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The main theorem states that a bounded linear operator h from a unital
C∗-algebra A into a unital Banach algebra B must be a homomorphism provided
that h(1) = 1 and the following condition holds: if x, y, z ∈ A are such that
xy = yz = 0, then h(x)h(y)h(z) = 0. This theorem covers various known results; in
particular it yields Johnson’s theorem on local derivations.

1. Introduction

This paper is an analytic counterpart of the algebraic paper [1], in which we study
characteristic properties of homomorphisms and derivations in rings containing non-
trivial idempotents. Here we shall consider the same properties in C∗-algebras.
Since C∗-algebras do not always contain non-trivial idempotents, a straightforward
modification of the methods used in [1] cannot prove effective in this context.

Our main result, theorem 3.1, characterizes homomorphisms on C∗-algebras
through their action on elements satisfying some special relations (specifically, ele-
ments x, y and z that satisfy xy = yz = 0). Our main motivation for treating the
condition from theorem 3.1 is that, using a standard trick based on upper triangular
2×2 matrices, the results on this condition can be directly transformed into analo-
gous results concerning a certain condition (see corollary 3.2) that is automatically
satisfied by local derivations. As a corollary to our main result we shall thus obtain a
new, short and self-contained proof of a theorem by Johnson [4] on local derivations
on C∗-algebras (corollary 3.3). On the other hand, our method enables us to con-
sider operators preserving zero products. Such operators were studied thoroughly
in [2]. In § 4 we obtain generalizations and short proofs of some of their results.

For more details on the history and the background of the properties that are
considered in §§ 3 and 4 we refer the reader to [1]. In § 2 we prove the key lemma that
concerns bilinear maps on C(I)×C(I), where C(I) is the C∗-algebra of continuous
functions on an interval I.
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2. A lemma on bilinear maps

Lemma 2.1. Let X be a normed space, let I be a compact interval of R and let
φ : C(I) × C(I) → X be a bounded bilinear map such that φ(f, g) = 0 whenever
f, g ∈ C(I) are such that fg = 0. Then φ is symmetric (i.e. φ(f, g) = φ(g, f) for
all f, g ∈ C(I)).

Proof. The map φ can be thought of as a bounded linear operator on the projective
tensor product V = C(I) ⊗̂C(I) defined through

f ⊗ g �→ φ(f, g)

for all f, g ∈ C(I). On the other hand, the algebra V can be algebraically identified
with a subalgebra of C(I × I) by defining

(f ⊗ g)(s, t) = f(s)g(t)

for all f, g ∈ C(I) and s, t ∈ I.
Let F ∈ V be such that for some ε > 0 we have F (s, t) = 0 whenever s, t ∈ I are

such that |s − t| < ε. We claim that φ(F ) = 0. Of course, it is sufficient to prove
that we can expand F as F =

∑∞
n=1 fn ⊗ gn with fn, gn ∈ C(I) and fngn = 0 for

each n ∈ N. Write F =
∑∞

n=1 an ⊗ bn with an, bn ∈ C(I). For each k ∈ Z, we define
ωε

k ∈ C(I) by

ωε
k(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5ε−1s − 2k + 1, s ∈ ( 1
5ε ]2k − 1, 2k]) ∩ I;

1, s ∈ ( 1
5ε ]2k, 2k + 1]) ∩ I;

2k + 2 − 5ε−1s, s ∈ ( 1
5ε ]2k + 1, 2k + 2]) ∩ I;

0, elsewhere.

Note that ωε
k �= 0 only for finitely many k. It may easily be checked that ωε

i ω
ε
j �= 0

if and only if |i − j| � 1 and that 1 =
∑

i∈Z
ωε

i , and therefore that

1 =
∑
i,j∈Z

ωε
i ⊗ ωε

j .

Let i, j ∈ Z with |i − j| � 1 and let p = min{i, j}. Then ωε
i ⊗ ωε

j vanishes on

(I × I) \ (] 15ε(2p − 1), 1
5ε(2p + 4)[× ] 15ε(2p − 1), 1

5ε(2p + 4)[)

and, for s, t ∈ ] 15ε(2p − 1), 1
5ε(2p + 4)[, we have |s − t| < ε. Therefore, the function∑

|i−j|�1

ωε
i ⊗ ωε

j

vanishes on the set {(s, t) : I × I : |s − t| � ε}. This implies that

F = F
∑
i,j

ωε
i ⊗ ωε

j = F
∑

|i−j|>1

ωε
i ⊗ ωε

j =
∞∑

n=1

∑
|i−j|>1

anωε
i ⊗ bnωε

j ,

which gives the required decomposition, since (anωε
i )(bnωε

j ) = 0 for all n ∈ N and
|i − j| > 1.
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Let 0 < ε < 1
2π and define σε : R → R by

σε(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, −π < s � −2ε,

−2ε − s, −2ε < s � −ε,

s, −ε < s � ε,

2ε − s, ε < s � 2ε,

0, 2ε < s � π,

σε(s + 2π) = σε(s), s ∈ R.

We also define �ε ∈ C(I × I) by �ε(s, t) = σε(s − t) for all s, t ∈ I. We see immedi-
ately that

σ̂ε(0) = 0, σ̂ε(k) =
i

πk2 [sin(2kε) − 2 sin(kε)] (k ∈ Z \ {0}),

where, as usual σ̂ε stands for the Fourier transform of the 2π-periodic function σε.
Consequently,

�ε(s, t) =
∑
k �=0

σ̂ε(k)eikse−ikt, s, t ∈ I,

which clearly implies that �ε ∈ V and ‖�ε‖V � µ(ε), where µ ∈ C(R) is defined by

µ(s) =
∑
k �=0

| sin(2ks) − 2 sin(ks)|
πk2 , s ∈ R.

We now proceed to show that φ(f, g) = φ(g, f) for all f, g ∈ C(I). We need only
consider the case where both f and g are polynomials. In such a case, we define
F = f ⊗ g − g ⊗ f ∈ V and we observe that

F (s, t) = (f(s) − f(t))g(t) + (g(t) − g(s))f(t)
= (s − t)[P (s, t)g(t) + Q(s, t)f(t)], s, t ∈ I,

for some polynomials P and Q. So P, Q ∈ V and the function R ∈ C(I × I) defined
by

R(s, t) = P (s, t)g(t) + Q(s, t)f(t), s, t ∈ I,

also lies in V . For every 0 < ε < 1
2π we set Fε = �εR ∈ V . Since (F − Fε)(s, t) = 0

whenever s, t ∈ I are such that |s − t| < ε, we conclude that φ(F ) = φ(Fε). We
finally observe that

‖Fε‖V � ‖�ε‖V ‖R‖V � µ(ε)‖R‖V

and so
‖φ(F )‖ � ‖φ‖‖R‖V µ(ε).

Hence ‖φ(F )‖ � limε→0 ‖φ‖‖R‖V µ(ε) = ‖φ‖‖R‖V µ(0) = 0 and therefore φ(f, g) −
φ(g, f) = 0.

3. Main results

Theorem 3.1. Let A be a unital C∗-algebra and let B be a unital Banach algebra.
If h : A → B is a bounded linear operator such that h(1) = 1 and, for all x, y, z ∈ A,

xy = yz = 0 =⇒ h(x)h(y)h(z) = 0,

then h is a homomorphism.
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Proof. Let a and b self-adjoint elements in A. Of course it is enough to prove that
h(ab) = h(a)h(b). Let I1 (respectively, I2) be a compact interval of R containing
the spectrum of a (respectively, b). Pick f2, g2 ∈ C(I2) such that f2g2 = 0, and
define a bounded bilinear map φ1 : C(I1) × C(I1) → B by

φ1(f1, g1) = h(f1(a))h(g1(a)f2(b))h(g2(b))

for all f1, g1 ∈ C(I1). If f1 and g1 are such that f1g1 = 0, then

f1(a)(g1(a)f2(b)) = (g1(a)f2(b))g2(b) = 0,

and therefore the assumption on h implies that φ1(f1, g1) = 0. Using lemma 2.1 we
thus get φ1(f1, g1) = φ1(g1, f1) for all f1, g1 ∈ C(I1). In particular, by taking the
functions f1(s) = 1, g1(s) = s and using h(1) = 1 we obtain

h(af2(b))h(g2(b)) = h(a)h(f2(b))h(g2(b)).

We have derived this identity under the assumption that f2 and g2 are any functions
in C(I2) that satisfy f2g2 = 0. Therefore, we may apply lemma 2.1 for φ2 : C(I2)×
C(I2) → B given by

φ2(f2, g2) = h(af2(b))h(g2(b)) − h(a)h(f2(b))h(g2(b)),

and hence we may conclude that φ2(f2, g2) = φ2(g2, f2) for all f2, g2 ∈ C(I2).
In particular, for f2(s) = 1 and g2(s) = s we arrive at the desired conclusion
h(ab) = h(a)h(b).

Corollary 3.2. Let A be a unital C∗-algebra and let M be a unital Banach A-
bimodule. If a bounded linear operator d : A → M is such that d(1) = 0 and, for
all x, y, z ∈ A,

xy = yz = 0 =⇒ xd(y)z = 0,

then d is a derivation.

Proof. The set B of all matrices of the form(
x m

0 x

)
with x ∈ A and m ∈ M,

becomes a Banach algebra under the usual matrix operations and the norm∥∥∥∥
(

x m

0 x

)∥∥∥∥ = ‖x‖ + ‖m‖.

Observe that h : A → B, defined by

h(x) =
(

x d(x)
0 x

)
,

satisfies the conditions of theorem 3.1. Therefore, h is a homomorphism, which
implies that d is a derivation.
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Let M be an A-bimodule. Recall that a linear operator d : A → M is called
a local derivation if for every x ∈ A there exists a derivation dx : A → M such
that d(x) = dx(x). This concept was introduced by Kadison [5] and Larson and
Sourour [6] in 1990, and since then has been studied by a number of authors (see,
for example, the references in [1]). One of the most profound results in this area is
the one by Johnson [4, theorem 5.3], which we now obtain as a corollary.

Corollary 3.3 (Johnson [4]). A bounded local derivation d from a C∗-algebra A
into a Banach A-bimodule is a derivation.

Proof. Without loss of generality we may assume that A is a unital algebra and M
is a unital A-bimodule. If this was not true, then we would adjoin a unity 1 to A, set
1m = m1 = m for every m ∈ M , and extend d by setting d(1) = 0. (Incidentally,
it is easy to see that every local derivation sends 1 into 0 if A and M are unital.)

Let x, y, z ∈ A be such that xy = yz = 0. Then

xd(y)z = xdy(y)z = (dy(xy) − dy(x)y)z = 0.

Thus, d satisfies the conditions of corollary 3.2 and so d is a derivation.

We remark that the proof just given is entirely different from Johnson’s. More-
over, it is short and, unlike the one in [4], it avoids using another deep theorem of
Johnson on Jordan derivations [3]. On the other hand, Johnson proved that local
derivations from A into M are automatically continuous [4, theorem 7.5] and so
the assumption of boundedness can be removed from corollary 3.3. This, of course,
does not follow from our arguments.

4. Operators preserving zero products

Theorem 3.1 also gives new information about operators preserving zero products,
i.e. operators h : A → B such that, for all x, y ∈ A, xy = 0 implies h(x)h(y) = 0.
Such operators were recently studied in [2] (see also references therein). Theorem 3.1
certainly yields the definitive conclusion about zero-product preservers, but only
under the assumption that was avoided in [2], namely, h(1) = 1. Our proof can
easily be modified so that without this assumption it gives the following result.

Theorem 4.1. Let A be a unital C∗-algebra and let B be a Banach algebra. If
h : A → B is a bounded linear operator preserving zero products, then h(1)h(xy) =
h(x)h(y) for all x, y ∈ A.

Proof. Let a, y ∈ A with a self-adjoint and let I be a compact interval of R con-
taining the spectrum of a. Define φ : C(I) × C(I) → B by

φ(f, g) = h(f(a))h(g(a)y).

If f, g ∈ C(I) are such that fg = 0, then f(a)(g(a)y) = 0 and so φ(f, g) = 0. On
account of lemma 2.1, we have φ(f, g) = φ(g, f) for all f, g ∈ C(I). In particular,
for f(s) = 1 and g(s) = s we obtain h(1)h(ay) = h(a)h(y), which readily implies
the desired conclusion.
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In [2] there are several results giving the same conclusion as theorem 4.1. In
particular, [2, theorem 4.1] establishes theorem 4.1 for the case where A and B are
von Neumann algebras. For general C∗-algebras, however, our theorem seems to be
new.

The condition h(1)h(xy) = h(x)h(y) obviously characterizes maps preserving
zero products. However, a more desirable characterization is that h(x) = λϕ(x),
where ϕ is an algebra homomorphism and λ is a central element in the algebra B′

generated by the range of h. The assumptions of theorem 4.1 do not allow us to
conclude this; for instance, B can be an algebra with trivial multiplication and
hence every map preserves zero products. Anyhow, under rather mild additional
assumptions, for example,

(i) B′ is a unital algebra, or

(ii) h is onto and B2 = B,

it follows that h is of the form h(x) = λϕ(x). Indeed, this can be easily checked;
for (i) one merely has to follow the proof of [2, theorem 2.2], and for (ii) one has
to make an obvious modification in the proof of [2, theorem 4.6]. In particular, we
now see that [2, theorem 4.11] holds true not only for a C∗-algebra B, but also for
every Banach algebra satisfying B2 = B.

We conclude this paper with an analogue of theorem 4.1 for derivations.

Corollary 4.2. Let A be a unital C∗-algebra and let M be a unital Banach A-
bimodule. If a bounded linear operator d : A → M is such that, for all x, y ∈ A,

xy = 0 =⇒ xd(y) + d(x)y = 0,

then λ = d(1) lies in the centre of M and there is a derivation δ : A → M such
that d(x) = λx + δ(x) for all x ∈ A.

Proof. Following the same method as in the proof of corollary 3.2 we find from
theorem 4.1 that d(xy) + d(1)xy = xd(y) + d(x)y for all x, y ∈ A. Setting y = 1,
we see that λ = d(1) lies in the centre of M . Consequently, δ(x) = d(x) − λx is a
derivation.
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