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We present planforms of line plumes formed on horizontal surfaces in turbulent
convection, along with the length of line plumes measured from these planforms,
in a six decade range of Rayleigh numbers (105 < Ra < 1011) and at three Prandtl
numbers (Pr = 0.7, 5.2, 602). Using geometric constraints on the relations for the
mean plume spacings, we obtain expressions for the total length of near-wall plumes
on horizontal surfaces in turbulent convection. The plume length per unit area (Lp/A),
made dimensionless by the near-wall length scale in turbulent convection (Zw), remains
constant for a given fluid. The Nusselt number is shown to be directly proportional to
LpH/A for a given fluid layer of height H. The increase in Pr has a weak influence in
decreasing Lp/A. These expressions match the measurements, thereby showing that the
assumption of laminar natural convection boundary layers in turbulent convection
is consistent with the observed total length of line plumes. We then show that
similar relationships are obtained based on the assumption that the line plumes are
the outcome of the instability of laminar natural convection boundary layers on the
horizontal surfaces.

Key words: buoyant boundary layers, plumes/thermals, turbulent convection

1. Introduction
In turbulent natural convection over horizontal surfaces, rising sheets of hot fluid,

often called ‘line plumes’ due to their appearance as lines in the top views, are
the commonly observed coherent structures near the hot horizontal plate (Husar &
Sparrow 1968; Tamai & Asaeda 1984; Zocchi, Moses & Libchaber 1990; Theerthan &
Arakeri 2000; Haramina & Tilgner 2004; Funfschilling & Ahlers 2004; Puthenveettil
& Arakeri 2005; Zhou, Sun & Xia 2007; Zhou & Xia 2010). These line plumes form
and merge all over the surface, resulting in a complex pattern of near-wall coherent
structures at any instant. Since these plumes transport the major part of the heat from
the plate (Shishkina & Wagner 2007), quantifying these structures is of importance in
understanding the heat flux scaling in turbulent convection. The present study proposes
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336 B. A. Puthenveettil and others

relations for the length of these line plumes to the driving potential and the heat flux
in turbulent convection.

We define the Rayleigh number as Ra = gβ1TH3/να and the Prandtl number as
Pr = ν/α. Here, g denotes the acceleration due to gravity, β the coefficient of thermal
expansion, 1T the temperature difference across the fluid layer, H the height of the
fluid layer, ν the kinematic viscosity and α = k/ρCp the thermal diffusivity with k the
thermal conductivity, ρ the density and Cp the specific heat at constant pressure. The
Rayleigh number based on the near-wall temperature drop, defined as

Raw = gβ1TwH3/να, (1.1)

is equal to Ra/2 since the near-wall temperature drop 1Tw is equal to 1T/2 at
high Ra; Raw is the Rayleigh number used in open convection systems. Hereafter, the
term ‘wall’ is used to refer to the top or bottom horizontal surfaces that confine
the fluid layer and not to the vertical bounding surfaces. The Nusselt number,
Nu = Q/(k1T/H) is a function of Ra and Pr , where Q is the heat flux. These
definitions also hold for concentration driven convection if the concentration difference
across the fluid layer 1C replaces 1T , the molecular diffusivity D replaces ν, the
Schmidt number Sc replaces Pr , qm the mass flux replaces the kinematic heat flux
q= Q/ρCp and Sh the Sherwood number replaces Nu.

At high Ra, the fluid layer divides into bulk and near-wall regions which
respectively have predominantly turbulent and diffusive transport (Adrian, Ferreira
& Boberg 1986; Theerthan & Arakeri 1998, hereafter referred to as TA; Puthenveettil
& Arakeri 2005, hereafter referred to as PA). The near-wall region, being diffusive,
offers the predominant resistance to the transport of heat and hence mostly determines
the flux scaling. In these near-wall regions, line plumes are initiated. The line plumes
have a finite thickness and a finite height, beyond which they breakup into mushroom
type plumes. Owing to their finite volume, they are also termed as rod-like plumes
(Zhou & Xia 2010) or sheet plumes (PA). The line plumes elongate and merge
with the adjacent sheets, a new sheet being initiated in the space vacated by the
merger. The external shear due to the large-scale circulation modifies these dynamics
by aligning the sheets in the direction of the shear (Theerthan & Arakeri 2000;
PA). Puthenveettil, Ananthakrishna & Arakeri (2005) found that the plume structure
at any instant caused by these dynamics had a common fractal nature, independent
of Ra over a decade (1010–1011) of Ra. This common fractal nature at all Ra,
which showed that the probability of occurrence of a line plume in any area of
the horizontal surface was independent of Ra, implied that there is some commonality
in the dynamics of plume merging at all Ra. However, the plumes merged faster
with increase in Ra (Gunasegarane & Puthenveettil 2010) and the mean (λ) of the
spacings between the line plumes (λ) at any instant decreased with increase in Ra (TA;
PA). Interestingly, similar to the common fractal nature of the plume structure, these
plume spacings were also distributed as a common lognormal probability distribution
function, independent of Ra (PA).

Since the planforms of the plume structure at any instant had a lognormal
distribution of spacings, with the variance of λ being of the same order as λ
(PA; Puthenveettil & Arakeri 2008; Ramareddy & Puthenveettil 2011), a single
mean spacing may not be a complete measure to characterize the structure; more
representative, unique and integral measures to characterize the near-wall coherent
structures are needed. The total length of plume lines on the surface could be expected
to be more or less fixed for a given Ra or heat flux Q since it is an integral
quantity. The lengths of the line plumes are easily and accurately measured compared
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with the normal spacings between them even if the plumes are oriented randomly.
Since the line plumes carry the major part of the heat flux, characterizing the plume
structure in terms of plume length could lead to unique relations between the length
of the near-wall coherent structures in turbulent convection and the driving potential
or flux. Such relations could be of great importance in building wall functions for
turbulence modelling of convection, since these plumes, by their dynamics, and
by the entrainment velocity field they engender, predominantly determine the near-
wall velocity fields in turbulent convection. More importantly, if such relations are
also predicted by a hypothesis about the near-wall coherent structures, the match
of the predictions with the measurements is an evidence of the correctness of the
phenomenology.

In this paper, we propose relations for the total length of line plumes on horizontal
walls in turbulent convection, based on two formulations. These relations are shown
to match the measurements from planforms obtained from our experiments, as well
as from other investigators. Both formulations are related and have the underlying
assumption that the boundary layers in turbulent convection are laminar natural
convection boundary layers, which become unstable to give rise to line plumes. In
other words, the near-wall region in turbulent convection may be considered as an
ensemble of laminar, or more appropriately viscous line plumes; see the discussion in
TA and PA. In the first formulation, a relation for the plume spacings, obtained by
TA and PA by equating the heat carried away by laminar natural convection boundary
layers over λ to experimental flux correlations, is subjected to geometrical constraints
of finite plate size to obtain expressions for the length of line plumes. An alternate
formulation where the heat carried away by laminar line plumes is equated to the heat
flux from the plate, along with a stability condition for laminar natural convection
boundary layers, gives similar relations as from the earlier formulation.

The paper is organized as follows. We first describe the experimental setups and the
planforms that are obtained over a six decade range of Raw (4.6×105 < Raw < 2×1011)
and at Pr of 0.7, 5.2 and 602 in § 2. The methods employed for measuring the
length of line plumes from these planforms are described in § 3. The relations for
the total length of line plumes are obtained and verified with the measurements in
§ 4.1. The alternative formulation based on relating the heat carried away by the line
plumes to the heat flux to the plate, is shown in § 4.2. In the work we describe
here, the expressions for plume lengths were derived by B.A.P. and Y.K.A. The
experiments were conducted by G.S.G. and B.A.P. with the help of D.S. and J.B. The
measurements of plume lengths were conducted by Y.K.A., G.S.G. and B.A.P. The
idea to study the plume lengths, as well as critical comments on the manuscript came
from J.H.A. The manuscript was written by B.A.P.

2. The planforms of plume structure

Figures 1, 2 and 4 show the planforms obtained from our experiments that are
analysed in the present work; we also analyse a few other planforms obtained
by Shishkina & Wagner (2008) and Stevens, Verzicco & Lohse (2010) and Zhou
& Xia (2010). The parameter values corresponding to all of the analysed planforms are
specified in tables 1 and 2.
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(a) (b)

(c) (d )

FIGURE 1. For caption see next page.

2.1. Planforms at Sc= 602

The planforms in figure 1 are taken from PA. The lines in the planforms are the
top view of the line plumes rising from the horizontal surface. These images were
obtained in quasi-steady concentration driven convection across a horizontal membrane
of 0.45 µm mean pore size at Sc = 602 by placing a layer of brine over a layer
of water separated by the membrane (PA). A schematic of the experimental setup
is shown in figure 3(a). The membrane was needed since PA used concentration
differences to drive the convection. The use of concentration difference helped PA to
reach high Ra and Sc since the molecular diffusivity of salt in water is 100 times
lower than the corresponding thermal diffusivity. As long as there was no flow across
the membrane, which was ensured by using a membrane of small pore size, there
will be only diffusive transport of salt across the membrane; the membrane behaved
similar to a plate with finite conductivity in thermal convection. The convection
was characterized by Raw, which was calculated by using the concentration drop
above or below the membrane. The concentration drop above the membrane was
obtained by deducting the diffusion concentration drop across the membrane from the
total concentration drop between the tanks (PA). The total concentration drop was
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(g) (h)

(e) ( f )

FIGURE 1. (cntd) Planforms of the plume structure in concentration driven convection in
water at Sc = 602, obtained from PA. The white lines in the images are the top view
of the line plumes just above the horizontal surface. The parameters corresponding to the
planforms are shown in table 1. Here Raw increases from (a) to (g). (a), Raw = 6.39 × 1010;
(b) schematic of the large-scale flow in (a); (c) Raw = 1.667 × 1011; (d) Raw = 1.67 × 1011;
(e) Raw = 2.03× 1011; (f ) schematic of the large-scale flow in (e); (g), Raw = 2.04× 1011; (h),
schematic of the large-scale circulation in (g).

estimated by the transient measurements of conductivity in the top tank and then
using mass balance (see PA for details). The experiments with the membrane were
unsteady, but the time scales of variation of the bulk concentration and flux were
much larger than the time scale of variation of the large-scale flow (PA; Puthenveettil
& Arakeri 2008). Similarly the time scale of variation of the large scale flow was
much larger than the time scale of near-wall dynamics (Ramareddy & Puthenveettil
2011). The near-wall dynamics were then essentially under constant flux, constant
bulk concentration and constant large scale flow velocity as in steady Rayleigh–Bénard
convection (RBC). The wide separation of time scales made the system quasi-steady
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(a) (b)

(c) (d )

FIGURE 2. For caption see next page.

and hence comparable with steady convection systems such as RBC; the reader is
referred to Puthenveettil & Arakeri (2005, 2008) and Ramareddy & Puthenveettil
(2011) for details. Hence, the dynamics and the flux as a function of Raw was the
same as that in temperature driven convection at the corresponding Pr and Raw.

The planform structure was visualized by the fluorescence of the dyed water
from below the membrane intersecting an Ar ion laser (488 nm) sheet just above
the membrane. Two aspect ratios, ζ = 0.65 and 0.435, were used corresponding to
tank cross sections of 15 cm × 15 cm (figures 1a, 1c and 1g) and 10 cm × 10 cm
(figure 1d and 1e) for a fluid layer height of 23 cm. The flow structures were
inferred from the alignment of the plumes caused by the large-scale flow and from
the direction in which the plume heads were swept away by the large-scale flow.
Figure 1(a) has two counter-rotating large-scale flow cells, counter clockwise on left
and clockwise on right as shown in figure 1(b). Figure 1(e) has only a single large-
scale flow cell rotating in the clockwise sense, see figure 1(f ). Further details of the
experimental setup, visualization procedure and the planforms could be found in PA
and Puthenveettil et al. (2005) and Puthenveettil & Arakeri (2008).
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(g) ( h)

(e) ( f )

FIGURE 2. (cntd.) Planforms of plume structure in temperature driven convection in water
at Pr = 6 observed just above the horizontal surface using electrochemical visualization. The
thicker dark lines in the image are the top view of the line plumes, the thinner cross wires
are the copper wires used as the anode. Here Raw increases from (a) to (g) as shown in
table 1. (a) Raw = 4.43 × 105; (b) Raw = 3.95 × 106; (c) Raw = 4.88 × 107; (d) schematic
of large-scale flow in (c); (e) Raw = 7.95 × 108; (f ) schematic of the large-scale flow in (e);
(g) Raw = 1.06 × 109; (h) schematic of the large-scale flow in (g). The direction of near-wall
shear is shown by the open arrow.

2.2. Planforms at Pr = 5.2

The images in figures 2 were obtained by electrochemical visualization (Baker 1966)
in unsteady temperature driven convection in water in a 30 cm×30 cm tank. As shown
in figure 3(b), the water layer was heated from the bottom with various constant heat
fluxes while its top surface was open to atmosphere, so that a steady 1Tw was
obtained. The heat flux was measured using the temperature drop T1–T2 across the
glass plate in figure 3(b). For each Ra, the experiment was run for nearly 2 hours
to ensure a constant 1Tw condition inside the convection cell. The top and bottom
boundaries of the cell are not in steady state, but the temperature difference across
the fluid layer is, as the top and bottom boundaries become warmer at the same rate.
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FIGURE 3. (Colour online available at journals.cambridge.org/flm) The experimental
arrangements used to obtain the planforms; (a) the experimental setup for the concentration
driven convection across a membrane; (b) the experimental setup for temperature driven
convection in water; (c) the experimental setup for temperature driven convection in air.

Since the turbulence is decided by the temperature difference across the fluid layer
and not by the temperatures of the bounding surfaces, the turbulent phenomena will
be the same as in the corresponding steady situation at the same 1Tw. To achieve
105 < Raw < 109 at Pr = 5.2, the water layer height was changed from 5 cm to 20 cm
so that 1.5 6 ζ 6 6. Owing to the local changes in pH near the hot plate, maintained
as the cathode, thymol blue dye in water becomes darker near the hot plate, enabling
us to see the local structures near the wall; the dark lines in the images are the
near-wall plumes observed like this. The thin cross wires in the images are the copper
wires used as the anode placed at some height from the hot plate. For further details,
the reader is referred to Gunasegarane & Puthenveettil (2010). The planforms show
that with increasing Ra, the polygonal structure breaks up into a structure composed of
more aligned plumes. We expect this increasing alignment to be due to the increasing
strength of the shear caused by a stronger large-scale flow at higher Raw. The lines in
the images become weaker with increasing Raw as the line plumes are eroded more
by the turbulent bulk with increasing Ra. We observe only a single large-scale flow
cell as shown in figure 2(d,f,h), presumably due to the larger ζ compared with that in
figure 1.
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2.3. Planforms at Pr = 0.7
Figure 4 shows the planforms of plume structures observed in steady temperature
driven convection of air confined between two 250 cm × 50 cm horizontal plates
separated by 50 cm high double-walled polycarbonate plates. Figure 3(c) shows a
schematic of the experimental setup. Isothermal boundary conditions were obtained
by passing water from a temperature controlled heating system below the bottom
aluminium plate, while the top plate was passively cooled by an air–air heat exchanger.
Air mixed with smoke filled the cell. The structures are seen due to the scattered light
from smoke particles when a 532 nm horizontal laser light sheet is passed grazing
the bottom plate. Figure 4 shows only an area of ≈1 m × 50 cm on the left-hand
side of the plate. Since the plumes are fed by the near-wall boundary layers which
are relatively deficient of smoke particles, the plume regions appear as dark lines
in a bright background. The images were obtained by viewing the horizontal laser
sheet from the sides; the images were corrected for perspective errors. The perspective
correction was obtained by calibrating the imaging arrangement with a horizontal grid
on the bottom plate. Experiments with varying 1T between the plates were conducted
to obtain planforms for 1.3× 108 < Raw < 2.5× 108.

3. Measurement of plume lengths
The plumes are detected first by the experimental techniques described in § 2. The

methods employed for measuring the plume lengths only use an intensity criterion
on the experimental image to classify some regions as plumes. It is hence important
that the experimental techniques used in the study do not miss any plumes. In the
planar laser-induced fluorescence (PLIF) technique used for the Sc = 602 experiments,
since the fluorescent dye is present in a much larger concentration in all of the
plume regions than in the background because only the bottom fluid is dyed, all of
the plume regions fluoresce when a laser sheet is passed near the membrane. In the
electrochemical technique used for the Pr = 5.2 study, since the pH changes uniformly
near the bottom plate because of the uniform electrical field maintained by a grid type
electrode, a layer of dark fluid forms uniformly on the bottom plate which is carried
away by the boundary layers into the plumes. The plumes when they rise up change
their colour back to the background fluid colour so that only the near-wall plumes are
visible in the images. No plumes are missed by this technique. In the laser scattering
technique used in the Pr = 0.7 study in air, smoke is introduced into the bulk, the
system itself causes a relative deficiency of smoke particles in the plumes because the
smoke particles have to get into the plumes through entrainment from the bulk. Owing
to this, all of the plume regions will scatter less light when a laser sheet is passed near
the bottom wall; all of the plumes in the laser path will appear darker. No plumes are
likely to be missed here either. As seen in figures 1, 2 and 4 the plume regions are
visually quite clear in the images obtained by such techniques.

The plume lengths were measured from such images in two ways:

(a) by an automated skeletonization image processing routine; and
(b) by manually covering the plumes with short linear segments.

For all of the images in figure 1 and for images in figure 2 that have good contrast and
uniform background illumination, a skeletonization procedure was found to adequately
represent the plume structure with lines. The images were first background corrected
to remove non-uniform illumination. The edges in the images were then detected by
the Canny edge detection routine (Canny 1986). The Canny edge detection routine
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(a)

(b)

(c)

(d ) (e)

FIGURE 4. Planforms of plume structure, observed just above the bottom horizontal surface
using smoke visualization, in temperature driven convection in air at Pr = 0.7. The thicker
dark lines in the images are the top view of the line plumes. (a) Raw = 1.287 × 108;
(b) Raw = 1.766 × 108; (c) Raw = 2.183 × 108; (d) Raw = 2.542 × 108; (e) schematic of
the large-scale flow in (a)–(d). The parameters corresponding to the figures are shown in
table 1. The planforms and the schematic of figure 4(e) show only half the length of the cell.
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(a) (b)

FIGURE 5. (Colour online) (a) The negative of the skeletonized image used to calculate the
plume length from figure 1(e). (b) Planform of figure 4(c) covered with short linear segments
over plume lines for the manual measurement of plume length.

identifies edges in an image where the magnitude of the gradient of the intensity is
a local maximum in the gradient direction; such edges should be closed polygons in
the present case. In physical terms, this criterion would then imply that a plume edge
is detected at the maximum concentration gradient of the fluorescent dye in the PLIF
image. In the images at Pr = 6 from the electrochemical technique, the plume edges
will be detected at the maximum concentration gradient of thymol blue dye. For the
Pr = 0.7 images we only use the manual detection method where we mark short linear
segments on all of the visible plumes in the image. In any case, since the thickness of
the plumes do not feature in any part of our analysis, the exact point at which a plume
is separated from the background by the algorithm is of no consequence in the final
results.

During the edge detection, some regions of the plume edges may not be captured
due to the low intensity difference of that region with the background. In such a case,
the edge of the plume, that should actually be a closed polygon, could become an
unclosed line. Since we use a polygon filling method to mark the plume regions, such
unclosed lines would over estimate the plume lengths. To avoid this problem, any edge
that had become disconnected from the nearest edge by one pixel due to inaccuracies
in the Canny edge detection algorithm was first connected by a bridging routine. To
further make the edges closed polygons, we first dilated the image (add one white
pixel all around the existing white regions) which further connected any disconnected
pixels. An erosion (removal of one pixel from all around the white regions) restored
the image back to its original situation except for the points that are connected by the
dilation. The closed polygons obtained by this route is then filled with white pixels to
obtain plume regions as white pixels over a black background. The peripheral pixels
of the white objects in the image were then successively removed until single lines of
connected pixels were left behind. An example of the negative of such a skeletonized
image corresponding to figure 1(e) is shown in figure 5(a). The negative image is
shown in figure 5(a), instead of the actual skeletonized image, so as to clearly see the
plume lines captured by this process. The number of white pixels obtained by such a
procedure from the skeletonized image, multiplied by the length of a pixel, gives an
estimate of the total length of line plumes in the corresponding planform.

The major errors due to the skeletonization were (a) missing plumes due to the
edges being not detected due to low contrast, (b) spurious lines due to bright, non-
plume regions in the images, often due to reflections and (c) unwanted wiggling
of lines when thick plume regions are skeletonized. Owing to these errors the
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Sc = 602
Pr = 5.2
Pr = 5.4
Pr = 0.7
Pr = 5.4
Pr = 0.7

106 107 108 109 1010 1011

Raw

105 1012101

102

FIGURE 6. Variation of plume length per unit area of the bottom surface with near-wall
Rayleigh number (1.1) for Pr = 0.7, 5.2 and 602. The filled diamond is the value given by
Shishkina & Wagner (2008), the filled star is our measurement from figure 4(a) of Zhou &
Xia (2010) and the filled triangle is the mean of our measurements from four frames of the
movie in Stevens et al. (2010).

skeletonization procedure was used only in images with good contrast. In all cases
the skeletonized images were visually compared with the original images, and were
used only if there was good correspondence of the line pattern with the plume
structure. In the case of a not so good correspondence of the line pattern with the
plume structure, we used a manual measurement method as described below. Since the
manual measurement method is quite accurate, the difference between the measured
values of the length of plumes by the two methods, shown later in figure 6, is an
estimate of the error involved in the skeletonization procedure.

For the images in figure 4 and for the higher Ra planforms in figure 2, since the
skeletonization routine did not capture an appreciable number of plumes, a manual
measurement procedure was followed for estimating the length of plumes. For such
images, the measurement was performed by using a program that covers the plume
lines with short linear segments on mouse clicks over the plume lines, and then
calculates the total length of these lines. Figure 5(b) shows the planform in figure 4(c)
covered with such short linear segments, the sum of whose lengths give an estimate of
the total length of line plumes. Plume lengths from the images of Stevens et al. (2010)
and Zhou & Xia (2010) were also measured by this manual method. In the case of
Shishkina & Wagner (2008), we used the plume lengths given by them in their table 1.

4. Analysis of plume lengths
A qualitative comparison of the planforms at different Raw in figures 1, 2 or 4 show

that higher Raw results in a denser plume structure at any Pr . The Pr influence on the
length of the plumes is not obvious, the effect does not appear to be as strong as that
of changing Raw. Figure 4(a), whose Raw is ≈2.5 times that of figure 2(c), appears to
have a similar or even a lower plume density, probably because the Pr is ≈10 times
lower. However, these visual observations are susceptible to error since the areas of
the images are not the same in the figures. There is hence a need to quantify these
observations by looking at the variation of the measured plume lengths.
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Figure 6 shows the variation of the plume length per unit area Lp/A as a function
of Raw for Pr = 0.7, 5.2 and 602, where Lp is the total length of line plumes that
occur over an area A of the bottom plate. Multiple data points at the same Raw are
due to measurements on the same planform by the two different methods discussed
in § 3; these data points give an indication of the error involved in the measurement.
For measurements in air at Pr = 0.7 the error bars give the standard deviation of the
lengths measured from different planforms at the same Raw. Figure 6 shows that with
increasing Raw, larger lengths of plumes occur per unit area of the plate at all Pr . This
trend is consistent with the earlier result that the plumes become more closely spaced
with increasing Raw (PA; TA; Theerthan & Arakeri 2000), which would result in larger
number of plumes and hence a larger total length. Larger Raw implies larger heat flux,
which needs greater length of plumes per unit area to carry away the larger heat flux.

The total length of plumes in the experiments of Zhou & Xia (2010) at
Ra = 1.1 × 109 and Pr = 5.4, measured by us from their figure 4(a) using the second
method in § 3 is shown as a filled star in figure 6; our measurements from their
planforms are consistent with that obtained from our experiments at similar Raw and
Pr . However, it needs to be pointed out that we identify a greater number of plumes
in the planform of Zhou & Xia (2010) as they seem to be counting only the clearer
ones of all of the plumes, while we measure the lengths of all of the regions with
red colour in their figure 4(a). The mean plume length in the numerical simulations
of Stevens et al. (2010) at Ra = 2 × 109 and Pr = 0.7 for 1T = 10 ◦C, is shown as
filled triangle in figure 6. The mean was calculated from our measurements at four
dimensionless times from the snapshots of their planforms at a height of 0.0044H.
The associated error bar shows the standard deviation of the data. Comparison of the
data of Stevens et al. (2010) with our data at the same Pr shows that, considering
the error bars, the length in Stevens et al. (2010) is approximately consistent with the
observation of increased plume lengths with increasing Ra. The plume length given by
Shishkina & Wagner (2008) at Pr = 5.4, shown as filled diamond in figure 6, seems to
be appreciably lower than our experimental measurements at similar Raw and Pr .

In figure 6, comparison of the measurements in water and air at the same Raw seems
to show that a reduction in Pr reduces the plume length per unit area. However, as we
show later, such a conclusion will be erroneous and is brought about by looking at the
dependence of Lp/A on Raw, when the H in the experiments with air is much larger
than in the experiments with water. In fact, as we show later, the plume lengths, just
like plume spacings, are only dependent on the near-wall variables and is independent
of the layer height. We now show that the behaviour of plume lengths in figure 6
could be clearly understood based on relations obtained from two formulations. Both
of the formulations have the same underlying assumption that the line plumes are the
outcome of the instability of laminar natural convection boundary layers formed on the
horizontal surface.

4.1. Boundary layer formulation
The mean plume spacing in turbulent convection is given by

λ= C1Pr
n1

H

Ra1/3
w

= C1Pr
n1Zw, (4.1)

where

Zw =
(

να

gβ1Tw

)1/3

= H

Ra1/3
w

(4.2)
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Merging line
plumes

Lighter
column

Shear due
to large scale
flow

y

x
O(x) c

w

(a) (b)

FIGURE 7. A schematic of the assumed phenomenology for the analysis. (a) Merging line
plumes near the wall result in rising lighter column of fluid that drives the large-scale flow.
The large-scale flow causes shear in the direction perpendicular to the plane of the figure
thereby aligning the line plumes. (b) The magnified view of the region marked with a dashed
ellipse in (a). Two natural convection boundary layers become unstable at a critical distance
of λ/2 when δ(x)= δc to give rise to a line plume. Here O′ is the virtual origin of the plume.

is a near-wall length scale in turbulent convection (Theerthan & Arakeri 2000; TA;
PA). A detailed physical explanation of the length scale Zw in turbulent convection is
described in Appendix A. Equation (4.2) was obtained by equating the experimentally
observed heat flux relation to the flux carried away from the horizontal surface by
laminar natural convection boundary layers over a distance of λ (TA, PA). The flux
carried away by these boundary layers were calculated from the similarity solution of
Rotem & Classen (1969). A brief explanation of the procedure used by TA and PA to
obtain (4.1) is given in Appendix B. The assumption of natural convection boundary
layers on the horizontal surface, that become unstable to give rise to line plumes is
inherent in (4.1). A schematic of the assumed boundary layer and plume structure
on the horizontal walls is shown in figures 7 and 10(a). The model of TA and PA
is an extension of the model proposed by Howard (1964) to include the presence of
persistent line plumes. Howard (1964) assumed a periodic eruption of a conduction
layer to give rise to intermittent thermals.

Given (4.1), a relation that connects λ to the total length of plumes Lp will give us a
relation for Lp in terms of the fluid properties and 1Tw, which is our objective in the
present paper. As per (4.1), λ ∼1T−1/3

w , where the near-wall temperature drop 1Tw is
the same as the temperature drop across the two boundary layers on either side of the
plume as well as across the base of each of the line plumes. The plume spacings are
dependent on 1Tw because the thickness at which the boundary layers on each side of
the plume becomes unstable to give rise to a plume is given by a relation of the form
Ra1/3

δc = a1Pr
b1(see (4.28)). Here, Raδc = gβ1Twδ

3
c/να is the Rayleigh number based

on the critical boundary layer thickness δc at which the boundary layer turns into a
plume.

From the results of TA and PA, who obtained λ/Zw = 48, 53 and 92 for Pr = 0.7,
6.0 and 602 respectively, C1 = 47.5 and n1 = 0.1 in (4.1). The estimated uncertainty
in C1 and n1 is given in Appendix B. Equation (4.1) could also be written in terms of
Raλ = gβ1Twλ

3
/να, the Rayleigh number based on the mean plume spacing and 1Tw

as

λ

Zw
= Ra1/3

λ = C1Pr
n1 . (4.3)

Using the above results, the easiest way to characterize the plume length is to
impose a constraint that in an average sense, each individual plume of length Lpl will
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have a heat transfer area,

Apl = Lplλ (4.4)

associated with it. Then,

NLplλ= NApl = A, (4.5)

where N is the number of individual plumes in an area A of the bottom plate of area
Ap. Since the total length of line plumes in area A is

Lp = NLpl, (4.6)

(4.5) and (4.6) imply that

Lp = A/λ. (4.7)

Multiplying both sides of (4.7) with the heat flux Q, it is obvious that (4.7) could
also be obtained by assuming that associated with each line plume there are boundary
layers on either side of the plume to a distance of λ/2, through which the plume
collects the heat from the plate. The area A in (4.7) need not be the total plate area,
but any area of the plate over which a plume length of Lp is observed, when A = Ap,
Lp becomes the total plume length over the bottom plate. The relation (4.7) is also
valid for a horizontal surface of arbitrary shape.

Alternatively, if the random plume structure at any Ra and Pr could be replaced by
an equivalent array of line plumes spaced at λ spanning the width W of a region of
area A on the bottom plate, purely geometric considerations on the maximum number
of plume lines that can be accommodated over the length L of the region imply

n= L/λ. (4.8)

In such a case,

Lp = nW, (4.9)

and (4.8) and (4.9) again imply (4.7). The fact that n and N need not be the same
in (4.9) and (4.6) imply that the number of plumes is not a unique parameter to
characterize the plume structure since it depends on how we identify individual plumes
in a connected plume structure. However, Lp obtained from (4.6) and (4.9) will be the
same.

4.1.1. Rayleigh number relations
Substituting (4.7) in (4.1) or (4.3), we obtain

Ra1/3
p = C1Pr

n1, (4.10)

where

Rap = gβ1Tw(A/Lp)
3

να
(4.11)

is the Rayleigh number based on A/Lp and 1Tw. Equation (4.10) is an important
relation which shows that the Rayleigh number in terms of the length scale A/Lp

remains a constant for a given fluid in turbulent convection. Equation (4.10) is the
equivalent relation in terms of Lp to the spacings relation (4.3). Figure 8 shows that
the data of figure 6, replotted as Ra1/3

p Pr−n1 is approximately equal to C1 = 47.4 for
the three Pr cases, as suggested by (4.10). The plume lengths of Stevens et al. (2010)
and Zhou & Xia (2010) are also consistent with (4.10). As mentioned earlier, the data
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RawR
a p1

3 P
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1
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105 1012
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p 

A
)H

P
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100

101
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103
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103

10–1

0.021Raw
1 3
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Pr = 5.2
Pr = 5.4
Pr = 0.7
Pr = 5.4
Pr = 0.7

FIGURE 8. Variation of the Rayleigh number based on A/Lp (4.11), normalized by Pr0.1,
with the near-wall Rayleigh number (1.1). The inset shows that the dimensionless plume
lengths LpH/A scale as Ra1/3

w . The filled diamond is the data from Shishkina & Wagner
(2008), the filled star that of Zhou & Xia (2010) and the filled triangle is from Stevens et al.
(2010).

of Shishkina & Wagner (2008) seems to be deviating from (4.10). We presume that
this difference is because their chosen threshold, namely the location of the maximum
of the thermal dissipation rate, does not capture all of the line plumes.

Equation (4.10) could be rewritten in terms of the plume length normalized by the
near-wall length scale A/Zw as

Lp

A/Zw
= 1

C1Pr
n1
, (4.12)

implying that the product of the plume length per unit area of the plate and the near-
wall length scale Zw, defined by (4.2), is a constant for a given Pr . Equation (4.12)
makes it clear that the plume lengths per unit area are only dependent on the near-wall
scales and are independent of the layer height. As per (4.12), increase in Pr reduces
the plume lengths per unit area at the same Zw. The dependence of Lp/A on Pr
observed in figure 6, which seems counter to that in (4.12), is due to the different
layer heights for the air and water experiments, which will have an effect when Lp/A
is studied as a function of Raw. The dependence of Lp/A on Raw is

Lp

A/H
= Ra1/3

w

C1Pr
n1
, (4.13)

which shows that the dimensionless plume lengths Lp/(A/H) scale as Ra1/3, similar
to Nu in turbulent convection. The inset in figure 8 shows this Ra1/3

w scaling of
(Lp/A)HPrn1 for all of the fluids.
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4.1.2. Flux relations
Equation (4.10) relates the plume length per unit area to the driving potential 1Tw.

Similar relations for plume lengths in terms of flux could be obtained from the
equivalent relation for spacings in terms of flux,

λ= C2ZoPr
n2, (4.14)

proposed by TA and PA. Equation (4.14) is in terms of

Zo = (α3/gβq)1/4 = H/(NuRaPr)1/4, (4.15)

the Townsend’s near-wall length scale (Townsend 1959), where q = Q/ρCp, is the
kinematic heat flux. Written in terms of the flux Rayleigh number based on the mean
plume spacing Raλq = gβqλ

4
/να2 = NuRa(λ/H)4, (4.14) becomes

Ra1/4
λq =

λ

ZoPr
1/4 = 31, 35 and 58 (4.16)

for Pr = 0.7, 6 and 602 (PA, TA), implying that C2 = 31 and n2 = 0.345 in (4.14).
By substituting (4.7) in (4.14), we get

Ra1/4
qp = C2Pr

n3, (4.17)

where

Raqp = gβq(A/Lp)
4/να2 (4.18)

is the flux Rayleigh number based on A/Lp and n3 = n2 − 1/4. Equation (4.17) is an
important relation for plume length in terms of flux, similar to (4.10) which is in terms
of the driving potential. Figure 9 shows that Ra1/4

qp Pr−n3 is equal to C2 = 31 for the
three Pr . The plume length per unit area, normalized by Zo, is

Lp

A/Zo
= 1

C2Pr
n2
, (4.19)

implying that the product of plume length per unit area and Zo is a constant for any
fluid in turbulent convection. Using (4.10) and the values of n1 and n2, (4.19) can be
rewritten as

Nu= C3(Lp/A)HPr0.08 (4.20)

where C3 = C4
2/2C3

1 = 4.3. Equation (4.20) gives the expression for the Nusselt number
in terms of the plume length per unit area. The inset in figure 9 shows that the
experimental variation of NuPr−0.08 with (Lp/A)H for all the fluids match (4.20). Note
that (4.20) and (4.13) imply that Nu = 0.07Ra1/3 Pr−0.02, which is very close to the
experimentally observed flux scaling by Xia, Lam & Zhou (2002).

4.1.3. Number of plumes
Earlier attempts to characterize the plume structure by Zhou & Xia (2010) found

that the number of line plumes Nsheet
pl /A = 1.4Ra0.29±0.03 (m−2). Even though this

equation is likely to be incomplete as it is not dimensionally homogeneous, we could
attempt to compare the predictions from the present work with this equation. The
number of line plumes predicted by (4.9) and (4.13) is

n

A
= Ra1/3

w

C1Pr
n1

1
ζH2

, (4.21)
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FIGURE 9. Variation of Raqp the flux Rayleigh number based on A/Lp (4.18), normalized by
Prn3 with Raw (1.1). The inset shows the relation of Nusselt number to the plume length per
unit area.

which for the experimental values of Zhou & Xia (2010) becomes n/A =
0.42Ra1/3(m−2). The dependence of n/A on Ra is consistent with the measurement
of Zhou & Xia (2010), but the prefactor is smaller in the present work. This difference
is partly because n in (4.21) is the number of plumes spanning the entire width of the
plate and is not equal to Nsheet

pl measured by Zhou & Xia (2010); they also count only
the clear plumes. The number of individual plumes per unit area obtained from (4.6)
and (4.13) is

N

A
= Ra1/3

w

C1Pr
n1

1
LplH

(4.22)

which will have an unknown Lpl, measuring of which will involve an arbitrary decision
to separate out individual plumes from a connected plume structure.

The number of plumes is unlikely to be unique for a given Ra, especially at larger
Ra, because the way the plumes are connected depends on factors which often have
different values at the same Ra. The most important factor that strongly decides how
the plumes are connected is the strength and direction of the large-scale flow. It is
well known that the large-scale flow goes through various cessations and reversals
at the same Ra (Niemela et al. 2001; Ahlers, Grossmann & Lohse 2009). Lower
strength of large-scale flow implies that a closed polygon type of plume structure
will be formed. In the case of stronger large-scale flow the plumes are often aligned
along the large-scale flow direction. If we decide to count the individual plumes as
unbranched lines (or lines between corners of the polygon), we will obtain a larger
number of plumes in between the reversals than in the presence of a steady large-scale
flow, both at the same Ra. It is our experience that the connectedness of the plume
structure keeps evolving at a fixed Ra, hence the number of line plumes will also
evolve. However since the total heat transported is proportional to Lp and is a weak
function of the large-scale flow, Lp remains unique at a given Ra and Pr . The total
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number of individual plumes, unlike the total plume length, is unlikely to be unique
and is not an appropriate parameter to characterize the plume structure or to relate to
the flux scaling. It also needs to be noted that the predictions of the modified theory of
Grossman & Lohse (2004) that the total number of line plumes is a constant is quite
contrary to the measurements of Zhou & Xia (2010) as well as the present work. All
expressions for the plume lengths, derived from (4.3) or (4.17), which were obtained
from the assumption of laminar natural convection boundary layers on both sides of
the line plumes, agree with the experimental measurements; the near-wall boundary
layers in turbulent convection are likely to be laminar natural convection boundary
layers.

4.2. Plume formulation
The above relations for the plume lengths were obtained from a relation for plume
spacings (4.3), in conjunction with a constraint (4.7). This essentially means that the
line plumes collect heat from boundary layers spread over a distance of λ/2 on both
sides. We now show that similar relations for plume lengths can be obtained by
equating the heat carried away by the plumes to the total heat supplied to the plate,
along with a stability condition for the laminar natural convection boundary layer.
The key assumption, as in the earlier analysis, is that the line plumes very near the
walls in turbulent convection are laminar, similar to the plumes studied by Fuji (1963)
and Gebhart, Pera & Schorr (1970). These plumes are created by the gravitational
instability (Pera & Gebhart 1973) of the laminar natural convection boundary layers
between them and carry away most of the heat from the plate. A schematic of such a
coherent structure on the horizontal surface is shown in figure 7(b). The laminar line
plume assumption is justified due to the diffusive nature of the near-wall region where
viscosity and thermal diffusivity are important. Further, if the boundary layers between
these plumes are laminar natural convection boundary layers, the line plumes that are
the outcome of the instability of these boundary layers could be expected to retain
their laminar nature for a short distance from the wall. The line plumes are expected to
turn turbulent after a short distance from the walls.

For a laminar line plume originating from a horizontal line source, the heat carried
away by the plume per unit length of the plume is given by Gebhart et al. (1970) as

Qp = 4µCpN

(
gβN

4ν2

)1/4

I, (4.23)

where µ = ρν. I = ∫∞−∞ f ′(ηp)φ(ηp) dηp = 1.0331Pr−0.486 from the results of Gebhart
et al. (1970). Here f is the dimensionless stream function defined by ψ =
4ν(Gry/4)1/4f (ηp) with ψ being the stream function, ′ indicating differentiation with
respect to ηp and

ηp = x

y
(Gry/4)1/4 (4.24)

is the similarity variable for the plume, x is the horizontal coordinate, y the vertical
coordinate and the local Grashoff number Gry = gβ(T0 − T∞)y3/ν2. The dimensionless
temperature difference φ = (T − T∞)/(T0 − T∞) where T is the temperature at any
(x, y) location, T∞ is the ambient temperature and T0(y) the mid-plane temperature in
the plume. N in (4.23) is the prefactor in the power law variation of the plume centre
line temperature with y, of the form

T0 − T∞ = Ny−3/5. (4.25)
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To find N from (4.25), we need to know the temperature difference across the
plume at some height. The temperature difference across the boundary layer is 1Tw.
These boundary layers become unstable and become the plume at the maximum or
the critical value of the boundary layer thickness δc. Then N could be calculated
from (4.25) by assuming the temperature difference across the plume at a height of δc

is equal to 1Tw. As shown below, the unknown height δc could be estimated from the
similarity solution for natural convection boundary layers given by Rotem & Classen
(1969) along with a stability condition for such boundary layers.

The similarity solution of Rotem & Classen (1969) gives the thermal boundary layer
thickness between the plumes as

δ(x)

λ
= ηδ

( x

λ

)2/5
Gr−1/5

λ , (4.26)

where Grλ = Raλ/Pr is the Grashoff number based on λ and ηδ = 5Pr−1/3 is the value
at y = δ(x) of the similarity variable for the boundary layer, η = (y/λ)(x/λ)−2/5Gr1/5

λ .
From (4.26), at x= λ/2,

δ|x=λ/2 = δc = 5× 2−2/5λRa−1/5
λ Pr−8/15. (4.27)

The stability condition implied by (4.3) and (4.27) is

Ra1/3
δc =

δc

Zw
= 17.7√

Pr
, (4.28)

where Raδc = gβ1Twδ
3
c/να is the Rayleigh number based on δc and 1Tw. Note that

the linear stability analysis of Pera & Gebhart (1973) with a parallel flow assumption
predicts the laminar natural convection boundary layers on horizontal surfaces to
become unstable at Ra1/3

λ = 245.8Pr1/3. The experimentally observed spacings are
however much smaller, as given by (4.3). We expect this difference to be due to
non-parallel flow effects, transient growth and other nonlinearities. We hence use the
experimentally observed stability condition (4.3), or the equivalent condition (4.28) for
further analysis.

The heat flux from the plate Q is related to Qp as

QpLp = QA. (4.29)

Estimating N from (4.25) evaluated at y = δc, where T0 − T∞ = 1Tw, the Nusselt
number could be estimated using (4.23), (4.28) and (4.29) as

Nu= 12.6(Lp/A)HPr−0.11. (4.30)

Equation (4.30) has the same dependence on (Lp/A)H as (4.20) but a slightly different
Pr dependence and prefactor. We expect these differences to be due to the neglect
of the virtual origin of the plume. Here δc given by (4.27) is the distance from
the horizontal surface. Since the virtual origin considerations will shift the origin of
the plume from O on the plate to O′ some distance above the plate as shown in
figure 7(b) (see Appendix B of TA), the distance at which the boundary layer joins
the plume, measured in the plume coordinates, will be slightly lower than that given
by (4.28), the prefactor will hence reduce. The virtual origin is also a function of Pr ,
which could account for the slight change in the Pr dependence of (4.30) compared
with (4.20). We do not include these considerations here since the second formulation
was only to illustrate the consistency of the plume length relations in § 4.1 with the
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assumption of laminar natural convection boundary layer giving rise to line plumes as
the main near-wall mechanism in turbulent convection.

5. Conclusions
The principal contributions of the present work are the proposed relations for

the length of line plumes that form on horizontal surfaces in turbulent convection.
The plume length per unit area of the surface (Lp/A) for a given fluid is shown
to be inversely proportional to Zw (4.2), the near-wall length scale in turbulent
convection (4.12). This means that for a given fluid, the total plume length in an
area A scales as the one-third power of the driving potential, Lp ∼ A1T1/3

w . This
behaviour in turn implies that the Rayleigh number based on the length scale A/Lp is
a constant for a given fluid (4.10); the same is true for the flux Rayleigh number
based on A/Lp (4.17). The plume length for a given fluid is dependent on the
flux Q as Lp ∼ AQ1/4. In other words, in turbulent convection of a fluid layer of
constant height, the plume lengths per unit area on the horizontal surfaces are directly
proportional to the Nusselt number (4.20). An increase in the Prandtl numbers results
in smaller length of plumes per unit area, but the dependence is weak (4.13). We
obtained these relations from the relations for plume spacings (4.1) and (4.14) of TA
and PA, who obtained them by equating the heat carried away by laminar natural
convection boundary layers over a mean plume spacing λ to the experimental flux
correlations. Similar relations were obtained in § 4.2 when we equated the heat carried
away by laminar plumes over their total length Lp on the surface to the total heat
input into the plate, along with a stability condition for laminar natural convection
boundary layers. The match of these relations with the experimental measurements is
a further evidence that the boundary layers in turbulent convection are laminar natural
convection boundary layers that become unstable to give rise to line plumes.

We gratefully acknowledge the financial support of DST, Government of India
through their grants SR/FST/ETII-017/2003 and SR/S3/MERC/028/2009. B.A.P. and
G.S.G. acknowledge the support of DAAD-STAR programme for conducting the
Pr = 0.7 experiments at DLR, Göttingen. We are grateful to O. Shishkina and
C. Wagner for their hospitality at Göttingen.

Appendix A. The physical significance of Zw

The length scale Zw is the natural near-wall scale if we assume that buoyancy driven,
natural convection boundary layers, which become unstable to give rise to line plumes,
are formed on the top and bottom horizontal walls in turbulent convection. The natural
convection boundary layer equations, as given by Gill, Zeh & del Casal (1965), Rotem
& Classen (1969) and Gebhart et al. (1988) are

∂xu+ ∂yv = 0, (A 1)

u∂xu+ v∂yu=− 1
ρ
∂xp+ ν∂yyu, (A 2)

1
ρ
∂yp= g

1ρ

ρ
, (A 3)

u∂xT + v∂yT = α∂yyT. (A 4)

Here, u and v are the local horizontal and vertical velocities, p is the local pressure
and T the local temperature. We can obtain Zw by the following order of magnitude
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FIGURE 10. (a) Schematic of laminar natural convection boundary layer; (b) comparison
of velocity boundary layer thicknesses for a Prandtl–Blasius boundary layer and a natural
convection boundary layer. —, Natural convection velocity boundary layer thickness given
by (A 19); - - -, Prandtl–Blasius boundary layer thickness given by (A 23).

balance of (A 1)–(A 4) that characterizes a natural convection boundary layer, a
schematic of which is shown in figure 10(a).

A.1. Order of magnitude analysis
Let L and δc be the characteristic length scales in the x and y directions; δc is the
critical boundary layer thickness as defined in (4.27) and L = λ/2. Let uc and vc be
the unknown characteristic velocities in the x and y directions, pc = 1p the pressure
drop across the boundary layer (see figure 10a) be the unknown characteristic pressure
and 1Tw the characteristic temperature difference in the boundary layer. The order of
magnitude balance from (A 1) is

uc

L
∼ vc

δc
. (A 5)

Equation (A 5) implies that the characteristic vertical velocity inside the boundary
layer is smaller than the horizontal velocity by a factor of δc/L. Similarly (A 3) implies
that

pc ∼ g1ρδc. (A 6)

The above balance is characteristic of natural convection boundary layers where the
horizontal pressure difference due to the density difference between the fluid inside
and outside the thermal boundary layer, given by (A 6), drives the horizontal velocities
inside the boundary layer. The order of magnitude balance of (A 4) along with (A 5)
implies that

vcδc

α
∼ 1; (A 7)

vertical advection balances diffusion at the edge of the thermal boundary layer.
Using (A 5), (A 7) could also be rewritten as

uc ∼ αL

δ2
c

. (A 8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.319


Length of near-wall plumes in turbulent convection 359

Since (A 8) also implies that ucδc/α ∼ L/δc, horizontal advection � diffusion at the
edge of the thermal boundary layer. Balancing the terms in (A 2) and using (A 5), we
obtain

pc

ρu2
c

+ ν

ucδc

(
L

δc

)
∼ 1. (A 9)

Eliminating pc from (A 9) using (A 6) and then using (A 8), we obtain

GrLPr
2

(
δc

L

)5

+ Pr ∼ 1, (A 10)

where GrL = gβ1TwL3/ν2 is the Grashoff number based on 1Tw and L.

A.2. Thermal boundary layer thickness
Since the force due to the horizontal pressure difference balances the viscous
resistance inside the boundary layer, the two terms on the left-hand side of (A 10)
should be of the same order, implying

δc ∼ L

(GrLPr)
1/5 . (A 11)

Equation (A 11) gives the characteristic thermal boundary layer thickness at a
horizontal distance L. Equation (A 11) is same as the vertical scale in Rotem &
Classen (1969) that is used to stretch the vertical coordinate direction so as to obtain
similarity solutions of (A 1) to (A 4). When the horizontal pressure difference due to
buoyancy, given by (A 6), balances the viscous resistance in (A 9), the characteristic
horizontal velocity obtained is

uc ∼ g1ρδ3
c

µL
∼ U2

ff

Uν

δc

L
, (A 12)

where Uff =√g(1ρ/ρ)δc is the free fall velocity over δc and Uν = ν/δc is the velocity
of viscous diffusion.

For Pr ∼ 1, (A 11) reduces to

δc ∼ L

Gr1/5
L

; (A 13)

all of the following analysis is for moderate Pr using (A 13). Since the boundary
layers become unstable at a distance of λ/2 from their leading edge, if we take
L= λ/2, (A 13) could be rewritten in terms of Zw as

δc ∼ 2−2/5(λ
2
Z3

w)
1/5Pr1/5, (A 14)

implying that the critical thermal boundary layer thickness depends on the two near-
wall length scales λ and Zw. Since λ is itself a function of Zw by (4.1), the critical
thermal boundary layer thickness at which the natural convection boundary layer
becomes unstable to give rise to a line plume is

δc ∼
(

C1

2

)2/5

ZwPr
2/5. (A 15)

The above relation is for moderate Pr obtained from (A 13); the corresponding relation
for large Pr could be obtained from (A 11). The critical thermal boundary layer
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thickness and the mean plume spacing are proportional to Zw, which is hence the
relevant near-wall length scale in turbulent convection. Since pc and uc are also related
to δc by (A 6) and (A 12), they can also be written in terms of Zw.

A.3. Velocity boundary layer thickness
Associated with the thermal boundary layers on both sides of the plumes there will
also be velocity boundary layers (figures 7b and 10a), the scaling of its thickness
could be found as follows. The velocity boundary layer is dragged by the horizontal
motion induced by the density difference in the thermal boundary layer below it. There
is hence no force due to a pressure gradient in the velocity boundary layer region
above the thermal boundary layer; pc = 0 in (A 9), resulting in

δv ∼
√
νL

uc
∼ L√

Reb
∼ ν

Uff

L

δc
, (A 16)

where the boundary layer Reynolds number, Reb = ucL/ν. The velocity boundary layer
scales as 1/

√
Reb, as in other theories using Prandtl–Blasius boundary layer. However,

the velocity in Reb is not the large-scale flow velocity, but uc, obtained by a balance of
buoyancy driven pressure gradient and viscous resistance given by (A 12).

Using (A 8) and (A 16), we obtain

δc

δv
∼ 1√

Pr
. (A 17)

Since δc is only a function of Zw from (A 15), the velocity boundary layer thickness
can also be then written in terms of Zw and Pr as

δv ∼
(

C1

2

)2/5

ZwPr
7/10. (A 18)

Since Zw/H = (2/Ra)1/3, (A 18) can be written in terms of Ra for Pr ∼ 1 as

δv

H
∼ 21/3

(
C1

2

)2/5 1

Ra1/3 . (A 19)

A.4. Comparison with Prandtl–Blasius boundary layer thickness
It needs to be noted that the velocity boundary layer thickness defined by (A 16)
is the thickness of the local velocity boundary layer associated with the laminar
natural convection boundary layer of horizontal extent λ/2 on each side of the
plume. There will be many such boundary layers, in fact two per plume line, on
the whole bottom surface at any given Ra. This velocity boundary layer is different
from the Prandtl–Blasius velocity boundary layer assumed to be present in some of the
theories of turbulent convection (Grossman & Lohse 2000, 2004). The Prandtl–Blasius
boundary layer is expected to be created by the large-scale flow and is assumed to
span the entire width of the bottom plate. The thickness of this boundary layer is
assumed to follow the well-known relation,

δvb

L
= 0.482√

ReL
, (A 20)

where

ReL = 0.102Ra0.447Pr−0.7 (A 21)
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is the Reynolds number based on the fluid layer width and the large-scale flow velocity
(Ahlers et al. 2009). The thickness of the Prandtl–Blasius boundary layers could be
estimated in terms of Zw by substituting Ra = 2(H/Zw)

3 in (A 21) and using the
resulting expression in (A 20) to obtain

δvb

H
= 1.3

(
Zw

H

)2/3

Pr0.35, (A 22)

for the aspect ratio, ζ = 1. Equation (A 22), in terms of Ra at Pr ∼ 1 is

δvb

H
= 1.3

(
2
Ra

)2/9

. (A 23)

Figure 10(b) shows the variation of the velocity boundary layer thickness with Ra
given by (A 19) and (A 23), when the boundary layer is of Prandtl–Blasius type and
if they are of natural convection type, respectively. The natural convection boundary
layer thickness is 2–5 times smaller than the corresponding Prandtl–Blasius boundary
layer thickness.

It is possible that a Prandtl–Blasius type boundary layer, caused by the large-
scale flow, exists in turbulent convection. However, since the local natural convection
boundary layers associated with each plume are much thinner than such forced
convection boundary layers due to the large-scale flow, it is unlikely that a
Prandtl–Blasius boundary layer will have a major role in the heat transfer. In fact,
the reason for the insensitivity of Nu to the large-scale flow strength, found by many
researchers (see § F in Ahlers et al. 2009), could be the presence of these thinner local
natural convection boundary layers, whose thickness essentially decides the heat flux
in turbulent convection.

Appendix B. Uncertainty in the plume spacing relation (4.1)
The accuracy of the proportionality constant C1 and the power law exponent n1

in (4.1) decides the accuracy of most of the results in the present work. All of the
results in terms of the driving potential in § 4.1.1 are obtained from (4.1). Similarly,
all of the results in terms of the flux in § 4.1.2 are obtained from (4.14) that has
another proportionality constant C2 and a power law exponent n2. However, since the
flux Rayleigh number based on the mean plume spacing

Raλq = 24/3aPrbRa4/3
λ , (B 1)

when Nu= aRa1/3Prb, C1 and C2 are related by

C2 = 21/3a1/4C1 and n2 = n1 + (b− 1)/4. (B 2)

Hence, an estimate of the accuracy of C1 and n1 clarifies the accuracy of all of the
other pre-factors and exponents in the present work. Further, since (4.1) was obtained
from the results of TA and PA, we include an explanation of how (4.1) was obtained
to make the present work self-contained.

Equation (4.1) was obtained by TA as follows. The expression for Nu, obtained from
the average heat flux over a length of λ calculated using the similarity solution of
Rotem & Classen (1969) for natural convection boundary layers, is

Nu= −5× 21/15

6
H′(0)Ra−2/15

λ Pr−1/5Ra1/3, (B 3)
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where H′(0) = 0.3826Pr0.2692 from Rotem & Classen (1969). If (B 3) is equated to a
correlation for Nu we obtain an expression for λ/Zw. TA used the correlation of Globe
& Dropkin (1959),

Nu= aRa1/3 Prb, (B 4)

where a = 0.069 and b = 0.074 in the range 1.51 × 105 6 Ra 6 6.76 × 108 and
0.02 6 Pr 6 8750 to obtain

Ra1/3
λ = 52Pr−0.012. (B 5)

From (B 5), C1 = 52 and n1 = −0.012 which are different from the values of C1 =
47.5 and n1 = 0.1 used in the paper, especially the Pr dependence. However (B 4)
itself shows a large variation of a and b, with the latest experiments conducted in a
wide range of Pr by Xia et al. (2002) giving

Nu= 0.14Ra0.297 Pr−0.03, (B 6)

in a range 2 × 107 6 Ra 6 3 × 1010 and 4 6 Pr 6 1350. If we substitute (B 6) instead
of (B 4) in (B 3), we obtain

Ra1/3
λ = 8.79Ra0.09 Pr0.248. (B 7)

Now 26 < C1 < 91 for 2 × 105 < Ra < 2 × 1011 and n1 = 0.25. So, in essence, the
uncertainty in C1 and n1 is the uncertainty present in the flux correlations.

One can also obtain (4.1) without using flux correlations by using a relation between
Raλ and Raδc , the Rayleigh number based on the critical boundary layer thickness
at which the boundary layer turns into a plume. This relation, as derived from the
similarity solution of Rotem & Classen (1969) by TA is

Raλ = 8Ra5/2
δc η

−15/2
δ Pr−3/2, (B 8)

where ηδ = 5Pr−1/3 is the value of the similarity variable of Rotem & Classen
(1969) at the boundary layer edge. If we now have a condition for the instability
of the boundary layer in terms of Raδ we will be able to obtain an expression
for Raλ independent of the flux correlations. The only available instability analysis
of natural convection boundary layers on horizontal surfaces is by Pera & Gebhart
(1973), which gives Ra1/3

δc = 34. The corresponding plume spacing relation will then be
Ra1/3

λ = 245.8Pr1/3 which is much larger than the experimentally verified relation (4.3).
We expect this difference to be due to the parallel flow assumption used in the stability
analysis of Pera & Gebhart (1973).

Hence, we conclude that the form of the power law relation (4.1) is certain from the
analysis of TA and PA, even though there is uncertainty in the coefficients due to the
uncertainties in flux correlations or due to the approximations in the stability analysis.
In view of such a situation, we estimated C1 and n1 as follows. Numerical simulations
by TA at Pr = 0.7 and 6 gave Ra1/3

λ = 48 and 53. Analysis by PA using the infinite
Pr similarity solutions of Rotem & Classen (1969) gave Ra1/3

λ = 92 for Sc= 602, these
relations matched the measurements of Theerthan & Arakeri (2000) and PA. We hence
used a power law fit between the above three values of Ra1/3

λ at Pr = 0.7, 6 and 602 to
obtain (4.1).

Figure 11 shows the values from TA and PA, along with the curve fit (4.1) through
them. The estimated error range for the prediction of (4.1) is shown as the error bars.
Power law fits through the maximum range of variation of (4.1) are shown as the
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PA, TA

47.5Pr0.1

43.6Pr0.133

51.6Pr0.067

100 101 102

102

103

Pr

R
a

FIGURE 11. Uncertainty in the curve fit λ/Zw = Ra1/3
λ = C1Pr

n1 (4.1).

dotted and the dashed lines. Using these error estimates, (4.1) could be written as

λ

Zw
= 47.5± 4Pr0.1±0.033. (B 9)
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