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The lateral migration properties of a rigid spherical particle suspended in a
pressure-driven flow through channels with square cross-sections were investigated
numerically, in the range of Reynolds numbers (Re) from 20 to 1000. The flow field
around the particle was computed by the immersed boundary method to calculate the
lateral forces exerted on the particle and its trajectories, starting from various initial
positions. The numerical simulation showed that eight equilibrium positions of the
particle are present at the centres of the channel faces and near the corners of the
channel cross-section. The equilibrium positions at the centres of the channel faces
are always stable, whereas the equilibrium positions at the corners are unstable until
Re exceeds a certain critical value, Rec. At Re≈ Rec, additional equilibrium positions
appear on a heteroclinic orbit that joins the channel face and corner equilibrium
positions, and the lateral forces along the heteroclinic orbit are very small. As Re
increases, the channel face equilibrium positions are shifted towards the channel wall
at first, and then shifted away from the channel wall. The channel corner equilibrium
positions exhibit a monotonic shift towards the channel corner with increasing Re.
Migration behaviours of the particle in the cross-section are also predicted for various
values of Re. These numerical results account for the experimental observations of
particle distributions in the cross-section of micro and millimetre scale channels,
including the characteristic alignment and focusing of the particles, the absence of
the corner equilibrium positions at low Re and the progressive shift of the equilibrium
positions with Re.

Key words: multiphase and particle-laden flows, particle/fluid flow

1. Introduction
Inertial migration of suspended particles was first reported in Poiseuille flow

through circular cylindrical tubes (Segre & Silberberg 1961). In dilute suspensions,
neutrally buoyant spherical particles were observed to migrate across streamlines to
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Inertial migration of a spherical particle in square channel flows 777

an equilibrium radial position. This phenomenon is due to the effect of inertia, as in
the Stokes flow regime, a spherical particle translates parallel to the flow direction,
regardless of its radial position, when it is rigid and neutrally buoyant. In recent years,
this inertial focusing of suspended particles has attracted considerable attention in the
field of microfluidics due to its broad range of applications, such as in the separation
and filtration of particles and biological cells (e.g. Di Carlo 2009). For Reynolds
numbers (Re) below approximately 100, experimental studies using microchannels
with square cross-sections have shown the presence of four equilibrium positions for
spherical particles centred at the faces of the channel (Di Carlo et al. 2007; Bhagat,
Kuntaegowdanahalli & Papautsky 2008; Kim & Yoo 2008). Here, the Reynolds
number is defined as Re = UD/ν, where U is the average flow velocity, D is the
width of the channel and ν is the kinematic viscosity of the fluid. The particle
scale Reynolds number can be also defined as Rep = Re(d/D)2, where d denotes the
diameter of suspended particles. Numerical simulations using a finite element method
have supported the presence of channel face equilibrium positions for particles that
are relatively large with respect to the width of the channel for 10 6 Re 6 40 (Di
Carlo et al. 2009), and this has been extended up to Re= 120 by a recent numerical
study based on the force coupling method (Abbas et al. 2014). The locations of
these equilibrium positions have been reported to move closer to the channel wall
with increasing Re (Di Carlo et al. 2009; Choi, Seo & Lee 2011; Abbas et al. 2014),
which is the same trend observed for circular cylindrical flows in experiments with
a much wider range of Re up to 1700 (Segre & Silberberg 1962; Matas, Morris &
Guazzelli 2004a,b) and in theoretical analyses based on the asymptotic theory valid
for Rep� 1 (Asmolov 1999; Matas, Morris & Guazzelli 2009).

In our recent study (Miura, Itano & Sugihara-Seki 2014), we performed experiments
on the inertial migration of neutrally buoyant spherical particles immersed in square
channel flows in Re ranges from 100 to 1200. Observations of the particle distribution
in several cross-sections of the channel indicated that four equilibrium positions at
the centres of the channel faces are also present in this Re range, and an additional
equilibrium position appears near each channel corner for Re greater than a certain
critical value, Rec (≈ 260). The former equilibrium positions were termed the channel
face equilibrium positions, while the latter were termed the channel corner equilibrium
positions. It was shown that the channel corner equilibrium positions move away from
the channel centre and the channel face equilibrium positions approach the channel
centre as Re increases.

Chun & Ladd (2006) conducted a numerical study of the motion of spherical
particles suspended in square channel flows utilizing the lattice-Boltzmann method
at Reynolds numbers between 100 and 1000. Although some of their results were
consistent with the experimental observations of Miura et al. (2014), there were
also some striking differences between them. Chun & Ladd (2006) predicted that
several equilibrium positions are present, including the corner equilibrium positions,
at Re = 100, while for Re larger than 500, only corner equilibrium positions exist.
This is contradictory to the experimental observations of Miura et al. (2014) described
above. In addition, they predicted an outward shift of the equilibrium positions toward
the channel wall with increasing Re, although Miura et al. (2014) observed an inward
shift of the channel face equilibrium positions for Re larger than about 200.

In the present study, we utilize an immersed boundary method to perform a
numerical simulation of the motion of a neutrally buoyant spherical particle suspended
in the square channel flows corresponding to the experiments of Miura et al. (2014).
The Reynolds numbers investigated here range from 20 to 1000, which also covers

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.456


778 N. Nakagawa and others

xO

l

d D

D
y

z

FIGURE 1. (Colour online) Configuration for a neutrally buoyant spherical particle of
diameter d suspended in a pressure-driven flow through a square channel of width D. The
computational domain has length l in the undisturbed flow direction, at both ends of which
we apply periodic boundary conditions.

experiments using microchannels. We have focused on large particles, with a diameter
of about 1/10 of the channel width, which is a representative size ratio for previous
studies on inertial migration. The numerical simulation presented here successfully
describes the experimental results for both micro scale and larger millimetre scale
channel flows. For Re smaller than about 260, only channel face equilibrium positions
are present, whereas for Re beyond this value, additional equilibrium positions appear
near the channel corners. An increase in Re from small values is predicted to produce
an outward shift of the channel face equilibrium positions in the range of Re for
microchannel flows, followed by the inward shift in the range of Re for millimetre
scale channel flows. In addition, the migration behaviours of the particles in the
channel cross-section are also predicted, which account for the particle distributions
observed experimentally at several cross-sections downstream of the channel inlet.

2. Numerical method
We consider the motion of a single spherical particle immersed in a pressure-driven

flow of an incompressible Newtonian fluid through a square channel, as shown in
figure 1. The x-axis is taken along the centreline of a square channel of width D.
The channel walls are located at y=±D/2 and z=±D/2. The particle of diameter
d is assumed to be neutrally buoyant, i.e. the densities of the fluid and the particle
are equal.

The governing equations for the fluid flow are the equation of continuity and
the Navier–Stokes equations. The motion of the suspended particle obeys Newton’s
second law of motion. These equations are solved numerically using the immersed
boundary method proposed by Kajishima et al. (2001). Briefly, we introduce the
average velocity of the fluid and the particle in terms of a scalar, α,

u= (1− α)uf + αup, (2.1)

where uf represents the fluid velocity and up represents the velocity inside the particle,
which satisfies

up = V +Ω × R. (2.2)

Here, V is the translational velocity, Ω is the angular velocity of the particle relative
to the particle centre, and R is the position vector from the particle centre. The
scalar α represents the volume fraction of the solid phase (particle) occupying the
computational cell considered; α= 0 in the fluid region and α= 1 inside the particle.
Thus, the velocity u in (2.1) represents the volume-weighted velocity average in each
computational cell.
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Inertial migration of a spherical particle in square channel flows 779

For the no-slip condition at the surface of the particle, it can be shown that the
average velocity u satisfies the equation of continuity:

∇ · u= 0. (2.3)

Corresponding to the Navier–Stokes equations for uf , we use the following equation
for u:

ρ

{
∂u
∂t
+ (u · ∇)u

}
=−∇p+µ∇ · [∇u+ (∇u)T] + f , (2.4)

where p is the pressure, ρ is the density and µ is the viscosity of the fluid. The force
term on the right-hand side of equation (2.4), f , represents the interaction between
the fluid and solid phases, and is determined such that it satisfies the condition that
the velocity inside the particle coincides with the particle velocity (2.2). The value of
f is evaluated at each time step in the time-marching procedure using a fractional
step method (Kajishima et al. 2001). For boundary conditions, we adopt the no-slip
condition at the channel walls at y=±D/2 and z=±D/2, and periodic conditions at
the upstream and downstream ends of the channel at x= 0 and l. A constant pressure
difference is also applied between both ends.

As f represents the force exerted on the fluid by the particle, − f acts on the
particle. Thus, the motion of the particle can be determined by

d(mV)
dt
=−

∫
V

f dV,
d(I ·Ω)

dt
=−

∫
V

r × f dV, (2.5a,b)

where m and I represent the mass and moment of inertia of the particle, respectively.
The integrations are performed over the volume of the particle.

Equations (2.5) are used to calculate the trajectories of a particle that is floating
freely in the flow. To calculate the lateral forces Fy and Fz exerted on the particle by
the fluid flow, we assume that the suspended particle moves freely in the x-direction
and rotates freely in all directions, but does not move laterally. In this case, we use
the following equations instead of equations (2.5):

d(mVx)

dt
=−

∫
V

fx dV,
d(I ·Ω)

dt
=−

∫
V

r × f dV, (2.6a,b)

together with the condition of Vy = Vz = 0, and calculate the lateral force (Fy, Fz) by

Fy =−
∫

V
fy dV, Fz =−

∫
V

fz dV. (2.7a,b)

To determine the value of α, Kajishima et al. (2001) evaluated the volume fraction
of the solid phase in the computational cell by approximating the particle surface by
a plane tangential to it. In the present study, we adopt for each computational cell

α = 1
2

{
1− tanh

|R| − d/2
ξ

}
, (2.8)

where R is the position vector of the centre of the computational cell relative to the
particle centre and ξ represents the width of the interface between the fluid and the
particle, which is chosen to be comparable to the width of the computational cell, ∆
(Nakayama & Yamamoto 2005).
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FIGURE 2. (Colour online) Non-dimensional lateral forces Fy (filled circles) and Fz
(crosses) exerted on a particle when the particle is placed on the y-axis for d/D= 0.22
and Re = 40. The corresponding results for Fy obtained by Di Carlo et al. (2009) are
shown by hollow squares.

The numerical scheme was validated and the accuracy was assessed in two cases.
In the first case, we computed the drag force acting on a stationary spherical particle
in an unbounded uniform flow and compared the obtained results with the reference
(Bird, Stewart & Lightfoot 2007), in the same manner as Kajishima et al. (2001)
tested the numerical method in a wide range of the Reynolds number Ud/ν for various
spacial resolutions ∆. Here, U represents the velocity of the uniform flow. Similar to
the estimate of Kajishima et al. (2001), the present simulation yielded about 8 % error
in the drag force for ∆/d= 0.1 and at most 5 % error for ∆/d= 0.05 at Ud/ν6 200,
corresponding to Re=UD/ν6 1800 for d/D= 0.11. In order to treat a turbulent flow
of multiparticle suspensions, they adopted ∆/d=0.125, which provided less than 10 %
error in the drag force for Ud/ν 6 400. In the present study, we set ∆/d= 0.05.

In the second case, the results of the present problem were compared with previous
studies for low Reynolds numbers. Di Carlo et al. (2009) treated a similar problem
with a finite element method for a relatively large particle for Re6 40. We performed
a computation using their parameter values and compared the results, as shown in
figure 2. This shows the lateral force Fy exerted on a particle placed at various
positions on the y-axis with d/D= 0.22 and Re= 40. Although fairly good agreement
was obtained overall, there were some discrepancies, especially for a particle placed
close to the channel walls. The relative error between the two results was about 10 %
on average. One reason for these discrepancies may be that the precise results of Di
Carlo et al. (2009) were difficult to read from figure 3 of their paper. The present
computation confirmed that the lateral forces Fz vanish at all positions (crosses in
figure 2), as expected from symmetry considerations. The intersection of the force
curve Fy with the horizontal axis in figure 2 indicates the location of an equilibrium
position where the resultant lateral force vanishes. The channel face equilibrium
positions thus obtained showed good agreement between the present results and the
corresponding results in figure 3 of Di Carlo et al. (2009) within about 2 % error
for d/D= 0.22 and 0.30 at Re= 40. Further comparisons of the present results with
other previous studies can be seen in figure 8(a).

The effect of the channel length l on the computational results was examined for
various Reynolds numbers in the case of d/D= 0.11. The lateral forces computed at
several positions in the cross-section for l/d= 10, 20, and 30 were compared with the
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FIGURE 3. (Colour online) (a) Non-dimensional lateral force Fy when the particle is
placed on the y-axis, and (b) non-dimensional lateral force Fr along the diagonal when
the particle is placed on the diagonal. The variable r represents the distance from the
channel centre. The hollow squares represent the values at Re= 144 and the filled circles
correspond to Re= 514. The asterisk and the cross correspond to the experimental results
at Re= 144 and Re= 514, respectively (Miura et al. 2014).

corresponding values for l/d = 50. The differences between the values for l/d = 10
and 50 varied depending on the positions, but the differences between l/d= 20 or 30
and 50 were less than 2 % at Re= 514 and about 3 % at Re= 968. In addition, the
locations of the equilibrium position determined from the lateral force profiles showed
a good agreement between the cases of l/d= 20 and 50. Thus, we adopted l/d= 20
in the present study.

In the experiments of Miura et al. (2014), the distributions of the particle centres
were observed at downstream cross-sections of square channels of width D= 6.0 mm
for neutrally buoyant spherical particles of diameter d = 0.65 mm. Corresponding
to these experiments, we report here cases for d/D = 0.11. This size ratio is
comparable with previous experimental and numerical studies, including Chun & Ladd
(2006) (d/D = 0.11), Di Carlo et al. (2007) (0.18), Bhagat et al. (2008) (0.07–0.1),
Choi et al. (2011) (0.075–0.16) and Abbas et al. (2014) (0.11). In computing the
trajectories of the particle, we adopted an undisturbed fluid velocity and half of the
undisturbed vorticity vector at the centre of the particle as the initial conditions for
V and Ω , respectively. The lateral forces (Fy, Fz) were estimated after the particle
reached a steady state.

3. Results and discussion
3.1. Lateral forces at low and high Reynolds numbers

As representative examples, the lateral forces exerted on a particle are plotted in
figure 3(a,b) when the particle is placed on the y-axis or on the diagonal, respectively,
for Re = 144 and 514. In figure 3(b), r (= √y2 + z2) represents the distance from
the channel centre and Fr denotes the lateral force along the diagonal. In both
figures, the outward forces toward the channel walls act on the particle when it is
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FIGURE 4. (a) Map of the lateral forces (Fy, Fz) and trajectories of the particle centre
projected over the channel cross-section at Re= 144. Each arrow at the lattice represents
the direction of the lateral force, and its magnitude is indicated by the colour. The
triangle represents the channel face equilibrium position, which is stable, and the square
shows the channel corner equilibrium position, which is unstable. The thick red line
represents the heteroclinic orbit that joins the channel face equilibrium position and the
corner equilibrium position. (b) Particle distribution obtained experimentally at Re= 144.
(Miura et al. 2014) and the heteroclinic orbit obtained numerically. Each dot represents
the location of a particle centre observed in the cross-section.

located close to the channel centre, whereas significant wall repulsion forces act on
the particle when it is placed near the channel walls. In all cases computed, one
equilibrium position exists at a location between the channel centre and the channel
wall, which is determined as the intersection of the force curve with the horizontal
axis. The intersection on the y-axis, shown in figure 3(a), represents the channel
face equilibrium position, and the intersection on the diagonal, shown in figure 3(b),
represents the channel corner equilibrium position.

Miura et al. (2014, 2015) observed the distributions of particle centres at
downstream channel cross-sections, and determined the locations of equilibrium
positions as local maximum positions of the probability density function of the
particles. At Re= 144, the equilibrium positions thus determined are present only at
the centre of the channel faces, while at Re= 514, both the channel face and channel
corner equilibrium positions are present. In figure 3(a,b), experimentally obtained
equilibrium positions are indicated by an asterisk for Re = 144 and a cross for
Re= 514, respectively. The locations of these equilibrium positions showed excellent
agreement with the present numerical results, although there are some deviations in
the experimental measurements (see figure 8a,b). At Re= 144, the present numerical
simulation predicts the presence of channel corner equilibrium positions, whereas
they are not observed experimentally. We think that the channel corner equilibrium
positions are unstable for Re smaller than a certain critical value, Rec, and so they
cannot be observed experimentally for Re< Rec. This is discussed below.

Figure 4(a,b) show a map of the lateral forces (Fy, Fz) in the first quadrant of
the channel cross-section at Re = 144 (< Rec), and the corresponding experimental
particle distribution results (Miura et al. 2014). In figure 4(a), each arrow represents
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the direction of the lateral force acting on a particle located at the origin of the
arrow, with the magnitude expressed by the colour. Several representative trajectories
of the particle centre projected over the cross-section are also plotted with black lines.
In figure 4(b), each dot represents the location of a particle centre observed in the
cross-section; the data are summed over the region of the azimuthal angle between 0
and π/4 based on symmetry considerations.

In figure 4(a), the red square represents the channel corner equilibrium position
on the diagonal, the location of which is determined from the force curve shown
in figure 3(b). Trajectories starting from the neighbourhood of the corner equilibrium
position lead away from this location, indicating that the corner equilibrium position
is unstable. In addition, trajectories starting from various initial positions approach
the channel face equilibrium position (red triangle in figure 4a), indicating that the
channel face equilibrium position is stable. This is the reason why no particles are
observed near the channel corners and most particles are placed near the centre of
the channel face in figure 4(b).

From the trajectories illustrated in figure 4(a), we notice that the particles migrate
in two stages. In the first stage, they move in nearly radial directions until they
reach a single line that represents a heteroclinic orbit joining the channel face
equilibrium position and the corner equilibrium position (red line in figure 4a). In
the second stage, the particles travel along the heteroclinic orbit toward the channel
face equilibrium position. In accordance with this prediction, figure 4(b) shows that
the particles observed experimentally are almost aligned along the heteroclinic orbit,
with most particles focused near the channel face equilibrium position. The first stage
is a relatively fast process, while the second stage is slower. We will show in § 3.3
that the time scale, or the travelling distance in the flow direction during each stage,
depends on not only the particle position but also the Reynolds number.

The present results shown in figure 4(a) at Re = 144 are consistent with previous
studies for microchannel flows for 1 6 Re 6 120. For the same size ratio with the
present study (d/D = 0.11), Abbas et al. (2014) made microscope measurements
of particles suspended in square microchannel flows and numerical analyses of the
trajectories of a single particle based on the force coupling method. The trajectories
at Re = 120 shown in figure 8 of their paper are comparable to those shown in
figure 4(a), although the locations of the channel face equilibrium positions obtained
in the present study are closer to their experimental results rather than their numerical
results (see our figure 8a).

At lower Re (= 40) and for larger particles (d/D = 0.22), the distribution of the
lateral forces in the cross-section was calculated by a finite element computation (Di
Carlo et al. 2009) and by a perturbation analysis (Hood, Lee & Roper 2015). While
not shown here, we have also plotted the map of the lateral forces and computed the
trajectories for Re= 50 and d/D= 0.11 (Nakagawa et al. 2014), which were found to
have similar features to figure 4(a); outward forces are exerted on the particle in the
inner region of the heteroclinic orbit, whereas in the outer region significant repulsion
forces act, with the magnitude being larger nearer to the centre of the channel face
and weaker nearer to the corner. There is also a stable equilibrium position at the
centre of each channel face, and an unstable equilibrium position at each corner. These
features are also observed in figure 1 of Di Carlo et al. (2009), despite the difference
in size ratio d/D. Hood et al. (2015) estimated the lateral forces using a regular
perturbation method from the Stokes flow regime. Although the trajectories and the
lateral force distribution shown in figure 8 of their paper are qualitatively similar to the
present results, there seem some discrepancies in the region near the channel wall and
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FIGURE 5. (a) Map of the lateral forces (Fy, Fz) and trajectories of the particle centre
projected over the channel cross-section at Re = 514. At this Re, both the channel face
equilibrium position (triangle) and the channel corner equilibrium position (square) are
stable. The thick red solid line represents the heteroclinic orbit and the thick red dashed
line represents the separatrix. (b) Particle distribution obtained experimentally at Re =
514 (Miura et al. 2015) and the heteroclinic orbit obtained numerically. For additional
explanation, see figure 4.

around the channel corner equilibrium positions; the lateral forces in that region are
rather weak compared to Di Carlo et al. (2009) and the present study. Large repulsion
forces on the particles near the channel wall were reported experimentally by Choi
et al. (2011) in the range of 2.4 6 Re 6 60. Since the effect of the channel wall
was calculated by the method of reflections in Hood et al. (2015), a finite number
of reflections may lead to the rather weak repulsion force when a large particle is
placed close to the channel wall.

The map of the lateral forces computed at Re= 514 (> Rec) and the corresponding
experimental results of the particle distribution (Miura et al. 2015) are shown in
figure 5(a,b), respectively. Several trajectories of the particle centre are plotted with
black lines in figure 5(a). The trajectories indicate that at this Reynolds number, both
the channel face and channel corner equilibrium positions are stable, and separatrix
(red dashed line) as well as a heteroclinic orbit (red solid line) appear in figure 5(a).
The intersection of these two lines represents a saddle point. The trajectories in
figure 5(a) also suggest a two stage migration of the particles: migration up to the
heteroclinic orbit in the first stage and migration along the heteroclinic orbit toward
either the channel face or corner equilibrium position in the second stage. This
property is exemplified in figure 5(b), which shows the alignments of particles along
the heteroclinic orbit near the channel face and channel corner equilibrium positions.

To the authors’ knowledge, there are no comparable studies investigating the lateral
forces on a particle suspended in square channel flows at this Re, except Chun & Ladd
(2006). They reported from their numerical simulation, using the lattice Boltzmann
method, that only the channel corner equilibrium positions are stable and the channel
face equilibrium positions are unstable above Re= 500. This result does not match our
experiments (Miura et al. 2014, 2015) and the present numerical simulation shown
in figure 5(a). For low Re (≈ 100), Chun & Ladd (2006) found stable equilibrium
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FIGURE 6. (a) Map of the lateral forces (Fy, Fz) and trajectories of the particle centre
projected over the channel cross-section at Re = 260. At this Re, an additional stable
equilibrium position (red circle) appears on the heteroclinic orbit (thick red solid line).
(b) Particle distributions obtained experimentally at Re= 260 (Miura et al. 2014) and the
heteroclinic orbit obtained numerically. For additional explanation, see figure 4.

positions in corners and faces while in the following numerical studies (Di Carlo et al.
2009; Abbas et al. 2014), including the present study, and in experimental studies
(Kim & Yoo 2008; Di Carlo et al. 2009; Choi et al. 2011; Abbas et al. 2014; Miura
et al. 2014), the corner corner equilibrium positions were indicated to be unstable.
With regard to the discrepancy at low Re (≈ 100), Abbas et al. (2014) reported
from their numerical simulations, adopting a very short computational domain, that
the particle can be pushed towards the channel corner instead of the centre of the
channel face at Re = 120, suggesting that the inter-particle interaction in the flow
direction may result in the presence of the channel corner equilibrium position at low
Re. Chun & Ladd (2006) employed a periodic channel length of l/d = 5 for their
simulations at Re = 100–1000. Thus, the discrepancy observed at high Re (≈ 500)
may also originate from the hydrodynamic interaction between particles, since the
wake of a particle could be larger and longer as Re increases. We will examine the
effect of the channel length on the particle behaviour at high Re in a future study.

3.2. Lateral forces near the critical Reynolds number
The present numerical study showed that both the channel face and channel corner
equilibrium positions always exist in the range of Re computed, but in fact the
channel corner equilibrium positions are unstable until the Reynolds number exceeds
a certain critical value, Rec (≈ 260). Figure 6(a,b) show a map of the lateral forces
computed at Re= 260 and the corresponding experimental particle distribution (Miura
et al. 2014), respectively. Near this Re, it was shown experimentally that additional
equilibrium positions appear at azimuthal angles of ∼0.5–0.7 rad, as well as the
channel face equilibrium positions (Miura et al. 2014, 2015). Corresponding to
this observation, the present computation showed the presence of another stable
equilibrium position on the heteroclinic orbit at Re = 260, which is indicated by a
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FIGURE 7. Particle trajectories in (a) the (x, y) plane and (b) the (x, z) plane, starting
from (y/(D/2), z/(D/2)) = (0.5, 0.375), at Re = 144 (solid line), 260 (dashed line) and
514 (dash-dotted line). The horizontal dotted lines denote the asymptotic coordinates
the trajectories approach. The dashed thin lines represent the trajectories, starting from
(y/(D/2), z/(D/2))= (0.2, 0.1), at Re= 260. Note that the x-scale for this case is shown
on the upper horizontal axis.

red circle in figure 6(a). This location, of azimuthal angle 0.59 rad, is close to the
equilibrium position observed experimentally. One of the characteristics at this Re is
that the magnitudes of the lateral forces are very small along the heteroclinic orbit.
This property may be demonstrated in figure 6(a), in which the trajectories (black
lines) enter the heteroclinic orbit (red line) at almost right angles. The particles in
the second stage move very slowly along the heteroclinic orbit, taking a long time
to reach the stable equilibrium position (see figure 7). The magnitudes of the lateral
forces are so small that other equilibrium positions may be present on the orbit. The
slow movement in the second stage may be reflected in the experimental observation
that the particles shown in figure 6(b) are aligned along almost entire circumference
of the heteroclinic orbit and the focusing near the equilibrium positions is weak.

In order to examine the stability of the channel corner equilibrium position from
the lateral force profile, we computed the azimuthal component of the lateral force,
Fθ , along a short circular arc passing the corner equilibrium position at Re = 144,
260 and 514. The computations in the range of θ from π/4 to π/4 − 0.025 rad
indicated that, as θ decreases from π/4, Fθ decreases monotonically from zero at
Re= 144, whereas Fθ increases monotonically from zero at Re= 514. Since the radial
component of the lateral force, Fr, vanishes at the corner equilibrium position, varying
from positive to negative values with r along the diagonal, this result implies that the
corner equilibrium position is a saddle point at Re= 144 and it is a stable equilibrium
point at Re = 514. The magnitudes of Fθ/ρU2d2 at θ = π/4 − 0.025 rad are about
2× 10−4 at Re= 144 and 514. On the other hand, at Re= 260 the maximum value
of Fθ/ρU2d2 in this range of θ is about one-tenth of this value, i.e. Fθ is extremely
small, indicating that this Reynolds number is close to the critical value, Rec. The
similar computations at Re= 300 also yielded small values of Fθ in the same range
of θ . As such subtle variations in the lateral forces may be beyond the accuracy of
the current numerical method, further analyses of higher precision are necessary to
determine the critical Reynolds number.
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3.3. Entry length for focusing
The trajectories shown in figures 4(a)–6(a) clearly demonstrate the two stage
properties of the particle migration. As a representative example of the particle
behaviour at each Re, the projections of the trajectories onto the (x, y) and (x, z)
planes, starting from (y/(D/2), z/(D/2)) = (0.5, 0.375) in the cross-section, are
plotted at Re= 144, 260 and 514 in figure 7. The horizontal dotted lines represent the
coordinates of the asymptotic position where the trajectory approaches: the channel
face equilibrium position at Re = 144 (triangle in figure 4a), the stable equilibrium
position on the heteroclinic orbit at Re = 260 (circle in figure 6a) and the channel
corner equilibrium position at Re= 514 (square in figure 5a). The first stage continues
until the particle reaches the heteroclinic orbit. The travelling distance in the flow
direction during the first stage can be estimated from figure 7 as L1/D≈ 50, 35 and
30 at Re = 144, 260 and 514, respectively. The value of L1/D ≈ 50 at Re = 144
agrees with the result for Re = 120 reported by a numerical simulation of Abbas
et al. (2014), although the initial position of the trajectory is different.

After the first stage, the particle translates much slower along the heteroclinic orbit
towards the stable equilibrium position in the second stage. Figure 7 shows that the
second stage continues until the travelling distance L2/D ≈ 600 and 100 from the
channel inlet, at Re= 144 and 514, respectively, indicating that L2 is about ten times
and several times larger than L1 at Re= 144 and 514, respectively. These values of L2
were estimated from the axial distance where the centre of particle approaches within
0.005 × (D/2) to the asymptotic position. The value of L2/D ≈ 600 at Re = 144 is
about a half of the result of Abbas et al. (2014) for Re= 120, which is presumably
due to the difference in the initial position as well as the Reynolds number, or the
method of estimate for L2. They reported that L2/D≈ 1000 at both Re= 60 and 120,
and figure 9 of their paper showed that, at Re = 12, the particle did not approach
within a close distance to the asymptotic position even at x/D= 3000, indicating that
L2/D > 3000 at Re = 12. The present study indicated that the axial distance of the
second stage is, in general, longer for smaller Re, which seems consistent with the
results of Abbas et al. (2014).

Near the critical Reynolds number, however, the lateral velocity of the particle
moving along the heteroclinic orbit is so small that the particle keeps migrating in
much longer axial distance in the second stage, as seen from the curve for Re= 260
in figure 7. As another example for this Reynolds number, a trajectory starting from
(y/(D/2), z/(D/2)) = (0.2, 0.1) is also plotted by thin dashed lines in figure 7(a,b).
Note that the horizontal axis for these curves is shrunk by one-third (the scale is
shown on the upper axis). In this case also, the particle approaches asymptotically
the stable equilibrium position on the heteroclinic orbit (circle in figure 6a). The
travelling distance before reaching the stable equilibrium position is estimated to be
L2/D ≈ 1100 from figure 7. Thus, it is demonstrated that, at Re ≈ Rec, L2 is much
larger than L1, possibly by two orders of magnitude. Therefore, we conclude from
the present results that an increase in Re decreases L1 and it also decreases L2 in
general, but for Re≈ Rec, L2 could be extremely large compared to L1.

In Miura et al. (2014), we have discussed the entry length after which lateral
migration has fully developed. Assuming that the lateral force is balanced by a
viscous Stokes drag, we derived the conventional expression of the entry length Le as
Le/l′≈ 6πA−1Re−1(d/D)−3 (Matas et al. 2004a; Di Carlo et al. 2007) when the lateral
force is expressed as F = A(d/D)4ρU2D2, which was suggested from an asymptotic
theory (Ho & Leal 1974; Schonberg & Hinch 1989). Here, l′ represents a lateral
migration distance and A is a constant, depending on the particle position in the
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cross-section as well as the Reynolds number. Although an alternative expression of
Le/l′ proportional to (d/D)−2 instead of (d/D)−3 may be obtained for microchannel
flows (Di Carlo 2009; Choi et al. 2011), there are no differences between these two
expressions in the case of a fixed size ratio d/D as in the present study. Considering
the two stage migration properties, we notice that the entry length Le estimated from
the above formula may correspond to the length of the first stage, L1. Thus, we here
estimate the entry length Le using the magnitude of the lateral force obtained in the
present numerical computations and compare them with the values of L1 obtained
from the trajectories shown in figure 7.

Figures 4(a)–6(a) indicate that F/ρU2d2 ≈ 4, 3 and 2× 10−3 at Re= 144, 260 and
514, respectively, in the region near (y/(D/2), z/(D/2))= (0.5, 0.375). These values
lead to Le/D ≈ 50, 36 and 28 at Re = 144, 260 and 514, respectively, if we assume
l′≈D/6, i.e. the lateral migration distance is set to be one-sixth of the channel width
in the first stage. These estimates show good agreement with the above values of L1

obtained for thick lines in figure 7. Thus, Le is indicated to provide the length of the
first stage L1. It may be useful to note that the entry length Le, in general, decreases
slower than Re−1 with increasing Re, since an increase in Re decreases the constant
A in the force expression, as shown in the present study.

The main findings of the present study include that the length of the second
stage, L2, is much larger than L1 or Le. This result suggests that the length of
channels required for particle focusing is much larger than Le, which rationalizes the
experimental observation of Miura et al. (2014); the entry length Le estimated using
the above formula was much shorter than that expected from the experimental results
of the particle distribution. For microchannel flows at low Re (6 60), the experimental
study of Choi et al. (2011) reported that the focusing on the channel face equilibrium
position was rather weak in the second stage when the particle distributions were
measured at 240D–950D downstream of the entrance. When the measurements were
performed at 640D downstream, the fractions of the particles located in the region of
−5◦ 6 θ 6 5◦ around the channel face equilibrium position were less than 30 % for
d/D= 0.075 and about 50 % for d/D= 0.16, at Re= 60. For smaller Re, the fractions
were reduced even when the measurements were performed further downstream. In
their study, the length of Le estimated using the above formula described well their
experimental observation for the first stage, and L2 was assessed to be twice of
this length. However, these weak focusing properties in the second stage may imply
longer L2 than that of the authors’ assessment in their paper. Further studies may
be required for the entry length, since this information is one of the most important
factors for the design of microchannels for practical applications such as separation,
filtration and sorting of particles. We will return to this matter again at the end of
the next section.

3.4. Reynolds number dependence of the equilibrium positions
The locations of the channel face and corner equilibrium positions, ye, are plotted
against Re in figure 8(a,b), together with the experimental data (Miura et al. 2014,
2015). In figure 8(a), the results of microchannel experiments at lower Re are
also plotted for comparable size ratios (d/D = 0.075–0.17). The present numerical
simulation showed that the channel face equilibrium positions always exist in the
range of Re from 20 to 1000 and they are stable. As Re increases from small values,
micro scale experiments have demonstrated an initial increase in equilibrium position
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FIGURE 8. (Colour online) Locations of (a) the channel face equilibrium positions and (b)
the channel corner equilibrium positions. The circles represent the results of the present
numerical simulations. The experimental results are represented by dots (d/D= 0.11) for
Miura et al. (2014, 2015), filled diamonds (d/D= 0.083) and filled squares (d/D= 0.17)
for Sugihara-Seki (2015), and hollow diamonds (d/D = 0.075), hollow triangles (d/D =
0.12) and hollow squares (d/D= 0.16) for Choi et al. (2011), and crosses (d/D= 0.11)
for Abbas et al. (2014). In figure 8(b), hollow and filled circles indicate stable and
unstable equilibrium positions, respectively.

ye (Choi et al. 2011; Abbas et al. 2014; Sugihara-Seki 2015), while larger millimetre
scale experiments have shown a decrease in ye (Miura et al. 2014, 2015). These
features are well described by the present numerical simulation.

In figure 8(b), hollow and filled circles denote stable and unstable channel corner
equilibrium positions, respectively. The hollow circles in figure 8(b) are in fairly good
agreement with the experimental results (Miura et al. 2014, 2015), and exhibit a
monotonic increase with increasing Re. This monotonic increase in ye is in agreement
with experimental observations of circular tube flows (Segre & Silberberg 1962;
Matas et al. 2004a) and the predictions of perturbation analysis (Asmolov 1999;
Matas et al. 2009). In circular tube flows, the equilibrium radial position of neutrally
buoyant spherical particles, known as the Segre-Silberberg annulus, was reported
to move monotonically towards the tube wall with increasing Re up to Re = 1700
(Segre & Silberberg 1962; Matas et al. 2004a). Next, we consider the implication of
the results shown in figure 8, in relation to the results of previous studies, mainly
theoretical and numerical studies on the inertial migration.

There have been many theoretical studies, based on the perturbation method,
investigating the origin of the lateral forces on particles suspended in channel flows.
Among them, the effect of curvature in Poiseuille velocity profile was first pointed
out by Ho & Leal (1974). From dual perturbation expansions in Rep and d/D with
the condition of Rep � (d/D)2, they indicated for plane Poiseuille flow that the
interaction of the stresslet (symmetric force dipole), generated due to the particle
rigidity constraint, and its wall correction with the bulk shear flow produces the
inward force, whereas the interaction between the stresslet and the curvature of the
bulk velocity profile yields the outward force towards the channel wall. Compared
with these effects, the lag velocity of the particle and its slip rotation were found to
be less important for neutrally buoyant particles. In accord with this conclusion for
small particles at low Rep, the two-dimensional finite element simulations of Feng,
Hu & Joseph (1994) indicated that the driving forces of lateral migration for neutrally
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buoyant particles consist mainly of the wall repulsion and the lift force caused by
the velocity profile curvature even for large particle sizes at relatively large Reynolds
numbers. Thus, the equilibrium position of a neutrally buoyant spherical particle in
channel flow could be determined by a balance between the outward force due to the
shear gradient and the inward force due to the wall effect (Ho & Leal 1974; Matas
et al. 2004b).

For higher Re, Asmolov (1999) extended the matched asymptotic approach of
Schonberg & Hinch (1989) up to Re = 1500 in the condition of Rep � 1 and
d/D� 1, and showed that the equilibrium position in plane Poiseuille flow is shifted
progressively towards the channel wall as Re increases. The same trend for Poiseuille
flow through circular tubes, which was obtained by Matas et al. (2009) based on the
matched asympotic expansion, explained successfully the experimental observation
of the outward shift of the Segre-Silberberg annulus with Re (Segre & Silberberg
1962; Matas et al. 2004a). This shift of the equilibrium position was understood by
taking the above mentioned two competing lift forces into account; the increase in
shear-gradient induced lift force with Re is larger than that in wall-effect induced lift
force, so that increasing Re shifts the particle equilibrium positions closer to the tube
wall (Asmolov 1999; Matas et al. 2004b).

With regard to square channel flows, Hood et al. (2015) adopted a perturbation
method similar to Ho & Leal (1974) and showed that the results of Ho & Leal
(1974) hold in a larger parameter space of Re and d/D than the authors assumed.
Estimating the stresslet flow field, they concluded that viscous stresses are dominant
over the inertial stress even at moderate Reynolds numbers in square channel flows.
From the curved velocity profile in the square channel flow, in particular, along the y-
(z-) axis and the diagonal in the channel cross-section, the prediction of the outward
shift of the equilibrium position with Re may be also applied for the channel face
and corner equilibrium positions if the particles are infinitesimally small. This could
account for the present results for the channel face equilibrium positions at low Re
and the channel corner equilibrium positions (figure 8). However, the channel face
equilibrium positions at high Re exhibited the opposite trend. A possible cause may be
the finite size ratio d/D (= 0.11) and consequently the finite particle Reynolds number
(Rep ≈ 2.5–12.3) in the present numerical study and the experiments (Miura et al.
2014, 2015), which violates the assumptions of the matched asymptotic expansion
method. According to the study of Hood et al. (2015), this result may imply that,
due to the finite size effect of the particle, an increase in Re (> 200) increases the
lateral force due to the wall effect to a more dominant level than that due to the
velocity shear gradient, for a particle placed near the centre of the channel faces.
In fact, the present study demonstrates that on the y- (or z-)axis, the lateral forces
near the centreline are decreased compared to near the channel wall, as shown in
figures 4(a)–6(a).

The importance of the finite particle size for particle migration properties was
pointed out in several studies (Feng et al. 1994; Di Carlo 2009; Matas et al. 2009;
Hood et al. 2015). In particular, the experimental study of Matas et al. (2004a) for
circular tube flows reported the presence of a new equilibrium position closer to
the tube centre in addition to the Segre–Silberberg annulus at elevated Re, and the
majority of the particles were found to lie on the additional inner annulus for Re>700.
Since their matched asymptotic expansion analysis for particles of vanishing size did
not provide an additional zero of the lateral force, representing a new equilibrium
position, in the range of Re from 1 to 2000, they concluded that the presence of the
inner annulus observed experimentally is a result of the finite size of the suspended
particle (Matas et al. 2009).
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The shift of the particle positions towards the channel centreline reported in high
aspect ratio rectangular microchannel flows (Ciftlik, Ettori & Gijs 2013) may be
related to the inward shift of the channel face equilibrium position with high Re
(>200). Ciftlik et al. (2013) measured fluorescent images of particle streams at
downstream positions in the range of Re from 75 to 1500. From their observations in
the direction perpendicular to the short channel face, they reported that the positions of
the streams are almost constant up to Re= 300, and for 300< Re< 450 they migrate
towards the channel centreline with increasing Re. Figure S3 of their paper showed
that, beyond this value, the focusing positions of the particles approach the channel
wall as Re increases up to 1500. The inward shift of the particle focusing positions
for 300 < Re < 450 is similar to the present result for the channel face equilibrium
position, as shown in figure 8(a), although the tendencies in the other ranges of
Re are different. These discrepancies may result from differences in experimental
conditions, including the aspect ratio of the channel cross-section.

One of the key results of the present study is the large entry length, L2, for particle
focusing. As discussed in the previous section, the first stage of particle migration
may be described by considering two competing lateral forces: the outward force
due to the shear gradient and the inward force due to the wall effect. Thus, the
asymptotic expansion analysis in Rep and d/D may explain the particle behaviour
even at moderate Reynolds numbers in the first stage (Hood et al. 2015). However, in
the second stage, where the two lateral forces are almost balanced on the heteroclinic
orbit, the next order terms of the expansion may be necessary to take into account
for describing the migration behaviour precisely. Particle slip velocity as well as
slip rotation may play a role in determining the particle lateral motion along the
heteroclinic orbit, the contributions of which can be neglected compared to the
leading order terms in the first stage. Our results show that at low Re (< Rec), the
lateral force acts in the direction from the channel corner equilibrium position to
the channel face equilibrium position along all the heteroclinic orbit. This makes the
channel face equilibrium position stable and the channel corner equilibrium position
unstable. At high Re (> Rec), a saddle point appears on the heteroclinic orbit, and
the direction of the lateral force is reversed between the saddle point and the channel
corner equilibrium position. This makes the corner equilibrium position stable. It
would be important to elucidate the origin of these variations of the lateral force in
the second stage of particle migration, since this will enable us to estimate the entry
length, L2, for the particle focusing.

Another important issue we need to explore in the near future is the effect of
the hydrodynamic interaction between particles, since it may affect the location and
the number of equilibrium positions (Humphry et al. 2010) and be a possible cause
for the dispersion of particles observed experimentally (Di Carlo 2009; Abbas et al.
2014). In addition, Abbas et al. (2014) found that particles suspended in square
channel flows are preferentially located near the channel centre at Re< 1, opposed to
predictions based on the Stokes flow or extrapolation from inertial migration at higher
Re, and this phenomenon was considered to be generated by the shear-induced particle
interactions. It may be that the inter-particle interaction affects also the migration
behaviour at higher Re. The effect of particle size relative to the channel width is
also important, considering the difference in Reynolds number and particle Reynolds
number. This effect has been investigated by a regular perturbation analysis of the
Stokes equation (Hood et al. 2015). A recent experimental study in our laboratory
for 100 6 Re 6 1000 has demonstrated considerably enhanced focusing properties
for larger particles near the equilibrium positions, whereas a clear dependence on
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particle size has not been observed for the locations of the equilibrium position and
the transition behaviours in the range of 0.05 6 d/D 6 0.11 (Miura et al. 2015).
The significant effect on the particle focusing may reflect the high power dependence
of the magnitude of the lateral forces on the size ratio. Further detailed experimental
and numerical studies are necessary to elucidate this effect. Another issue to explore
is related to the physics near Re = Rec. At Re ≈ Rec, we have revealed extremely
small lateral forces along the heteroclinic orbit and the presence of a new equilibrium
position on the orbit. It is uncertain whether the saddle point and the new equilibrium
point appear simultaneously and whether other equilibrium positions are present on
the heteroclinic orbit. It would be interesting to carry further investigations on these
issues.

4. Conclusions

We have performed numerical simulations of the motion of a spherical particle
suspended in square channel flows, at a size ratio of particle diameter to channel
width of 0.11, in the range of Re from 20 to 1000. The obtained results describe
well the experimental observations of particle distributions in dilute suspension flows
through micro and millimetre scale channels, and elucidate the migration behaviours
of particles approaching the equilibrium positions in the channel cross-section as they
travel downstream.
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