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Evaluation of coaxial cable performance
under thermal gradients

sergio colangeli, riccardo cleriti, walter ciccognani and ernesto limiti

This paper presents a very flexible tool for numerically evaluating the small-signal and noise parameters of a transmission line
subject to an arbitrary thermal gradient. Contrary to previous methods, the proposed approach allows straightforwardly
taking into account possible variations of electrical parameters along the propagation direction, such as may be expected
when temperature ranges between very different values. The main application of the proposed method is cable modeling
in noise-figure measurement setups under cryogenic operation: in such circumstances, indeed, the coaxial cables (or wave-
guide) at the interface between the outside and the inside of the cryogenic chamber are subject to remarkable temperature
excursions. As a consequence, significant de-embedding errors may arise if the cables are not correctly modeled, given the
very low values of noise figure which are commonly exhibited by cryo-cooled active devices.
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I . I N T R O D U C T I O N

Cryogenic cooling represents one of the most promising con-
cepts to obtain ultra-low-noise amplifiers (LNAs), especially if
combined with advanced III–V hetero-structure technologies,
such as InP HEMTs [1, 2]. Possible applications of cryo-
cooled LNAs are in radio astronomy, satellite communication,
and mobile base stations [3–5]. Small-signal and noise charac-
terization of cryo-cooled active devices, however, requires very
specific instrumentation – in particular, cryogenic probe sta-
tions – and is in general a critical operation by itself.
Moreover, owing to the extremely low-noise figures, which
are common in this kind of measurements, great care
should be taken to minimize every possible source of uncer-
tainty: in this regard, the very techniques adopted for charac-
terization and modeling may affect the final results [1, 6–11].

As well known, one such source of uncertainty lies in the
de-embedding process [12], through which the noise contri-
bution of the auxiliary components in the measurement
chain has to be removed. In typical ambient-temperature
noise measurements, these components are passive and at
thermal equilibrium, so that their noise behavior is easily
determined based on their small-signal parameters.
Unfortunately, however, this approach is no longer valid
when dealing with the coaxial cables which connect the
outside and the inside of the cryogenic chamber: these
cables are subject to a remarkable temperature excursion,
and the hypothesis of thermal equilibrium must be
removed. The aim of this contribution is to investigate the

effects of significant thermal gradients on the small-signal
and noise parameters of a coaxial cable such as those used
in typical cryogenic probe stations. This topic has not been
explored very much in the literature, the only noteworthy
references being [13] and, from a different standpoint [14].

The remainder of this paper is structured as follows:
Section II presents the key observation that of non-uniform
physical temperature in a generic two-port network prevents
one from easily deriving the two-port’s noise parameters
from its small-signal parameters. Section III illustrates a first
solution to the problem, for the more specific case in which
the two-port is a transmission line and temperature variations
only take place along the direction of signal propagation; in
Section IV the proposed numerical approach is simplified
on the basis of typically valid assumptions. Then, Section V
points up a possible way to obtain the small-signal parameters
necessary to apply the general-purpose and simplified
approaches. The different techniques presented so far are
briefly summarized in Section V, to provide the Reader with
a comprehensive, yet synthetic overview. Section VII reports
some experimental results to validate the proposed formula-
tion. The main conclusions of this work are summarized in
Section VIII.

I I . G E N E R A L F R A M E W O R K

It is well known that the equivalent noise temperature, Teq, of
a passive two-port at thermal equilibrium can be derived from
the two-port’s physical temperature, Tph, and available gain,
Gav:

Teq = Tph ·
1

Gav
− 1

( )
. (1)
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Note that, whereas Teq and Gav depend on the source
reflection coefficient of the two-port, GS, Tph is constant.

Friis’ formula, here recalled:

Teq = Tph,1 +
Teq,2

Gav,1
+ Teq,3

Gav,1Gav,2
+ · · · (2)

can be used to derive the equivalent noise temperature of a
pair of such two-ports, at different physical temperatures:

Teq,12 = Tph,1 ·
1

Gav,1
− 1

( )
+ Tph,2 ·

1
Gav,2

− 1

( )
· 1

Gav,1

= (Tph,1 − Tph,2)· 1
Gav,1

− 1

( )
+Tph,2 ·

1
Gav,1Gav,2

− 1

( )
.

(3)

It is clear that (3) cannot be recast in the form of (1), that is, no
constant “effective” temperature, Tph,eff,12, exists such that
Teq,12 can be expressed as Tph,eff,12

.(1/Gav,1221 for all
source reflection coefficients, where Gav,12 ¼ Gav,1

.Gav,2 –
unless in trivial cases, such as if Tph,2 2 Tph,1 ¼ 0, or if at
least one of the two-ports is lossless. With respect to the
latter example, note that for a lossless two-port the physical
temperature is not uniquely defined (i.e., any physical tem-
perature would equally yield the parameters of a noiseless
two-port).

Equation (3) also hints that temperature differences along a
chain of passive two-ports act as weighting functions in a
summation of terms, so that, in general, the optimum noise
match is not simply the reflection coefficient which maximizes
the available gain of a particular two-port of the chain. On the
other hand, in the particular case in which the component
two-ports all exhibit the same optimum source match with
respect to the available gain, that termination would also
yield the optimum noise match of the whole chain.

I I I . G E N E R A L - P U R P O S E
N U M E R I C A L A P P R O A C H

Different numerical approaches may be devised to address the
computation of the noise factor of a uniform transmission line
subject to a thermal gradient. In the following, one such meth-
odology is presented, which resembles the approach described
in [13], although applied in a sensibly more convenient way:
in particular, a completely algebraic formulation has been
developed, not relying on a circuit simulator.

The key point of this numerical approach consists in dis-
cretizing the problem – that is, the original transmission
line is split into a large number, n, of smaller segments: if n
is large enough, each segment may be considered as subject
to a constant physical temperature, and therefore exhibiting
well-defined small-signal and noise parameters. As a conse-
quence, by suitably combining these parameters (which is
straightforward) it is possible to approximate the solution to
the original problem with arbitrary accuracy.

Telegrapher’s equations provide an intuitive representation
of transmission lines, as depicted in Fig. 1(a), in terms of four
real (possibly frequency-dependent) parameters, R, L, G, and
C, representing the resistance, inductance, conductance, and
capacitance, respectively, per unit length of line. More

synthetically, an impedance, Z, and an admittance, Y, per
unit length can be defined at any angular frequency v, as
follows:

Z = R + jvL, (4)

Y = G + jvC. (5)

From these so-called “primary parameters,” the secondary
parameters of the transmission line are derived, namely the
characteristic impedance:

Zc =
����������
R + jvL
G + jvC

√
=

��
Z
Y

√
= Rc + jXc, (6)

and the propagation constant:

g =
������������������������
(R + jvL) · (G + jvC)

√
=

������
Z · Y

√
= a+ jb (7)

with a the attenuation constant (Np/m) and b the phase con-
stant (rad/m). Note that, apart from uninteresting cases (DC
frequency or lossless line), the characteristic impedance is
never purely real; nevertheless, it may safely be considered
such in coaxial cables for high-frequency operation (from a
few hundred megahertz up).

Whereas the representation of Fig. 1(a) is only exact in the
limit for infinite sections of infinitesimal length, dz, a trans-
mission line can be approximated by the cascade of a large
number of short cells of finite length, Dz. The ith finite-length
cell of the cascade will be made up of a series impedance and a
parallel admittance given, respectively, by:

Zi = Ri + jvLi = Z · Dz, (8)

Yi = Gi + jvCi = Y · Dz, (9)

where the cells are numbered from i ¼ 0 to i ¼ n 2 1, so that
each of them is enclosed between zi ¼ i.Dz and zi+1 ¼ zi +
Dz ¼ (i + 1).Dz.

The real parts of immittances Zi and Yi can be associated
with noise generation. In particular, this noise is represented
in Fig. 1(b) by a series voltage source eR,i and a parallel

Fig. 1. Telegrapher’s representation of an elementary section of transmission
line. (a) Infinitesimal cell. (b) Discrete cell, with noise sources.
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current source iG,i, of values such that:

eR,i

∣∣ ∣∣2 = 4kBTph,iRi, s, (10)

iG,i

∣∣ ∣∣2 = 4kBTph,iGi, (11)

where Tph,i is the physical temperature of the cell. More
specifically, Tph,i approximates the physical temperature
along the transmission line, Tph(z), as follows:

Tph,i � Tph(zi) = Tph(i · Dz). (12)

Note that the hypothesis of zero correlation between eR,i and
iG,i, that is:

eR,ii
∗
G,i = 0 (13)

is in agreement with the results which would be obtained in
the case of constant temperature, for which (1) can be
applied. This assumption is also made, implicitly, in [13],
where fundamentally the same approach is used, although
in a more complicated fashion. As a last comment in this
respect, zero correlation can be justified by the fact that the
microscopic noise sources associated with the metal (therefore
to Ri) and those associated with the dielectric (therefore to Gi)
are spatially separated.

According to Hillbrand and Russer’s noise correlation
matrix formulation [15, 16], the chain representation of the
noise correlation matrix of the ith cell, Ci, can be computed as:

Ci =
en,i

∣∣ ∣∣2 en,ii∗n,i

e∗n,iin,i in,i

∣∣ ∣∣2
[ ]

,

=
1 Zi

0 1

[ ]
·

eR,i

∣∣ ∣∣2 eR,ii∗G,i

e∗R,iiG,i iG,i

∣∣ ∣∣2
[ ]

·
1 Zi

0 1

[ ]H

,

=
eR,i

∣∣ ∣∣2 + Zi| |2· iG,i

∣∣ ∣∣2 0

0 iG,i

∣∣ ∣∣2
[ ]

,

(14)

where superscript H denotes the conjugate transpose
matrix and the last equivalence exploited hypothesis (13).
Moreover, the ith cell is associated with an ABCD matrix, Ai:

Ai =
1 + ZiYi Zi

Yi 1

[ ]
. (15)

It can be shown that the correlation matrix of the cascade
including all cells along the transmission line is equal to:

C = C0 +
∑n−1

i=1

∏i−1

k=0

Ak

( )
· Ci ·

∏i−1

k=0

Ak

( )H

. (16)

In deriving (16), the noise contribution of each cell has been
shifted leftwards, based on the small-signal parameters of
the cable portion preceding it (namely, the cascade of cells
from k ¼ 0 to k ¼ i 2 1).

Note that, even if frequency is fixed in the above discussion,
the four primary parameters may still depend on the physical
temperature of the transmission line. Moreover, if the physical

temperature varies along the longitudinal direction, the
primary parameters will also be functions of z, as implicitly
assumed with retaining subscripts in equations (8)–(16).
The formulation presented in this section is, therefore, well
suited to take into account the possible dependency of the
electrical parameters on temperature. If, on the other hand,
this dependency is negligible, then all cells exhibit the same
small-signal behavior, so that (16) simplifies to:

C = C0 +
∑n−1

i=1

Ai
0 · Ci · (Ai

0)H . (17)

Equations (16) and (17) allow us to evaluate numerically the
correlation matrix of a transmission line subject to an arbi-
trary thermal gradient: note that, since the terms of the
input matrices are functions of Tph,i, this must be preliminary
determined for all values of i. In a second step, the standard
noise parameters of the transmission line can be computed
with well-known conversion formulae [6, 12]:

Rn = ĉ11,

Yopt =
������������������
ĉ22

ĉ11
− ℑ{ĉ12}

ĉ11

( )2
√

+ j
ℑ{ĉ12}

ĉ11
,

Fmin = 1 + 2(ĉ12 + ĉ11Y∗
opt),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(18)

where the generic ĉlm represents term (l, m) of C, normalized
on kBBT0. Here kB is the Boltzmann’s constant, B the consid-
ered bandwidth (customarily, 1 Hz), and T0 is the standard
noise temperature (i.e., 290 K).

I V . S I M P L I F I E D N U M E R I C A L
A P P R O A C H

The numerical approach presented in Section III can be
applied virtually to any transmission line, since it manages
arbitrary shapes of temperature and electrical parameters.
Moreover, it offers the possibility of associating different tem-
peratures with the metal- and dielectric-related lossy elements,
should this feature be judged important in some circum-
stances. Nevertheless, this generality is paid with an often
unnecessary complexity of implementation. In addition, that
approach requires a significant computation time, since for
the algorithm to converge to an accurate result a very large
number of cells per length has to be chosen, even with mod-
erate temperature excursions: this is due to the necessity of
emulating the distributed behavior of a transmission line,
independent of the temperature shape.

Such intricacies can usually be avoided by simplifying the
problem at its very root. The first step in doing so, and argu-
ably the one which best of all still keeps the solution at a very
general validity, is restricting the discussion to small-loss
transmission lines. Under this assumption, it is well known
that a line’s characteristic impedance is independent of R
and G, but it is set exclusively by L and C:

Zc �
��
L
C

√
, (19)

so that perturbations of R and G do not affect Zc, which can be
considered a real-valued constant throughout along the line.
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As to g, a first-order expansion leads to the following
approximation:

g �
������
L · C

√

2
· R

L
+ G

C

( )
+ jv

������
L · C

√
, (20)

from which it is clear that the imaginary part of the propaga-
tion constant does not depend on line losses, while only its real
part does.

For the moment, let a be constant along z, so that the scat-
tering transmission matrix of the transmission line can be
expressed as:

T = e−gl 0
0 e+gl

[ ]
= e−al 0

0 e+al

[ ]
· e−jbl 0

0 e+jbl

[ ]
= M · P, (21)

where the normalization impedance Z0 has been set real and
equal to Zc, and two auxiliary matrices have been defined:

M = e−al 0
0 e+al

[ ]
, (22)

P = e−jbl 0
0 e+jbl

[ ]
. (23)

After choosing a suitable value of n, the scattering transmis-
sion matrix of the ith cell are computed from those of the
full length of transmission line. In particular, the scattering
transmission matrix of the ith cell can again be factored as
the product of two diagonal matrices: Mi, accounting for mag-
nitude variations, and Pi, accounting for phase variations.

In this discretized formulation, it is straightforward to get
back the (possible) dependence of a on z:

Mi =
e−ai l 0

0 e+ai l

[ ]
= (Mu)ki = e−aul 0

0 e+aul

[ ]ki

= (M1/n)ki = e−aul/n 0

0 e+aul/n

[ ]ki

∀i [ 0, 1, 2, . . . , n − 1{ },

(24)

while b cannot vary in the hypothesis of small losses:

Pi =
e−bi l 0

0 e+bi l

[ ]
= Pu = e−bul 0

0 e+bul

[ ]

= P1/n = e−bul/n 0

0 e+bul/n

[ ]
∀i [ 0, 1, 2, . . . , n − 1{ }.

(25)

Subscript u in (24) and (25) represents the nominal cell para-
meters, i.e. those of any cell in the case of a uniform transmis-
sion line, whereas ki ¼ ai/au plays the role of weighing cell
losses with respect to the uniform case (for which it would
be ki ¼ 1∀i). In particular, it is easily verified that the
average of all ki is always unit by definition. In conclusion,

the parameters of the ith cell are:

Ti = Mi · Pi = (Mu)ki · Pu = (M1/n)ki · P1/n,

∀i [ {0, 1, 2, . . . , n − 1},
(26)

which can be easily computed from the knowledge of the
overall scattering transmission matrix and a parameter ki,
which is a function of the discrete steps zi. Once the tempera-
ture and small-signal parameters of each cell are known,
matrices Ai and Ci of Section III are easily derived, and (16)
can be applied, so as to obtain the full set of noise parameters.

It is worth noting that, with respect to the approach
described in Section III, only one real parameter (ki) needs
to be computed versus the longitudinal axis rather than four
(Ri, Li, Gi, and Ci) – or possibly two (Ri and Gi). Beside this,
several advantages come with this simplified approach:

† implementing the algorithm is significantly more
straightforward;

† this algorithm naturally lends itself to manage measured
S-parameters of transmission lines, in addition to simu-
lated, ideal parameters.

The latter issue is very valuable when one needs to know the
small-signal behavior of a physical transmission line – such as
a coaxial cable – subject to a thermal gradient. In the similar
situations, the desired information can be derived from scat-
tering measurements at ambient temperature, which are
simple to carry out, plus numerical simulations concerning
thermal shape and line losses. On the contrary, directly meas-
uring cable parameters under cryogenic conditions may be
time consuming, unless coaxial standards can be mechanically
switched. In addition, the simulation-based approach can also
provide the noise parameters of the cable under test with a
marginal extra effort.

To illustrate this, notice that the small-signal parameters of
a real cable can be directly inserted in (26), as long as it is well
matched (or at least symmetric, in which case the original
S-parameters can be renormalized to obtain S11 ¼ S22 ¼ 0 at
each frequency). A benefit of this procedure is that, as the
thermal excursion is reduced, the S-parameters elaborated
on the basis of (26) will approach the original parameters as
temperature approaches the (constant) ambient value –
which would not be the case for a purely simulation-based
approach. Similar considerations hold for noise parameters
derived by exploiting (26).

As a further simplification, it is possible to also take advan-
tage of some empirical results exemplified in Fig. 2: by com-
paring the measured S-parameters of a coaxial cable subject
to a significant temperature excursion (1508C) to those of
the same cable at ambient temperature it can be observed
that the only significant variations are in |S12|. Therefore,
the S-parameters of the cable under thermal gradients can
be approximated by those at ambient temperature, provided
that transmission parameters are corrected in magnitude
based on computed ki: as shown in the bottom axis of
Fig. 2, |S12| measurements under thermal excursion are
almost undistinguishable from the elaboration of |S12| at
ambient temperature.

Finally, a comparison is presented in Fig. 3 between the
general-purpose approach of Section III and the simplified
approach of the current section to show that the latter
converges to accurate values much faster. Since the two
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methods are based on different formulations, to get a
meaningful comparison two sets of equivalent parameters
had to be chosen, as reported in Table 1. Note that with the
general-purpose approach a characteristic impedance very
close to Z0 ¼ 50 V is obtained at the selected frequency, and
that in both cases the available gain on 50 V is about 3 dB.
The noise factor plotted, Fn, is referred to a mismatched
source termination, namely |GS| ¼ 0.75, and the subscript n
denotes the number of cells used for the numerical evaluation.

Of course, in case no thermal gradients were present, the
general-purpose approach would still need a considerable

number of cells to converge, whereas the simplified approach
would give the exact result for any n. The reason for this dif-
ference lies in the fact that, with the general-purpose
approach, the parameters of each cells are those of a
lumped-element circuit, and only the cascade of a large
number of small sections converges to a good approximation
of a transmission line; on the contrary, with the simplified
approach, the parameters of each cell and of the cascade are
exactly those of transmission lines irrespective of n.

Thus, a value of n in the hundreds can safely handle any
practical temperature excursion if the simplified approach is

Fig. 2. Sample measured S-parameters in magnitude of a coaxial cable at ambient temperature and under a 1508C thermal excursion. Measurements are carried
out by the unterminating method. In the bottom, axis are also shown (cross-markers) the magnitude of S12 under thermal excursion as derived from S12 at
ambient temperature through the approach described in Section IV, as well as (dashed line) the difference between measured and estimated magnitude of S12.
Normalization impedance is 50 V.

Fig. 3. Comparison between the general-purpose approach Section III and the simplified approach of Section IV in computing the noise factor of an ideal coaxial
cable on a fixed source termination.
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used: moreover, this number will only depend on the tempera-
ture shape along the cable, but not on its physical length or
considered frequency. This is not the case with the general-
purpose approach, for which n is typically in the thousands
for frequencies of the order of 10 GHz and lengths of the
order of 1 m: of course, so large values are enough for any
practical temperature shape.

From a practical point of view, Fig. 3 suggests one possible
way of setting n that is iteratively increasing the number of
cells until the computed value of noise factor saturates to a
constant value within a pre-specified absolute or relative error.

V . S I M U L A T I O N O F C A B L E
S M A L L - S I G N A L P A R A M E T E R S

As stated above, the approaches presented in Sections III and
IV allow us to determine the noise parameters of a transmis-
sion line subject to thermal gradients, provided that the tem-
perature shape along the line is known, as well as the
dependence of those parameters on temperature – or, more
in general, on the longitudinal position. In this section, it
will be briefly illustrated how this information can be
achieved.

First, the problem of determining the physical temperature
at the different sections of the line will be addressed.
Unluckily, this is not a trivial task to carry out by direct meas-
urement, due to inaccessibility of some cable portions and in
particular of the inner conductor, as well as to the difficulty of
a good thermal contact of the diode sensors with the cylindric-
al outer conductor. As a consequence, only a few points can
typically be probed with temperature sensors, while the com-
plete distribution has to be extracted by means of thermal
simulations, with specific software (e.g., COMSOL
Multiphysics). Furthermore, it is assumed in the following
that the temperatures of the two conductors at the end
points are approximately equal: if possible, however, this con-
dition should be verified experimentally rather than forced by
hypothesis.

Although the mechanisms of heat transfer are rather
complex, however, some quite safe assumptions can often
come in handy, at least to get a first insight into the
problem. In particular, convection is usually negligible in
the frame of cryogenic measurements of active devices, since
these are carried out under high vacuum levels. Similarly, radi-
ation can often be neglected with respect to conduction, which
is the main mechanism involved. Moreover, it can be safely
assumed that conduction takes place along the z-axis only;
if, however, a good thermal insulator (e.g., Teflon) is used as
the dielectric material of the cable under analysis, the
thermal shape of the two conductors may differ by a certain
amount.

Under these simplified assumptions, the temperature shape
along either conductor can be approximately determined by
means of the heat equation:

qz = −k(T) · A(z) · dT
dz

(27)

with appropriate boundary conditions, which may be deter-
mined experimentally by directly measuring the conductor
physical temperature at its end points. In (27), qz is the heat
flux (W/m2) in the positive z-direction, k(T ) is the thermal
conductivity (W/m/K) of the material (not to be confounded
with ki of Section IV), dT/z is the temperature gradient (K/m)
and A(z) is the area (m2) perpendicular to the heat flux
direction.

If steady-state conditions are considered and no heat gen-
eration (or loss) from the conductor sides takes place, the heat
transfer rate qz must be independent of z. This reasoning
applies to any differential element dz as a consequence of
the energy conservation requirement, even if the cross-
sectional area varies with position, and the thermal conduct-
ivity varies with temperature. It is thus convenient to work
with Fourier’s law, which, expressed in its integral form, reads:

qz

∫z2

z1

dz
A(z)

= −
∫T2

T1

k(T)dT. (28)

For either conductor (28) can be applied independently, with
the appropriate values of A, which is constant, and of k(T ). If
the latter is assumed to be constant, (28) simplifies
significantly:

−k · DT = qz

A
· Dz, (29)

which implies a linear dependence of T with z. Once T(z) has
been determined for both conductors, it must be verified that
the two temperatures are actually equal, or at least similar, at
every z. If this is the case, the temperature of the cable’s dielec-
tric – which has to be featured by a finite, yet good, thermal
resistivity – can also be set equal to T(z). Note, indeed, that
in both Sections III and IV the case of different temperatures
for the two conductors and the dielectric was not addressed: in
fact, temperature was considered constant across each cross-
section of the distributed line. If this was not the case, the fun-
damental hypothesis of the proposed approaches would fail,
thus jeopardizing the validity of their results.

It is important to stress that the above simplified descrip-
tion of heat exchange in a cable is mainly intended as a help
to visualize the basic processes taking place in typical meas-
urement conditions: it is left to the Reader to verify whether
(or to what extent) the same simplifying assumptions are legit-
imate in other cases of their interest, and possibly to devise
more complex techniques to determine the dependence of
temperature versus z. In this paper, this has been accom-
plished by means of thermal simulations, under the hypoth-
esis of cables thermally isolated from the environment (i.e.,
heat exchange through convection and radiation was
neglected), but taking into account the non-linear dependence
of thermal conductivity on materials and temperature itself.

The remaining part of this section is devoted to discussing
how to determine the small-signal parameters of the cable

Table 1. Cable parameters used to generate the results of Fig. 3.

General-purpose approach Simplified approach

R 48 mV/m S11 0
L 243 nH/m S12 1/

��
2

√

G 10 mS/m S21 1/
��
2

√

C 10 pF/m S22 0
f 10 GHz Zc 50 V

l 1.41 m Z0 50 V
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under analysis, and to examining how this allows avoiding the
direct simulation of noise parameters under thermal
gradients.

Quite trivially, the most immediate way to determine the
small-signal parameters of a cable is by three-dimensional
(3D) electromagnetic (EM) simulations, which, again, can be
performed in advanced environments such as COMSOL
Multiphysics, Ansys HFSS, and so on. The key point to
focus here is that these simulations need neither to represent
the temperature dependence along the z-axis, nor to include
the whole cable. On the contrary, constant-temperature
simulations of arbitrary lengths of transmission line are of
interest. This aspect is not as much an advantage as an inher-
ent feature of the proposed formulation: nevertheless, it does
come with advantageous side effects, since it allows reducing
computation times by shortening the length of the simulated
transmission line.

It is worth noting that closed formulae – which are avail-
able for the most common transmission line types – could
be used equivalently (i.e., instead of performing EM simula-
tions), as long as they take losses into account: through the
possibility of tuning losses, the contribution of temperature
can be considered in an indirect fashion.

The second step of this procedure consists in obtaining, for
each temperature, the desired primary or secondary line para-
meters from the corresponding small-signal simulation – or
closed-formula computation. The following formulae, for
instance, may be used to obtain the characteristic impedance
and propagation constant of a transmission line from its scat-
tering matrix and physical length:

Zc =
�������������
Zin,sc · Zin,oc

√
, (30)

g = 1
l

atanh
Zin,sc

Zc

( )
= 1

l
atanh

Zc

Zin,oc

( )
, (31)

where Zin,sc and Zin,oc are the input impedance with the output
port short- and open-circuited, respectively. Note that Zc is in
general complex, nevertheless its imaginary part is expected to
be negligible in the considered case of a coaxial cable at high
frequencies: in fact, it may advisable in some cases to force
the condition ℑ{Zc} = 0 to avoid numerical errors in

subsequent calculations. As to g, note that directly applying
(31) to a cable of arbitrary length may yield wrong results,
due to line periodicity: nevertheless these effects can be fixed
either by unwrapping or, more simply, by simulating short
line lengths. The latter solution also comes with reduced simu-
lation times.

To apply the general-purpose approach of Section III, one
last step is required, i.e. determining the line primary para-
meters from Zc and g:

Z = g · Zc, (32)

Y = g

Zc
. (33)

As an example, simulated primary parameters of two types of
commercial coaxial cables are reported in Fig. 4. It appears
clearly how losses are dependent on temperature and cable
material; also, it is worth noticing that the reactive parameters
are almost constant over temperature, as expected.

From such data, available at discrete frequencies, the
behavior of the line primary parameters can be accurately
reconstructed as continuous functions of frequency through
spline interpolation, and then used for the method described
in Section III. The same consideration holds as to the quite
simpler task of determining line loss as a function of fre-
quency, which is the only information needed to apply the
approach of Section IV.

V I . S U M M A R Y A N D D I S C U S S I O N

The treatment illustrated so far may appear quite fragmented:
this is partly due, however, to the fact that the presented
approaches and techniques are not totally distinct. On the
contrary, they can be combined in a number of ways which
it would be pointless to enumerate, and which the interested
Reader can easily figure out on their own, as long as the key
points have been made clear. This section, therefore, is
devoted to exemplify the proposed theory by means of well
defined, representative cases.

As a reference for this section, the flow chart of both the
general-purpose and simplified approaches (see Sections III

Fig. 4. Computed primary parameters of commercial coaxial cables, for temperatures from 25 K (lowest curves) to 298 K (highest curves). Left: Be–Cu cable.
Right: steel cable.
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and IV, respectively) is depicted in Fig. 5(a). Indeed, the two
approaches follow identical steps, although the relevant infor-
mation is represented, at certain steps, in different ways. In
particular, the transmission-line behaviors are given as
primary and secondary parameters, respectively.

In the basic implementation, both approaches require that
geometrical and thermal properties of the cable (or transmis-
sion line) under analysis be known, as well as the actual tem-
perature at least at its end points. Thus, the temperature shape
can be computed or simulated over the whole cable; in add-
ition, the transmission-line parameters at any fixed tempera-
ture can be determined. However, a relatively small set of
temperatures may be analyzed directly, and interpolation be
relied upon to gain a continuous knowledge of line parameters
versus temperature.

This information is sufficient, with both approaches, to
compute numerically scattering and noise parameters of the
cable in an idealized fashion. It is possible, however, to link
more directly the results of the simulation to an actual cable
specimen, if its S-parameters under thermal gradient are
known by the measurement: to do so, a variation of the sim-
plified approach can be exploited (dashed arrow in the flow
chart).

The core of the theory presented in this work is completely
encompassed by the above recapitulation. Nevertheless, the
concepts developed to estimate the noise parameters of a
cable under thermal gradient also come in handy to fulfill

more specific tasks which, in turn, may be ancillary to the ori-
ginal purposes. Thus, the information gathered with the aim
of estimating noise parameters can be used to approximate
the S-parameters under temperature variation from those
measured at ambient temperature. This idea is illustrated in
Fig. 5(b), which may be regarded as an expansion of the
dashed box in Fig. 5(a).

V I I . E X P E R I M E N T A L R E S U L T S

A measurement campaign was purposely undertaken to com-
plement the mathematical formulation above. Experimental
results, in agreement with [13], indicate that the proposed
approach correctly predicts the noise behavior of coaxial
cable subject to thermal gradients. The setup used for
measurements consists of a custom cryogenic probe station
(depicted in Fig. 6), a vector network analyzer (Anritsu
37397D) for scattering measurements, and a spectrum anal-
yzer (Agilent E4448A) for noise measurements, in con-
junction with an Agilent 346C noise source. Pressure and
temperature are controlled, respectively, by means of an
Alcatel ACS 1000 and a LakeShore 340. A vacuum level of
1027 mbar is obtained through an Alcatel Drytel 1025, while
the chamber is cooled by a CryoDyne closed-loop cryostat
made of a two-stage cold head and a Helium compressor
(8200 CTI-Cryogenics).

In a first attempt [17], the noise figure of the whole chain
inside the vacuum chamber was measured, namely of the
cascade of the input cables, a pair of radiofrequency probes
landing on a coplanar thru, and the output cables.
Noise-figure measurements were performed by the Y-factor
method, basically confirming the validity of the proposed
numerical approaches: in particular, the general-purpose
method of Section III was used to determine the small-signal
and noise parameters of the coaxial cables. Nevertheless, sig-
nificant measurement uncertainties were experienced, due
both to the nature of the device under test and to unavoidable
indefiniteness in the description of some blocks in the meas-
urement chain.

Therefore, a second attempt was made to obtain a more
reliable validation. This goal was mainly pursued by simplify-
ing as much as possible the setup, and in particular by consid-
ering a DUT as similar as possible to what can be actually

Fig. 5. Flow charts illustrating the steps to apply the proposed numerical
approaches. Subfigure (a) provides an overview of the general-purpose and
simplified algorithms; the dashed arrow applies optionally, and only in case
the simplified algorithm is adopted. The dashed box can be expanded as
shown in subfigure (b), in case the technique of Section IV is used to
estimate the S-parameters of the cable under cryogenic gradient. Fig. 6. Picture of the custom cryogenic probe station.
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simulated. In this second try, indeed, the pure cascade of a
38-cm copper cable and an 8-cm steel cable was simulated
and measured.

As to simulations, these were performed in the COMSOL
Multiphysics environment, and yielded the results already
presented in Fig. 4. These were first used to approximate the
DUT S-parameters under a 1508C thermal excursion (from
150 K at the input to 300 K at the output) based on the
method of Section V, and then to obtain the cable noise para-
meters according to the simplified approach of Section IV.

A comparison between measured and simulated loss at
ambient temperature is shown in Fig. 7, which also reports

loss under the considered thermal gradient, as derived by a
direct simulation as well as by adjusting ambient-temperature
S-parameters (see Section IV and Fig. 5(b)). From the graph a
remarkable agreement can be observed at ambient tempera-
ture, whereas a direct check was not made in this case as to
S-parameters under thermal gradient.

Nevertheless, an indirect indication of the correctness of
these results can be found in Fig. 8, showing the noise figure
of the cable at ambient temperature, as computed by
S-parameters and physical temperature, and that of the
cable under cryogenic conditions, as obtained by direct mea-
surements and simulations.

Fig. 7. Comparisons of cable loss at ambient temperature (lower curves) and under a 1508C thermal excursion (higher curves). Dotted curves are completely based
on simulations. Of the other two curves, that at ambient temperature is measured, whereas that under thermal gradient is derived from the former based on the
approach described in Section IV. Normalization impedance is 50 V.

Fig. 8. Comparisons of cable noise figure at ambient temperature and under a 1508C thermal excursion. The ambient-temperature measurement is derived from
S-parameters. Of the two curves under thermal gradient, the continuous one is obtained by the direct cold-source measurement, whereas the dotted one is derived
based with the approach described in Section IV.
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In this case, noise measurements were carried out by the
cold-source method, since the input end of the cooled cable
was inside the vacuum chamber and therefore could not be
connected to a diode noise source. In order to minimize the
effects of receiver drifts, an electromechanical switch was
automatically controlled to allow performing, at each fre-
quency, calibration and measurement readings all in a row.
Also, isolators were used ahead of the receiver to avoid
errors related to finite bandwidth and source termination
changes [12].

Simulations, on the other hand, were based on the simpli-
fied approach of Section IV, in the version exploiting cable
S-parameters (dashed arrow of the flow chart in Fig. 5(a));
moreover, instead of measuring S-parameters directly under
cryogenic gradient, these were estimated from those at
ambient temperature (already shown in Fig. 7).

With a focus on noise figure under thermal gradient, Fig. 8
testifies a substantial agreement between simulated and mea-
sured values. It can thus be concluded that the proposed
numerical approaches represent viable methods to evaluate
both small-signal and noise parameters of coaxial cables;
although a more definitive check can be devised requiring
the full knowledge, obtained by measurements, of cable
noise parameters.

As a last remark, it is worth noting that the dotted trace
representing simulated results is featured by undesired out-
liers at apparently random frequency points. These peaks
are mere artifacts related to numerical errors, which arise
from elaborating measured S-parameters through segmenta-
tion into a large number of cells and subsequent reconstruc-
tion. Fortunately, however, they can easily be removed,
provided that contiguous frequencies have been analyzed.

V I I I . C O N C L U S I O N

Several mathematical approaches for numerically evaluating
the small-signal and noise parameters of a transmission line
under thermal gradients have been presented, which can be
useful in fields such as cryogenic noise measurements, analysis
of cold and hot noise standards (based on Johnson noise), and
whenever a significant temperature excursion takes place in a
signal path with specific noise requirements. The proposed
formulae are easy to implement and allow handling arbitrary
temperature shapes. In particular, a dependence of the elec-
trical parameters on temperature as functions of the longitu-
dinal position is taken into account. The proposed theory
has been experimentally tested, and a good agreement has
been found between simulations and measurements.
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