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A pair of bouncing geometric Brownian motions (GBMs) is studied. The bouncing GBMs
behave like GBMs except that, when they meet, they bounce off away from each other.
The object of interest is the position process, which is defined as the position of the latest
meeting point at each time. We study the distributions of the time and position of their
meeting points, and show that the suitably scaled logarithmic position process converges
weakly to a standard Brownian motion as the bounce size δ → 0. We also establish the
convergence of the bouncing GBMs to mutually reflected GBMs as δ → 0. Finally, applying
our model to limit order books, we derive a simple and effective prediction formula for
trading prices.
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1. INTRODUCTION

Consider two particles, A and B, moving on the real line. Initially, particle A is to the right
of B. The motion of each particle follows a geometric Brownian motion (GBM) until they
meet. Once they meet, particle A instantaneously jumps to the right by an amount dictated
by a bouncing size parameter δ > 0, and particle B moves to the left by the same amount at
the same time. The two particles then continue their motions according to their GBMs until
they meet again, and this process continues for ever. We define a continuous time position
process {Pδ(t); t ≥ 0} as follows: the state of the position process at time t is the position
of the last meeting of the particles at or before time t. We study the structure of the
position process, and show that a suitably scaled and centered logarithmic position process
converges to a standard Brownian motion (BM) as δ → 0. The trajectories of the particles
are referred to as the bouncing GBMs, denoted by {Aδ(t); t ≥ 0} and {Bδ(t); t ≥ 0}. It
is shown that the time between consecutive meetings of the bouncing GBMs is inverse
Gaussian (IG) distributed, and the change between positions of consecutive meeting points
follows a normal inverse Gaussian (NIG) distribution (see Definition 3.1 for the definitions
of IG and NIG distributions). Using these distributions, assuming we can observe position
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process, but not the original bouncing GBMs, we use the method of moments to estimate
the parameters of the model and show that the estimators are consistent and asymptotically
normal.

We also study the convergence of the bouncing GBMs as δ → 0 and show that their
limits are two mutually reflected GBMs. Mutually reflected GBMs can be constructed from
mutually reflected BMs (the detailed construction is given in Section 2). Mutually reflected
BMs have been studied by Burdzy and Nualart [12], and a related model of mutually
reflected Brownian balls have been studied by Saisho and Tanaka [30]. Of these two papers,
the one by Burdzy and Nualart is more relevant to our model. They study two Brownian
motions in which the lower one is reflected downward from the upper one. Thus the upper
process is unperturbed by the lower process, while the lower process is pushed downward (by
an appropriate reflection map) when it hits the upper process. We use a similar construction
in our mutually reflected GBMs, except that in our case both processes reflect off of each
other in opposite directions whenever they meet. We assume that the reflection is symmetric,
which will be made precise in Section 2.

One application for this model arises in the study of limit order books (LOBs). A LOB is
a system that a financial market uses to record all the orders sent to the market from sellers
and buyers. Essentially, there are three types of orders, as listed below, can be submitted
to the LOB.

• Limit orders: A limit order is an order which buys or sells an asset at a specified
price or better.

• Market orders: A market order is an order which buys or sells an asset at the best
available price in the market.

• Order cancellation: An order cancellation is used to cancel a limit order in the LOB.

The order book organizes the orders by their prices and by their arrival times within each
price. The market bid price is the highest price of the limit buy orders, and the market ask
price is the lowest price of the limit sell order. The market ask price cannot be less than the
market bid price. The difference between the market ask and bid prices is called the spread.
When a market order arrives, or a limit buy (resp. sell) order arrives with price at least
equal to the market ask (resp. bid) price, the spread momentarily dips to zero, and a trade
occurs. The two matched orders are removed from the LOB immediately, and the spread
increases to a wider size. (We ignore the order sizes and assume that all orders are of size
one in this simplified discussion.) Clearly, the market ask price is always above the market
bid price, and when they momentarily become equal, a trade occurs instantaneously, and
they separate again. Between two consecutive trading instances, the market ask and bid
prices fluctuate due to new arrivals, cancellations, and so on.

There is an extensive literature in statistics and probability on the study of LOBs. In
particular, Markov models have been developed in Abergel and Jedidi [1], Bayraktar et al.
[5], Cont and De Larrard [14], Cont and Larrard [15], Cont et al. [16], Horst and Kreher
[19], Horst and Paulsen [20], Kruk [26], to name a few. In such models, point processes are
used to model arrival processes of limit and market orders, and the market bid and ask prices
are formulated as complex jump processes. To simplify such complexity, one tries to develop
suitable approximate models. Brownian motion type approximations are established, for
example, in Abergel and Jedidi [1], Bayer et al. [4], Bayraktar et al. [5], Cont and Larrard
[15], and the law of large numbers is recently studied in Horst and Kreher [19], Horst and
Paulsen [20].

It is clear that the stochastic evolution of the market ask and bid prices is a result of
complex dynamics of the trader behavior and the market mechanism. However, we focus
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on the following three important features of a LOB: (i) just before a trade occurs, the
spread momentarily becomes zero; (ii) right after a trade, the spread becomes positive; (iii)
between two consecutive trades, the market ask and bid prices change stochastically. To
capture these features, we model the market ask and bid prices as two bouncing GBMs Aδ

and Bδ such that (i) a trade occurs when the two prices become equal to each other; (ii)
right after the trade, the two prices will jump away from each other with a jump size δ; (iii)
between two consecutive trades, the two prices change according to independent GBMs.
Thus we can think of the market ask price as particle A and market bid price as particle B.
The meeting times of this particle correspond to the trading times, and the position process
corresponds to the trading price process, which records the most recent trading price. To
the best of our knowledge, this is the first work to model the market ask and bid prices
using GBMs. Some relevant work on modeling market bid and ask prices are Bayer et al.
[4], Cont and Larrard [15], Horst and Paulsen [20], all of which model the market ask and
bid prices as jump processes, and then study their scaling limits. In Cont and Larrard [15],
a random step function is derived as the scaling limit of the market bid price, where the
function jumps when a volume process of orders reaches a certain boundary. In Horst and
Paulsen [20], it is shown that the scaling limits of the market ask and bid prices are coupled
ordinary differential equations, and later on, in Bayer et al. [4], under a suitable scaling, the
price processes follow coupled stochastic differential equations.

Our main result for the bouncing GBM model says that under a suitable scaling, the
logarithmic trading price process converges to a standard Brownian motion as δ → 0. Using
these asymptotics, we derive a simple and effective prediction formula for trading prices in
Section 5. It is interesting to see that we get an asymptotic GBM model for the trading
prices in the limit. The GBM model captures the intuition that the rates of returns over
non-overlapping intervals are independent of each other, and has been extensively used to
model stock prices since the breakthrough made by Black and Scholes [8], Merton [27]. Thus
our model of bouncing GBMs provides another justification for the GBM model of trading
prices. Another interesting observation is the logarithmic returns between consecutive trad-
ing times are NIG distributed. In fact, empirical studies show that NIG distributions provide
an excellent fit for the logarithmic returns of assets (see Brander–Nielsen [9,10], Rydberg
[29]), and such a model is proposed in Barndorff–Nielsen [2].

Our bouncing GBM model is also related to asset-liability management (ALM). BM
and GBM models have been used for stochastic controls in ALM (see Decamps et al. [17]
and references therein). The asset and liability values are modeled as two GBMs constrained
in an allowable set A = {(x1, x2) ∈ R

2
+ : λ1x2 ≤ x1 ≤ λ2x2}, where λ1 and λ2 are constants

satisfying 0 < λ1 < λ2. Roughly speaking, inside the allowable set A, the asset and liability
value processes evolve according to two GBMs, and when they reaches the boundary of A,
an ALM strategy steps in to keep them in A. Consider the special case when λ2 = ∞. We
model the asset and liability value processes as bouncing GBMs (Aδ, λ

−1
1 Bδ), and they will

always lie in A. Thus the bouncing GBM model provides a simple static control policy for
ALM in this special case. Under such a control policy, whenever the liability value is about
to exceed the asset value, a fixed amount (a function of δ) of funds is provided to prevent
it happening. The exact analysis of bouncing GBMs in our work can be used to analyze
business performance, for example, the next time that liability value threatens to exceed
the asset value, and the value level when it happens.

It will be seen that the logarithmic position process of the bouncing GBMs is a renewal
reward process (see Lemma 3.6). Renewal reward processes are also called continuous time
random walks (CTRWs) in literature related to physics and finance. CTRWs were first
introduced by Montroll and Weiss [28]. The process-level limit theorems for coupled CTRWs
are studied in Becker–kern et al. [6], where they assume that the meeting times and meeting
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points are “coupled”, that is they are not independent. The asymptotic distributions of
CTRWs are studied in Kotulski [25]. We note that the logarithmic position process in our
model is a coupled CTRW. However, this process is not covered by the limit theorems in
Becker–kern et al. [6], although a similar process is studied in Kotulski [25] but for a fixed
time t.

The rest of the paper is organized as follows. In Section 2, we introduce our bouncing
GBM model in detail, where we also define a pair of mutually reflected GBMs that is
shown to be the limit of the bouncing GBMs as the bouncing size parameter δ approaches
0. All the main results are summarized in Section 3, including the distributions of times
and positions of meeting points, and the asymptotic behaviors of the logarithmic position
process. In Section 4, the estimators of the model parameters are derived using the method
of moments. Section 5 is then devoted to the application of bouncing GBMs in a limit order
book. In particular, we use an asymptotic GBM model obtained in Section 3 for trading
prices, from which we derive a simple and effective forecasting formula. We also apply the
formula to real data, and show that the estimated δ parameter is indeed very small, and
hence the asymptotic results are applicable, and work very well over short time horizons.

We use the following notation. Let (Ω,F , P ) denote a complete probability space satisfy-
ing the usual conditions. All the random variables and stochastic processes are assumed to be
defined on this space. The expectation under P will be denoted by E. Denote by R

K the K-

dimensional Euclidean space. For y ∈ R
K , let |y| =

√∑K
k=1 y2

k. For a real number x, define
x+ = max{x, 0} and x− = max{0,−x}. Similarly, for a real function f defined on [0,∞),
define f+(t) = max{0, f(t)} and f−(t) = max{0,−f(t)}, t ≥ 0. Denote by C([0,∞); RK)
the space of continuous functions defined from [0,∞) to R

K with the uniform topology, and
D([0,∞); RK) the space of RCLL (right continuous with left limits) functions defined from
[0,∞) to R

K with the Skorohod J1 topology. A stochastic process X with values in R
K will

be regarded as a random variable with values in D([0,∞); RK). All stochastic processes in
this work will have RCLL sample paths. Convergence in distribution of random variables
Xn to X will be denoted as Xn ⇒ X. For a R

K-valued random variables X, denote by
fX(·) its density function. If Y is another R

L-valued random variable, we use fX(·|Y = y)
to denote the conditional density function of X given that Y = y.

2. BOUNCING GBMS

The bouncing GBMs are denoted by {(Aδ(t), Bδ(t)); t ≥ 0}. Roughly speaking, Aδ and Bδ

behave like independent GBMs except that when they are about to meet, they bounce off
away from each other. More precisely, let Aδ(0) and Bδ(0) be two positive random variables
satisfying Aδ(0) > Bδ(0), and let δ be a strictly positive constant called the bouncing size
parameter. For t ≥ 0, we first define BMs Xa and Xb as follows. For t ≥ 0,

Xa(t) = μat + σaWa(t),

Xb(t) = μbt + σbWb(t),

where Wa,Wb are independent standard BMs independent of Aδ(0) and Bδ(0), and μa, μb ∈
R and σa, σb ∈ (0,∞) are the drift and volatility parameters. We assume that μa < μb.
Define

Dδ(t) = ln(Aδ(0)) + Xa(t) − ln(Bδ(0)) − Xb(t), t ≥ 0.

We note that {Dδ(t); t ≥ 0} is a BM with drift μa − μb < 0, variance σ2
a + σ2

b , and initial
value ln(Aδ(0)) − ln(Bδ(0)) > 0. For n ≥ 1, define the following stopping times: Tδ,0 = 0,
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and

Tδ,n = inf {t ≥ 0 : Dδ(t) = −2(n − 1)δ} . (1)

It is clear that E[Tδ,n] < ∞, Tδ,n ≥ Tδ,n−1 and Tδ,n → ∞, almost surely, as n → ∞.
For t ≥ 0, define

Aδ(t) = Aδ(0) exp

{
Xa(t) +

∞∑
n=1

(n − 1)δ1{t∈[Tδ,n−1,Tδ,n)}

}
, (2)

Bδ(t) = Bδ(0) exp

{
Xb(t) −

∞∑
n=1

(n − 1)δ1{t∈[Tδ,n−1,Tδ,n)}

}
. (3)

We observe that the processes Aδ and Bδ have initial values Aδ(0) and Bδ(0), respectively,
and for t ∈ [0, Tδ,1),

Aδ(t) = Aδ(0)eXa(t) = eln(Aδ(0))+Xa(t), Bδ(t) = Bδ(0)eXb(t) = eln(Bδ(0))+Xb(t).

From (1), the stopping time Tδ,1 is the first time that ln(Aδ(0)) + Xa and ln(Bδ(0)) + Xb

become equal, and so it is also the first time that Aδ and Bδ become equal. Define the
position of the first meeting point to be

Pδ,1 = Aδ(Tδ,1−) = Bδ(Tδ,1−) = Aδ(0)eXa(Tδ,1) = Bδ(0)eXb(Tδ,1).

According to the definitions in (2) and (3), right at the time Tδ,1, Aδ and Bδ will separate
in the following way.

Aδ(Tδ,1) = Pδ,1e
δ > Pδ,1, Bδ(Tδ,1) = Pδ,1e

−δ < Pδ,1.

Starting from Tδ,1, the processes Aδ and Bδ evolve again as two independent GBMs
with initial values Pδ,1e

δ and Pδ,1e
−δ. Their next meeting time is equal to the first time

Aδ(0)eXa(t)+δ and Bδ(0)eXb(t)−δ meet, which by (1) is exactly Tδ,2. Recursively, for n ≥ 1,
the stopping time Tδ,n will be the nth meeting time of Aδ and Bδ, and the position of the
nth meeting point is defined as

Pδ,n = Aδ(Tδ,n−) = Bδ(Tδ,n−), (4)

and the bouncing GBMs at Tδ,n move to

Aδ(Tδ,n) = Pδ,neδ > Pδ,n, Bδ(Tδ,n) = Pδ,ne−δ < Pδ,n. (5)

Right after Tδ,n, the processes Aδ and Bδ evolve as two independent GBMs with initials
Pδ,neδ and Pδ,ne−δ until they meet again at Tδ,n+1. The construction of (Tδ,n, Pδ,n) is
illustrated in Figure 1, and the dynamics of a trajectory of (Aδ, Bδ) are shown in Figure 2.

In the following proposition, we identify the limit of (Aδ, Bδ) as δ → 0. Assume that
(Aδ(0), Bδ(0)) converges to (A(0), B(0)), almost surely, as δ → 0, where (A(0), B(0)) is a
positive bivariate random vector. We first define a pair of mutually reflected BMs (Ya, Yb)
as follows. For t ≥ 0, define

Ya(t) = ln(A(0)) + Xa(t) + 1
2L(t), (6)
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Figure 1. The construction of Tδ,1, Pδ,1, Tδ,2, and Pδ,2.

Figure 2. A sample path of the bouncing GBMs (Aδ, Bδ), where Aδ(0) = 50, Bδ(0) = 10,
μa = −2, μb = 2, σa = σb = 1, and δ = 0.005.

Yb(t) = ln(B(0)) + Xb(t) − 1
2L(t), (7)

where {L(t), t ≥ 0} is the unique continuous non-decreasing process such that

(i) L(0) = 0;
(ii) L(t) can increase only when Ya(t) − Yb(t) = 0, that is,∫ ∞

0

1{Ya(t)−Yb(t)>0}dL(t) = 0.

Noting that ln(A(0)) > ln(B(0)), with the process L satisfying (i) and (ii), it is clear that
Ya(t) − Yb(t) ≥ 0 for all t ≥ 0. The existence and uniqueness of {L(t), t ≥ 0} follow from Sko-
rohod lemma (see Karatzas and Shreve [23], Lemma 3.6.14). In fact, L(t) has the following
explicit formula

L(t) = sup
0≤s≤t

D−(s), (8)
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where

D(s) = lnA(0) + Xa(s) − ln B(0) − Xb(s), s ≥ 0.

Roughly speaking, the processes Ya(t) and Yb(t) behave like two independent BMs when
Ya(t) > Yb(t), and whenever they meet, the process Ya(t) will be pushed up, while Yb(t) will
be pushed down, so that Ya(t) ≥ Yb(t) for all t ≥ 0. Here we assume the pushing effect for
Ya(t) and Yb(t) are the same, and thus we have 1/2 before the regulator process L(t) in
both (6) and (7).

Finally, A(t) and B(t) are defined as

A(t) = eYa(t), (9)

B(t) = eYb(t). (10)

Thus A(t) and B(t) behave like two independent GBMs when A(t) > B(t), and whenever
they become equal, they will be pushed away from each other such that A(t) ≥ B(t) for all
t ≥ 0.

Proposition 2.1:

(i) Assume that (Aδ(0), Bδ(0)) = (A(0), B(0)). Then for δ > 0 and n ∈ N,

A(Tδ,n) = B(Tδ,n).

(ii) Assume that (Aδ(0), Bδ(0)) = (A(0), B(0)). Then for δ > 0 and t ≥ 0,

Aδ(t) ≥ A(t), and Bδ(t) ≤ B(t).

(iii) For t ≥ 0, almost surely,

sup
0≤s≤t

Aδ(t)
A(t)

→ 1, and sup
0≤s≤t

B(t)
Bδ(t)

→ 1, as δ → 0.

Proof: In (i) and (ii), under the condition that (Aδ(0), Bδ(0)) = (A(0), B(0)), we have
Dδ(t) = D(t) for t ≥ 0. For (i), we note that

ln(A(t)) − ln(B(t)) = ln(A(0)) + Xa(t) + 1
2L(t) − ln(B(0)) − Xb(t) + 1

2L(t) = D(t) + L(t).

Thus it suffices to show that

D(Tδ,n) = −L(Tδ,n).

Now observe that Tδ,0 = 0 and Tδ,n = inf{t ≥ 0 : D(t) = −2(n − 1)δ}, which yields that
D(Tδ,n) = −2(n − 1)δ, and D(t) > −2(n − 1)δ for t ∈ [0, Tδ,n). Thus from (8), L(Tn,δ) =
2(n − 1)δ, and so (i) follows. To show (ii), we note that for t ∈ [Tδ,n−1, Tδ,n),
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D(t) > −2(n − 1)δ, and at the time Tδ,n−1, D(Tδ,n−1) = −2(n − 2)δ. It follows that for
t ∈ [Tδ,n−1, Tδ,n),

L(t) ≡ sup
0≤s≤t

D−(s) ∈ [2(n − 2)δ, 2(n − 1)δ), (11)

from which we have

Aδ(t)
A(t)

=
∞∑

n=1

1t∈[Tδ,n−1,Tδ,n) exp
{

(n − 1)δ − 1
2
L(t)
}

∈ (1, eδ],

and

Bδ(t)
B(t)

=
∞∑

n=1

1t∈[Tδ,n−1,Tδ,n) exp
{
−(n − 1)δ +

1
2
L(t)
}

∈ [eδ, 1).

For (iii), define a pair of mutually reflected GBMs (Ãδ, B̃δ) with initial (Aδ(0), Bδ(0)) as
follows.

Ãδ(t) = Aδ(0) exp
{

Xa(t) +
1
2
Lδ(t)

}
,

B̃δ(t) = Bδ(0) exp
{

Ya(t) − 1
2
Lδ(t)

}
,

where similar to (8),

Lδ(t) = sup
0≤s≤t

D−
δ (s).

Similar to the proof of (ii), we have

Aδ(t)
Ãδ(t)

=
∞∑

n=1

1t∈[Tδ,n−1,Tδ,n) exp
{

(n − 1)δ − 1
2
Lδ(t)

}
∈ (1, eδ],

which yields

sup
0≤s≤t

Aδ(s)
Ãδ(s)

→ 1.

Now consider the functional, which defines L and Lδ. Denote it by Φ, and then for t ≥ 0,

L(t) = Φ(D(·))(t),

and

Lδ(t) = Φ(Dδ(·))(t).
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Next we note that Φ : C([0,∞); R) → C([0,∞); R) is Lipschitz continuous (cf. Dupuis and
Ishii [18]), that is, there exists a constant c ∈ (0,∞) such that for x1, x2 ∈ C([0,∞); R) and
t ≥ 0,

sup
0≤s≤t

|Φ(x1(s)) − Φ(x2(s))| ≤ c sup
0≤s≤t

|x1(s) − x2(s)|.

As a result, we have sup0≤s≤t |Ãδ(s) − A(s)| → 0 almost surely. It follows that as δ → 0,

sup
0≤s≤t

Aδ(s)
A(s)

≤ sup
0≤s≤t

Aδ(s)
Ãδ(s)

· sup
0≤s≤t

(
Ãδ(s) − A(s)

A(s)
+ 1

)

≤ sup
0≤s≤t

Aδ(s)
Ãδ(s)

·
(

sup0≤s≤t |Ãδ(s) − A(s)|
inf0≤s≤t A(s)

+ 1

)
→ 1,

and

sup
0≤s≤t

Aδ(s)
A(s)

≥ sup
0≤s≤t

Aδ(s)
Ãδ(s)

· inf
0≤s≤t

(
Ãδ(s) − A(s)

A(s)
+ 1

)

≥ sup
0≤s≤t

Aδ(s)
Ãδ(s)

·
(

inf0≤s≤t |Ãδ(s) − A(s)|
sup0≤s≤t A(s)

+ 1

)
→ 1,

which yields that

sup
0≤s≤t

Aδ(s)
A(s)

→ 1, as δ → 0.

Similarly, it can be shown that for t ≥ 0,

sup
0≤s≤t

B(s)
Bδ(s)

→ 1, as δ → 0.

�

3. MAIN RESULTS

The object of interest is the position of the latest meeting point. To formulate it, we let

Uδ,n+1 = ln(Pδ,n+1/Pδ,n), Vδ,n+1 = Tδ,n+1 − Tδ,n, n ≥ 1,

Uδ,1 = ln Pδ,1, Vδ,1 = Tδ,1.

Define for t ≥ 0,

Nδ(t) = max{n ≥ 0 : Tδ,n ≤ t}, (12)

which gives the number of times Aδ and Bδ meet each other up to time t. Now the position
of the latest meeting point at time t can be formulated as

Pδ(t) = Pδ,Nδ(t), for t ≥ Tδ,1. (13)

For t ≥ Tδ,1, let Zδ(t) = ln(Pδ(t)), and so Zδ(t) =
∑Nδ(t)

n=1 Uδ,n. When 0 ≤ t < Tδ,1, we simply
let Zδ(t) = 0. Thus we have

Zδ(t) =
Nδ(t)∑
n=1

Uδ,n, (14)
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with the convention that
∑0

n=1 Uδ,n = 0. Our goal is to establish a scaling limit theorem
for Z as δ → 0, and develop an asymptotic model for real financial data.

We present the main results in the rest of this section. In particular, it is shown that
(Uδ,n, Vδ,n), n ≥ 2, are i.i.d. random variables (see Lemma 3.2), and Uδ,n follows a NIG
distribution and Vδ,n is IG distributed (see Corollary 3.3). Using these results, it is clear
that {Zδ(t), t ≥ 0} is a renewal reward process, and the scaling limit theorem is established
in Theorem 3.8.

3.1. Distribution of (Uδ,n, Vδ,n)

We first derive the joint distribution of (Uδ,n, Vδ,n) for each n ≥ 1. To derive the marginal dis-
tributions of Vn and Un, we introduce the following definitions of IG and NIG distributions
(cf. Sephardi [31]).

Definition 3.1:

(i) An IG distribution with parameters a1 and a2 has a density function

f(x; a1, a2) =
a1√
2πx3

exp
{
− (a1 − a2x)2

2x

}
, x > 0,

which is usually denoted by IG(a1, a2).
(ii) A random variable Y follows a NIG distribution with parameters ᾱ, β̄, μ̄, δ̄ with

notation NIG(ᾱ, β̄, μ̄, δ̄) if

Y |X = x ∼ N(μ̄ + β̄x, x), and X ∼ IG(δ̄,
√

ᾱ2 − β̄2).

The density function of Y is given as

f(y; ᾱ, β̄, μ̄, δ̄) =
ᾱ

πδ̄
exp
{√

ᾱ2 − β̄2 +
β̄

δ̄
(y − μ̄)

} K1

(
ᾱ
√

1 + (y − μ̄/δ̄)2
)

√
1 + (y − μ̄/δ̄)2

,

where K1(z) = 1/2
∫∞
0

e−z(t+t−1)/2dt is the modified Bessel function of the third kind
with index 1.

The joint distribution of (Uδ,n, Vδ,n) is given in the following lemma. Note that
(Uδ,1, Vδ,1) will not depend on δ if the initial values Aδ(0) and Bδ(0) are independent of δ.

Lemma 3.2:

(i) Assume Aδ(0) = eα, Bδ(0) = eβ, and α > β. Then for t ≥ 0 and x ∈ R, the joint
probability density function (PDF) of (Uδ,1, Vδ,1) is given by

f(Uδ,1,Vδ,1)(x, t) =

α − β

2πt2σaσb
exp

{
− [σb/σa(x − α − μat)+σa/σb(x − β − μbt)]

2+[α − β−(μb−μa)t]2

2(σ2
a + σ2

b )t

}
.

(15)
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In particular, Vδ,1 follows an IG distribution with the following density function

fVδ,1(t) =
α − β√

2π(σ2
a + σ2

b )t3
exp
{
− [α − β − (μb − μa)t]2

2(σ2
a + σ2

b )t

}
, t ≥ 0, (16)

and given Vδ,1 = t, Uδ,1 is normal distributed with mean

(σ2
bα + σ2

aβ) + (σ2
bμa + σ2

aμb)t
σ2

a + σ2
b

and variance
σ2

aσ2
b t

σ2
a + σ2

b

.

(ii) The sequence (Uδ,n, Vδ,n)n≥2 is an i.i.d. sequence, which is independent of (Uδ,1, Vδ,1)
and has the same distribution as described in (i) with α = δ and β = −δ.

Proof: For t ≥ 0, let

X(t) =
(

Xa(t)
Xb(t)

)
=
(

α
β

)
+
(

μat
μbt

)
+
(

σaWa(t)
σbWb(t)

)
.

Then Vδ,1 and Uδ,1 are the time and position of the first meeting point of Xa and Xb. Let
θ = arctan(σaσ−1

b ), and define

M =
(

cos θ sin θ
− sin θ cos θ

)(
σ−1

a 0
0 σ−1

b

)
=

1√
σ2

a + σ2
b

(
σb/σa σa/σb

−1 1

)
, (17)

where the last equality follows from the identities that

cos θ =
σb√

σ2
a + σ2

b

, sin θ =
σa√

σ2
a + σ2

b

. (18)

Now for t ≥ 0, define

X̌(t) = MX(t)

=
(
ασ−1

a cos θ + βσ−1
b sin θ − ασ−1

a sin θ + βσ−1
b cos θ

)
+
(
μaσ−1

a cos θ + μbσ
−1
b sin θ − μaσ−1

a sin θ + μbσ
−1
b cos θ

)
t

+
(

Wa(t) cos θ + Wb(t) sin θ
−Wa(t) sin θ + Wb(t) cos θ

)
.

Let

ǎ = ασ−1
a cos θ + βσ−1

b sin θ,

b̌ = −ασ−1
a sin θ + βσ−1

b cos θ,

μ̌a = μaσ−1
a cos θ + μbσ

−1
b sin θ,

μ̌b = −μaσ−1
a sin θ + μbσ

−1
b cos θ,

B̌a(t) = Wa(t) cos θ + Wb(t) sin θ,

B̌b(t) = −Wa(t) sin θ + Wb(t) cos θ.
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In particular, B̌a and B̌b are independent standard BMs. Next from (17), we note that the
second component of X̌(t) is equal to (−Xa(t) + Xb(t))/

√
σ2

a + σ2
b , which yields that

Vδ,1 = inf{t ≥ 0 : Xa(t) = Xb(t)}
= inf

{
t ≥ 0 : X̌(t) ∈ {(x, y) : y = 0}}

= inf{t ≥ 0 : B̌b(t) + μ̌bt = −b̌}.

Using Girsanov theorem, and from (5.12) in Karatzas and Shreve [23], Chapter 3.5.C, the
density function of Vδ,1 is given by

fVδ,1(t) =
|b̌|√
2πt3

exp
{
− (−b̌ − μ̌bt)2

2t

}
dt

=
α − β√

2π(σ2
a + σ2

b )t3
exp
{
− [α − β − (μb − μa)t]2

2(σ2
a + σ2

b )t

}
dt, t ≥ 0.

We next note that

Uδ,1 = Xa(Vδ,1) = Xb(Vδ,1) =
ǎ + μ̌aVδ,1 + B̌a(Vδ,1)
σ−1

a cos θ + σ−1
b sin θ

,

and B̌a and Vδ,1 are independent. The joint density function of (Uδ,1, Vδ,1) is then given as
follows: For x ∈ R and t ≥ 0,

f(Uδ,1,Vδ,1)(x, t)

= fUδ,1(x|Vδ,1 = t)fVδ,1(t)

= f[ǎ+μ̌at+B̌a(t)]/[σ−1
a cos θ+σ−1

b sin θ](x)fVδ,1(t)

=
σ−1

a cos θ + σ−1
b sin θ√

2πt
exp
{
− ((σ−1

a cos θ + σ−1
b sin θ)x − ǎ − μ̌at)2

2t

}
fVδ,1(t)

=
α − β

2πt2σaσb
exp

{
− [σb/σa(x − α − μat)+σa/σb(x − β − μbt)]

2+[α − β − (μb − μa)t]2

2(σ2
a + σ2

b )t

}
,

where the last equality follows from (18). This proves (i). For (ii), we observe that for
t ∈ [0, Tδ,n+1 − Tδ,n), n = 1, 2, . . .,

X̃a,n(t) ≡ ln(Aδ(t + Tδ,n)) − ln(Aδ(Tδ,n−)) = Xa(t + Tδ,n) − Xa(Tδ,n) + δ,

X̃b,n(t) ≡ ln(Bδ(t + Tδ,n)) − ln(Bδ(Tδ,n−)) = Xb(t + Tδ,n) − Xb(Tδ,n) − δ.

From the strong Markov property of Brownian motions, {X̃a,n(t); t ≥ 0} and {X̃b,n(t); t ≥ 0}
are independent Brownian motions with the initial values δ and −δ, and the same drifts
and volatility parameters as Xa and Xb. Furthermore, they are independent of FTδ,n

, where

Ft = σ{(Xa(s),Xb(s)), 0 ≤ s ≤ t}. (19)

Thus if we let T̃n and L̃n denote the time and position of the first meeting point of X̃a,n and
X̃b,n, then {(L̃n, T̃n), n = 1, 2, . . .} is an i.i.d. sequence, which is independent of (Uδ,1, Vδ,1),
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and has the same distribution as (Uδ,1, Vδ,1) with α = δ and β = −δ. Finally, noting that
Xa(Tδ,n) − Xb(Tδ,n) = −2(n − 1)δ, we have that

T̃n = inf{t ≥ 0 : X̃a,n(t) = X̃b,n(t)}
= inf{t ≥ 0 : Xa(t + Tδ,n) − Xa(Tδ,n) + δ = Xb(t + Tδ,n) − Xb(Tδ,n) − δ}
= inf{t ≥ 0 : Xa(t + Tδ,n) − Xb(t + Tδ,n) = −2nδ}
= Tδ,n+1 − Tδ,n

= Vδ,n,

and

L̃n = X̃a,n(T̃n−) = ln(Aδ(Tδ,n+1−)) − ln(Aδ(Tδ,n−)) = ln(Pδ,n+1) − ln(Pδ,n) = Uδ,n.

To summarize, we have shown that {(Un,δ, Vn,δ), n = 2, 3, . . .} is an i.i.d. sequence, which
is independent of (Vδ,1, Uδ,1), and has the same distribution as (Vδ,1, Uδ,1) with α = δ and
β = −δ. �

Using the above definitions, we have the following conclusion on the marginal
distributions of (Un, Vn), n ≥ 1.

Corollary 3.3:

(i) Assume Aδ(0) = eα, Bδ(0) = eβ, and α > β. Then

Vδ,1 ∼ IG

(
α − β√
σ2

a + σ2
b

,
μb − μa√
σ2

a + σ2
b

)
,

and

Uδ,1 ∼ NIG

(√
(σ2

a + σ2
b )(μ2

aσ2
b + μ2

bσ
2
a)

σ2
aσ2

b

,
μaσ2

b + μbσ
2
a

σ2
aσ2

b

,
ασ2

b + βσ2
a

σ2
a + σ2

b

,
(α − β)σaσb

σ2
a + σ2

b

)
.

(ii) For n ≥ 2, Vδ,n and Uδ,n follow the same IG and NIG distributions as described in
(i) with α = δ and β = −δ.

Let (Uδ, Vδ) be a generic random variable with the same joint distribution as
(Uδ,n, Vδ,n), n ≥ 2. Next, we find the moment generating function of (Uδ, Vδ), which will
be used in the proof of Theorem 3.8 and Section 4.

Lemma 3.4: There exists h > 0 such that the moment generating function of (Uδ, Vδ) exists
for |(s, t)| ≤ h, and is given by

φδ(s, t) = E [exp{sUδ + tVδ}] = exp{[2θ(s, t) − s]δ}, (20)

where

θ(s, t) =
(μb − μa + sσ2

b ) −
√

(μb − μa + sσ2
b )2 − (σ2

a + σ2
b )(s2σ2

b + 2t + 2sμb)

σ2
a + σ2

b

. (21)
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In particular, the first two moments of (Uδ, Vδ) are given below:

E(Vδ) =
2δ

μb − μa
, E(Uδ) =

δ(μb + μa)
μb − μa

,

Var(Vδ) =
2(σ2

a + σ2
b )δ

(μb − μa)3
, Var(Uδ) =

2(μ2
bσ

2
a + μ2

aσ2
b )δ

(μb − μa)3
,

Cov(Uδ, Vδ) =
2(μbσ

2
a + μaσ2

b )δ
(μb − μa)3

.

Furthermore, for k, l ∈ N ∪ {0} and k + l ≥ 1, there exists some constant c0 such that

E(Uk
δ V l

δ )
δ

→ c0, as δ → 0. (22)

Proof: Assume Aδ(0) = eδ and Bδ(0) = e−δ. Then (Uδ,1, Vδ,1) has the same distribution
as (Uδ, Vδ). Let

Ya(t) = exp
{

θ1Xa(t) −
(

θ1μa +
1
2
θ2
1σ

2
a

)
t

}
,

Yb(t) = exp
{

θ2Xb(t) −
(

θ2μb +
1
2
θ2
2σ

2
b

)
t

}
,

where θ1 and θ2 are arbitrary real numbers. Then {Ya(t); t ≥ 0} and {Yb(t); t ≥ 0} are
independent, and {(Ya(t), Yb(t)); t ≥ 0} is an {Ft}t≥0 martingale (see the beginning of
Section 5 of Chapter 7 in Karlin and Taylor [24]), where Ft is defined in (19). In fact,
{Ya(t)Yb(t); t ≥ 0} is also an {Ft}t≥0 martingale. Indeed for 0 ≤ s ≤ t, by the independence
of Ya and Yb,

E(Ya(t)Yb(t)|Fs) = E([Ya(t) − Ya(s)][Yb(t) − Yb(s)]|Fs) + E(Ya(t)Yb(s)|Fs)

+ E(Yb(t)Ya(s)|Fs) − E(Ya(s)Yb(s)|Fs)

= 0 + Yb(s)E(Ya(t)|Fs) + Ya(s)E(Yb(t)|Fs) − Ya(s)Yb(s)

= Ya(s)Yb(s).

Also note that Vδ,1 is an {Ft}t≥0 stopping time with finite mean and variance. The optional
stopping theorem yields

E[Ya(Vδ,1)Yb(Vδ,1)] = E[Ya(0)Yb(0)].

Plugging the expressions of Ya and Yb into the above equation, and noting that Xa(Vδ,1) =
Xb(Vδ1) = Uδ,1 yields that

E

{
exp
{

(θ1 + θ2)Uδ,1 −
(

θ1μa +
1
2
θ2
1σ

2
a + θ2μb +

1
2
θ2
2σ

2
b

)
Vδ,1

}}
= exp {[θ1 − θ2]δ} .

Let

θ1 + θ2 = s,

θ1μa + 1
2θ2

1σ
2
a + θ2μb + 1

2θ2
2σ

2
b = −t.
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Solving θ1 and θ2 in terms of s and t, we obtain

θ1(s, t) =
(μb − μa + sσ2

b ) ±
√

(μb − μa + sσ2
b )2 − (σ2

a + σ2
b )(s2σ2

b + 2t + 2sμb)

σ2
a + σ2

b

,

θ2(s, t) = s − θ1(s, t).

Letting s = 0, and noting that Vδ,1 follows IG distribution (see (16)), the moment generating
function of Vδ,1 is known to be

E(exp(tV1)) =
(μb − μa) −

√
(μb − μa)2 − 2t(σ2

a + σ2
b )

σ2
a + σ2

b

.

Thus the solutions of θ1(s, t) should be θ(s, t) in (21), and the moment generating function
φ(s, t) of (Uδ, Vδ) is given by (20). To compute the moments, we first need some simple
results about θ(s, t) as follows.

θ(0, 0) = 0,

∂θ(s, t)
∂t

∣∣∣∣
s=t=0

=
1

μb − μa
,

∂θ(s, t)
∂s

∣∣∣∣
s=t=0

=
μb

μb − μa
,

∂2θ(s, t)
∂t2

∣∣∣∣
s=t=0

=
σ2

a + σ2
b

(μb − μa)3
,

∂2θ(s, t)
∂s2

∣∣∣∣
s=t=0

=
μ2

bσ
2
a + μ2

aσ2
b

(μb − μa)3
,

∂2θ(s, t)
∂s∂t

∣∣∣∣
s=t=0

=
μbσ

2
a + μaσ2

b

(μb − μa)3
,

∂3θ(s, t)
∂t2∂s

∣∣∣∣
s=t=0

=
3(σ2

aμb + σ2
bμa)(σ2

a + σ2
b )

(μb − μa)5
.

Therefore,

E(Vδ) =
∂φ(s, t)

∂t

∣∣∣∣
s=t=0

=
∂

∂t
exp{[2θ(s, t) − s]δ}|s=0,t=0

=
2δ

μb − μa
.

Similarly, we obtain

E(Uδ) =
δ(μb + μa)
μb − μa

E(V 2
δ ) =

4δ2

(μb − μa)2
+

2(σ2
a + σ2

b )δ
(μb − μa)3

E(Uδ
2) =

δ2(μa + μb)2

(μb − μa)2
+

2(μ2
bσ

2
a + μ2

aσ2
b )δ

(μb − μa)3

E (UδVδ) =
2δ2(μb + μa)
(μb − μa)2

+
2(μbσ

2
a + μaσ2

b )δ
(μb − μa)3

.

Finally, for k, l ∈ N ∪ {0} and k + l ≥ 1, (22) follows by noting that

E(Uk
δ V l

δ ) =
∂k+lφ(s, t)

∂sk∂tl

∣∣∣∣
s=t=0

= δ

(
φ(s, t)

∂k+l

∂sk∂tl
(2θ(s, t) − s)

)∣∣∣∣
s=t=0

+ o(δ),

where o(δ) → 0 as δ → 0. �
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Let α = δ and β = −δ, and define for t ≥ 0,

Tδ(t) = Tδ,�t/δ� =
�t/δ�∑
k=1

Vδ,k,

and

Sδ(t) =
ln Pδ,�t/δ� − (σ2

b−σ2
a)δ�t/δ�+(σ2

bμa+σ2
aμb)Tδ(t)

σ2
a+σ2

b√
σ2

aσ2
b

σ2
a+σ2

b

=
�t/δ�∑
k=1

Uδ,k − (σ2
b−σ2

a)δ+(σ2
bμa+σ2

aμb)Vδ,k

σ2
a+σ2

b√
σ2

aσ2
b

σ2
a+σ2

b

.

The following lemma shows that as δ → 0, (Tδ, Sδ) converges weakly to an (IG, NIG) Lévy
process. Following Example 4.3 in Barndorff–Nielsen et al. [3], the (IG, NIG) Lévy process
can be defined by considering a two-dimensional Brownian motion (X,Y ) with zero initial
value, drift vector (γ, 0), and identity covariance matrix. Let τ(t) be the first time X reaches
the level ζt, and define ξ(t) = Y (τ(t)). Then {(τ(t), ξ(t)); t ≥ 0} is a bivariate Lévy process.
Noting that τ(1) ∼ IG(ζ, γ), and ξ(1) ∼ NIG(γ, 0, 0, ζ), the Lévy process {(τ(t), ξ(t)); t ≥ 0}
is thus called an (IG, NIG) Lévy process with parameters γ and ζ.

Lemma 3.5: As δ → 0, (Sδ, Tδ) converges weakly in D([0,∞); R2) to an (IG, NIG) Lévy
process with parameters 2(σ2

a + σ2
b )−1/2 and (μb − μa)(σ2

a + σ2
b )−1/2.

Proof: It is clear that (Tδ, Sδ) has independent increments. Note that both IG and NIG
distributions are closed under convolutions. From Lemma 3.2 and Corollary 3.3, Tδ(t) follows
IG(2δ�t/δ(σ2

a + σ2
b )−1/2, (μb − μa)(σ2

a + σ2
b )−1/2), and given that Tδ(t) = x, Sδ(t) follows

the normal distribution with mean 0 and variance x. For convenience, let

ζ̄ = 2(σ2
a + σ2

b )−1/2, γ̄ = (μb − μa)(σ2
a + σ2

b )−1/2, ζ̄δ(t) = 2δ�t/δ(σ2
a + σ2

b )−1/2.

From Example 4.3 in Barndorff–Nielsen et al. [3], the characteristic triplet of (Tδ(t), Sδ(t))
is ((γ̄ζ̄δ(t), 0), 0,Πδ), where the Lévy measure Πδ has the following density function

πδ(x, y) =
ζ̄δ(t)
2πx2

exp
{
−1

2

(
γ̄2x +

y2

x

)}
, x ≥ 0, y ∈ R.

Conversely, still from Example 4.3 in Barndorff–Nielsen et al. [3], the (IG, NIG) Lévy process
with parameters ζ̄ and γ̄ at time t has characteristic triplet ((γ̄ζ̄t, 0), 0,Π), where the Lévy
measure Π has the following density function

π(x, y) =
ζ̄t

2πx2
exp
{
−1

2

(
γ̄2x +

y2

x

)}
, x ≥ 0, y ∈ R.

It is clear that the δ-dependent characteristic triplet of (Tδ, Sδ) converges to the character-
istic triplet of an (IG, NIG) Lévy process with parameters ζ̄ and γ̄, as δ → 0. Noting that
(Tδ, Sδ) is a semimartingale of independent increments, from Theorem VII.2.52 in Jacod
and Shiryaev [22], the lemma follows. �
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3.2. Asymptotics of {Zδ(t); t ≥ 0}
In this section, we study the behaviors of the {Zδ(t); t ≥ 0} process as either t → ∞ or
δ → 0. First from Corollary 3.3, it is clear that for each δ, {Zδ(t); t ≥ 0} is a renewal reward
process, and we summarize it in the following lemma.

Lemma 3.6: For δ > 0, {Zδ(t); t ≥ 0} is a renewal reward process and {Pδ(t); t ≥ 0} is a
semi-Markov process.

The next result from Brown and Solomon Brown and Solomon [11] characterizes the
asymptotic first and second moments of Zδ(t) as t → ∞, and is also helpful to identify the
proper scaling in Theorem 3.8.

Proposition 3.7 (Brown and Solomon Brown and Solomon [11]): As t → ∞, we have

E(Zδ(t)) = mt + O(1),

Var(Zδ(t)) = st + O(1),

where

m = 1
2 (μa + μb), s = 1

4 (σ2
a + σ2

b ), (23)

and O(1) represents a function of t, which is bounded as t → ∞.

Proof: From Brown and Solomon [11], we have the following results for a renewal reward
process generated by {(Uδ,n, Vδ,n), n ≥ 1}:

E(Zδ(t)) = mt + O(1),

and

Var(Zδ(t)) = st + O(1),

where

m =
E(Uδ)
E(Vδ)

,

and

s =
E(V 2

δ )E(Uδ)2

E(Vδ)3
− 2E(UδVδ)E(Uδ)

E(Vδ)2
+

E(U2
δ )

E(Vδ)
,

Using the results of Lemma 3.4 in the above equations, we get (23). �

The main result of this section is the following theorem. For t ≥ 0, define

Ẑδ(t) =
δZδ(t/δ) − mt√

sδ
,

where m and s are as given in (23).

Theorem 3.8: Assume that E[ln(Aδ(0)) − ln(Bδ(0))]2 < ∞. Then the process Ẑδ converges
weakly to a standard Brownian Motion as δ → 0 in D([0,∞); R).
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Proof: Consider an arbitrary nonnegative sequence {δm}m≥1 such that δm → 0 as m → ∞.
Define for m,n ≥ 1,

Ũm,n =
√

δm(Uδm,n − E(Uδm,n)),

Ṽm,n =
√

δm(Vδm,n − E(Vδm,n)).

We note that for each m, {(Ũm,n, Ṽm,n), n ≥ 2} is an i.i.d. sequence. Furthermore,

� t
δ2
m

�∑
n=1

Var(Ũm,n) → 2(μ2
bσ

2
a + μ2

aσ2
b )t

(μb − μa)3
, and

� t
δ2
m

�∑
n=1

Var(Ṽm,n) → 2(σ2
a + σ2

b )t
(μb − μa)3

, as m → ∞.

We claim that {(Ũm,n, Ṽm,n),m ≥ 1, 1 ≤ n ≤ �t/δ2
m} satisfies Lindeberg condition, that is,

for any ε > 0,

� t
δ2
m

�∑
n=1

E
(
Ũ2

m,n1{|Ũm,n|≥ε}
)
→ 0, and

� t
δ2
m

�∑
n=1

E
(
Ṽ 2

m,n1{|Ṽm,n|≥ε}
)
→ 0, as m → ∞. (24)

We will prove (24) at the end of this proof. Thus from Billingsley [7], Theorem 18.2, letting

um(t) =

� t
δ2
m

�∑
n=1

Ũm,n, and vm(t) =

� t
δ2
m

�∑
n=1

Ṽm,n,

then
(um, vm) ⇒ W, as m → ∞.

where W is a two-dimensional Brownian motion with drift 0 and covariance matrix

2
(μb − μa)3

(
μ2

bσ
2
a + μ2

aσ2
b μbσ

2
a + μaσ2

b

μbσ
2
a + μaσ2

b σ2
a + σ2

b

)
.

Next from Iglehart and Whitt [21], Theorem 1 and Jacod and Shiryaev [22], Corollary 3.33,
if

Ñm(t) = (E(Vδm,1))3/2

(
Nδm

(t/δm) − t

δmE(Vδm,1)

)

=
(

2δm

μb − μa

)3/2(
Nδm

(t/δm) − (μb − μa)t
2δ2

m

)
,

then (um, vm, Ñm) ⇒ (W1,W2,−W2) as m → ∞, where W1 and W2 are the first and second
components of the Brownian motion W . Finally, we note that

Ẑδm
(t) =

1√
s

[
um

(
δ2
mNδm

(t/δm)
)

+
μb + μa

μb − μa

(
μb − μa

2

)3/2

Ñm(t)

]
.

Furthermore, observing that

δ2
mNδm

(t/δm) = δ2
m

[
Ñm(t)

(E(Vδm,1))3/2
+

(μb − μa)t
2δ2

m

]
→ (μb − μa)t

2
, as m → ∞,
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we have that

Ẑδm
(·) ⇒ W1(((μb − μa)/(2)) ·) + ((μb + μa)/(μb − μa))(((μb − μa)/(2)))3/2W2(·)√

s
,

and it is easy to check that the weak limit on the right-hand side is a standard Brownian
motion. Consequently, Ẑδ converges weakly to a standard Brownian motion as δ → 0. At
last, we give the proof of the claim given in (24). The proofs for Ṽm,n and Ũm,n are similar,
and we only consider Ṽm,n. We first note that from Lemma 3.4,

E(Vδm,1|A(0), B(0)) =
ln A(0) − ln B(0)

μb − μa
,

Var(Vδm,1|A(0), B(0)) =
(ln A(0) − ln B(0))(σ2

a + σ2
b )

(μb − μa)3
,

and using conditional expectations, we have that for some b0 ∈ (0,∞),

Var(Vδm,1) = E(Var(Vδm,1|A(0), B(0))) + Var(E(Vδm,1|A(0), B(0)))

≤ b0

(
E[ln(A(0)/B(0))] + E[ln2(A(0)/B(0))]

)
< ∞.

Next using Markov inequality, Holder’s inequality and (22), we have for some c0 ∈ (0,∞),

� t
δ2
m

�∑
n=1

E
(
Ṽ 2

m,n1{|Ṽm,n|≥ε}
)

≤ E(Ṽ 2
m,1) +

⌈
t

δ2
m

⌉√
E(Ṽ 4

m,2)P (|Ṽm,2| ≥ ε)

≤ δmVar(Vδm,1) +
⌈

t

δ2
m

⌉√
E(Ṽ 4

m,2)ε−2E(Ṽ 2
m,2)

≤ δmVar(Vδm,1) + ε−1

⌈
t

δ2
m

⌉
δ3/2
m

√
E[(Vδm,2 − E(Vδm,2))4]Var(Vδm,2)

≤ δmVar(Vδm,1) + ε−1

⌈
t

δ2
m

⌉
δ3/2
m

√
c0δ2

m

→ 0, as m → ∞.

�

Remark 3.9: We note that

Zδ(t) =
√

s

δ
Ẑδ(δt) + mt, t ≥ 0.

From Theorem 3.8, for small δ, we will use the following asymptotic model for logarithmic
trading prices Zδ(t) in Section 5: √

s

δ
W (δt) + mt, (25)

where {W (t); t ≥ 0} is a standard Brownian motion. We note that (25) is normal distributed
with mean mt and variance st.
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4. PARAMETER ESTIMATIONS

We assume that the process {Pδ(t); t ≥ 0} is observable, while {(Aδ(t), Bδ(t)); t ≥ 0} may
not be publicly observable (e.g., the market ask and bid processes may be accessible to
the brokers and dealers, but not to common traders). The question becomes how to find
the parameters of {(Aδ(t), Bδ(t)); t ≥ 0} by observing {Pδ(t); t ≥ 0}. In this section, we will
estimate the parameters μa, μb, σa, σb, and δ using the method of moments.

Suppose that the sample data for the time and position (ti, pi) of the ith meeting point
are given for i = 1, 2, . . . , n. Let

u1 = ln p1, v1 = t1, and ui+1 = ln(pi+1/pi), vi+1 = ti+1 − ti, i ≥ 1.

Then the sample data are given by {(ui, vi)}n
i=1. Let

x1 =
n∑

i=1

vi

n
, x2 =

n∑
i=1

ui

n
, x3 =

n∑
i=1

v2
i

n
, x4 =

n∑
i=1

u2
i

n
, x5 =

n∑
i=1

viui

n
.

We aim to derive explicit estimators of the five parameters μa, μb, σa, σb, δ using moment
estimations. Define the estimators of μa, μb, σa, σb, δ as follows.

μ̂n
a =

y1 −
√

y2
1 − (4(y1y4 − y3)/(y2))

2
, μ̂n

b =
y1 +

√
y2
1 − (4(y1y4 − y3)/(y2))

2
,

σ̂n
a =
√

(y4 − μ̂n
ay2)(μ̂n

b − μ̂n
a), σ̂n

b =
√

(μ̂n
b y2 − y4)(μ̂n

b − μ̂n
a),

δ̂n = (μ̂n
b − μ̂n

a)x1,

(26)

where

y1 =
2x2

x1
, y2 =

x3 − x2
1

x1
, y3 =

x4 − x2
2

x1
, y4 =

x5 − x1x2

x1
.

For convenience, denote Θ = (μa, μb, σa, σb, δ) and Θ̂n = (μ̂n
a , μ̂n

b , σ̂n
a , σ̂n

b , δ̂n). Let g : R
5 →

R
5 be the differentiable function such that

Θ̂n = g(x1, x2, x3, x4, x5).

Note that g can be uniquely determined by (26) and has an explicit expression.

Lemma 4.1: The estimators Θ̂n are well defined, that is,

y2
1 − 4(y1y4 − y3)

y2
≥ 0, (y4 − μ̂n

ay2)(μ̂n
b − μ̂n

a) ≥ 0, (μ̂n
b y2 − y4)(μ̂n

b − μ̂n
a) ≥ 0, (27)

and as n → ∞, almost surely,

Θ̂n → Θ. (28)

Furthermore,
√

n(Θ̂n − Θ) converges weakly to a five-dimensional normal distribution
with zero mean and covariance matrix ∇g(Θ)Σ, where Σ is the covariance matrix of
(Vδ, Uδ, V

2
δ , U2

δ , UδVδ), and ∇g is the gradient of g.
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Proof: For convenience, we omit the superscript n for the estimators of μa, μb, σa, σb, and
δ. Using the moments in Lemma 3.4, we consider the following equations.

x1 =
2δ̂

μ̂b − μ̂a
(29)

x2 =
δ̂(μ̂b + μ̂a)
μ̂b − μ̂a

(30)

x3 =
4δ̂2

(μ̂b − μ̂a)2
+

2(σ̂2
a + σ̂2

b )δ̂
(μ̂b − μ̂a)3

(31)

x4 =
δ̂2(μ̂a + μ̂b)2

(μ̂b − μ̂a)2
+

2(μ̂2
b σ̂

2
a + μ̂2

aσ̂2
b )δ̂

(μ̂b − μ̂a)3
(32)

x5 =
2δ̂2(μ̂b + μ̂a)
2(μ̂b − μ̂a)2

+
2(μ̂bσ̂

2
a + μ̂aσ̂2

b )δ̂
(μ̂b − μ̂a)3

. (33)

Next we solve the above equations for μ̂a, μ̂b, σ̂a, σ̂b, δ̂ in terms of xk, k = 1, 2, . . . , 5. Let

y1 =
2x2

x1
= μ̂b + μ̂a

y2 =
x3 − x2

1

x1
=

σ̂2
a + σ̂2

b

(μ̂b − μ̂a)2

y3 =
x4 − x2

2

x1
=

μ̂2
b σ̂

2
a + μ̂2

aσ̂2
b

(μ̂b − μ̂a)2

y4 =
x5 − x1x2

x1
=

μ̂bσ̂
2
a + μ̂aσ̂2

b

(μ̂b − μ̂a)2
.

We then note that

y2
1 − 4

y1y4 − y3

y2
= (μ̂b − μ̂a)2.

Letting μ̂b > μ̂a, we obtain

μ̂a =
y1 −

√
y2
1 − 4((y1y4 − y3)/(y2))

2

μ̂b =
y1 +

√
y2
1 − 4((y1y4 − y3)/(y2))

2

and

σ̂a =
√

(y4 − μ̂ay2)(μ̂b − μ̂a),

σ̂b =
√

(μ̂by2 − y4)(μ̂b − μ̂a),

δ̂ = (μ̂b − μ̂a)x1.

To see the above estimators are well-defined, we only need to show (27). We first note that

y2
1 − 4(y1y4 − y3)

y2
=

4
x2

1(x3 − x2
1)
[
x2

2(x3 − x2
1) − 2x1x2(x5 − x1x2) + x2

1(x4 − x2
2)
]
.
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It is clear that

x2
1 =

(
n∑

i=1

vi

n

)2

> 0,

x3 − x2
1 =

n
∑n

i=1 v2
i −∑n

i=1 vi

n2
> 0.

We next note that

x2
2(x3 − x2

1) − 2x1x2(x5 − x1x2) + x2
1(x4 − x2

2)

≥ 2x1x2

√
(x3 − x2

1)(x4 − x2
2) − 2x1x2(x5 − x1x2)

= 2x1x2(
√

(x3 − x2
1)(x4 − x2

2) − (x5 − x1x2))

= 2
∑

vi

n

∑
ui

n

⎛
⎝
√√√√(∑ v2

i

n
−
(∑

vi

n

)2
)(∑

u2
i

n
−
(∑

ui

n

)2
)

−
(∑

viΔpi

n
−
∑

vi

n

∑
ui

n

))

= 2
∑

vi

n

∑
ui

n

⎛
⎝
√∑

(vi −
∑

vi/n)2

n

∑
(ui −

∑
ui/n)2

n
−
(∑

viui

n
−
∑

vi

n

∑
ui

n

)⎞⎠

≥ 2
∑

vi

n

∑
ui

n

(∑
(vi −

∑
vi/n) (ui −

∑
ui/n)

n
−
(∑

viui

n
−
∑

vi

n

∑
ui

n

))

= 0.

This shows the first inequality in (27). To show the last two inequalities in (27), we observe
that

y4 − μ̂ay2 =
y2

√
y2
1 − ((4(y1y4 − y3))/(y2))

2
+
(
y4 − y1y2

2

)
,

μ̂by2 − y4 =
y2

√
y2
1 − ((4(y1y4 − y3))/(y2))

2
−
(
y4 − y1y2

2

)
.

Hence it suffices to show

y2
2

(
y2
1 − ((4(y1y4 − y3))/(y2))

)
4

≥
(
y4 − y1y2

2

)2
.

After simplifying above inequality, it suffices to show that y2y3 ≥ y2
4 . Note that

y2y3 ≥ y2
4

is equivalent to
(x3 − x2

1)(x4 − x2
2) ≥ (x5 − x1x2)2,

and the latter one is proved above. This completes the proof of (27). Next from the con-
struction of the estimators, we see that they are the unique solutions of (29)–(33). Using the
strong law of large numbers and the continuous mapping theorem, we have (28). Finally,
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the central limit theorem for Θ̂ follows immediately from Delta method (cf. Casella and
Berger [13]) and the central limit theorem for (x1, x2, . . . , x5), that is,

√
n[(x1, x2, x3, x4, x5) − E(x1, x2, x3, x4, x5)] ⇒ N5(0,Σ),

where Σ is the covariance matrix of (Vδ, Uδ, V
2
δ , U2

δ , UδVδ). �

5. APPLICATION IN LOBS

In this section, we apply our model to a LOB as described in the introduction. We aim to
forecast the trading price movement over a short period. We develop an asymptotic GBM
model for trading prices as follows. As in Section 4, suppose that the sample data for the
time and price (ti, pi) of the ith trade are given for i = 1, 2, . . . , n. Let

u1 = ln p1, v1 = t1, and ui+1 = ln(pi+1/pi), vi+1 = ti+1 − ti, i ≥ 1.

We first estimate the parameters μa, μb, σa, σb, and δ as in (26), and use the estimators
μ̂n

a , μ̂n
b , σ̂n

a , and σ̂n
b to compute m and s by substituting μa, μb, σa, σb with μ̂n

a , μ̂n
b , σ̂n

a , σ̂n
b ,

respectively, in (23). Typically, the estimator δ̂n is small (see Figures 6–9) and so from
Theorem 3.8, we approximate Z(t) by a N(mt, st) random variable. Hence the prediction
formula for lnP (t) − ln P (0) is

(μ̂n
a + μ̂n

b )t
2

, (34)

and the upper and lower bounds are chosen to be

(μ̂n
a + μ̂n

b )t
2

+
3
√

[(σ̂n
a )2 + (σ̂n

b )2]t
2

,
(μ̂n

a + μ̂n
b )t

2
− 3
√

[(σ̂n
a )2 + (σ̂n

b )2]t
2

. (35)

We next apply the above formulas to real data. Here we select the stock SUSQ (Susque-
hanna Bancshares Inc). The data are chosen from 01/04/2010 9:30AM to 01/04/2010
4:00PM, including the trading prices and trading times. The unit of trading prices is dollars
and the unit of the difference of consecutive trading times is seconds. We perform the back
test to evaluate the performance of the prediction. To be precise, we predict the logarithmic
trading price at each trading time using the 10-minute data 1-minute before the trading
time. For example, observing that there is a trade at 10:34:56, we then use the data from
10:23:56 to 10:33:56 to estimate the parameters and predict the logarithmic trading price
at 10:34:56, and the last trading price during the time interval from 10:23:56 to 10:33:56
is regarded as P (0). At the same time, we calculate the upper and lower bounds of the
prediction at that trading time. We note that even though the drift and volatility parame-
ters in the asymptotic model (25) is constant, the estimated parameters for predictions are
actually time-varying. We compare this predicted logarithmic trading prices with the real
trading prices in Figure 3. We do a similar prediction for each trading time but using the
10-minute data 2-, 5-, 10-minute before the trading time respectively. The comparisons are
shown in Figures 4–6. In each of these figures, there are four curves. The curves at the top
and bottom are the upper and lower bounds given by (35). The two curves in the middle
are the predicted logarithmic prices, which are computed by (34), and the real logarithmic
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Figure 3. Predictions of trading prices using 10-minute data 1-minute before each trading
time.

Figure 4. Predictions of trading prices using 10-minute data 2-minute before each trading
time.

prices. We note that these two curves stay very close, especially in Figure 3. Define

Relative error (RE) =
Real price - Predicted price

Real price
.

For the predictions 1-, 2-, 5-, 10-minute into the future, the maximum absolute REs are
0.0055, 0.0058, 0.0080, 0.0152, respectively. We see that the prediction 1-minute into the
future provides very good forecasting, and the accuracy of the prediction deteriorates as we
try to predict farther into the future, which is to be expected. We note that our asymptotic
model is obtained when δ is small. We present the values of δ̂n for all four predictions
in Figures 6–9, and observe that all values are O(10−3). Thus it is reasonable to use the
asymptotic results in the regime δ → 0.
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Figure 5. Predictions of trading prices using 10-minute data 5-minute before each trading
time.

Figure 6. Predictions of trading prices using 10-minute data 10-minute before each
trading time.

Figure 7. Values of δ̂n when using 10-minute data 1-minute before each trading time.
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Figure 8. Values of δ̂n when using 10-minute data 2-minute before each trading time.

Figure 9. Values of δ̂n when using 10-minute data 5-minute before each trading time.

Figure 10. Values of δ̂n when using 10-minute data 10-minute before each trading time.
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