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Vibration energy harvesting aims to harness the energy of ambient random vibrations for power
generation, particularly in small-scale devices. Typically, stochastic excitation driving the harvester
is modelled as a Brownian process and the dynamics are studied in the equilibrium state. However,
non-Brownian excitations are of interest, particularly in the nonequilibrium regime of the dynam-
ics. In this work we study the nonequilibrium dynamics of a generic piezoelectric harvester driven
by Brownian as well as (non-Brownian) Lévy flight excitation, both in the linear and the Duffing
regimes. Both the monostable and the bistable cases of the Duffing regime are studied. The first set
of results demonstrate that Lévy flight excitation results in higher expectation values of harvested
power. In particular, it is shown that increasing the noise intensity leads to a significant increase in
power output. It is also shown that a linearly coupled array of nonlinear harvesters yields improved
power output for tailored values of coupling coefficients. The second set of results show that Lévy
flight excitation fundamentally alters the bifurcation characteristics of the dynamics. Together, the
results underscore the importance of non-Brownian excitation characterised by Lévy flight in vibra-
tion energy harvesting, both from a theoretical viewpoint and from the perspective of practical
applications.

Key words: applications of stochastic analysis, fractional processes, computational methods for
stochastic equations, physical applications of random processes
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1 Introduction

Vibrationenergy harvesting (VEH) continues to be a topic of intense research as a promising
pathway in the quest for inexpensive and sustainable sources of energy. VEH seeks to efficiently
harness the energy associated with sources of ambient - and characteristically random - vibrations
by converting it to electrical power. Piezoelectric transduction is a typical method of conversion
of mechanical energy to electrical energy in energy harvesters. There exists an extensive body
of literature on VEH, starting with attempts to autonomously power mobile sensor networks
[29, 20, 24, 27, 28, 23, 4] and more recent reviews may be found in, e.g., [16, 13].
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Given the objectives of this article, certain analytical aspects of VEH merit consideration next.
A vibration energy harvester, in essence, is an electromechanical system. The dynamics of the
harvester may be approximated by a system of ordinary differential equations that represent the
coupling between the mechanical and electrical degrees of freedom. Two aspects of the dynamics
that are important from both the theoretical and applied viewpoints are nonlinearity and stochas-
ticity, and we now briefly discuss them in sequence, with a view towards motivating the research
reported in this article.

Designing an efficient harvester in the linear regime of the dynamics is fundamentally
challenging because maximal power output in this case is constrained on the system being consis-
tently excited at its resonant frequency. Indeed, ambient vibrations cannot be expected to satisfy
this constraint and hence attention has turned to the nonlinear regime where, in principle, bet-
ter power output may be expected over a broad band of excitation frequencies [6, 2, 22, 26, 25].
Whilst under certain conditions nonlinear harvesting seems to offer better prospects (e.g. bistable
oscillators [30, 21, 17]), the topic continues to be the subject of active research. However, we
note that designing a nonlinear harvester is fraught with a set of unique challenges.

Turning now to stochasticity, we note that due to the random nature of ambient excitation, it
is essential to consider the harvester as a stochastic dynamic system [9, 8, 12]. Consequently,
nonlinear harvesters where the dynamics of the mechanical degree of freedom occurs under
monostable and bistable quartic potentials of the Duffing type have been extensively studied
under random excitation (see, e.g., [9, 6]). Notably, the literature on nonlinear harvesting is
largely focused on the equilibrium state that the harvester is assumed to have attained under
excitation characterised by Brownian (diffusive) processes and their slight variations. However,
given that a harvesting device is quite unlikely to settle into a genuine steady state in practice and
that the transient states likely yield higher expectation values of power output, the nonequilibrium
states of the harvester dynamics need to be well understood. This serves as one of the motivating
factors for the present work.

Moreover, harvester dynamics under non-Brownian excitation is yet to receive the attention
it deserves. For, in addition to dynamics driven by such excitation being of intrinsic interest
from a mathematical standpoint, non-Brownian processes (e.g. Lévy flights) are better suited
to model excitation in several real-world harvesting scenarios such as VEH from ocean waves.
Furthermore, optimised harvester circuit design that significantly enhances harvesting efficiency
(see, for instance, [19]) could also benefit from a harvester driven by Lévy flight excitation.
Finally, stochastic excitation characterised by non-Brownian processes can significantly influ-
ence the hysteresis phenomenon and therefore jump bifurcations in certain nonlinear harvesters.
Once again, in addition to being of deep mathematical interest, jump bifurcations impact prac-
tical harvester design since they dictate the stability characteristics of operating regimes. And
yet, to the best of the authors’ knowledge, the dynamics and the efficiency of a piezoelectric
energy harvester under Lévy flight excitation have not been studied in any detail in the literature.
The only discussion one finds is in [7] where certain interesting aspects of the dynamics of a
harvester undergoing motion under a Woods–Saxon potential and coloured noise of the Lévy
type are reported. Indeed, all of the aforementioned considerations strongly motivate the work
reported in this article.

To summarise the key objectives of this article, first we seek to understand the influence
of Lévy excitation on the averaged power output from a generic piezoelectric harvester and
the sensitivity of the power output to noise intensity. Since the interplay between randomness
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and nonlinearity is known to engender phenomena such as stochastic resonance with potential
benefits for harvesting [10], we focus on a nonlinear harvester where the mechanical degree
of freedom is represented by a Duffing oscillator where we consider the two distinct cases of
the quartic potential: the monostable (hardening stiffness) and the bistable (softening stiffness).
In addition, harvesting using a (linearly) coupled array of Duffing oscillators is also investigated.
Second, we seek to understand the influence of Brownian and Lévy excitations on the hysteresis
phenomenon and jump bifurcations that arise in a nonlinear harvester with softening stiffness. In
all the cases, we also seek results from Brownian excitation in order to compare and contrast the
results with those obtained for Lévy excitation.

The rest of the article is set as follows. In Section 2 we present a generic analytical model
of a piezoelectric energy harvester followed by a discussion of the key characteristics of Lévy
flights. An outline of the numerical simulation scheme and allied details are also provided in this
section. In Section 3, we present results from the linear and nonlinear cases (both monostable
and bistable) both for Brownian and Lévy excitations. The results for harvested power from a
coupled array are also presented in this section. In Section 4, results that illustrate the influence
of Brownian and Lévy excitations and the noise intensity of the excitation on the hysteresis
phenomenon are presented. The article concludes in Section 5 with a further discussion of the
results and a view towards potential directions for future work.

2 Methodology

2.1 Analytical framework

The dynamics of a piezoelectric energy harvester’s electrical and mechanical degrees of freedom
are modelled using a system of coupled differential equations. Much work regarding such models
exists in the literature. For the purposes of this article, we adopt the model described in [9]. This
model is included as equations (2.1) and (2.2). The mechanical degree of freedom is represented
in equation (2.1), while the electrical degree of freedom is represented in equation (2.2). These
equations are coupled with one another via the constant coupling coefficients Kv and Kc. Note
that these modelling equations are in fact nondimensional:

ẍ = −dU(x)

dx
− γ ẋ − KvV + σξ (t), (2.1)

V̇ = Kcẋ − 1

τp
V . (2.2)

In these equations, x represents the displacement, and V the voltage. The coefficient γ is
the viscous damping coefficient and τp is the time constant of the piezoelectric dynamics. Kv
is the coupling coefficient relating the displacement to the voltage, and Kc is the piezoelectric
coupling constant. The nondimensional values used for these coefficients and model parameters
are identical to those referenced in [9] and [5] (τp = 11.4, γ = 0.016, Kc = 0.5, Kv = 0.5). The
σξ (t) term is the stochastic process driving the harvester, where σ is a constant representing the
noise intensity. U(x) is the potential energy function, which in the nonlinear case corresponding
to a Duffing oscillator is represented by equation (2.3). When both the constant coefficients a and
b are positive, the nonlinear potential is said to be monostable. The potential becomes bistable
when a is negative and b is positive. This results in a U(x) function with two potential wells, the
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precise shape of which is manipulated by varying a and b. We also note that when b is set to zero
in equation (2.3), one recovers the potential energy for a linear oscillator:

U(x) = 1

2
ax2 + 1

4
bx4. (2.3)

Additionally we consider in this article an array of five nonlinear harvesters that are linearly
coupled to their nearest neighbours. The modelling equations for member i of such an array are
included as equations (2.4) and (2.5). In equation (2.4), kcpl is the coupling stiffness:

ẍi = −dU(xi)

dxi
− γ ẋi − kcpl(2xi − xi+1 − xi−1) − Kvi Vi + σξ (t), (2.4)

V̇i = Kcẋi − 1

τp
Vi. (2.5)

2.2 Stochastic excitation

The σξ (t) term in the equations of the model represents the stochastic forcing where σ is the noise
intensity. In the case of Brownian motion (process), ξ (t) is a white noise process that generates
the Brownian motion. Mathematically, ξ (t)dt = dW , where dW is a Weiner process. Formally,
equations (2.1) and (2.2) may be rewritten as a first-order system of Ito stochastic differential
equations as (see, for instance [11]):

dx̄ = Ādt + σdW̄ , (2.6)

where x̄ is the state vector of the harvester given in terms of the displacement, velocity and
voltage by x̄ = [x, ẋ, V ]T . The incremental Weiner process dW̄ and Ā are defined under the change
of variables x1 = x, x2 = ẋ and x3 = V as follows:

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎣

x2

−dU(x1)

dx1
− γ x2 − Kvx3

Kcx2 − 1

τp
x3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.7)

dW̄ =
⎡
⎢⎣

0

dW

0

⎤
⎥⎦. (2.8)

The realisations of a Brownian process are random variables that are (randomly) distributed
according to the standard normal distribution (please see the standard normal distribution shown
in Figure 1). The distribution peaks at the origin, is symmetric about the y-axis and tapers off
quickly as one moves away from the origin along the x-axis. In other words, most of the random
values that are realised in a Brownian process are values close to the mean value of the distri-
bution at the origin. In contrast to this situation is the case of a generalisation of the Brownian
process called Lévy process which is characterised by a scale factor δ > 0 and a shift param-
eter μ. The contrast with the standard normal distribution is illustrated in Figure 1 where the
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FIGURE 1. Levy and Gaussian distributions.

Lévy distribution is shown for different values of the scale factor (which determines the width
of the distribution) and the shift parameter (which determines the location of the peak). As seen
from the figure, depending on the scale and shift factors, the Levy distribution is long tailed;
there can be a significant area under the distribution along the positive x-axis. Now, Brownian
processes represent random motion about a mean where the steps are drawn from a standard nor-
mal distribution. However, as described above, Lévy processes are characterised by a long-tailed
distribution. Therefore, in random motion of the harvester driven by Lévy processes, occasional
motion with steps that deviate significantly from the mean can and do occur. Formally, Lévy
flights are classified as a special class of continuous time random walk processes. We now present
the expression for the Lévy distribution in one variable x in terms of the parameters δ and μ (see,
for instance, [15]):

L(x, δ,μ) =

⎧⎪⎪⎨
⎪⎪⎩

√
δ

2π

1

(x −μ)3/2
e
(
− δ

2(x−μ)

)
; 0<μ< s<∞

0; s ≤ 0.

(2.9)

Random excitation of the harvester in the Lévy case is considered using a bi-variate proba-
bility distribution function �(x, t) =	(x)w(t), where 	(x) is called the jump-length distribution
and w(t) is called the wait-time distribution [15]. The wait-time distribution corresponds to an
uncorrelated (Markovian) process, while the jump distribution is Lévy. We note here that a
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convenient way to represent a Lévy distribution, say f (x), is via its Fourier transform F(k) which
always has the form [1]:

F(k) = exp(−λ|k|α); 0 < α ≤ 2, (2.10)

where the constant λ(−1 ≤ λ ≤ 1) indicates the skewness of the distribution and the constant α,
called the Lévy index, dictates the area under the tail region of the distribution.

Modifying the harvester model for the case of Lévy excitation entails replacing the Weiner
process dW by the Lévy increment dLαt , where α is the Lévy index of the distribution. For this
article, we consider α = 1.4. As in the Brownian case, this increment is multiplied by the constant
σ , which represents the noise intensity.

2.3 Numerical scheme

Numerical simulations are accomplished using the well-known Euler–Maruyama numerical
method for stochastic systems [14]. A duration of 200 s and a time step rate of 1000 Hz are
used. Generating noise, both Brownian and Lévy, is accomplished via methods available in lit-
erature ([31] and [14], respectively). The numerical implementation of the Lévy increments is
slightly more involved than for the Brownian case. This task is handled by using a method known
as Mantegna’s algorithm (see [31]).

The energy output E is calculated from the power output P using the relationship E = ∫
P(t) dt.

In the discrete case (as in the simulations), the integral is replaced by a summation. For a time
interval [a, b] split into N + 1 evenly spaced points, the integral of a function f (t) would be
replaced by a summation as follows:∫ b

a
f (t)dt ≈ b − a

2N

N∑
n=1

(
f (tn) + f (tn+1)

)
(2.11)

= b − a

2N

[
f (t1) + 2f (t2) + ... + 2f (tN ) + f (tN+1)

]
, (2.12)

where (b − a)/(2N) is the spacing between each point, which in this case is equal to the numerical
step size dt.

3 Results: harvested power

As stated earlier, the objective of our effort is to compare the power output from the harvester
between Brownian and Lévy excitations in a variety of cases. In each case, the power output is
calculated as follows. First, the instantaneous power is calculated from the output voltage of the
harvester at each time step of the simulation by considering a load resistance of 1M� and using
the standard formula, Power = V 2/R where V is the voltage and R is the resistance. Second,
in order to obtain reliable results, 50 unique simulations are conducted for each case and the
root-mean-squared (RMS) value of the power output at each time step across all 50 simulations
is computed. This is the power output plotted in the graphs for all the cases. We also note that a
distinct noise profile (depending on whether the noise in Brownian or Lévy) is consistently used
for each of the 50 simulations (i.e. 50 distinct noise profiles for Brownian and 50 distinct noise
profiles for Lévy) in order to obtain reliable averaged values of power output. Finally, we note
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(a) (b)

FIGURE 2. Linear harvester: noise intensity σ = 0.0012 (a) RMS power output (b) total energy output.

that the energy output shown in the bar graphs for each case is obtained by integrating the power
output with respect to the time step for the entire duration of each simulation. Both the power and
energy shown are nondimensional. In this section we present results for the cases of the linear
harvester, monostable harvester, coupled harvester array and the bistable harvester.

3.1 Linear harvester

The averaged power output, for both Lévy and Brownian noise of identical intensity σ = 0.0012,
is presented in Figure 2(a). This result demonstrates that while the power outputs due to Lévy and
Brownian noise are almost identical during early times of the simulation, over the full-time dura-
tion Lévy noise excitation leads to a higher amount of power harvested. This is due to the higher
energy of excitation caused by the occasional large deviations from the mean in the Lévy noise
case. It is of interest to note that the harvester is able to convert a portion of the disordered energy
associated with noise into electrical power. The higher energy output in the Lévy excitation case
is further established quantitatively by the comparison bar graphs presented in Figure 2(b).

For the previous simulations, the noise intensity was held constant at σ = 0.0012. To better
understand the influence of varying the noise intensity on the power output in both the Lévy
and Brownian cases, a parametric study is conducted next. Power output is compared for five
different σ values. Each σ value is treated to the same 50 noise profiles to ensure accurate com-
parisons. RMS power output results for the linear harvester excited by Lévy noise are included
in Figure 3(a). As expected, increasing the noise intensity results in higher RMS power output
levels. This is not surprising as higher noise intensity directly translates to more energy being
input into the system. The corresponding higher energy output is observed from Figure 3(b) as
well.
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(a) (b)

FIGURE 3. Linear harvester: Lévy noise, multiple σ values (a) RMS power output (b) total energy output.

(a) (b)

FIGURE 4. Linear harvester: Brownian noise, multiple σ values (a) RMS power output
(b) total energy output.

To better understand the significance of the results obtained by varying the noise intensity in
the Lévy case, we repeat the analysis using Brownian noise. The results for the RMS power out-
put are presented in Figure 4(a), and the energy output results in Figure 4(b). Immediately a stark
contrast can be seen between the results for the Brownian case and the Lévy case. When varying
the noise intensity within the range considered in the Lévy case, the output for the Brownian
case is unchanged. Only when σ is increased further to say, 0.24 as in the figure, do we notice a
change. This higher noise leaves the peak power output essentially unchanged, but induces some
instability in the system response. This is a noteworthy contrast to the Lévy case, where smaller

https://doi.org/10.1017/S0956792518000591 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000591


Stochastic dynamics of a nonlinear vibration energy harvester 953

0 50 100
Time

E
ne

rg
y

150 200

(a) (b)

FIGURE 5. Nonlinear harvester: monostable case, σ = 0.0012 (a) RMS power output
(b) total energy output.

changes in σ brought large increases in peak power delivery. As such it can be concluded that
the linear harvester is more sensitive to variations in noise intensity when the noise is of the Lévy
type. This is a key result of this article and, as will be seen in the results that follow, this holds
for the nonlinear case as well.

3.2 Nonlinear harvester: monostable potential

With baseline linear results established, our attention turns to a harvester with a nonlinear,
monostable potential, as shown in equation (2.3). For these simulations, values for a and b are
adopted from [9], and in this case are a = 0.1 and b = 0.1. The same RMS averaging scheme used
for the linear case is employed here, with the same load resistance used in calculating power and
the noise intensity maintained at σ = 0.0012. The results for this monostable nonlinear harvester
under both noise types are provided with the RMS power output in Figure 5(a) and the energy
output in Figure 5(b). Lévy flight has here once again proven more fruitful, producing higher
power outputs than the Brownian case.

As in the linear case, one would now seek to understand the effects of varying the noise inten-
sity σ on the harvested power. Once again, the same 50 run RMS averaging scheme is employed
and simulations are carried out with respect to five different σ values. Each σ value is treated
to the same 50 noise profiles to ensure accurate comparisons. The results for the monostable
nonlinear harvester with a = 0.1 and b = 0.1 as before but now for different σ values under
Lévy excitation are included in Figure 6. The conclusions here are similar to the linear case, as
increasing the noise intensity increased the levels of power harvested.

We now repeat the parametric analysis by varying σ using Brownian noise. The results for
nonlinear monostable harvester are presented in Figure 7. The contrast observed in the results
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(a) (b)

FIGURE 6. Nonlinear monostable, Lévy noise, multiple σ (a) RMS power output (b) total energy output.

(a) (b)

FIGURE 7. Nonlinear monostable, Brownian noise, multiple σ (a) RMS power output
(b) total energy output.

for the Brownian noise and the Lévy noise for the linear harvester case is evident here as well.
When varying the noise intensity within the range considered in the Lévy case, the output for
the Brownian case remains essentially unchanged. Only when σ is further increase to say, 0.24,
do we notice a change. This higher noise leaves the peak power output essentially unchanged as
well, but induces some instability in the system response. However, for the Lévy case, smaller
changes in σ resulted in large increases in peak power delivery. Hence, one of the key results of
this article that the harvester is more sensitive to variations in noise intensity when the noise is
of the Lévy type is valid for the nonlinear monostable case considered as well.
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(a) (b)

FIGURE 8. Lévy noise, coupled vs. uncoupled, kcpl = 0.01 (a) RMS power output (b) total energy output.

(a) (b)

FIGURE 9. Lévy noise, coupled vs. uncoupled, kcpl = 0.1 (a) RMS power output (b) total energy output.

3.3 Coupled harvester array

Next we turn our attention to an array of harvesters physically coupled to their nearest neighbours
since a coupled configuration is of interest in practical applications. Of particular interest is the
influence of the magnitude of the coupling stiffness kcpl on the harvested power. The parameter
kcpl dictates the strength of the coupling between the individual harvesters in the array. The equa-
tions for the array are, as described before, equations (2.4) and (2.5). The array considered here
consists of five nonlinear harvesters linearly coupled to their nearest neighbours. Each harvester
is subject identical excitation. Simulations are run simultaneously for five uncoupled harvesters
to serve as a benchmark. The results for the two systems under Lévy noise in Figures 8–10 reveal
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(a) (b)

FIGURE 10. Lévy noise, coupled vs. uncoupled, kcpl = 1.0 (a) RMS power output (b) total energy output.

that the output is indeed sensitive to the coupling stiffness (kcpl). For the lowest value kcpl = 0.01,
i.e. weakest coupling amongst all the cases considered, the results for which are in Figure 8, we
see that the output for the coupled array is essentially comparable to that of the uncoupled array.
Figure 9 demonstrates that increasing the coupling stiffness to kcpl = 0.1 results in the coupled
array outperforming its uncoupled counterpart, but only slightly. This is a key result as it demon-
strates that coupling can improve energy harvesting when properly implemented. The benefit of
increasing kcpl does not endure however, as increasing it to kcpl = 1.0, as in Figure 10, results in
the uncoupled system performing the best.

To put these coupling results for Lévy noise in better context, we carry out the same exercise
for Brownian noise. The results for the same three kcpl values are included in Figures 11–13.
For the two lowest values, kcpl = 0.01 and kcpl = 0.1, we see that the output is essentially the
same for both the coupled and uncoupled systems. Increasing kcpl to 1.0 results in the coupled
system performing best. This contrasts the Lévy case where kcpl = 1.0 favoured the uncoupled
system. The benefit of coupling under Brownian noise with kcpl = 1.0 is more apparent than any
benefit seen with any kcpl values when Lévy noise is considered. This suggests coupling is a more
beneficial addition when the system is subject to Brownian noise and not Lévy noise.

3.4 Nonlinear harvester: bistable potential

The final set of results reported in this section are those for the case of a bistable potential with
distinct parameter values. As mentioned in the Introduction, we are motivated by the literature
that reports on the advantages of bistable harvesters (see, for instance, [30, 21, 17]). We reiterate
that bistability is represented by the stiffness constant “a” in equation (2.3) being negative, while
the constant “b” positive. First the magnitudes of a and b are taken as equal to those used in earlier
simulations (|a| = 0.1, |b| = 0.1). The results for Lévy noise are included in Figure 14. In this
figure, importantly, the gain in harvested energy is enhanced due to increased noise intensity for
the bistable system.
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(a) (b)

FIGURE 11. Brownian noise, coupled vs. uncoupled, kcpl = 0.01 (a) RMS power output
(b) total energy output.

(a) (b)

FIGURE 12. Brownian noise, coupled vs. uncoupled, kcpl = 0.1 (a) RMS power output
(b) total energy output.

Next, in order to investigate the comparative response of a bistable harvester to Lévy and
Brownian noise of varying intensity, we set a = −0.15 and b = 0.01 and consider three σ values
of increasing magnitude, σ = 0.0006, 0.012, 0.016. The results for the Lévy noise case under the
above parameters are included in Figure 15. The results for parameters identical as before but
now subjected to Brownian noise are included in Figure 16. The key conclusions for the bistable
harvester are: (1) Lévy noise leads to higher harvested power (there is an order of magnitude
difference in the energy output between Brownian and Lévy) and (2) the variation considered
for the noise intensity has a much more significant effect on harvester energy in the Lévy case.
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(a) (b)

FIGURE 13. Brownian noise, coupled vs. uncoupled, kcpl = 1.0 (a) RMS power output
(b) total energy output.

(a) (b)

FIGURE 14. Bistable harvester: a = −0.1, b = 0.1, Lévy noise (a) RMS power output
(b) total energy output.

We note from Figure 16 that the harvested energy is much less sensitive to variations of noise
intensity in the Brownian case. Overall, while a direct comparison between a monostable and
bistable harvester cannot be considered significant since both cases correspond to qualitatively
different potential energy functions, the results show that the benefits of Lévy excitation over
Brownian for harvested energy are evident in the bistable case as well.
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(b)(a)

FIGURE 15. Bistable harvester: a = −0.15, b = 0.01, Lévy noise (a) RMS power output
(b) total energy output.

(a) (b)

FIGURE 16. Bistable harvester: a = −0.15, b = 0.01, Brownian noise (a) RMS power output
(b) total energy output.

4 Results: hysteresis and jump bifurcations

When considering a nonlinear system, noise can have interesting effects on the presence and
characteristics of system bifurcations. Here we consider the effects of noise on the hysteresis
phenomenon which corresponds to jump bifurcations in a harvester with softening nonlinear
stiffness. In this case, the equation of motion of the mechanical degree of freedom can be reduced
to that of a Duffing oscillator with softening stiffness. The basis of our analysis are the deter-
ministic results on the hysteresis phenomenon and jump bifurcations in the Duffing oscillator
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FIGURE 17. Frequency response, deterministic case: σ = 0.

reported by Brennan et al. [3]. The hysteresis phenomenon is well known in a Duffing oscillator
and corresponds to jump bifurcations (see, for instance [18]). To summarise, the frequency
response curve is the plot of the maximum steady state response amplitude of an oscillator (Xmax)
with respect to the frequency of external excitation (�). For a linear oscillator, the frequency
response Xmax is a linear function of �, while for a Duffing oscillator, it is a nonlinear function.
In particular, Xmax becomes a multiple-valued function of� resulting in a hysteresis loop as seen
in Figure 17. Correspondingly, if � is slowly decreased (Downward Sweep), Xmax suddenly
jumps down (the red line) and if if � is slowly increased (Upward Sweep), Xmax suddenly jumps
up (the blue line). This phenomenon is called a jump bifurcation and the hysteresis region is a
region of instability in the sense that Xmax changes suddenly for � values in this region.

In this section we present results on the effect of Brownian and Lévy noise on the hysteresis
loop and therefore the jump bifurcations. To the best of the authors’ knowledge, this aspect
has not been investigated in the literature. For these simulations, we first set the derivative of
the voltage equal to zero, thus turning equation (2.2) into a linear relation between the velocity
and voltage. This is used to eliminate the voltage term from equation (2.1). Damping (ψ) and
stiffness (α) parameters are taken from [3] and accordingly set toψ = 0.04 and α = −5.9 × 10−4.
The equation for the mechanical degree of freedom x of the harvester, now subject to excitation
that is an additive combination of a harmonic excitation of amplitude unity and frequency � and
the noise term σξ (t) is then obtained as:

ẍ = −x − αx3 −ψ ẋ + cos(�t) + σξ (t). (4.1)

In order to generate the hysteresis loop in the frequency response curve, the simulations
involve both an up-sweep and down-sweep in frequency, with the maximum achieved
steady-state displacement as the output. The frequency range used to study the hysteresis loop
is based on the results in [3]. An individual simulation is performed at each frequency. When
moving along the frequency spectrum, the final state variable values at one frequency become
the initial conditions for the simulation at the next frequency. In order to achieve for better
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FIGURE 18. Frequency response, Brownian noise, σ = 0.5.
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FIGURE 19. Frequency response, Brownian noise, σ = 1.

accuracy for simulations involving noise, 20 repeat simulations, each with a different noise
profile, are performed at each frequency. An average of the maximum displacement values (i.e.
maximum steady state values of x) across these simulations is then taken and plotted as Xmax.

To establish a baseline understanding of how noise might affect the hysteresis loop, we begin
our analysis with Brownian noise. These results are included in Figures 17–19. The results in
Figure 17 represent the case where there is no noise. In this figure, the hysteresis loop formed by
the results of the up-sweep and down-sweep is clearly present. In Figure 18, where σ = 0.5, we
see that increasing the noise intensity acts to essentially close the gap between the data points
for the up- and down-sweep, i.e. shrink the hysteresis loop. With σ = 1, in Figure 19, we see
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FIGURE 20. Frequency response, Lévy noise, σ = 0.003.
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FIGURE 21. Frequency response, Lévy noise, σ = 0.007.

the gap has been closed completely and the hysteresis loop has vanished. Consequently, it can
be concluded that Brownian noise of appropriate intensity can eliminate the hysteresis loop and
hence the jump bifurcation phenomenon in the harvester considered.

Moving to Lévy noise, we notice slightly more temperamental behaviour. With this noise type,
the system is once again much more sensitive to changes in the noise intensity. For very low σ

values, as seen in Figure 20 with σ = 0.003, we clearly see the existence of the hysteresis loop.
However, if we increase the noise intensity to σ = 0.007 as in Figure 21, we notice that some of
the upward sweep values within the hysteresis loop are starting to approach their down-sweep
counterparts thus shrinking the area inside the loop.
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FIGURE 22. Frequency response, Lévy noise, σ = 0.011.
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FIGURE 23. Difference between up-sweep and down-sweep data points, Lévy noise, σ = 0.011.

The loop begins to close further when the noise intensity continues to rise. This is especially
clear in Figure 22, where σ = 0.011 and the discrepancies between frequency points in the loop
area are clearly less. To quantify this, the differences between the up-sweep and down-sweep
data points (we call it �Xmax) for the σ = 0.011 case are plotted as a function of frequency in
Figure 23. The difference between these points is zero for most frequencies except two points
around �= 0.9. It can therefore be concluded that Lévy noise, like Brownian noise, closes the
bifurcation gap, except for some frequencies near the resonant peak.

However, there are some caveats to this conclusion. In Figure 24, where σ = 0.009, we see
there is a down-ward sweep frequency point missing. This missing point indicates that the
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FIGURE 24. Frequency response, Lévy noise, σ = 0.009.

maximum displacement amplitude at that frequency becomes unbounded. Thus Lévy noise
shrinks the hysteresis loop in a fashion similar to that seen with Brownian noise, except for
some sporadic cases of instability. It should also be noted that when σ values approach 0.011,
we noticed that some simulation attempts are unstable and fail completely. This confirms that
the effects of Lévy noise on the hysteresis loop and hence the jump bifurcations are more erratic
than those due to Brownian noise. This conclusion has important implications as it shows that
when a system is excited by noise that is closer in behaviour to Lévy noise than Brownian noise,
a previously predictable frequency response may be drastically altered.

5 Conclusions

In this article we have considered the effect of Lévy flight excitation on the dynamics of several
different piezoelectric harvester designs and their associated average power outputs. Different
designs included linear, nonlinear monostable, nonlinear bistable potentials for the mechanical
degree of freedom of the harvester as well as coupled harvester systems. Simulating the dynamics
was accomplished using a numerical scheme and a set of stochastic differential equations rep-
resenting the dynamics of the harvester. Multiple runs were performed, and the average power
output across these runs was taken at each point in time.

The first set of results demonstrate that, on average, harvesters under Lévy excitation will
yield more power than those subjected to Brownian excitation. Additionally, increasing the noise
intensity results in different behaviour depending on which type of noise is present. For Lévy
noise, the harvester is much more sensitive to changes in the noise intensity than when subjected
to Brownian excitation. This is an important conclusion of this article. When comparing a system
of five harvesters coupled to together to an uncoupled counterpart, coupling was found beneficial
regardless of noise type. Lastly, the benefits of Lévy excitation over Brownian were also found
in an appropriately designed nonlinear bistable harvester.
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The second set of results indicate that both Brownian and Lévy excitation can fundamentally
alter the jump bifurcation phenomenon in the harvester. Precisely, the hysteresis loop gets elimi-
nated for certain levels of noise intensity thereby fundamentally altering the frequency response.
Moreover, the results indicate instability for higher levels of noise intensity.

Taken together, the results provide interesting insights into harvester dynamics. We note that
the efficiency of energy harvesting is enhanced by optimised power extraction methods (see,
for instance, [19]), and these could be improved significantly from a harvester driven by Lévy
excitation. Indeed, this leads to the question of which practical harvesting applications would
benefit from design based on Lévy excitation. Energy harvesting is actively researched in a wide
variety of contexts such as pedestrian traffic, automotive dynamics, wearable devices, ocean
wave energy and so on. In several of these applications, the excitation would be characterised by
occasional large deviations from the mean, and the results of this article motivate harvester design
based on Lévy excitation in those cases. Furthermore, as nonlinear harvesters increasingly take
centre stage, harvester design requires careful consideration of bifurcations in order to identify
stable operating regimes, and the results presented here are expected to be useful in that context
as well.

The results reported in this article also lead to several interesting questions. From an applied
viewpoint, experimental validation of the results would be an important direction of further
research. Indeed, this would be a prerequisite for efficient harvester design in practice. Several
questions emerge from a theoretical perspective as well. For instance, it would be important and
interesting to (1) obtain analytical characterisation of the fact that varying the noise intensity
leads to significant increase in power output for the Lévy excitation, (2) obtain a mathematical
description of how random excitations (both Brownian and Lévy) alter the jump bifurcation and
further investigate stochastic stability and (3) obtain a deeper understanding of the inter-well
transitions in the bistable potential induced by Lévy noise. It is well known that Lévy processes
are singular in certain respects, correspond to fractional diffusion operators in the time domain
and are often better tackled analytically in the Fourier domain. The authors intend to pursue some
of these and allied questions in future work and conclude with the hope that the results in this
article spur further research on the role of Lévy excitation in nonlinear energy harvesting.
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