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We consider the infinite multiplicity of entire solutions for the elliptic equation
Δu + K(x)eu + μf(x) = 0 in R

n, n � 3. Under suitable conditions on K and f , the
equation with small μ � 0 possesses a continuum of entire solutions with a specific
asymptotic behaviour. Typically, K behaves like |x|� at ∞ for some � > −2 and the
entire solutions behave asymptotically like −(2 + �) log |x| near ∞. Main tools of the
analysis are comparison principle for separation structure, asymptotic expansion of
solutions near ∞, barrier method and strong maximum principle. The linearized
operator for the equation has two characteristic behaviours related with the stability
and the weak asymptotic stability of the solutions as steady states for the
corresponding parabolic equation.
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1. Introduction

In this paper, we study the elliptic equation

Δu+K(x)eu + μf(x) = 0, (1.1)

where n > 2, Δ =
∑n

i=1((∂
2)/(∂x2

i )) is the Laplace operator, μ � 0 is a parameter,
and f as well as K is a locally Hölder continuous function in R

n \ {0}. By an
entire solution of (1.1), we mean a weak solution in R

n satisfying (1.1) pointwise
in R

n \ {0}. Recent studies in [1,2,5,6] considered the existence of a continuum of
positive entire solutions to the equation

Δu+K(x)up + μf(x) = 0 (1.2)

when p is sufficiently large. The positive entire solutions are stable under a topology
determined by the asymptotic behaviour near infinity. Hence, an interesting ques-
tion is to ask the existence of stable entire solutions to (1.1). The purpose of the
paper is to establish the existence and look for a suitable topology for the stability.
In order to construct such entire solutions, we make use of entire solutions of the
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homogeneous equation

Δu+K(x)eu = 0. (1.3)

The method needs detailed information on the asymptotic behaviour of entire
solutions of (1.3). We first study the radial version of (1.3),

urr +
n− 1
r

ur +K(r)eu = 0 (1.4)

with r = |x|, under the following condition:

(Kr)

⎧⎪⎪⎨
⎪⎪⎩
K(r) is continuous on (0,∞),
K(r) � 0 and K(r) �≡ 0 on (0,∞),∫

0

rK(r) dr <∞.

From now on, we assume that (Kr) contains the radial symmetry of K. It is
well-known that (1.4) with u(0) = α ∈ R has a unique solution u ∈ C2(0, ε) ∩ C[0, ε)
for small ε > 0. By uα(r) we denote the unique local solution with uα(0) = α. The
typical equation of (1.4) is

Δu+ c|x|�eu = 0 (1.5)

where c > 0 and � > −2, and its radial version is

urr +
n− 1
r

ur + cr�eu = 0. (1.6)

We denote by uα(r) the solution of (1.6) with uα(0) = α. It is easy to see that (1.6)
has the scale invariance by

uα(r) = α+ u0(eα/(2+�)r), (1.7)

and the invariant singular solution is

U c(r) := −(2 + �) log r + log(2 + �)(n− 2) − log c.

We call this behaviour the self-similarity. For every α, uα has the asymptotic
self-similarity, that is, uα(r) = U c(r) + o(1) at ∞. See [9] for the asymptotic
behaviour when c = 1 and � = 0. The result holds even for (1.4) if K satisfies
r−�K(r) → c at ∞. The following assertion in [4, theorems 1.1, 1.2] explains the
existence and the asymptotic behaviour under the condition:

(M) r−�K(r) is non-increasing in (0,∞) for given � > −2.

Theorem A. Let n > 2 with � > −2. Assume that K satisfies (Kr) and (M). For
every α, (1.4) has an entire solution uα such that uα(r) + (2 + �) log r is bounded
below. If r−�K(r) → c at ∞ for some c > 0, then uα has the asymptotic behaviour

lim
r→∞

[
uα(r) − log

(2 + �)(n− 2)
cr2+�

]
= 0. (1.8)
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The next question is whether the entire solutions are stable in a proper sense or
not. For (1.5) with � = 0, the stability was studied in [10] which is motivated by
the work in [8] for Lane-Emden equation

Δu+ up = 0. (1.9)

In [8], the separation of positive solutions for (1.9) is a basic tool for the stability. If
n � 10 + 4�, (1.6) has the separation structure. Namely, any two distinct solutions
have no intersection point. In [4, theorem 1.5, proposition 4.1], (M) for (1.4) turns
out to be a sufficient condition to maintain the separation property.

Theorem B. Let � > −2. Assume that K satisfies (Kr) and (M). Then, (1.4) has
an entire solution for each α ∈ R. Moreover, entire solutions have the following
property.

(i) For 2 < n < 10 + 4�, if r−�K(r) → c at ∞ for some c > 0, then two entire
solutions uα and uβ of (1.4) with α < β intersect infinitely many times.

(ii) For n � 10 + 4�, any two entire solutions of (1.4) do not intersect each other.

For case (ii), it is known in [4, theorem 1.5] that the supremum of regular solutions
is a singular solution.

Theorem C. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr) and (M).
Then, (1.4) possesses a singular solution U satisfying

euα(r) < eU(r) � (2 + �)(n− 2)
r2K(r)

. (1.10)

Moreover, U is the monotone upper limit of entire solutions as α ↑ ∞.

Theorems A, B and C motivate the present work to analyse further the sep-
aration property of entire solutions. In particular, we focus on entire solutions
satisfying (1.8). The separation structure in (ii) is clarified by analysing the asymp-
totic behaviour. In order to describe the asymptotic behaviour of solutions at ∞,
we introduce the following two numbers

λ1 = λ1(n, �) =
(n− 2) − √

(n− 2)(n− 10 − 4�)
2

and

λ2 = λ2(n, �) =
(n− 2) +

√
(n− 2)(n− 10 − 4�)

2
.

Note that λ1 and λ2 are the two real roots of the quadratic polynomial P (z) =
z2 − (n− 2)z + (�+ 2)(n− 2) if and only if n � 10 + 4�. Then, λ1 � λ2.
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Setting

D(α, r) :=

⎧⎨
⎩
rλ1

(
uα(r) − log (2+�)(n−2)

cr2+�

)
if n > 10 + 4�,

rλ1(log r)−1
(
uα(r) − log (2+�)(n−2)

cr2+�

)
if n = 10 + 4�,

(1.11)

we observe that D(α, r) converges to a continuous function D(α) as r → ∞ under
the integral condition ∫ ∞

1

|r−�K(r) − c|r−1+λ1 dr <∞ (1.12)

for some c > 0. For example,

K(r) = cr� +O(r�−λ1(log r)−θ) near ∞
for some θ > 1. When uα satisfies (1.8), (1.12) is sufficient for the existence of D(α).
Moreover, (1.12) is also a necessary condition for any entire solution uα to have the
limit D(α) provided that r−�K(r) � c on (0,∞).

Theorem 1.1. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr) and
r−�K(r) � c on (0,∞) for some c > 0. Then, (1.12) is a necessary and sufficient
condition for any entire solution uα of (1.4) to be such that D(α, r) has finite limit
D(α).

The function D(α) for (1.6) exhibits the relation

D(α) = e−((α)/(2+�))λ1D(0) < 0 (1.13)

due to (1.7). In the context of theorem B for n � 10 + 4� and (1.8), the behaviour
of the limit D can be described in detail. In particular, D(α) is strictly increasing
as α increases.

Theorem 1.2. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr) and
(1.12) for some c > 0. Then, there exists α∗ ∈ (−∞,+∞] such that for each α < α∗,
(1.4) has an entire solution uα satisfying (1.8) and uβ < uα for β < α < α∗. More-
over, D(α, r) converges to a continuous and strictly increasing negative function
D(α) in α ∈ (−∞, α∗) as r → ∞. In addition, if K satisfies (M), then α∗ = +∞.

The continuity of D overcomes the lack of compactness due to the space R
n.

Each solution obtained in theorem 1.2 is identified by the value of D when it is
strictly increasing. These two properties enable us to establish the existence of a
continuum of entire solutions even for (1.3) without any sign condition of K in
compact regions, and even when K is not radially symmetric.

Theorem 1.3. Let n � 10 + 4� with � > −2. Assume that K satisfies

(K1) K(x) = O(|x|σ) at x = 0 for some c > 0 and σ > −2,

(K2) |x|−�K(x) = c+O(|x|−λ1(log |x|)−θ) near ∞ for some c > 0 and θ > 1.
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Then, (1.3) possesses a continuum C of entire solutions with (1.8). Moreover, there
exists an infinite subset S ⊂ C such that any two in S do not intersect.

More generally, we consider the existence for the inhomogeneous equation. The
corresponding radial equation is of the form

urr +
n− 1
r

ur +K(r)eu + μf(r) = 0. (1.14)

We denote by uμ,α(r) the solution of (1.14) with uμ,α(0) = α. In order to regard
(1.14) as a perturbation of (1.4), we impose the following hypotheses on K and f :

(KR) K(r) is continuous on (0,∞) and
∫
0
r|K(r)| <∞;

(fR1) f(r) is continuous on (0,∞) and
∫
0
r|f(r)| <∞;

(fR2) f(r) = O(r−(λ1+2)(log r)−δ) near ∞ for a constant δ > 1.

We make use of two classes MI(c) and M(c) to verify the separation structure for
(1.14). The first class MI(c) is the set of K with (Kr) which satisfies (1.12) for some
c > 0. The second class M(c) is the subset of MI(c) whose element satisfies (M)
also. Set Dμ(α) as the limit Dμ(α, r) defined in the same way as in (1.11) where
uα is replaced by uμ,α.

Theorem 1.4. Let n � 10 + 4� with � > −2. Assume (KR), (1.12) for some c > 0
and (fR1,2). Then, there exists μ∗ > 0 with the property that for fixed 0 < μ < μ∗,
there exists an interval Iμ = (αμ, βμ), −∞ � αμ < βμ � +∞, such that for each
ξ ∈ Iμ, (1.14) has an entire solution uμ,ξ satisfying (1.8), and any two solutions
among them are separated. Moreover, the limit Dμ(α) is a continuous and increas-
ing function in α ∈ Iμ. If K is bounded above by a function K̃ in M(c), then
Dμ is strictly increasing. If K � 0 and f � 0, then αμ = −∞. In addition, if K
satisfies (M), then βμ = +∞, and (1.14) has a singular solution Uμ described by
the monotone upper limit of uμ,α as α ↑ +∞ and (1.10) holds for uμ,α and Uμ.

Infinite multiplicity for the non-radial inhomogeneous equation improves theorem
1.3.

Theorem 1.5. Let n � 10 + 4�. Assume that K satisfies (K1), (K2), and f
satisfies

(f1) f(x) = O(|x|τ ) at x = 0 for some τ > −2.

(f2) f(x) = O(|x|−(λ1+2)(log |x|)−ϑ) near ∞
for a constant ϑ > 1. Then, there exists μ∗ > 0 such that for every μ ∈ [0, μ∗), (1.1)
possesses a continuum C of entire solutions satisfying (1.8).

This paper is the counterpart of several works for the equation with the non-
linearity ofKup type. When known arguments forKup type can be applied properly
to (1.3) and (1.1), we state the arguments and the corresponding results. This paper
is organized as follows. We first consider the nonexistence of positive solutions
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on bounded domains, and the existence of local solutions for given intervals in
§ 2. In § 3, we present a comparison principle which plays a fundamental role in
verifying separation of solutions for (1.14) when K has not one sign. We explain
the separation structure under (M). In § 4, we describe the asymptotic behaviour
of solutions of (1.4) under (1.12). In § 5, we study the infinite multiplicity for (1.3)
and (1.1). In order to establish theorem 1.5, we analyse further the asymptotic
behaviour. The solutions obtained in theorem 1.5 are characterized by D. This
makes it possible to confirm the existence of a continuum of solutions. theorem 1.1
and a part of theorem 1.3 are verified in § 5.1 while theorems 1.2, 1.4 and 1.5 are
proved in § 5.2. Finally, we study the stability property in § 6. The asymptotic
behaviour suggests a weighted L∞ norm for the weak asymptotic stability.

2. Preliminaries

We first consider a necessary condition for the existence of positive solutions to the
equation

Δu+ eu + f(x) = 0 (2.1)

on bounded domains. The following result shows that (2.1) cannot have positive
solutions on a given bounded domain if f is sufficiently large.

Lemma 2.1. Let Ω �= ∅ be a bounded domain with C2 boundary such that

inf
Ω
f(x) �

{
−1 if 0 < θ1 � 1,
θ1(log θ1 − 1) if θ1 > 1,

(2.2)

where θ1 is the first eigenvalue of −Δ on Ω with zero Dirichlet boundary conditions.
Then, (2.1) does not possess any positive solution in Ω.

Proof. Let ϕ1 be the corresponding first eigenfunction which is positive and
normalized by

∫
Ω
ϕ1 = 1. Multiplying (2.1) by ϕ1 and integrating, we have

θ1

∫
Ω

uϕ1 +
∫

∂Ω

u
∂ϕ1

∂ν
=

∫
Ω

fϕ1 +
∫

Ω

euϕ1

where ν is the unit outward normal to ∂Ω. Then, using ((∂ϕ1)/(∂ν)) < 0 on ∂Ω
and Jensen’s inequality, we obtain

θ1

∫
Ω

uϕ1 � inf
Ω
f(x) −

∫
∂Ω

u
∂ϕ1

∂ν
+

∫
Ω

euϕ1

> inf
Ω
f(x) + exp

(∫
Ω

uϕ1

)
.

If 0 < θ1 � 1, then θ1s− es < −1 for s > 0. Hence, infΩ f(x) < −1. If θ1 > 1, then

inf
Ω
f(x) < max

s>0
(θ1s− es) = θ1(log θ1 − 1),

which contradicts (2.2). �
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Now, we study the local existence of (1.14) with (KR) and (fR1). Let uμ,α(r)
denote the unique local solution with uμ,α(0) = α where it exists and belongs to
C2(0, ε) ∩ C[0, ε) for small ε > 0. We present the proof on the existence of local
solutions in a given interval.

Theorem 2.2. Let R > 0 and 0 < ξ < 1. Assume that continuous functions K and
f on (0, R) satisfy (KR) and (fR1), respectively. For each μ � 0, there exists α̃ < 0
such that for each α < α̃, (1.14) has a radial solution uμ,α on (0, R) and (2 − ξ)α �
uμ,α(r) � ξα on [0, R].

Proof. For given α < 0 and 0 < ξ < 1, setting a space

SR := {u ∈ C[0, R] | (2 − ξ)α � u � ξα},

we consider a nonlinear operator T from SR to C[0, R] by

T (u)(r) := α− T1(u)(r), (2.3)

where for r ∈ [0, R],

T1(u)(r) :=
∫ r

0

1
sn−1

∫ s

0

tn−1 (K(t)eu + μf(t)) dtds.

Changing the order of integration gives that

T1(u)(r) =
1

n− 2

∫ r

0

t

{
1 −

(
t

r

)n−2
}

(K(t)eu + μf(t)) dt (2.4)

and thus,

||T1(u)|| � 1
n− 2

∫ R

0

t
(
eξα|K(t)| + μ|f(t)|) dt. (2.5)

In order to have T (SR) ⊂ SR, we need the inequality

1
n− 2

∫ R

0

t
(
eξα|K(t)| + μ|f(t)|) dt � (ξ − 1)α. (2.6)

We may regard (2.6) as the inequality of the form

Aeξα +Bμ � −(1 − ξ)α, (2.7)

which holds for α near −∞. Combining (2.3) and (2.5), we have (2 − ξ)α �
T (u)(r) � ξα and T (SR) ⊂ SR. If α is near −∞, we may choose 0 < δ < 1 such
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that

||T (u2) − T (u1)|| � 1
n− 2

∫ R

0

teξα|K(t)|dt ||u2 − u1|| � δ||u2 − u1||.

Hence, T is a contraction mapping in SR and thus T has a unique fixed point ũα.
In other words, ũα satisfies

ũα(r) = α−
∫ r

0

∫ s

0

(
t

s

)n−1 (
K(t)euα(t) + μf(t)

)
dtds.

Then, it is easy to see that ũα is also a solution of (1.14) on (0, R) with ũα(0) = α.
Hence, we have ũα = uμ,α, which completes the proof. �

Remark 2.3. Let α be given. By (KR) and (fR1), the operator norm of T1 in (2.4)
can be arbitrary small on [0, R] if R > 0 is sufficiently small. Then, we apply the
contraction mapping principle to T . Hence (1.14) has a local solution uα on (0, R).
For r > 0 sufficiently small, we have

rn−1u′μ,α(r) = −
∫ r

0

sn−1 (K(s)euμ,α + μf(s)) ds,

∣∣rn−1u′μ,α(r)
∣∣ � rn−2

∫ r

0

s
(
eα+1|K(s)| + μ|f(s)|) ds,

where u′μ,α(r) = ((d)/(dr))uμ,α(r). Then, (KR) and (fR1) imply that limr→0

ru′μ,α(r) = 0. In addition, if

lim
r→0

r1−n

∫ r

0

sn−1K(s) ds = 0 = lim
r→0

r1−n

∫ r

0

sn−1f(s) ds,

then u′μ,α(0) = 0. We use the notation u′ instead of ur whenever some subscripts
are employed to specify u.

Let R(α) be the supremum of R > 0, where uα satisfies the result of theorem 2.2
in B(R). It follows from (2.7) that R(α) → ∞ as α→ −∞. Indeed, (2.7) holds for
α near −∞, even if A,B in (2.7) are very large. We state the fact separately in the
following lemma.

Lemma 2.4. R(α) → ∞ as α→ −∞.

3. Separation

In this section, we consider the separation of solutions of (1.14). By ũα with ũα(0) =
α, we denote the solution of the equation

urr +
n− 1
r

ur + K̃(r)eu = 0, (3.1)

where K̃ satisfies (Kr). Separation of solutions for (1.14) may follow from the
existence of two separated solutions of the homogeneous equation. We refer the
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reader to the arguments in [2, lemma 4.1]. For the sake of completeness, we provide
the proof.

Lemma 3.1. Assume that K and f satisfy (KR) and (fR1), respectively, and K �
K̃, and moreover, for some ξ > β there exist two entire solutions ũξ, ũβ of (3.1)
satisfying ũβ(0) = β, ũξ(0) = ξ and ũβ < ũξ. If for α < η < β, uα and uη are the
solutions of (1.14) satisfying uη � ũβ in (0, Rη) for some Rη > 0, then uα < uη in
(0, Rη).

Proof. Suppose that uη meets uα at some 0 < R < Rη and w1 := uη − uα is positive
in [0, R). Then, w1 satisfies{

Δw1 + k1w1 = 0 in B(R),

w1 > 0 in B(R) and w1|∂B(R) = 0,

where

k1 := K
euη − euα

uη − uα
� K̃euη

in B(R). We note w′
1(R) � 0. On the other hand, we have w2 := ũξ − ũβ > 0 in

[0,∞) and w2 satisfies

Δw2 + k2w2 = 0

in R
n, where

k2 := K̃
eũξ − eũβ

ũξ − ũβ
> K̃eũβ .

It follows from Green’s identity that

ωnR
n−1w′

1(R)w2(R) =
∫

B(R)

(w2Δw1 − w1Δw2)

�
∫

B(R)

(k2 − k1)w1w2 > 0,

where ωn denotes the surface area of the unit sphere in R
n. We reach a contradiction,

w′
1(R) > 0. Hence, uα cannot touch uη in (0, Rη). �

In general, lemma 3.1 leads to partial separation, that is, any two solutions in
a special set of initial data do not intersect. The whole separation needs stronger
conditions. For instance, when (1.4) has the whole separation on (−∞,+∞), it
follows from theorem 2.1 in [5] that if (1.14) with f � 0 has an entire solution uμ,α

with uμ,α(0) = α, then uμ,α � uα and uμ,α < uμ,β < uμ,γ � uγ for any α < β < γ.
The monotonicity of entire solutions in initial data implies the existence of a singular
solution.

Theorem 3.2. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr) and (M)
while f is continuous on (0,∞), f � 0, �≡ 0 and rf(r) is integrable near 0. Then,
for every μ > 0 and α ∈ R, (1.14) has an entire solution uμ,α with uμ,α(0) = α.
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Moreover, any two solutions of (1.14) do not intersect each other, and for each
μ > 0 there exists a singular solution Uμ which is the monotone upper limit of
entire solutions as α ↑ +∞ and satisfies

euμ,α (r) < eUμ(r) � (2 + �)(n− 2)
r2K(r)

. (3.2)

Furthermore, Uμ is monotonically decreasing as μ increases.

Proof. The separation of solutions follows from theorem B(ii) and [5, theorem 2.1].
Moreover, we have uμ1,α � uμ2,α for μ2 � μ1 > 0. Then, the bound for uμ,α in
(3.2) follows from (1.10) in theorem C. Combining (3.2) and the fact that r−�K(r)
is non-increasing, we have

−u′μ,α(r) =
1

rn−1

∫ r

0

(K(s)euμ,α + μf(s)) sn−1 ds

� (2 + �)(n− 2)
rn−1

∫ r

0

sn−3 ds+
1

rn−1

∫ r

0

μf(s)sn−1 ds

=
2 + �

r
+
μ

r

∫ r

0

sf(s) ds. (3.3)

Hence, u′μ,α is bounded on any compact subset of (0,∞), uniformly with respect
to α ∈ R and consequently, {uμ,α} is equicontinuous on any compact subset. Since
uμ,α is monotonically increasing in α, it follows from the Arzelà-Ascoli theorem
that Uμ(r) := limα→+∞ uμ,α(r) is well-defined and continuous on (0,∞). Consider
the equation

u′′μ,α = −n− 1
r

u′μ,α −Keuμ,α − μf. (3.4)

It follows from (3.2) and (3.3) that u′′μ,α is bounded uniformly in α on any compact
subset of (0,∞). The Arzelà-Ascoli theorem implies that there is a subsequence of
{αj} such that u′μ,αj

converges uniformly on any compact subset of (0,∞). Then,
Uμ is differentiable on (0,∞) and u′μ,αj

→ U ′
μ uniformly on any compact subset of

(0,∞). Then, by (3.4), u′′μ,αj
converges also uniformly on compact subsets. Hence,

U ′
μ is differentiable on (0,∞) and u′′μ,αj

→ U ′′
μ uniformly on any compact subset of

(0,∞). By (3.4) again as j → ∞, Uμ is a singular solution of (1.14). For μ2 > μ1 > 0,
we have uμ1,α � uμ2,α for every α and thus Uμ1 � Uμ2 . Since uμ,α � uα and Uμ � U
where uα and U are the solutions of (1.4), (3.2) for Uμ follows from (1.10), and the
proof is complete. �

Theorem 3.2 is the second part in theorem 1.4. The first part of theorem 1.4
requires several observations to obtain the asymptotic behaviour under extra con-
ditions of K and f near ∞. In particular, Dμ(α) defined by the limit of Dμ(α, r)
as r → ∞ is useful in identifying uμ,α.

4. Asymptotic behaviour

We begin by reviewing the asymptotic behaviour of entire solutions to (1.6) with
c = 1. Let V (t) = uα(r) − log b/r2+�, t = log r, with b = (2 + �)(n− 2). Then, V
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satisfies that

Vtt + aVt − b(1 − eV ) = 0, (4.1)

where a = n− 2. For � = 0, Tello in [10, lemma 2.1] studied (4.1) to obtain the
asymptotic behaviour when n � 10. The following result for � > −2 and n � 10 + 4�
is the corresponding asymptotic behaviour.

Lemma 4.1. Let n � 10 + 4�. Let uα be an entire solution to (1.6). Then, the
following limit D(α),

D(α) = lim
r→∞

⎧⎪⎨
⎪⎩
rλ1

(
uα(r) − log (2+�)(n−2)

cr2+�

)
if n > 10 + 4�,

rλ1(log r)−1
(
uα(r) − log (2+�)(n−2)

cr2+�

)
if n = 10 + 4�,

(4.2)

exists and (1.13) holds.

See the arguments in [8, theorem 2.5] for the proof. Moreover, for each α, (1.6)
has a super-solution bigger than but close sufficiently to uα in the following sense.

Proposition 4.2. Let n � 10 + 4� with � > −2. Then, for each α, there exists a
radial super-solution u+

α (r) of (1.6) such that u+
α (r) > uα(r) for r ∈ [0,∞) and

u+
α (r) − uα(r) = O(r−λ2) as r → ∞.

See [8, theorem 4.1] and [10, proposition 4.1] for the construction. Now, we study
the existence of D(α) to improve lemma 4.1.

Lemma 4.3. Let n � 10 + 4� with � > −2. Assume that K satisfies (KR) and (1.12)
for some c > 0. Let uα be a solution of (1.4) satisfying (1.8). Then the limit D(α)
exists. This is valid for any solution of (1.4) near ∞ satisfying (1.8).

Sketch of the proof. Setting W (α, t) = uα(r) − log b/r2+� + log c, t = log r, we see
that

Wtt + aWt + bW + bg(W ) + h(et)e−�teW = 0, (4.3)

where h(r) := b/c(K(r) − cr�) and

g(s) := es − 1 − s =
1
2
s2 +O(s3)

for s near 0. In order to conclude lemma 4.3, we argue in the same way as in the
proof of [1, lemma 3.4]. Here, (4.3) is compared with [1, (3.1)]. More precisely,
when uα satisfies the equation Δu+Kup = 0, [1, (3.1)] is obtained by setting
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W (α, t) = rmuα(r) − L, t = log r, so that

Wtt + (n− 2 − 2m)Wt + c(p− 1)Lp−1W + cg(W ) + h(et)e−�t(W + L)p = 0,
(4.4)

where h(r) := K(r) − cr� and

g(s) := (s+ L)p − Lp − pLp−1s =
p(p− 1)

2
Lp−2s2 +O(s3).

The constant coefficients and the last term in the left-hand side of (4.4) can be
changed as in (4.3) under (1.12). Then, the proof of [1, lemma 3.4] works for (4.3)
to verify the existence of D(α). In fact, lemma 4.3 is true for any solution of (1.4)
near ∞ satisfying (1.8). �

Importantly, D(α) has the following integral representation.

Proposition 4.4. Let n � 10 + 4� with � > −2. Assume that K satisfies (KR) and
(1.12) for some c > 0. Every entire solution uα of (1.4) satisfying (1.8) has the
integral representation

D(α) =
−1

λ2 − λ1

∫ ∞

0

[
r2Keuα − b− b

(
uα − log

b

cr2+�

)]
r−1+λ1 dr

for n > 10 + 4�,

D(α) = −
∫ ∞

0

[
r2Keuα − b− b

(
uα − log

b

cr2+�

)]
r−1+λ1 dr

for n = 10 + 4�.

Sketch of the proof. Proposition 4.4 is verified in the similar way as in [1, (3.11)
and (3.13)], where the analogous result for Kup is obtained.

Case 1. Let n > 10 + 4�. Then, D(α, t) = eλ1tW (α, t) holds

Dtt + (λ2 − λ1)Dt + eλ1t
[
bg(W ) + h(et)e−�teW

]
= 0. (4.5)

Integrating (4.5) over [t,+∞) and letting t→ −∞, and, we obtain that

D(α) =
−1

λ2 − λ1

∫ +∞

−∞
eλ1s

[
bg(W ) + h(es)e−�seW

]
ds

=
−1

λ2 − λ1

∫ ∞

0

[
r2Keuα − b− b

(
uα − log

b

cr2+�

)]
r−1+λ1 dr.

Case 2. Let n = 10 + 4�. Then, D(α, t) = t−1eλ1tW (α, t) satisfies

Dtt +
2
t
Dt +

eλ1t

t

[
bg(W ) + h(et)e−lteW

]
= 0. (4.6)
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Integrating (4.6) and reasoning similarly as in [1, (3.13)], we obtain that

D(α) = −
∫ +∞

−∞
eλ1s

[
bg(W ) + h(es)e−�seW

]
ds

= −
∫ ∞

0

[
r2Keuα − b− b

(
uα − log

b

cr2+�

)]
r−1+λ1 dr.

This completes the proof. �

We perturb K only in a compact region and find two solutions of (1.4) near ∞
with the same limit D. One is a solution of (1.4) in R

n and the other is a solution of
(1.4) only near ∞. Then, the asymptotic behaviour of the difference of two solutions
plays a crucial role in analysing the stability. For our convenience, we use β, α to
denote distinct solutions of (1.4) near ∞ in the following assertion.

Lemma 4.5. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr) and (1.12)
for some c > 0. If uβ and uα are two solutions of (1.4) near ∞ satisfying (1.8)
such that uβ > uα and D(β) = D(α), then

lim
r→∞ rλ2(uβ(r) − uα(r)) = d

for some d > 0.

The arguments reveal that rλ2 is the maximal weight to define the distance
between two separated solutions near ∞ by a weighted uniform norm. Namely, it
is impossible for two separated solutions uβ and uα satisfying (1.8) to have the
asymptotic behaviour, rλ2(uβ(r) − uα(r)) = o(1) at ∞. See the proof of [1, lemma
3.6] for the details. Here, we provide the proof briefly.

Proof. SettingW (α, t) := uα(r) − log b/r2+� + log c, t = log r, we see thatWα(t) :=
W (α, t) satisfies (4.3). Set ϕ(t) := D(β, t) −D(α, t). Let G(β, α) := bg(Wβ) −
bg(Wα) and Υ(β, α) := eWβ − eWα .

Case 1. Let n > 10 + 4�. Then, D(α, t) = eλ1tW (α, t) holds (4.5) and ϕ(t) =
eλ1t(Wβ(t) −Wα(t)) = eλ1t(uβ(r) − uα(r)) satisfies that

(λ2 − λ1)ϕ(t) = −ϕt(t) +
∫ +∞

t

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds

� −ϕt(t) + C

∫ +∞

t

[
1 + e(λ1−�)s|h(es)|

]
e−λ1sϕ(s) ds.

Since ϕ(t) → 0 as t→ +∞, we see that for given ε > 0,

(λ2 − λ1)ϕ(t) � −ϕt(t) + εe−λ1t (4.7)

if t is large enough. Multiplying (4.7) by e(λ2−λ1)t and integrating over [T, t] with
T large, we have

ϕ(t) =

⎧⎪⎨
⎪⎩
O(e−(λ2−λ1)t) if λ2 < 2λ1,

o(te−(λ2−λ1)t) if λ2 = 2λ1,

o(e−λ1t) if λ2 > 2λ1
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near +∞. We make use of these decay estimates again to obtain that

ϕ(t) �

⎧⎪⎨
⎪⎩
O(e−(λ2−λ1)t) if λ2 < 3λ1,

o(te−(λ2−λ1)t) if λ2 = 3λ1,

o(e−2λ1t) if λ2 > 3λ1.

After finite iterations, we conclude that ϕ(t) = O(e−(λ2−λ1)t) near +∞. In other
words, uβ(r) − uα(r) = O(r−λ2) at ∞. In order to derive a finer asymptotic
behaviour, we consider the function Γ(α, t) := eλ2tW (α, t). Then, Γ(α, t) satisfies

Γtt − (λ2 − λ1)Γt + eλ2t
[
bg(W ) + h(et)e−�teW

]
= 0.

The difference ψ(t) := Γ(β, t) − Γ(α, t) is represented by

ψ(t) = C1(T ) + C2(T )e(λ2−λ1)t

+
1

λ2 − λ1

∫ t

T

[
eλ2sG(β, α) + e(λ2−�)sh(es)Υ(β, α)

]
ds

− e(λ2−λ1)t

λ2 − λ1

∫ t

T

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds.

Since e(λ1−λ2)tψ(t) = ϕ(t) → 0 as t→ +∞, we have

ψ(t) = C1(T ) +
1

λ2 − λ1

∫ t

T

[
eλ2sG(β, α) + e(λ2−�)sh(es)Υ(β, α)

]
ds

+
e(λ2−λ1)t

λ2 − λ1

∫ +∞

t

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds. (4.8)

Combining (1.12) and the fact that ψ(t) = O(1) at +∞, we observe by (4.8) that

∫ +∞

T

eλ2sG(β, α) ds <∞.

Hence, ψ(t) converges to a constant d as t→ +∞ and

ψ(t) = d− 1
λ2 − λ1

∫ +∞

t

[
eλ2sG(β, α) + e(λ2−�)sh(es)Υ(β, α)

]
ds

+
e(λ2−λ1)t

λ2 − λ1

∫ +∞

t

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds.

Suppose ψ(t) → 0 as t→ +∞, i.e., d = 0. Then, we have ψ(t) = o(e−λ1t) at +∞.
Repeating the process with finer estimates, we can show that for any positive integer
q, ψ(t) = o(e−qλ1t) at +∞. In other words, uβ(r) − uα(r) = o(r−λ2−qλ1) at ∞.
In particular, for some ε > 0, uβ(r) − uα(r) = o(r2−n−ε) at ∞. However, this is
impossible since uβ − uα is a positive superharmonic function near ∞.
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Case 2. Let n = 10 + 4�. Then, D(α, t) = t−1eλ1tW (α, t) holds (4.6) and ϕ(t) =
t−1eλ1t(uβ(r) − uα(r)) satisfies that

ϕ(t) = −ϕt(t) +
∫ +∞

t

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds

� −ϕt(t) + C

∫ +∞

t

[
1 + e(λ1−�)s|h(es)|

]
se−λ1sϕ(s) ds

� −ϕt(t) + εte−λ1t. (4.9)

It follows from (4.9) that for given ε > 0, (tϕ)t � εte−λ1t for t large. Then for
large T ,

ϕ(t) � T

t
ϕ(T ) + εt−1

∫ t

T

se−λ1s ds.

Hence, ϕ(t) = O(t−1) at ∞ and uβ(r) − uα(r) = O(r−λ1) at ∞. We observe that
ψ(t) := eλ1t(Wβ −Wα) = eλ1t(uβ − uα) is represented by

ψ(t) = C1(T ) + C2(T )t

+
∫ t

T

s
[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds

− t

∫ t

T

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds.

Since t−1ψ(t) = ϕ(t) → 0 as t→ +∞, we have

ψ(t) = C1(T ) +
∫ t

T

s
[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds

+ t

∫ +∞

t

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds. (4.10)

Combining (1.12) and the fact that ψ(t) = O(1) at +∞, we observe by (4.10) that

∫ +∞

T

seλ1sG(β, α) ds <∞.

Hence, ψ(t) converges to a constant d as t→ +∞ and

ψ(t) = d−
∫ +∞

t

s
[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds

+ t

∫ +∞

t

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds.
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Suppose ψ(t) → 0 as t→ +∞, that is, d = 0. Let ε > 0 be given. Then,

ψ(t) � C

[∫ +∞

t

seλ1se−2λ1sψ(s) ds+
∫ +∞

t

se(λ1−�)s|h(es)|e−λ1sψ(s) ds
]

+ Ct

[∫ +∞

t

eλ1se−2λ1sψ(s) ds+
∫ +∞

t

e(λ1−�)s|h(es)|e−λ1sψ(s) ds
]

� εte−λ1t

for t large. Hence, ψ(t) = o(te−λ1t) at +∞. Applying this finer estimate, we have
ψ(t) = o(t2e−2λ1t) at +∞. Similar arguments as in Case 1 lead to a contradiction.

�

Remark 4.6. Assume that ϕ(t) → 0 and ψ(t) → d as t→ +∞.
For n > 10 + 4�, we have by (4.8),

ψ(T ) = C1(T ) +
e(λ2−λ1)T

λ2 − λ1

∫ +∞

T

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds,

which implies that

d = ψ(T ) +
1

λ2 − λ1

∫ +∞

T

[
eλ2sG(β, α) + e(λ2−�)sh(es)Υ(β, α)

]
ds

− e(λ2−λ1)T

λ2 − λ1

∫ +∞

T

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds. (4.11)

For n = 10 + 4�, we have by (4.10),

ψ(T ) = C1(T ) + T

∫ +∞

T

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds,

which implies that

d = ψ(T ) +
∫ +∞

T

s
[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds

− T

∫ +∞

T

[
eλ1sG(β, α) + e(λ1−�)sh(es)Υ(β, α)

]
ds. (4.12)

5. Infinite multiplicity

In this section, we establish the existence of infinitely many entire solutions of (1.1)
with the asymptotic behaviour (1.8).

5.1. Homogeneous equation

In order to find out how (1.4) under (1.12) possesses infinitely many entire solu-
tions satisfying (1.8), we adopt similar arguments as in [2,5,6]. For our convenience,
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we fix a family {uα} of separated radial solutions of (1.6) indexed by α ∈ R such
that uα(0) = α, uα is monotonically increasing in α and

lim
r→∞

[
uα(r) − log

(2 + �)(n− 2)
cr2+�

]
= 0. (5.1)

It follows from proposition 4.2 that for each α ∈ R, there exists a super-solution
u+

α > uα of the equation Δu+ |x|�eu = 0 satisfying

Fα(r) := u+
α (r) − uα(r) = O(r−λ2) as r → ∞. (5.2)

and

ΔFα � −|x|�(eu+
α − euα) � −|x|�euαFα.

Now, we prove infinite multiplicity of solutions in the radial case, and reveal the
structure of partial separation.

Proposition 5.1. Let n � 10 + 4� with � > −2. Suppose that K satisfies (KR),
(1.12) for some c > 0. Then, there exists a constant α∗ = α∗(K) such that for
each α ∈ (−∞, α∗), equation (1.4) possesses an entire solution uα with uα(0) = α
satisfying (1.8) and any two of them do not intersect.

Proof. Let c = 1 for simplicity. For all β, (1.4) has a unique local solution uβ . First,
we claim that for given β negatively large, there exists γ = γ(β) < β such that
uγ < uβ for every γ � γ.

Suppose to the contrary that for any γ < β, there exists γ̃ < γ such that wγ̃(r) :=
uβ(r) − uγ̃(r) > 0 on [0, Rγ̃) but wγ̃(Rγ̃) = 0 for some Rγ̃ > 0. Then, wγ̃ satisfies

Δwγ̃ = −|x|�euβ +Keuγ̃

in B(Rγ̃). Fix α > β. Applying Green’s identity, we have

0 �
∫

∂B(Rγ̃)

(
wγ̃

∂Fα

∂r
− Fα

∂wγ̃

∂r

)
=

∫
B(Rγ̃)

(wγ̃ΔFα − FαΔwγ̃)

�
∫

B(Rγ̃)

{−|x|�euαwγ̃Fα + |x|�euβFα −Keuγ̃Fα

}

�
∫

B(Rγ̃)

{−|x|�euαwγ̃Fα + |x|�euβwγ̃Fα + (|x|� −K)euγ̃Fα

}
,

hence ∫
B(Rγ̃)

[
euα − euβ

] |x|�wγ̃Fα �
∫

B(Rγ̃)

(|x|� −K
)
euγ̃Fα.

It follows from theorem 2.2 that for any γ̃ negatively large, 3/2γ̃ � uγ̃ � 1/2γ̃ on
[0, 1]. Hence, for γ negatively large and thus, for negatively large γ̃ < γ, we may
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assume that Rγ̃ > 1 and wγ̃ � uβ(1) − 1/2γ̃ in B(1). Then, we have(
uβ(1) − 1

2
γ̃

)∫
B(1.1)

|x|� [
euα − euβ

]
Fα �

∫
B(Rγ̃)

(|x|� −K
)
+
euγ̃Fα

�
∫

B(Rγ̃)

(
K − |x|�)− euβFα

�
∫

Rn

(
K − |x|�)− euβFα,

where k± = max(±k, 0). Combining (5.1), (5.2) and (1.12), we observe that the
last integral is finite. However, the left-hand side goes to ∞ as γ̃ → −∞. This
contradiction verifies the claim. Therefore, there exists γ = γ(β) < β such that uγ <
uβ for all γ � γ.

For β ∈ R, let Iβ be the set of γ < γ(β) satisfying

3
4
(−γ)

∫
B(1)

|x|� [
euβ − euγ

]
Fβ >

∫
B(Rγ)

(
K − |x|�)

+
euγFβ . (5.3)

Note that (K − |x|�)+euγFβ converges pointwise to 0 as γ → −∞ and by (5.1),
(5.2) and (1.12),

(K − |x|�)+euγFβ � |K − |x|�|euβFβ ∈ L1(Rn).

Hence, Iβ ⊃ (−∞, γβ) for some γβ since the right-hand side of (5.3) goes to 0
as γ → −∞ by the Dominated Convergence theorem while the left-hand side is
bounded below by a positive constant which is irrelevant to γ when γ is negatively
large. It follows from lemma 2.4 that there exists γ̂ � γβ such that for all γ < γ̂,
and uγ(r) � 3/2γ on [0, 1]. For negatively large γ < γ̂ so that uγ(r) � 3/2γ for
0 � r � 1, we claim that there exists η < γ such that uγ > uη in R

n. Suppose by
contradiction that there exists γ̂1 < γ̂ such that for each η < γ̂1, ŵη(r) = uγ̂1(r) −
uη(r) > 0 in [0, rη) for some rη > 0 and ŵη(rη) = 0. From Green’s identity,

0 �
∫

B(rη)

(ŵηΔFβ − FβΔŵη)

�
∫

B(rη)

[−|x|�ŵηe
uβFβ +Keuγ̂1Fβ − |x|�euηFβ

]
. (5.4)

Then, it follows from (5.4) that∫
B(rη)

|x|�ŵη

[
euβ − euγ̂1

]
Fβ �

∫
B(rη)

[|x|�ŵηe
uβ − |x|�(euγ̂1 − euη )

]
Fβ

�
∫

B(rη)

[
Keuγ̂1 − |x|�euη − |x|�(euγ̂1 − euη )

]
Fβ

�
∫

B(rη)

(
K − |x|�)

+
euγ̂1Fβ .

Since uη is monotonically decreasing to −∞ as η decreases to −∞ and thus uη →
−∞ uniformly on [0, R] for any fixedR > 0, we may assume that rη > 1 and ŵη(r) �
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3/2γ̂1 − η � 3/4(−γ̂1) in B1 if η � 9/4γ̂1 and η is negatively large enough. Then,
we have

3
4
(−γ̂1)

∫
B(1)

|x|� [
euβ − euγ̂1

]
Fβ �

∫
B(Rγ)

(
K − |x|�)

+
euγ̂1Fβ ,

which is impossible because γ̂1 ∈ Iβ . Therefore, for each β, there exist β > γ >
η satisfying uη < uγ < uβ in R

n. Repeating the arguments, we find a decreasing
sequence {uγi

} of entire solutions and a decreasing sequence {αi} going to −∞ as
i→ ∞ such that uγi

> uαi
> uγi+1 in R

n for each i � 1.
In order to deal with the case that K has not non-negative near ∞, we consider

the equation

urr +
n− 1
r

ur +K+(r)eu = 0, (5.5)

and denote by u+
α (r) the local solution of (5.5) with u+

α (0) = α ∈ R. From (1.12),
we observe K+ ∈MI(c) since∫ ∞

1

|r−�K+(r) − c|r−1+λ1 dr �
∫ ∞

1

|r−�K(r) − c|r−1+λ1 dr <∞.

Applying the previous arguments to (5.5), we obtain a decreasing sequence {u+
ξi
} of

entire solutions of (5.5) and a decreasing sequence {βi} going to −∞ as i→ ∞ such
that u+

ξi
> uβi

> u+
ξi+1

in R
n for each i � 1. By the separation property of solutions

uα of (1.6), there exists γi such that u+
ξ1
> u+

ξ2
> uγi

in R
n. Then, it follows from

lemma 3.1 that uη < uζ in R
n for any η < ζ � γi. Therefore, we conclude that there

exists α∗ such that uα is monotone with respect to α ∈ (−∞, α∗), which completes
the proof. �

In addition to the assumptions of proposition 5.1, if K � 0 and f satisfies (fR1)
and f � 0, then (1.14) with μ > 0 has the following structure of partial separation.
If β < α < α∗(K), then any two solutions uμ,β and uμ,α do not intersect.

Now, we are ready to prove theorem 1.1.

Proof of theorem 1.1. Suppose (1.12) for some c > 0. Let uα be an entire solution.
Then, uα � uα by combining the separation property of uγ and a comparison argu-
ment in [5, theorem 2.1]. Then, the second argument of proposition 5.1 implies
that uα > uβ for some β < α, and the existence of D(α) follows from lemma 4.3.
Conversely, we assume that D(α) exists. Then, it follows from proposition 4.4 that
the existence of D(α) is equivalent to∫ +∞

eλ1s
[
bg(W ) + h(es)e−�seW

]
ds <∞,

where W and g, h are defined in (4.3). Since g(W ) � 0 near +∞ and h � 0, we
observe that ∫ +∞

he(λ1−�)s ds <∞

which is a translation of condition (1.12), and the proof is complete. �
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By combining proposition 5.1 with a comparison argument, we establish a more
general result for (1.3). Let n > N � 3 and x = (x1, x2) ∈ R

n−N × R
N . Assume

that K(x) = K(x1, x2) = K(x1, r) is a function of variables x1 and r = |x2|.
Moreover, we assume the following condition.

(K3) infx1∈Rn−N K(x1, r) and supx1∈Rn−N K(x1, r) are bounded below and above
by locally Hölder continuous functions K1(r) and K2(r) on (0,∞), respec-
tively, satisfying

∫
0
r|Ki(r)|dr <∞ for i = 1, 2.

Hence, K1(|x2|) � K(x) � K2(|x2|). Then, proposition 5.1 derives the following
result.

Theorem 5.2. Let n > N � 10 + 4� with � > −2. Assume that locally Hölder
continuous function K(x) = K(x1, x2) = K(x1, |x2|) in R

n \ {0} satisfies (K1),
(K3), and for some constant c > 0,

∫ ∞

1

|r−�Ki(r) − c|r−1+λ1 dr <∞, i = 1, 2.

Then, (1.3) possesses infinitely many entire solutions satisfying

lim
|x2|→∞

[
u(x1, x2) − log

(2 + �)(n− 2)
c|x2|2+�

]
= 0 (5.6)

uniformly in x1 ∈ R
n−N and any two of them do not intersect.

Proof. We first consider (1.4) withK = Ki in the subspace R
N , N � 10 + 4�. Then,

it follows from proposition 5.1 that for each i = 1, 2, there exists a family Ji = {uγ,i}
of ordered entire solutions satisfying (1.8). More precisely, there exists γi∗ such
that solutions in Ji are indexed by γ ∈ (−∞, γi∗). Moreover, (1.6) has a family
Ii = {uα,i} of countable ordered entire solutions such that for each uα in I, there
exist two solutions in Ji which are separated by uα, and α can be chosen to be
negatively large. By making use of the separation property of entire solutions of
(1.6), we may choose γ > α > β > ξ > η > ρ > δ such that

uγ,2 > uα,2 > uβ,1 > uξ,1 > uη,1 > uρ,2 > uδ,2 in R
N .

Setting uα,i(x) = uα,i(x1, x2) = uα,i(|x2|) and Ki(x) = Ki(x1, x2) = Ki(|x2|) in R
n

for i = 1, 2, we have

uγ,2 > uξ,1 > uδ,2 in R
n.

Obviously, uγ,2 and uξ,1 are super- and sub-solution of (1.3) in R
n, respectively.

Then, the standard barrier method verifies the existence of an entire solution of
(1.3). Repeating this process, we construct infinitely many ordered entire solutions
satisfying (5.6). �

A direct consequence of theorem 5.2 is the following assertion.

https://doi.org/10.1017/prm.2018.98 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.98


Stable entire solutions 1391

Corollary 5.3. Let n > N � 10 + 4� with � > −2. Suppose that locally Hölder
continuous function K(x) = K(x1, x2) = K(x1, |x2|) in R

n \ {0} satisfies (K1),
(K3) and there exists c > 0 such that

Ki(r) = cr� +O(r�−λ1(log r)−θi) at ∞, i = 1, 2,

for some constants c > 0 and θi > 1, where λ1 = λ1(N, �). Then, the same result
as in theorem 5.2 holds.

When n = N , we observe the existence of S in theorem 1.3. However, the existence
of a continuum C of solutions needs more detailed information about the asymptotic
behaviour. The existence of C follows from theorem 1.5 with μ = 0 in § 5.2.

5.2. Inhomogeneous equation

In this section, we study infinite multiplicity for the inhomogeneous equation
(1.1). Here we argue similarly as in [6, § 4]. Under the assumptions on K as in
proposition 5.1, equation (1.4) with n � 10 + 4� and � > −2 has a family {uα} of
radial solutions indexed by α ∈ (−∞, α∗] for some α∗ <∞ such that uα(0) = α
and uα is monotonically increasing with respect to α. For α � α∗, set W (α, t) :=
uα(r) − log(((2 + �)(n− 2))/(cr2+�)), t = log r and

D(α, t) := eλ1tW (α, t) = D(α, r) for n > 10 + 4�,

D(α, t) := t−1eλ1tW (α, t) = D(α, r) for n = 10 + 4�.

From the proof of proposition 5.1, we observe that for each α ∈ (−∞, α∗],
there exist γ < α and β > α such that uγ � uα � uβ in R

n and thus, uα(r) −
log(((2 + �)(n− 2))/(cr2+�)) → 0 as r → ∞. Moreover, it follows from (4.2) and
(1.13) that for fixed −∞ < a < α∗, D(α, t) are uniformly bounded above and
below near +∞ on [a, α∗]. For all α ∈ [a, α∗], there exists M = M(a) such that
for t ∈ [0,+∞),

|W (α, t)| � Me−λ1t for n > 10 + 4� (5.7)

and

|W (α, t)| � Mte−λ1t for n = 10 + 4�. (5.8)

For fixed −∞ < t < +∞, D(α, t) is continuous with respect to α. The next obser-
vation is that D(α, t) converges uniformly on [a, α∗] as t→ +∞. We verify this
under condition (1.12).

Lemma 5.4. Assume (5.7) and (5.8) for n > 10 + 4� and n = 10 + 4�, respectively.
For given −∞ < a < α∗, D(α, t) converges uniformly on [a, α∗] as t→ +∞.

Proof. Setting W (α, t) := uα(r) − log(((2 + �)(n− 2))/(cr2+�)), t = log r, we see
that W satisfies (4.3).
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Case 1. Let n > 10 + 4�. Then, D(α, t) = eλ1tW (α, t) satisfies (4.5) and

(Dte
(λ2−λ1)t)t = −eλ2t

[
bg(W ) + h(et)e−�teW

]
, (5.9)

where g(s) = 1/2s2 +O(s3) for s near 0. Integrating (5.9) over [T, t] with T � 0,
we have

Dt(α, t) = e−(λ2−λ1)t

{
e(λ2−λ1)TDt(α, T )

−
∫ t

T

eλ2s
[
bg(W ) + h(es)e−�seW

]
ds

}
. (5.10)

It follows from (5.7) that for any 0 < ε < min{λ1, λ2 − λ1} and for some M1 > 0,

e(λ1−λ2)t

∫ t

T

ceλ2s|g(W (s))|ds � e(λ1−λ2)t

∫ t

T

cM1e
(λ2−2λ1)s ds

� cM1e
−εt

∫ t

T

e−(λ1−ε)s ds (5.11)

which goes to 0 as t→ +∞. From (1.12), we have

e(λ1−λ2)t

∫ t

T

e(λ2−�)s|h(es)|ds = e(λ1−λ2)t

∫ t

T

e(λ2−λ1)se(λ1−�)s|h(es)|ds

�
∫ ∞

T

e(λ1−�)s|h(es)|ds <∞.

Hence, the function

F (t) := e(λ1−λ2)t

∫ t

T

e(λ2−�)s|h(es)|ds

is bounded and F ′(t) = (λ1 − λ2)F (t) + e(λ1−�)t|h(et)|. Then,

(λ2 − λ1)
∫ t

T

F (s) ds = F (T ) − F (t) +
∫ t

T

e(λ1−�)s|h(es)|ds (5.12)

� F (T ) +
∫ +∞

T

e(λ1−�)s|h(es)|ds <∞.

and thus, F is integrable near +∞. Therefore, from (5.12), F (t) converges as t→
+∞, which combined with the integrability of F near +∞ implies that

lim
t→+∞F (t) = 0. (5.13)

Hence, by (5.7), (5.10), (5.11) and (5.13), Dt(α, t) converges uniformly to 0 on
[a, α∗] as t→ +∞. Integrating (4.5) over [T, t], we see that

(λ2 − λ1)(D(α, t) −D(α, T )) = Dt(α, T ) −Dt(α, t)

−
∫ t

T

eλ1s
[
bg(W ) + h(es)e−�seW

]
ds.

Then, it follows immediately thatD(α, t) converges uniformly on [a, α∗] as t→ +∞.
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Case 2. Let n = 10 + 4�. Then, D(α, t) = t−1eλ1tW (α, t) satisfies (4.6) and

(t2Dt)t = −teλ1t
[
bg(W ) + h(et)e−�teW

]
. (5.14)

Integrating (5.14) over [T, t] with T � 0, we have

tDt(α, t) = t−1

{
T 2Dt(α, T ) −

∫ t

T

seλ1s[bg(W ) + h(es)e−�seW ] ds
}
. (5.15)

First, note that from (5.8),

t−1

∫ t

T

bseλ1s|g(W )|ds � t−1

∫ t

T

cM2se
−λ1s ds (5.16)

for some M2 > 0. Second, letting

G(t) := t−1

∫ t

T

se(λ1−�)s|h(es)|ds,

we have G′(t) = −t−1G(t) + e(λ1−�)t|h(et)|. Then,

G(t) −G(T ) = −
∫ t

T

s−1G(s) ds+
∫ t

T

e(λ1−�)s|h(es)|ds. (5.17)

Hence, we have

∫ +∞

T

G(s)
s

ds � G(T ) +
∫ +∞

T

e(λ1−�)s|h(es)|ds <∞, (5.18)

which implies that by (5.17), G(t) converges as t→ +∞ and thus, to 0 by (5.18)
again. Thus, from (5.8), (5.15) and (5.16), tDt(α, t) converges uniformly to 0 on
[a, α∗] as t→ +∞. Multiplying (4.6) by t and integrating over [T, t], we have

D(α, t) = D(α, T ) + TDt(α, T ) − tDt(α, t)

−
∫ t

T

eλ1s
[
bg(W ) + h(es)e−�seW

]
ds.

Therefore, D(α, t) converges uniformly on [a, α∗] as t→ +∞. �

It follows from lemma 5.4 that the limit D(α) of D(α, t) as t→ +∞ is continuous
in α.

Proposition 5.5. Let n � 10 + 4� with � > −2. Suppose the assumptions of propo-
sition 5.1. Then, D(α) := limt→+∞D(α, t) is continuous for α negatively large.
Moreover, D(α) → −∞ as α→ −∞.

Proof. Let α < α∗. Given ε > 0, we choose t sufficiently large so that |D(γ) −
D(γ, t)| < ε/3 for all γ ∈ [α− 1, α∗]. In any fixed compact region, entire solutions
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uβ of (1.4) are close uniformly to uα if β is sufficiently close to α. Hence, we may
choose 0 < δ < 1 such that |D(α, t) −D(β, t)| < ε/3 if |α− β| < δ. Then, we have

|D(α) −D(β)| � |D(α) −D(α, t)| + |D(α, t) −D(β, t)| + |D(β, t) −D(β)| < ε.

This implies the continuity of D. It follows from (1.13) for (1.6) that D(α) → −∞
as α→ −∞. �

We are now ready to prove theorem 1.2.

Theorem 5.6. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr), (M)
and (1.12) for some c > 0. Then, as r → ∞, D(α, r) converges uniformly on any
compact subset of (−∞,∞) to a continuous and strictly increasing negative function
D(α). Moreover,

lim
α→−∞D(α) = −∞ (5.19)

and

lim
α→∞D(α) = D(∞) � 0, (5.20)

where

D(∞) =

⎧⎪⎪⎨
⎪⎪⎩

limr→∞ rλ1

(
UK(r) − log

(2 + �)(n− 2)
cr2+�

)
if n > 10 + 4�,

limr→∞ rλ1(log r)−1

(
UK(r) − log

(2 + �)(n− 2)
cr2+�

)
if n = 10 + 4�,

where UK is the singular solution obtained in theorem C. If Ki, K1 � K2, satisfy
the assumptions, then UK1 � UK2 .

Proof. Let β > α. By (1.10), we observe that

r2K[euβ − euα ] − b[uβ − uα] =
(
r2K

euβ − euα

uβ − uα
− b

)
[uβ − uα]

< (r2Keuβ − b)[uβ − uα]

< 0.

The integral representation of D in proposition 4.4 shows that D(β) > D(α). Since
r−�K(r) � c, it follows from [5, theorem 2.1] that uα � uα for each α. Hence, (1.13)
implies (5.19) and (5.20). From (1.13), we see that

UK(r) − log
(2 + �)(n− 2)

cr2+�
→ 0

as r → ∞. By lemma 4.3, D(∞) exists and D is continuous on (−∞,∞]. Let
uα,Ki

(r) denote the solution of (1.4) with K = Ki and uα,Ki
(0) = α. By simi-

lar arguments as in [5, theorem 2.1], we conclude that uα,K1 � uα,K2, and thus,
UK1 � UK2 . �
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Now, by the proofs in lemma 4.3 and proposition 4.4 under∫ ∞

1

|f(r)|r1+λ1 dr <∞, (5.21)

we derive the integral representation for Dμ(α) for solution uμ,α. Then, the argu-
ments of theorem 5.6 implies that Dμ(α) is strictly increasing as long as solutions
are ordered and r2Keuμ,α � b holds.

Proposition 5.7. Let n � 10 + 4� with � > −2. Assume that (KR) and (1.12) for
some c > 0, and (fR1), (5.21). If uμ,α is an entire solution of (1.14) satisfying
(1.8), then Dμ(α) exists and uμ,α has the integral representation

Dμ(α) =
−1

λ2 − λ1

∫ ∞

0

[
r2Keuμ,α + μr2f − b− b

(
uμ,α − log

b

cr2+�

)]
r−1+λ1 dr

for n > 10 + 4�,

Dμ(α) = −
∫ ∞

0

[
r2Keuμ,α + μr2f − b− b

(
uμ,α − log

b

cr2+�

)]
r−1+λ1 dr

for n = 10 + 4�.
In addition to the existence of Dμ(β) and Dμ(α) for some β > α, if uμ,β > uμ,α

and r2Keuμ,β � b, then Dμ(β) > Dμ(α).
If Dμ(α) exists for α in a range under (5.7) and (5.8) in the range for n > 10 + 4�

and n = 10 + 4�, respectively, where Dμ(α, t) and Wμ(α, t) are defined in the same
manner with uμ,α, then Dμ(α) is continuous in the range.

We use β, α to denote two solutions of (1.14) near ∞. The following result is an
extension of lemma 4.5 for (1.14).

Lemma 5.8. Let n � 10 + 4� with � > −2. Assume (KR), (1.12) for some c > 0 and
that K is non-negative near ∞, and (fR1), (5.21). If uμ,β and uμ,α are two solutions
of (1.14) near ∞ satisfying (1.8) such that uμ,β > uμ,α and Dμ(β) = Dμ(α), then

lim
r→∞ rλ2(uμ,β(r) − uμ,α(r)) = d

for some d > 0.

Remark 5.9. Suppose that K̃ ∈M(c) for some c > 0. IfK � K̃, the proof of propo-
sition 5.1 shows that there exists an entire solution ũ of (1.4) with K̃ such that
ũ > uα in R

n for all α negatively large, where solutions are obtained in proposition
5.1. Since r2Keuα � r2K̃eũ � b, arguing as in the proof of theorem 5.6 we see that
D(α) is strictly increasing for α negatively large. For equation (1.14), this is valid
for all α ∈ Iμ, where Iμ is chosen properly. For example, K̃(r) = cr� if r−�K(r) � c.
More generally, if r−�K(r) is bounded above and supr<s<∞ s−�K(s) → c as r → ∞,
then we may set K̃(r) = r� supr<s<∞ s−�K(s) for r > 0.

The continuity of D(α) plays a crucial role in establishing the following multi-
plicity result. The characteristic function χE of E is defined by χE(x) = 1 if x ∈ E,
and 0 if x �∈ E.
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Theorem 5.10. Let n � 10 + 4� with � > −2. Assume that K and f satisfy (K1)
and (f1) respectively. Suppose that

K+ + (χ[0,1] + r2+�χ[1,∞))F+ � 0 (5.22)

and ∫ ∞

1

|r−�K± ± r2F± − c|r−1+λ1 dr <∞ (5.23)

for some c > 0, where K−(r) := min|x|=r K(x), K+(r) := max|x|=r K(x), λ1 =
λ1(n, �), F±(r) = max|x|=r{±f(x), 0}. Then, there exists μ∗ > 0 such that for every
μ ∈ [0, μ∗), (1.1) has a continuum of entire solutions with the asymptotic behaviour

lim
|x|→∞

[
u(x) − log

(2 + �)(n− 2)
c|x|2+�

]
= 0. (5.24)

Proof. We consider the following homogeneous problems

v′ +
n− 1
r

v′ + (K± ±H±)ev = 0 in (0,∞), v(0) = α, (5.25)

where H±(|x|) = F±(|x|) in B(1) and H±(|x|) = |x|2+�F±(|x|) in R
n \B(1). We

may consider only the case that K− −H− �≡ cr� �≡ K+ +H+ and f �≡ 0 because
the other cases can be handled similarly. By v+

α and v−α , denote the solutions of
(5.25) with K+ +H+ and K− −H−, respectively. From proposition 5.1, there
exists α∗ such that for each α ∈ (−∞, α∗], there exist entire solutions v±α of (5.25)
which increase as α increases and are located below uθ for some θ > α∗. Moreover,
for given α ∈ (−∞, α∗], there exist η < γ < ξ < α such that uη < v−γ < uξ < v+

α in
R

n. Define γα = sup {β ∈ (η, α) | v−β < v+
α in R

n }. Obviously, v−γα
� v+

α . Then, the
strong maximum principle with (5.22) implies that v−γα

< v+
α in R

n. By lemma 5.4,
we may set

D−(γα) := lim
r→∞ rλ1

[
v−γα

(r) − log
(2 + �)(n− 2)

cr2+�

]
and

D+(α) := lim
r→∞ rλ1

[
v+

α (r) − log
(2 + �)(n− 2)

cr2+�

]
if n > 10 + 4�, and

D−(γα) := lim
r→∞

rλ1

log r

[
v−γα

(r) − log
(2 + �)(n− 2)

cr2+�

]

and

D+(α) := lim
r→∞

rλ1

log r

[
v+

α (r) − log
(2 + �)(n− 2)

cr2+�

]

if n = 10 + 4�. Then, it follows from proposition 5.5 that D−(γα) = D+(α). Indeed,
if D−(γα) < D+(α), then v−γα

< v+
α near ∞. Hence, the continuity of D− implies

that there exist R > 0 and δ > 0 such that if 0 < β − γα < δ and β < α, then
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v−β (r) < v+
α (r) for r ∈ [R,∞). Since v−β is monotonically decreasing to v−γα

as β
decreases to γα and v−β → v−γα

uniformly on [0, R], there exists γα < γ1 < β such
that v−γ1

< v+
α in R

n which contradicts the definition of γα.
Fix α1 ∈ (−∞, α∗]. For simplicity, assume α∗ < 0. By proposition 5.1, there

exist η1 < γα1 and η2 < α2 < 2η1 such that uη2 < v−γα2
< v+

α2
< u2η1 < uη1 < v−γα1

in R
n. Since D(α) in (1.13) for uα is strictly increasing as α increases, we

have D−(γα2) = D+(α2) < D−(γα1) = D+(α1). The continuity of D+ implies that
D+([α2, α1]) ⊃ [D+(α2),D+(α1)]. We apply (1.8) to find μ± satisfying μ+f+ �
H+exp(v+

α1
), μ−f− � H−exp(v−γα1

). For each 0 � μ � min{μ+, μ−}, we conclude
by the super- and sub-solution method that for every α ∈ [α2, α1], equation (1.1)
possesses an entire solution u(μ,α) satisfying v−γα

< u(μ,α) < v+
α in R

n, and moreover,

lim
|x|→∞

[
u(μ,α)(x) − log

(2 + �)(n− 2)
c|x|2+�

]
= 0.

Every u(μ,α) is characterized by the asymptotic behaviour

Dμ(α) := lim
|x|→∞

|x|λ1

[
u(μ,α)(x) − log

(2 + �)(n− 2)
c|x|2+�

]
= D+(α)

if n > 10 + 4� and

Dμ(α) := lim
|x|→∞

|x|λ1

log |x|
[
u(μ,α)(x) − log

(2 + �)(n− 2)
c|x|2+�

]
= D+(α)

if n = 10 + 4�. The continuity of Dμ(α) follows from the continuities of D±(α). �

If f satisfies (f2), then (5.23) is equivalent to∫ ∞

1

|r−�K± − c|r−1+λ1 dr <∞. (5.26)

Moreover, (K2) implies (5.26). Then, (5.22) is redundant since K+ in (5.22) can be
replaced by K+

+ . Hence, theorem 1.5 is a special case of theorem 5.10.
The radial version of theorem 5.10 is as follows.

Theorem 5.11. Let n � 10 + 4� with � > −2. Assume that K and f satisfy (KR)
and (fR1) respectively. Suppose that

K + (χ[0,1] + r2+�χ[1,∞))f+ � 0 (5.27)

and ∫ ∞

1

|r−�K ± r2f± − c|r−1+λ1 dr <∞ (5.28)

for some c > 0, where f± = max(±f, 0) and λ1 = λ1(n, �). Then, there exists μ∗ > 0
with the property that for fixed 0 < μ < μ∗, there exists an interval Iμ = (αμ, βμ),
−∞ � αμ < βμ � +∞, such that for each ξ ∈ Iμ, (1.14) has an entire solution uμ,ξ

satisfying (1.8), and two solutions among them are separated. Moreover, the limit

https://doi.org/10.1017/prm.2018.98 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.98


1398 Soohyun Bae

Dμ(α) is continuous and increasing in α ∈ Iμ. If K is bounded above by a function
in M(c), then Dμ(α) is strictly increasing in α ∈ Iμ.

Remark 5.12. In theorems 5.10 and 5.11, we utilize (5.22) and (5.27) to employ
the strong maximum principle. In order to verify the existence in theorem 5.11,
we combine comparison arguments in [5, theorem 2.1] with proposition 5.7 rather
than the barrier method. The above proof even without (5.22) shows that there
exist finitely many ordered entire solutions of (1.1) with (5.24) as long as μ > 0
sufficiently small. Then, the number of solutions for (1.1) is arbitrary large as
μ→ 0 while (1.3) possesses countably many ordered entire solutions with (5.24).
The separation property in theorem 5.11 follows from lemma 3.1 with K̃ = K +
(χ[0,1] + r2+�χ[1,∞))f+ ∈MI(c). When K is non-negative near ∞, we may choose
K̃ = K+ + (χ[0,1] + r2+�χ[1,∞))f+ ∈MI(c). On the other hand, if f satisfies (fR2),
then this choice also works since (1.12) implies (5.28), which is the assertion of
theorem 1.4. Hence, for these two cases, we can remove (5.27) in the assumptions
of theorem 5.11.

Theorem 5.13. Let n � 10 + 4� with � > −2. Assume that K and f satisfy (KR)
and (fR1) respectively. Suppose that K is non-negative near ∞ and satisfies (5.28)
for some c > 0. Then, the result of theorem 5.11 holds.

6. Stability

Now, we apply our results to the Cauchy problem{
ut = Δu+K(x)eu + μf(x) in R

n × (0, T ),

u(x, 0) = φ in R
n,

(6.1)

where T > 0 and φ �≡ 0 is a bounded continuous function in R
n. It is known

that there exists T = T [φ] > 0 such that (6.1) has a unique solution u(x, t;φ) in
C2,1

loc (Rn \ {0} × (0, T )) ∩ C(Rn × [0, T )) which is bounded in R
n × [0, T ′] for all

T ′ < T [φ]. Define weighted L∞ norms as follows: For λ > 0, θ > 0, let

||ψ||(λ,θ) = sup
x∈Rn

∣∣∣∣ (1 + |x|)λ

[log(2 + |x|)]θψ(x)
∣∣∣∣ ,

where ψ is a continuous function in R
n. We say that a regular steady state uα of

(6.1) is stable with respect to the norm ||·||(λ,θ) if for every ε > 0, there exists δ > 0
such that for φ satisfying ||φ− uα||(λ,θ) < δ,

||u(·, t;φ) − uα||(λ,θ) < ε

for all t > 0; uα is weakly asymptotically stable with respect to || · ||(λ,θ) if uα is
stable with respect to || · ||(λ,θ) and there exists δ > 0 such that for φ satisfying
||φ− uα||(λ,θ) < δ,

lim
t→∞ ||u(·, t;φ) − uα||(λ′,θ) = 0

for all λ′ < λ. A special family of super- and sub-solutions surrounding a given
solution may derive the weak asymptotic stability. For example, assuming theorem
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B(ii) and (1.12), we construct a sequence of pairs of super-solutions u+
α,j > uα and

sub-solutions u−α,j < uα of (1.4) surrounding uα such that all limits D±,j(α) of the
functions defined similarly as in (1.11) have the same limit D(α) as uα. Then, the
topology is induced by the following asymptotic behaviour.

Proposition 6.1. Let n � 10 + 4� with � > −2. Assume that K satisfies (Kr), (M)
and (1.12) for some c > 0. For each α ∈ R, there exist a super-solution u+

α (r) and a
sub-solution u−α (r) of (1.4) such that u+

α > uα > u−α on [0,∞) and u+
α (r) − u−α (r) =

O(r−λ2) as r → ∞.

See lemmas 4.3 and 4.5 for the proof of the asymptotic behaviour. Here, we
explain how to construct super- and sub-solutions in a general setting. For our
convenience, we use uα instead of uμ,α to denote solutions of (1.14) with μ fixed.

Proposition 6.2. Suppose the hypotheses of theorem 5.11 or theorem 1.4 with
0 �≡ K � 0 and (fR2). For αμ < η < α < ξ < βμ, there exist a super-solution u+

α

and a sub-solution u−α of (1.14) such that uη < u−α < uα < u+
α < uξ in R

n.

Proof. Let H be a smooth radial function with compact support such that 0 �≡ H �≡
K, 0 � H � K and supp(H) ⊂ supp(K). Consider the problem

urr +
n− 1
r

ur + (K(r) +H(r))eu + μf(r) = 0, u(0) = α. (6.2)

Let ǔα be the solution of (6.2). Let αμ < α < ξ < βμ. Suppose that for α < β <
ξ, there exists R > 0 such that ǔβ > uα in [0, R) and ǔβ(R) = uα(R). Then,
supp(H) ∩B(R) �= ∅. Since H is small enough, R is arbitrarily large. Hence,
we may assume that supp(H) ⊂ B(R). Let R1 = sup{r > 0 | ǔβ(r) − uα(r) �
(β − α)/(2i))} for i large. For H1 and H2, 0 � H1 � H2, satisfying the above con-
ditions, let ǔζ,H1 and ǔβ,H2 for β < ζ < ξ be solutions of (6.2) with H = H1 and
H2 respectively. By the same way as in [1, lemma 2.3] with w̌2 := uξ − uζ , we have
uζ,H1 � uζ and w̌1 := ǔζ,H1 − ǔβ,H2 > 0. See [5, theorem 2.1] for the ideas of the
arguments. Hence, we derive ǔβ,H1 � ǔβ,H2 by taking ζ → β. Therefore, we may
assume that supp(H) ⊂ B(R1) by choosing i sufficiently large and H sufficiently
small. Then, supp(H) ⊂ B(R1) ⊂ B(R). Now, setting w3 := ǔβ − uα, we have

{
Δw3 + k3w3 = 0 in B(R),

w3 > 0 in B(R) and w3(R) = 0,

where

k3 := K
eǔβ − euα

ǔβ − uα
+H

eǔβ

ǔβ − uα
� Keuβ +

2iH

β − α
euβ

in B(R), and w′
3(R) � 0. On the other hand, we have w4 := uγ − uξ > 0 in [0,∞)

for any ξ < γ < βμ, and

Δw4 + k4w4 = 0
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in R
n, where

k4 := K
euγ − euξ

uγ − uξ
� Keuξ .

Furthermore, we may choose H satisfying H < ((β − α)/(2i))K[euξ−uβ − 1] in
B(R1) ∩ supp(K)◦. Hence, k3 � k4 but k3 �≡ k4 in B(R). From Green’s identity,
it follows that

ωnR
n−1w′

3(R)w4(R) =
∫

B(R)

(w4Δw3 − w3Δw4)

�
∫

B(R)

(k4 − k3)w3w4 > 0,

which in turn implies that w′
3(R) > 0, a contradiction. Therefore, for given α < β <

ξ, ǔβ > uα in R
n if H is chosen suitably. Set u+

α = ǔβ .
In order to find a sub-solution of (1.14), consider the problem,

urr +
n− 1
r

ur + (K(r) −H(r))eu + μf(r) = 0, u(0) = α. (6.3)

Let ûα be the solution of (6.3). Suppose that for some αμ < η < δ < α < βμ,
there exists R > 0 such that ûδ < uα in [0, R) and ûδ(R) = uα(R). Let R2 =
sup{r > 0 | uα(r) − ûδ(r) � ((α− δ)/(2i))}. Then, we see that supp(H) ⊂ B(R2)
for i sufficiently large and H sufficiently small. Setting w5 := uα − ûδ, we have{

Δw5 + k5w5 = 0 in B(R),

w5 > 0 in B(R) and w5(R) = 0,

where

k5 := K
euα − eûδ

uα − ûδ
+H

eûδ

uα − ûδ
� Keuα +

2iH

α− δ
euα

in BR, and w′
5(R)� 0. We may chooseH satisfyingH < ((α− δ)/(2i))K[euξ−uα − 1]

in B(R2) ∩ supp(K)◦. Hence, k5 � k4 but k5 �≡ k4 in B(R). From Green’s identity,
it follows that

ωnR
n−1w′

5(R)w4(R) =
∫

B(R)

(w4Δw5 − w5Δw4)

�
∫

B(R)

(k4 − k5)w5w4 > 0

which implies a contradiction, w′
5(R) > 0. Therefore, we have uα > ûδ for η < δ <

α. Then, it follows from lemma 3.1 that ûη < ûδ in R
n and by the same argument

as in [1, lemma 2.3], we have uη � ûη. Set u−α = ûδ. �

We are ready to improve proposition 6.1 by constructing the following family
which explains the topology for the weak asymptotic stability with respect to
|| · ||(λ2,0).
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Theorem 6.3. Let n � 10 + 4� with � > −2. Assume (Kr), (1.12) for some c > 0
and (fR1,2). If K is bounded above by a function in M(c), then for each fixed
solution uα of (1.14) obtained in theorem 5.11 or theorem 1.4, there exist a sequence
{u+,j

α } of radial super-solutions, u+,1
α > u+,2

α > · · · > uα, and a sequence {u−,j
α } of

radial sub-solutions, u−,1
α < u−,2

α < · · · < uα, such that uα is the only solution of
(1.14) in the ordered interval u−,j

α < uα < u+,j
α for every j, and

lim
j→∞

u±,j
α = uα.

Moreover, there exist two sequences {d+,j
α } and {d−,j

α } defined by

d±,j
α := lim

r→∞ rλ2
(
u±,j

α (r) − uα(r)
)

(6.4)

such that d+,j
α is strictly decreasing to 0 and d−,j

α is strictly increasing to 0 as
j → ∞.

Proof. Fix 0 < μ < μ∗ and αμ < α < βμ. From proposition 6.2, (1.14) has a super-
solution ǔβ by a suitable choice of H such that ǔβ > uα in R

n. Define

β = min{α < β < ξ | ǔβ � uα }.

By the maximum principle, u+,1
α := ǔβ > uα. We may construct a function in M(c)

which dominates K +H. Hence, there exists a continuous function D
(1)
+ (β) given

by ǔβ . Since D(1)
+ is non-decreasing, D+,1

α := D
(1)
+ (β) = D(α). Indeed, if D(1)

+ (β) >
D(α), then by using the continuity of D(1)

+ (β), we may choose α < β̃ < β and
R > 0 such that ǔβ > uα on (R,∞) for every β̃ < β < β. Since ǔβ is monotonically
increasing to ǔβ as β increases to β, there exists β̃ < β < β such that ǔβ > ǔβ > uα

in R
n, which contradicts the definition of β.

It follows from proposition 6.2 that (1.14) has a sub-solution ûδ for a suitable
choice of H in (6.3) such that ûδ < uα in R

n. Define

δ = max{δ < α | ûδ � uα }.

By the maximum principle, u−,1
α := ûδ < uα. Similarly, we define D

(1)
− (δ) and

D−,1
α := D

(1)
− (δ). Then, D−,1

α = D(α).
For each j, we consider the equations

u′ +
n− 1
r

u′ +
(
K(r) ± H(r)

j

)
eu + μf(r) = 0, u(0) = α > 0. (6.5)

Applying the standard barriers method to (6.5), we obtain a sequence of radial
strict super-solutions of (1.14) u+,1

α > u+,2
α > · · · > uα and a sequence of radial strict
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sub-solutions of (1.14) u−,1
α < u−,2

α < · · · < uα. For each j, setting

D±,j
α := lim

r→∞

⎧⎪⎪⎨
⎪⎪⎩
rλ1

(
u±,j

α (r) − log
(2 + �)(n− 2)

cr2+�

)
if n > 10 + 4�,

rλ1(log r)−1

(
u±,j

α (r) − log
(2 + �)(n− 2)

cr2+�

)
if n = 10 + 4�,

we have D+,j
α = D(α) = D−,j

α < 0 for all j. Since D(α) is strictly increasing as α
increases, uα is the unique solution of (1.14) satisfying u−,j

α < uα < u+,j
α . Now, we

see that there exists a decreasing sequence {βj} such that βj = u+,j
α (0) > α and

u+,j
α (r) = βj − 1

n− 2

∫ r

0

s

{
1 −

(s
r

)n−2
} ([

K(s) +
H(s)
j

]
eu+,j

α + μf(s)
)

ds.

Since u+,j
α is monotonically decreasing as j → ∞ and thus u+,j

α converges uniformly
in any compact subset of [0,∞) to a continuous function ũ which satisfies that
ũ � uα and for any r > 0,

ũ(r) = β − 1
n− 2

∫ r

0

s

{
1 −

(s
r

)n−2
} (

K(s)eũ + μf(s)
)
ds

for some β � α. Hence, ũ = uβ . The uniqueness of uα implies that β = α. Similarly,
we observe that uα = limj→∞ u−,j

α . On the other hand, lemma 5.8 implies that
there exist two sequences {d+,j

α } and {d−,j
α } defined by (6.4). It follows from lemma

5.8 again that d+,j
α , d−,j

α are strictly decreasing and strictly increasing as j → ∞,
respectively. Set

W+,j(α, t) := u+,j
α (r) − log

(2 + �)(n− 2)
cr2+�

, t = log r

and ψ+,j(t) := rλ2(u+,j
α (r) − uα(r)).

Case 1. Let n > 10 + 4�. From (4.11) with sufficiently large T , we have

d+,j
α = ψ+,j(T ) +

1
λ2 − λ1

∫ +∞

T

eλ2s
[
bg(W+,j

α ) − bg(Wα)
]

ds

+
1

λ2 − λ1

∫ +∞

T

e(λ2−�)sh(es)
(
eW+,j

α − eWα

)
ds

− 1
λ2 − λ1

e(λ2−λ1)T

∫ +∞

T

eλ1s
[
bg(W+,j

α ) − bg(Wα)
]

ds

− 1
λ2 − λ1

e(λ2−λ1)T

∫ +∞

T

e(λ1−�)sh(es)
(
eW+,j

α − eWα

)
ds.

Since u+,j
α converges uniformly on any compact set of [0,∞), we see that ψ+,j(T ) →

0 as j → ∞. The remaining parts are going to 0 also by the Dominated Convergence
theorem. Therefore, d+,j

α → 0 as j → ∞. Similarly, d−,j
α → 0 as j → ∞.

Case 2. Let n = 10 + 4�. Similar arguments with (4.12) lead to the conclusion.
�
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For similar results to theorem 6.3, see [1, theorem 4.2] and [3, theorem 3.1]
which is motivated by [8, theorem 4.1]. In [8], one of the key ingredients is [8,
proposition 2.27] to study a weighted L∞ stability of positive radial solutions of
(1.9). The contents of [8, proposition 2.27] are a comparison principle, monotone
decrease (increase) in time of super-(sub-)solutions and radial symmetry in space of
solutions with radially symmetric initial data. In fact, [8, proposition 2.27] adopts
some results in [11]. See [11, lemma 1.3, lemma 2.6(ii), lemma 2.6(i)] for classical
case and [11, theorem 2.4(i), (ii), theorem 2.3] for more general case. More precisely,
the former and the latter cover the case of K(r) = |x|� for � � 0 and −2 < � < 0,
respectively. The arguments can be applied to (1.4) under (Kr), and even to (1.14)
under (fR1) as in [7, proposition 4.1] for (1.2). In order to employ the arguments
without substantial changes, we consider only the case that K is non-negative.

Theorem 6.4. Let n � 10 + 4� with � > −2. Assume (Kr), (1.12) for some c > 0
and (fR1,2) and K is bounded above by a function in M(c). Let α ∈ Iμ and uμ,α

be one of the radially symmetric steady states of (6.1) obtained by theorem 5.11 or
theorem 1.4.

(i) If n = 10 + 4�, then uμ,α is stable with respect to the norm ||·||(λ1,1) and is
weakly asymptotically stable with respect to the norms ||·||(λ2,0).

(ii) For n > 10 + 4�, uμ,α is stable with respect to the norm ||·||(λ1,0) and is weakly
asymptotically stable with respect to the norm ||·||(λ2,0).

In particular, theorem 6.3 is essential in verifying the weak asymptotic stability.
See [3,7,8,10,11] for the arguments of the proof. We refer the reader to [7,12]
for further related works for stability questions. The proofs of theorems 5.10 and
1.5 show the following stability even when K and f are not supposed to be radially
symmetric.

Theorem 6.5. Assume that K � 0 and the hypotheses of theorem 5.10 or theorem
1.5. Let u be one of the steady states of (6.1) obtained in theorem 5.10 or theorem
1.5.

(i) For n = 10 + 4�, u is stable with respect to the norm || · ||(λ1,1).

(ii) For n > 10 + 4�, u is stable with respect to the norm || · ||(λ1,0).
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