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The influence of buoyancy contrasts on miscible
source–sink flows in a porous medium

with thermal inertia

By MATS S. NIGAM AND ANDREW W. WOODS
BP Institute for Multiphase Flow, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, UK

(Received 13 July 2004 and in revised form 5 July 2005)

We investigate the displacement of one fluid through an inclined porous sheet by
the injection of a second fluid of different density. Using numerical simulation we
explore the role of the density contrast between the injected and the reservoir fluid
on the displacement process, in the cases where the density contrast originates from
either compositional contrasts and/or temperature contrasts between the fluids. In the
case where the density contrast originates from compositional differences between the
fluids, the density front moves with the fluid–fluid front, and gravity may accelerate or
decelerate the time for the injected liquid to reach the sink. In the case where the
density contrast originates from a temperature contrast between the injected fluid
and the reservoir fluid, then the density front follows the thermal front. Therefore,
owing to thermal inertia, it lags behind the fluid–fluid front. This has a quantitative
impact on the time required for the injected liquid to reach the sink. If there are both
thermal and compositional contrasts between the injected and reservoir fluid, then
the thermal and compositional fronts become decoupled in space. The two fronts
may lead to complementary or opposing density changes; the different cases lead to
vastly different patterns of displacement and time at which the injected liquid reaches
the sink, even if the net change in density between reservoir and the injected fluid
is the same. We discuss the implications of these phenomena for water injection in
sub-surface hydrocarbon and geothermal reservoirs. In an Appendix, we note how a
viscosity across both the thermal front and the fluid–fluid front can also lead to a
rich spectrum of flow patterns, especially if one front is stable and the other unstable
to viscous instability.

1. Introduction
During the recovery of hydrocarbons from sub-surface porous rock, operators often

inject water to displace the hydrocarbons to the production wells and maintain the
pressure in the reservoir. Typically, the liquid injected has a different temperature
and composition from any geological water which is trapped with the hydrocarbons
within the reservoir. Analogously, in geothermal systems, cold water is injected into
the reservoir to displace the hot geothermal fluid to the production wells, and thereby
mine the heat from the system (Elder 1997). As the injected water migrates through
the rock, it will exchange heat with the rock, and owing to the thermal inertia, this will
generate a thermal front which lags behind the fluid front (Fayers 1962; Phillips 1991).
The compositional contrast between the injected and reservoir water may lead to a
density contrast at the fluid–fluid interface. However, in addition, the thermal front
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within the injected water may lead to a second density front (Phillips 1991; Menand,
Raw & Woods 2002). In the recovery of heavy oil, steam is often injected with a view
to heating up the rock and oil. This produces a decrease in oil viscosity across the
thermal front, thereby enhancing the recovery, although the process depends on the
effects of immiscible fractional flow (cf. Fayers 1962) since it is the residual oil which
is of prime interest in that application.

The purpose of this paper is to explore the flow patterns which develop in a
rectangular domain, with an internal source and sink, subject to these two evolving
interfaces across which the density of the fluids may change. The work builds on other
studies of miscible displacement in porous layers (Fayers 1962; Karakas, Saneie &
Yortsos 1986; Chen & Meiburgh, 1998a, b, 1999), but is distinct in that there are
two evolving interfaces across which there is a density contrast. In the Appendix,
we include a discussion of the effects which a change in viscosity across the thermal
front may have on the flow pattern, focusing on the interaction of this front and any
change in viscosity across the fluid–fluid front. Many studies have focused on the
interference of mobility contrasts across a displacement front (Gorell & Homsy 1983;
Yortsos & Huang 1986; Loggia, Salin & Yortsos 1999), but the new feature of the
present Appendix is the interaction of two fronts, which gradually spread apart, and
across each of which there is a different jump in mobility.

Although the present work is strictly only relevant for miscible displacements, it
does also provide important insight into the behaviour of immiscible displacements
in the limit of relatively high permeability rock or rapid displacement, such that the
interfacial tension between the fluids has a secondary impact on the flow. Indeed,
with relatively rapid flow and a large interwell spacing, the capillary transition zone
between the injected fluid and the original reservoir fluid remains relatively narrow
(Lake 1996). In addition, with such immiscible displacements, the fractional flow of
one phase increases rapidly with saturation up to a critical saturation beyond which
the fractional flow increases more slowly to a maximum value when the saturation
has reached its maximum. This leads to formation of the classic Buckley–Leverett
shock front, across which there is a sharp jump in the saturation from purely reservoir
fluid downstream to dominantly injected fluid upstream (Bear 1972). Although there
may be a dispersive tail of reservoir fluid behind the shock front, in the case of a
steep fractional flow curve, this will be small, and as a result, there is a well-defined
interface between the fluids (Fayers 1962; Bear 1972; Karakas et al. 1986; Lake 1996).
The new aspect of the present work is our investigation of the effect of the density
contrasts on the sweep pattern.

In the case of a miscible displacement, there may be some dispersive mixing across
the fluid–fluid front. The extent of this mixing region depends on the dispersion
coefficient which is typically a function of the flow rate and the pore size and
structure (Bear 1972; Phillips 1991). Typical values in permeable rocks vary over
a wide range of values, 10−5–10−8 m2 s−1. Over a time scale of, say, 107 s for fluid
to migrate 100–1000 m, the mixed zone may grow to a distance of 1–10 m. For the
lower end of this range, the mixed zone is very small compared to the fluid–fluid
displacement scale.

Guided by these limits, in this work we model the motion of each of the fluid phases
and the interfaces by making the simplifying assumption that the fluid properties
vary continuously over the flow domain. We then model the motion of the fluid–fluid
interface and the thermal front by tracking the motion of one field to represent the
concentration of the injected fluid and a second field to denote the temperature. We
assume that these fields evolve according to an advection–diffusion equation, with
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the advection speed of the thermal field being a fraction of that of the fluid (Fayers
1962; Phillips 1991). This approach is analogous to the models of Chen & Meiburg
(1998a, b, 1999) and strictly applies for miscible displacements, but has a more general
application if the mixing zone between the fluids is narrow and so the dynamics are
largely controlled by the density ratio, rather than the mixing zone.

In the following sections, we first introduce the model and the numerical technique.
We then analyse the impact of a density contrast, which is advected with the flow,
on the pattern of sweep in a source–sink geometry. We explore the balance between
the strength of the buoyancy-induced pressure difference and the applied pressure
difference between the source and sink on the flow pattern. We then illustrate the
more complex density profile and flow patterns which may develop if the injected
fluid is of both different temperature and different composition so that there are two
density fronts within the flow domain. We examine the impact of the two density
fronts on a source–sink flow within the same flow geometry; we focus on the evolving
flow pattern and illustrate how the thermal and compositional fronts influence the
fraction of the flow domain which is invaded with injected fluid prior to injected
liquid reaching the sink. In an Appendix, we briefly discuss the effect that changes in
the viscosity across the thermal front may have, and illustrate the pattern of the flow
when there are viscosity contrasts across both the thermal and fluid–fluid fronts.

2. Formulation
As outlined in § 1, we adopt Darcy’s law to describe the motion of fluid through a

porous medium,

u∗ = − K∗

φµ∗(C, T ∗)
· (∇∗p∗ − [ρ∗(C, T ∗) − ρ∗

res]g∗ sin θ), (2.1)

∇∗ · u∗ = 0, (2.2)

∂C

∂t∗ + ∇∗ · (u∗C) = ∇∗ ·
(

D∗ u∗u∗

|u∗| · ∇∗C

)
, (2.3)

∂T ∗

∂t∗ + ∇∗ · (λu∗T ∗) = ∇∗ ·
(
λD∗ u∗u∗

|u∗| · ∇∗T ∗
)

. (2.4)

Asterisks are used to denote dimensional quantities. u∗ and p∗ are the Darcy or
transport velocity and pressure, respectively. K∗ is the permeability and φ the porosity
of the rock, while µ∗(C, T ∗) denotes the dynamic viscosity which for the majority of
runs will be taken as constant, µ∗(C, T ∗) = µ∗. The influence of viscosity contrasts
is explored in the Appendix. ρ∗ denotes densities and the subscript res stands for
reservoir, while g∗ sin θ is the component of the acceleration due to gravity parallel
to the plane of the reservoir. C is the concentration of the injected fluid and T ∗ is its
temperature. λ is the ratio of the advection speed of the thermal front, across which
the density of the injected fluid is assumed to change, compared to the fluid–fluid
front, and D∗ is the dispersion coefficient for the mixing across the fronts. The porous
matrix is taken as a constant, isotropic medium, K∗ = k∗I, where k∗, φ and D∗ are
constants and I is the identity matrix. For convenience, we introduce the following
scalings

u∗ = U ∗u, x∗ = L∗x, t∗ = (L∗/U ∗)t, T ∗ = T ∗
res + �T ∗ T ,

D∗ = L∗D, p∗ = (φµ∗U ∗L∗/k∗) p,
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where L∗ is the largest extent of the reservoir, and U ∗ is the velocity of the fluid at
the injection well. With these scalings, equations (2.1)–(2.4) reduce to,

u = −∇p + C(B1 + T (B2 − B1)) ĝ, (2.5)

∇ · u = 0, (2.6)

∂C

∂t
+ ∇ · (uC) = ∇ ·

(
D

uu
|u| · ∇C

)
, (2.7)

∂T

∂t
+ ∇ · (λuT ) = ∇ ·

(
λD

uu
|u| · ∇T

)
. (2.8)

The concentration and temperature fields, which track the position of the fluid–fluid
interface and the reacting interface are now restricted to take values between 0 and
1. The dispersive terms in equations (2.7) and (2.8) induce mixing in the vicinity of
the fluid–fluid and thermal fronts. In these mixing regions, the density is calculated
by linear interpolation between the limiting states according to equation (2.5). The
dimensionless numbers B1 and B2 are given by,

B1 =
(ρ∗

inj − ρ∗
res)k

∗ g∗ sin θ

µ∗U ∗ , B2 =
(ρ∗

injT − ρ∗
inj )k

∗ g∗ sin θ

µ∗U ∗ , (2.9)

where ρ∗
inj is the density of the injected fluid downstream of the reaction, where it has

the same temperature as the reservoir and ρ∗
injT is the density of the injected fluid at

temperature T ∗
res +�T ∗. In the calculations, the inverse Péclet number, D, was chosen

to be 5.0 × 10−3 except where otherwise stated. Equations (2.5) and (2.6) were solved
in a quadratic domain (x, y) ∈ [0, 1] × [0, 1] using a mixed finite-element method
(e.g. Brezzi & Fortin 1991) with Dirichlet conditions for the velocity components. A
conservative finite-volume method (see Nigam 2003) was applied for the solution of
equations (2.7) and (2.8). Inflow conditions for C and T were specified at the source. In
all calculations, the source is located at x = 0.5, y = 0.75, the sink at x = 0.5, y =0.25,
and their radii are both 0.05. The grid-parameter, defined as h =

√
2Ae

max (where Ae
max

is the maximum area of the triangular finite elements) was chosen to be 2D, and the
time-step, �t , was chosen to be D/2. The calculations were carried out for t between
0 and 5 tsweep , where tsweep is the time required to inject a volume of fluid equivalent to
the volume of the reservoir. Displacement patterns in figures 1, 3 and 4 are shown at
t = (π/100)tsweep, (π/20)tsweep, tsweep and 5tsweep . The parameters for the different runs
are summairzed in table 1.

3. Results
3.1. Isothermal flows

In figure 1, we present a series of calculations which illustrate how the flow pattern
develops with time in the case where the density of the injected fluid differs from
that of the reservoir fluid, but with no thermal reaction. Each case corresponds to a
different value of the buoyancy number, B1. For each case, the four panels (left to
right) correspond to the zone of the reservoir occupied by the injected fluid at the
four dimensionless times (π/100)tsweep, (π/20)tsweep, tsweep and 5tsweep .

Case A3 (figure 1c) corresponds to the simple displacement flow in which there
are no gravity effects. This is the reference calculation with which the remaining
calculations, which include density contrasts, may be compared. In figure 1(c), it
is seen that the injected fluid gradually displaces the reservoir fluid, but once the
injected fluid begins to break through to the producing well, the rate of displacement
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Run B1 B2 λ D

A1 −1 – – 5.0 × 10−3

A2 −0.25 – – 5.0 × 10−3

A3 0 – – 5.0 × 10−3

A4 0.25 – – 5.0 × 10−3

A5 1 – – 5.0 × 10−3

B1 −1 – – 1.0 × 10−2

B2 −0.25 – – 1.0 × 10−2

B3 0 – – 1.0 × 10−2

B4 0.25 – – 1.0 × 10−2

B5 1 – – 1.0 × 10−2

C1 0.25 −1 0.25 5.0 × 10−3

C2 0.25 −1 0.5 5.0 × 10−3

C3 0.25 −1 0.75 5.0 × 10−3

D1 0.25 −0.25 0.25 5.0 × 10−3

D2 0.25 −0.25 0.5 5.0 × 10−3

D3 0.25 −0.25 0.75 5.0 × 10−3

E1 0.25 0 0.25 5.0 × 10−3

E2 0.25 0 0.5 5.0 × 10−3

E3 0.25 0 0.75 5.0 × 10−3

F1 0.25 1 0.25 5.0 × 10−3

F2 0.25 1 0.5 5.0 × 10−3

F3 0.25 1 0.75 5.0 × 10−3

G1 0.25 −1 0.5 1.0 × 10−2

G2 0.25 −0.25 0.5 1.0 × 10−2

G3 0.25 0 0.5 1.0 × 10−2

G4 0.25 1 0.5 1.0 × 10−2

H1 −0.25 −1 0.25 5.0 × 10−3

H2 −0.25 −1 0.5 5.0 × 10−3

H3 −0.25 −1 0.75 5.0 × 10−3

I1 −0.25 0 0.25 5.0 × 10−3

I2 −0.25 0 0.5 5.0 × 10−3

I3 −0.25 0 0.75 5.0 × 10−3

J1 −0.25 0.25 0.25 5.0 × 10−3

J2 −0.25 0.25 0.5 5.0 × 10−3

J3 −0.25 0.25 0.75 5.0 × 10−3

K1 −0.25 1 0.25 5.0 × 10−3

K2 −0.25 1 0.5 5.0 × 10−3

K3 −0.25 1 0.75 5.0 × 10−3

L1 −0.25 −1 0.5 1.0 × 10−2

L2 −0.25 0 0.5 1.0 × 10−2

L3 −0.25 0.25 0.5 1.0 × 10−2

L4 −0.25 1 0.5 1.0 × 10−2

Table 1. Parameters for computations with buoyancy contrasts.

of reservoir fluid decreases rapidly, so that after five pore volumes have been injected,
only 95 % of the fluid has been swept. In cases a and b, the injected fluid is less
dense than the reservoir fluid. In case A1, the buoyancy force dominates the applied
pressure gradient associated with the flow, and the injected fluid rises to the top of
the reservoir, and then gradually fills the reservoir. This leads to a large fraction of
the reservoir volume being flooded with injected water.

Conversely, cases A4 and A5 correspond to the situation in which the injected fluid
is denser than the host fluid, in which case the injected fluid forms a narrower plume
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Figure 1. Isothermal (T = 0) displacement patterns for runs (a) A1: B1 = −1, (b) A2:
B1 = −0.25, (c) A3: B1 = 0, (d) A4: B1 = 0.25 and (e) A5: B1 = 1.

migrating to the sink. In both cases, owing to the density of the fluid, some of the
injected fluid runs past the sink, and displaces fluid at the base of the zone.

These reference calculations provide some insight into the underlying control of
gravity on the flow pattern. One prediction of the models is the increase in the
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Figure 2. Production plots for runs A1, A2, A3, A4 and A5.

area of the domain which is invaded with injected water as a function of the total
volume injected (figure 2). For the case of a dense fluid which channels through to
the producing well, the area which is invaded by the injected fluid is the smallest.
In contrast, for the case of a relatively buoyant injectate, the fraction of the area
which is invaded by the injectate initially increases most rapidly as a function of the
total volume of fluid injected. This is a result of the ascent of the fluid to the top
of the domain, and the subsequent displacement of the reservoir fluid towards the
sink. However, once the injected liquid has invaded the zone above the sink, it tends
to flow into the sink rather than continuing to displace the fluid below. As a result,
the area invaded with injected liquid increases ever more slowly as a function of the
volume injected. Eventually, for sufficiently large injected volume, it is surpassed by
the area invaded by a fluid of the same density as the host fluid, which is able to
displace more of the fluid below the sink.

We now explore how these results change when there is a temperature contrast
between the injected and the host fluid which has an attendant density change.

3.2. The effect of thermal and compositional fronts

If there is a thermal front which lags the fluid–fluid front owing to the thermal
inertia (Fayers 1962), then the range of flow patterns becomes considerably richer. In
examining the effect of density changes across such fronts, one key parameter is the
magnitude and sign of the dimensionless buoyancy jump across the thermal front, B2

(equation (2.9)), in comparison to that across the fluid–fluid front, B1. Figure 3(a–
c) compares a series of calculations for which the density of the injected liquid,
after passing through the thermal front, is greater than that of the reservoir fluid. In
figure 3(a), the density of the injected fluid, prior to passing through the thermal front,
is much less dense than the thermally adjusted fluid, and hence the dark zone near-
est the source tends to migrate upwards through the thermally adjusted injected fluid.

Once the fluid at the original injection temperature has invaded the zone at the top
of the domain, the thermal front then migrates downwards towards the sink. This
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Figure 3. Displacement patterns with λ= 0.5 for runs (a) C2: B1 = 0.25, B2 = −1, (b) D2:
B1 = 0.25, B2 = −0.25, (c) E2: B1 = 0.25, B2 = 0 and (d) H2: B1 = −0.25, B2 = −1.

displaces the injected water located ahead of the thermal front, which has adjusted
to the temperature of the formation. In turn, this displaces the reservoir fluid from
the domain. In figure 3(b), the fluid which is injected into the domain has the same
density as the reservoir fluid. However, the thermal front produces an intermediate
zone within which fluid is denser than the reservoir fluid. As a result, the injected
fluid ahead of the thermal front tends to flow in a narrow plume towards the sink,
but the continuing injected fluid behind the flow front displaces a greater volume of
the reservoir fluid, since it is neutrally buoyant, and eventually asymptotes towards a
simple source–sink flow with no buoyancy effects. In figure 3(c), there is no density
change across the thermal front, and so the injected fluid remains dense relative to
the reservoir fluid. This figure provides a useful reference for cases C2 and D2 in
which the change in density across the thermal front has a major impact on the flow
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Figure 4. Displacement patterns with λ= 0.5 for runs (a) I2: B1 = −0.25, B2 = 0, (b) J2:
B1 = −0.25, B2 = 0.25, (c) K2: B1 = −0.25, B2 = 1 and (d) F2: B1 = 0.25, B2 = 1.

pattern and evolution. Figure 3(d) corresponds to the case in which the density of
the thermally adjusted fluid is smaller than that of the reservoir fluid, yet the density
of the injected fluid prior to thermal adjustment is even smaller. In this case, the flow
pattern is reminiscent of case C2, especially once the thermal front has advanced
through the domain, and it is the density contrast between the original injectate and
the reservoir fluid which dominates the flow pattern. In figure 4(a–c), a complementary
series of calculations are presented to illustrate the flow pattern in the case in which
the density of the thermally adjusted fluid is smaller than the density of the reservoir
fluid. In case I2 there is no change in density across the thermal front, and the flow
pattern is analogous to figure 1(b). In case J2, the density of the injected fluid is the
same as that of the reservoir fluid, but the injected fluid becomes less dense as it
passes through the thermal front. As a result, once the thermal front has advanced to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

76
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005007615


262 M. S. Nigam and A. W. Woods

the sink, the thermally adjusted fluid ahead of this front begins to rise and accumulate
at the top of the domain. Meanwhile, the continuing supply of fluid at the original
injection temperature flows directly to the sink. In case k2, the input liquid is much
denser than the reservoir fluid, but after thermal adjustment, the injected fluid is less
dense than the reservoir fluid. As a result, the zone of thermally adjusted fluid tends
to ascend to the top of the reservoir, while the continuing original injectate descends
in a rather narrow dense plume towards the sink, in an analogous manner to figure
1(e). Figure 4 also includes the case in which the injected fluid is denser than the
reservoir fluid, but in which the thermally adjusted fluid is even more dense. Initially,
the thermally adjusted fluid descends downwards more quickly than the continuing
stream of original fluid behind the front. However, once the thermal front reaches
the sink, a narrow dense plume of original injectate flows down to the sink, and the
thermally adjusted fluid accumulates on the base of the domain.

These calculations have shown that the initial flow pattern depends largely on the
density contrast between the injected fluid after thermal adjustment and the reservoir
fluid. However, at longer times, when the thermal front reaches the sink, the flow
pattern becomes dominated by the density contrast between the injected fluid before
thermal adjustment and the reservoir fluid. This evolution of the flow pattern is
captured in figure 5 which illustrates how the area of the domain which is invaded by
the injected fluid changes with volume injected. In each panel of figure 5, three curves
are given corresponding to different rates of propagation of the thermal reaction front
compared to the fluid–fluid front.

3.3. Sensitivity to parameterization of dispersion

The numerical scheme used to solve these interface displacement problems introduced
concentration and temperature fields to define the location of the interface. These
concentration fields were then allowed to diffuse across the interface to model the
dispersive mixing, which in the present application is relatively small. To test that in
our calculations this mixed dispersion zone remains small and has a secondary impact
on the quantitative results of the calculations, we have re-calculated some of the cases
using a dispersive mixing coefficient which is twice as large. Figure 6 illustrates the
ratio of the fraction of liquid swept from the reservoir for the two values of the
dispersion coefficient. It is seen that the errors associated with this approach are very
small.

4. Discussion and conclusion
In this paper, we have examined the effect of density contrasts between the injected

and the reservoir fluid in a two-dimensional source–sink flow in a porous medium,
with the sink located below the source. If the injected liquid is denser than the
reservoir fluid then the flow tends to become channelled more directly to the sink.
As a result, a smaller volume of the reservoir fluid is displaced into the sink prior to
the flow of injected liquid into the sink as compared to the case in which the injected
fluid has the same density as the reservoir fluid. Conversely, if the injected fluid is less
dense than the reservoir fluid, then the injected fluid tends to spread upwards and
outwards. As a result, a larger volume of injected liquid must be supplied before it
reaches and flows into the sink.

We have then examined the effect of an internal density front within the injected
liquid, such as would develop if the injected liquid is of different temperature to
the reservoir. In this case, the initial displacement pattern is strongly influenced by
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Figure 5. Production plots for λ= 0.25, 0.5 and 0.75 (solid lines). Also shown are the
limiting isothermal cases (dashed lines).
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Figure 6. The dependence on the dispersion length is shown for (a) B1 = −1, −0.25, 0,
0.25, 1 and B2 = 0, (b) B1 = 0.25 and B2 = −1, −0.25, 0, 1, and (c) B1 = −0.25 and B2 =
−1, 0, 0.25, 1.

the density contrast between the thermally adjusted injected fluid and the reservoir
fluid. However, once the injected liquid begins to flow into the sink, progressively
more of the area filled with injected liquid is not thermally adjusted, and so the
displacement pattern evolves towards that associated with the difference between the
injected liquid at its original temperature and the reservoir fluid. This can lead to a
range of fascinating flow regimes (figures 3 and 4) in which the thermally adjusted
injection fluid is buoyant (negatively buoyant) relative to the reservoir fluid, while the
raw injected fluid is negatively buoyant (buoyant). In other situations, the thermal
adjustment may increase or decrease the buoyancy contrast, leading to channelling
or broadening of the flow pattern once the thermal front has moved from the source
towards the sink.

These results may have considerable importance in predicting the flow pattern
within a natural permeable rock when one fluid is displaced by a second of different
density and temperature, as is common in the hydrocarbon and geothermal industries.
In both cases, although there is a spectrum of reservoir types, many fields consist of a
series of separate thin laterally extensive layers, for which a two-dimensional source–
sink flow may represent an appropriate leading-order simplification. The model here
strictly describes a miscible displacement flow, and may therefore be most directly
applicable to modelling water flooding within geothermal systems (e.g. Woods 1999).
However, it also provides useful insight into immiscible displacement flows, in which
the front between the two liquids may be described using the Buckley–Leverett theory
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(e.g. Bear 1972). That theory predicts that a shock front develops at the front across
which there is a finite change in saturation, so that upstream only the reservoir fluid
is displaced, while downstream, the injected liquid and some residual fraction of the
reservoir fluid both flow. In the limit that the saturation jump is large, then behind
this front there may be only a small amount of mobile reservoir fluid, and in this
case, our model provides a simplified picture of the flow, assuming the mobility ratio
is close to unity.

In both applications, the effect of buoyancy reversal, or at least of a substantial
change in the buoyancy, is a realistic scenario. Indeed, typical subsurface reservoirs
may have temperatures 50–150 K higher than surface water injected into the system. A
change of temperature of this magnitude may lead to a density change of order 10%.
In a geothermal system, the water in place in the reservoir is likely to have a different
composition to the injected water, leading to density contrasts of 1–10%, comparable
to the density change due to the heating of the injected water. Hydrocarbons have
a wide range of densities, depending on composition, but a typical value is of order
0.7–0.9 times that of water. In that case, density reversal may be less common, but
substantial changes in the magnitude of the buoyancy of injected water are possible.

This work has been supported by the Newton Trust, and the BP Institute, as well
as the BP Magnus Team.

Appendix. Viscosity contrasts
Although this work focuses on the role of density contrasts in affecting the structure

of a source–sink flow in a porous medium, it is worth noting the impact which a
viscosity contrast across this thermal front could also have on the sweep pattern. The
calculations in this Appendix are analogous to a series of nonlinear calculations of
the interaction between two distinct fronts, across each of which there are different
mobility contrasts. As expected from the classical Saffman–Taylor instability (Chouke,
van Meurs & van der Poel 1959), the interference of mobility contrasts across either
of these fronts can lead to instability if there is an adverse change in the mobility
(Gorell & Homsy 1983; Yortsos & Huang 1986) and it is the nonlinear interaction
between two such fronts, one of which arises from the temperature contrast, which is
of interest here.

Hereinafter, the angle θ in equation (2.1) is set equal to zero (eliminating buoyancy
effects) and the viscosity µ∗(C, T ∗) is allowed to vary in time and space according to
the fluid phase at that point. In mixing regions, the non-dimensionalized viscosity is
calculated by linear interpolation between the limiting states,

µ(C, T ) =
µ∗

res

µ∗

{
1 + C

[(
µ∗

inj

µ∗
res

− 1

)
+ T

(
µ∗

injT

µ∗
res

−
µ∗

inj

µ∗
res

)]}
, (A 1)

where µ∗
inj is the viscosity of the injected fluid downstream of the reaction, where it

has the same temperature as the reservoir and µ∗
injT is the viscosity of the injected fluid

at temperature T ∗
res + �T ∗. The reference viscosity is chosen to be

µ∗ = min
[
µ∗

res, µ
∗
inj, µ

∗
injT

]
, (A 2)

in order to limit |u| between 0 and the source–sink value, 1. In the calculations, the
inverse Péclet number, D, was chosen to be 5.0 × 10−3 except where otherwise stated.
The calculations were carried out for t between 0 and 5 tsweep , and the displacement
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Run µ∗
inj/µ

∗
res µ∗

injT/µ
∗
res λ D

A 1 – – 5.0 × 10−3

B 0.1 – – 5.0 × 10−3

C 10 – – 5.0 × 10−3

G 1 0.1 0.25 5.0 × 10−3

H 1 0.1 0.5 5.0 × 10−3

I 1 0.1 0.75 5.0 × 10−3

J 0.1 1 0.25 5.0 × 10−3

K 0.1 1 0.5 5.0 × 10−3

L 0.1 1 0.75 5.0 × 10−3

M 1 10 0.25 5.0 × 10−3

N 1 10 0.5 5.0 × 10−3

O 1 10 0.75 5.0 × 10−3

P 10 1 0.25 5.0 × 10−3

Q 10 1 0.5 5.0 × 10−3

R 10 1 0.75 5.0 × 10−3

Table 2. Parameters for computations with mobility contrasts.

patterns in figures 7 and 9 are shown at t = (π/100)tsweep, (π/20)tsweep, tsweep and
5tsweep . The parameters for the different runs are summarized in table 2.

We have selected three values of the mobility ratio, to illustrate the effect of an
increase and decrease in mobility ratio across the fluid–fluid front. We then extend
these calculations by including the thermal front, across which we assume there is
a change in mobility of the injected fluid, and we compare these more complex
flows with their isothermal counterparts. The aim of these calculations is to gain
quantitative insight into the structure and evolution of the flow.

A.1. Isothermal flows

In figure 7, we present a series of calculations which illustrate how the flow pattern
develops with time in the case where the viscosity of the injected fluid differs from that
of the reservoir fluid, but with no thermal reaction. This reference set of calculations is
analogous to the results of Chen & Meiburg (1998a). Case A (figure 7a) corresponds
to the simple displacement flow in which there is no mobility ratio. This is the reference
calculation for the subsequent calculations which include changes in the mobility ratio.
It is seen that the injected fluid gradually displaces the reservoir fluid, but once the
injected fluid begins to break through to the producing well, the rate of displacement
of reservoir fluid decreases rapidly, so that after five pore volumes have been injected
only 95% of the fluid has been swept. When the mobility of the injected fluid is smaller
than the reservoir fluid, then the interface tends to be unstable to Saffman–Taylor
fingering (figure 7b) (cf. Chuoke et al. 1959). However, the background pressure field
associated with the source–sink flow leads to preferential growth of the fingering
towards the sink, and a dominant channel develops which allows the injected fluid
to bypass much of the reservoir fluid, and flow directly into the sink. This leads to a
much smaller fraction of the fluid being swept (figure 7b). In the other limit, in which
the injected fluid is less mobile than the reservoir fluid, the interface is very stable,
and the injected fluid initially tends to spread radially from the source, while the
reservoir fluid of higher mobility follows a more tortuous path to the sink (figure 7c).
To summarize these results, in figure 8 we illustrate how the fraction of the reservoir
which is flooded with injected fluid increases as a function of the total volume of fluid
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Figure 7. Isothermal (T = 0) displacement patterns for runs (a) A: µ∗
inj/µ

∗
res = 1, (b) B:

µ∗
inj/µ

∗
res =0.1 and (c) C: µ∗

inj/µ
∗
res = 10.

injected. In general, the lower the mobility of the injected fluid, the greater the sweep
efficiency produced by the injection process.

A.2. The effect of thermal and compositional fronts

The change in mobility across a thermal front may be significant, especially if there
is a reaction associated with the change in temperature. Indeed, the permeability
change may be comparable to the difference in viscosity between the injected fluid
and the reservoir fluid, especially when the temperature contrasts are large, and in
the hydrocarbon situation, the oil is light and of low viscosity. In the present model,
the key parameter which determines the motion of the interface is the mobility ratio,
given by the product of the viscosity ratio and the inverse of the permeability ratio. A
second variable of importance is the location of the thermal or reaction front relative
to the fluid–fluid front, since the advection speed of the thermal front relative to the
fluid front varies with the porosity of the rock, and also the ratio of the specific heat
of the fluid and the rock (Phillips 1991). This second parameter determines the time
scale over which the thermal reaction has a key impact on the flow pattern. We now
present two sets of calculations to illustrate the importance of each of these effects.
First, we show the evolution of the fluid–fluid front and the thermal front, for four
different cases.

In figure 9(a) the injected fluid has a viscosity 0.1 times that of the reservoir fluid,
while the fluid which has passed through the thermal front has a viscosity equal to
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Figure 8. Production plots for runs A, B and C.

that of the reservoir fluid. This situation may arise for example across a cooling front.
As a result, the thermal front is unstable, and the original fluid behind the thermal
front tends to finger through the interface. However, there is no mobility contrast
across the interface between the injected and the original reservoir fluid, and this
remains stable. The initial displacement pattern of the fluid which is ahead of the
thermal front is analogous to the reference case of figure 7(a). However, as the thermal
front spreads from the source, the influence of the mobility ratio across the thermal
front becomes progressively more fingered, and this tends to create a channel which
connects the low-viscosity injected fluid directly to the sink, bypassing some of the
earlier injected fluid which has propagated through the thermal front and has become
more viscous. Subsequently, the propagation of the thermal front is much slower, and
the flow pattern and volume of reservoir fluid which is swept to the sink tends to that
of case B shown in figure 7(b) (see figure 10a).

In figure 9b the injected fluid upstream of the thermal front has the same mobility as
the reservoir fluid, while the injected fluid downstream of the thermal front has a lower
viscosity and is therefore unstable as it displaces the reservoir fluid. The interface
therefore tends to finger into the reservoir fluid, and a channel begins to develop
towards the sink, with much of the reservoir fluid being bypassed as in case B
(see figure 10b). However, as the thermal front grows out from the source, the higher
viscosity of the fluid behind the thermal front begins to influence the overall flow
pattern more dominantly. Eventually, the thermal front no longer influences the
leading-order structure of the flow, which evolves back towards the flow pattern of
figure 7(a), in which there is no mobility ratio across the fluid–fluid front. As a result,
the volume of the fluid swept from the reservoir increases towards the reference curve,
case A (see figure 10b).

In figure 9(c), the injected fluid has a viscosity 10 times larger than that of the
reservoir fluid, but as it passes through the thermal front, the fluid viscosity decreases
to that of the reservoir fluid. This regime might correspond to a cooling front. Since
the injected fluid ahead of the thermal front has similar viscosity to the reservoir fluid,
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Figure 9. Displacement patterns with λ= 0.5 for runs (a) H: µ∗
inj/µ

∗
res = 1, µ∗

injT/µ
∗
res = 0.1,

(b) K: µ∗
inj/µ

∗
res = 0.1, µ∗

injT/µ
∗
res = 1, (c) N: µ∗

inj/µ
∗
res = 1, µ∗

injT/µ
∗
res = 10 and (d) Q:

µ∗
inj/µ

∗
res = 10, µ∗

injT/µ
∗
res =1.

the flow initially resembles that of case A. However, as the thermal front grows, the
much lower mobility of this fluid leads to a more axisymmetric sweep pattern away
from the source, and the continuing flow adjusts to a regime analogous to that of
case C. As a result, the volume of reservoir fluid which is swept to the sink increases
rapidly as the thermal front sweeps through the domain (figure 10c).

In contrast to this, in figure 9(d), the injected fluid has a viscosity comparable to
that of the reservoir fluid, but as the injected fluid passes through the thermal front, it
becomes 10 times more viscous. As a result, the initial sweep pattern is dominated by
the low-viscosity fluid ahead of the thermal front, and the flow is fairly symmetrical
about the source. However, the fluid behind the reaction front begins to finger into
the thermal front, and eventually breaks through to the sink, bypassing some of the
injected fluid which is now downstream of the thermal front and hence much more
viscous. As a result, the injected fluid ahead of the thermal front is swept to the
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Figure 10. Production plots for λ= 0.25, 0.5 and 0.75 (solid lines). Also shown are the
limiting isothermal cases (dashed lines).

boundaries of the system, and the continuing more mobile injected fluid flows directly
into the sink, largely without passing through the thermal front, so the sweep pattern
adjusts to that of case A (see figure 10d).
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