of which we
kept the 1000 that had the best condition number.

Note that if the condition number is below 5, all sources
have an output SINR well above 10 dB, which is the limit
usually accepted to decode a reply, and for which the decoding
will be most likely achieved.

B) Experiment with a time delay
Figure 11 presents the success rate, i.e. the fraction of cases
when a reply is detected and decoded, of the algorithm as a
function of the delay between replies. Note that due to the
log scale, it was not possible to show that the success rate is
71% for no delay. With increasing delay, the probability
success improves, which is explained by the fact that there
are more samples that are only with one source, and therefore
with an improved estimation of the array signature vectors. At
2 ms the rate becomes acceptable for aircraft surveillance for
the global one, but then the algorithm is directly in compe-
tition with the PA. Note that the MDA [10] is still better for

Fig. 9. Plane detection for the (s24, s21) case with L ¼ 4, and the detected
clusters.

Fig. 10. Global algorithm: output SINR (dB) of the sources as a function of
their condition number for 10 ms delay.

Fig. 11. Success rate of the algorithm as a function of the delay between
replies.

Fig. 12. Output SINR (dB) of the sources as a function of the delay between
the replies (G: global; I: inline).
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no delays. The inline version with only 65% cannot be
accepted yet, but as we think it has some potential, let us
note that at least the success is delay independent.

Figure 12 presents the output SINR as a function of the
delay. The SINR is estimated as the ratio between the norm
of projection of the unmixed signal on the source sub-space
over the norm of orthogonal remaining. The average value
is high enough to provide an error-free decoding. We may
observe that between the trailing and leading replies, there is
up to 2 dB difference; we note as well that the inline version
has a 2 dB advantage over the global version.

V I I . C O N C L U S I O N A N D
P E R S P E C T I V E S

We proposed in this article a novel concept to separate SSR
replies. The method is novel to the area of the SSR digital
array, and it is also novel to the area of sparsity-based algor-
ithms due to its ability to process complex-valued data. We
have investigated the case of a mixture of two mode S
replies, in which the result is very encouraging.
Nevertheless, in future research, we will implement the
inline algorithm over the full 2m dimensions. Also, we will
study the behavior of the algorithm with both protocols,
mode A/C and mode S, mixed. Like other sparsity-based
algorithms, this method yields the potential to separate the
under-determined problem, i.e. more sources than sensors.
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