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The dynamics of an interface between a thin liquid–vapour bilayer undergoing
evaporation is studied. Both phases are considered to be hydrodynamically and
thermally active, with momentum and thermal inertia taken into account. A reduced-
order model based on the weighted-residual integral boundary layer method is used to
investigate the dynamical behaviour for two cases, viz., phase change in the absence
of gravity and then phase change in the presence of gravity. In the first case, it is
shown that evaporative instability may cause rupture of either liquid or vapour layer
depending on system parameters. Close to interfacial rupture, the disjoining pressure
due to intermolecular forces results in the formation of drops (bubbles) separated by
a thin film for low liquid (vapour) hold-up. Momentum inertia is shown to have a
stabilizing effect, while thermal inertia has a destabilizing effect. In the second case,
evaporative suppression of Rayleigh–Taylor (R–T) instability shows emergence of up
to two neutral wavenumbers. Weak nonlinear analysis of these neutral wavenumbers
suggests that the instability may be either supercritical or subcritical depending on
the rate of evaporation. At high rates of evaporation, both neutral wavenumbers are
supercritical and computations on the interface evolution lead to nonlinear saturated
steady states. Momentum inertia slows down the rate of interface deformation and
results in an oscillatory approach to saturation. Thermal inertia results in larger
interface deformation and the saturated steady state is shifted closer to the wall. At
very low evaporation rates, only one neutral wavenumber of subcritical nature exists.
The nonlinear evolution of the interface in this case is then similar to pure R–T
instability, exhibiting spontaneous lateral sliding as it approaches the wall.

Key words: condensation/evaporation, interfacial flows (free surface), thin films

1. Introduction

A flat interface between a liquid and its vapour may be rendered unstable by
evaporation (Berg, Boudart & Acrivos 1966; Miller 1973; Burelbach, Bankoff &
Davis 1988). This instability deforms the interface and sets up flow within each
phase. In order to understand the physics of evaporative instability, let us consider
a liquid–vapour bilayer confined between two flat plates as shown in figure 1.
The flat plate in contact with the liquid is heated and maintained at temperature, Tliq,
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2 D. S. Pillai and R. Narayanan

Vapour

FIGURE 1. Physics of evaporation-driven instability when heated from liquid side
(Tliq > Tvap). The dotted horizontal line denotes the flat interface in the base state (z=H),
while the dashed lines denote the local base temperature profiles at the interface. The solid
curve denotes the perturbed interface (z= h(x, t)), while the solid lines denote the local
temperature profiles after perturbation.

while the flat plate contacting the vapour phase is maintained at a colder temperature,
Tvap. In order to focus solely on the mechanism of interfacial instability arising due
to evaporation, let us momentarily ignore gravity and also assume that there is no
sub-cooled condensation. Then, in the base state, the interface is flat and stationary
with no flow in both phases as the entire set-up is hermetically sealed (cf. the
dotted line in figure 1). The temperature profile is characterized purely by thermal
conduction. The dashed lines in figure 1 depict the local temperature profile at the
interface. The conductive heat fluxes between the two phases at the interface are
balanced resulting in no evaporative mass flux. When a mechanical perturbation is
imposed on the base interface profile, the crest is closer to the hot plate and the
trough is closer to the cold plate (cf. the solid curve in figure 1). This results in
a stronger thermal gradient in the liquid phase and weaker thermal gradient in the
vapour phase at the crest, as evident from the slope of perturbed temperature profiles
in figure 1 (solid lines). This implies that more heat is transferred from the liquid
to the interface while less heat is taken away by the vapour from the interface. This
imbalance in conductive heat fluxes causes evaporation at the crest and the crest
moves further upward, reinforcing the perturbation and making the interface unstable.
Now evaporation is accompanied by fluid flow in both phases and the wavelength of
instability is therefore selected by the interfacial tension and viscous effects. Based on
this line of reasoning, it can then be seen that heating from the vapour side stabilizes
the interface. Evaporative instability is thus similar in nature to other phase-change
instabilities such as solidification and electrodeposition where a temperature gradient
or an electrochemical potential gradient normal to the interface drives the instability
(Johns & Narayanan 2002).

Owing to applications in several technological processes such as heat exchangers,
film coatings and fabrication of patterned substrates, a detailed investigation of the
dynamics of a liquid–vapour interface undergoing evaporation is of significance
(Lin 2012; Chatterjee, Plawsky & Wayner 2013). Also, it is often found in pool
boiling experiments that a layer of the less dense vapour phase is stably sustained
below the heavier liquid phase (Rajabi & Winterton 1987). The formation of such
a stable vapour film near the heated surface is called the boiling crisis phenomenon
and results in unfavourable burnout of heat exchangers (Theofanous et al. 2002).
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Interfacial dynamics of an evaporating bilayer 3

Thus, the heavy-over-light fluid configuration susceptible to the classic Rayleigh–
Taylor (R–T) instability may be stabilized by evaporative phase change (Adham-
Khodaparast, Kawaji & Antar 1995).

The current work focuses on the interfacial dynamics of an evaporating bilayer
system, first in the absence of gravity and then in the presence of gravity where
a heavy-over-light configuration is of interest. The former case helps to gain a
comprehensive understanding of the physics of the evaporative instability. In addition,
the results of this analysis also find applications in the constrained vapour bubble
(CVB) experiments carried out in microgravity conditions (Chatterjee et al. 2013)
and flow boiling condensation experiments (Kharangate, ONeill & Mudawar 2016),
when conducted in pool boiling mode. The second case of destabilizing gravity is
motivated by its applications to boiling crisis phenomenon. We briefly discuss the
earlier works relevant to the current work.

Miller (1973) and Palmer (1976) were amongst the early investigators to study
the linear instability associated with evaporative phase change. They considered
a liquid–vapour interface propagating at a constant speed due to finite non-zero
evaporative mass flux in the base state. They showed that vapour recoil is the
dominant cause of instability under such conditions. Margerit et al. (2003) studied
this case under non-equilibrium conditions at the interface and showed that interfacial
non-equilibrium enhances the phase-change instability. In addition, they showed that
phase change suppresses the thermocapillary Marangoni instability. Stability of a
stationary interface between quiescent fluids with no evaporative mass flux in the
base state have also been carried out by a number of authors. Ozen & Narayanan
(2004) showed that a static liquid–vapour interface becomes unstable when heated
from the liquid side. They also showed that the vapour phase significantly stabilizes
the system thereby emphasizing the importance of an active vapour phase. McFadden
et al. (2007) considered a bilayer system near its thermodynamic critical state and
showed that entropy difference between the phases has significant effect on the
instability. For significant difference in entropy between the phases (like a water–water
vapour system), they showed that the system can become unstable only when heated
from the liquid side. They also attributed the insignificance of Marangoni instability
during phase change to this significant difference in entropy between the phases. By
artificially lowering the entropy difference, they showed that the Marangoni effect
may become important. For bilayer systems far away from the thermodynamic critical
state, McFadden & Coriell (2009) reported the emergence of an oscillatory instability
when heated from the vapour side. Weak nonlinear results of Guo & Narayanan
(2010) showed that depending upon the aspect ratio of the geometry, evaporative
instability may show either supercritical or subcritical behaviour.

The linear stability analyses carried out by Hsieh were the earliest to suggest that
R–T instability can be stabilized by evaporation (Hsieh 1972, 1978). He studied the
case of inviscid fluids and showed that the linear growth rates associated with the
classic R–T instability decrease in the presence of phase change. His results showed
that the cutoff wavenumber however was not affected by phase change. Ho (1980)
extended his analysis to viscous fluids and showed that a coupling between the
viscous effects and phase change was instrumental in shifting the cutoff wavenumber
to longer waves, decreasing the range of unstable wavenumbers. Adham-Khodaparast
et al. (1995) re-derived the results of Ho (1980) and obtained the dispersion relation
in a convenient form that reduces to the classic R–T case in the absence of phase
change as well as to the case of Hsieh (1978) in the inviscid limit. These works
used a phenomenological constant to decouple the temperature and velocity fields.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.714


4 D. S. Pillai and R. Narayanan

However, Ozen & Narayanan (2006) showed that the phenomenological constant
is, in fact, strongly dependent on the perturbation wavenumber and has to be
determined as an output of the problem rather than an input parameter. Recent
works of Kanatani (2010), Kim & Kim (2016), Konovalov, Lyubimov & Lyubimova
(2016) and Konovalov, Lyubimov & Lyubimova (2017) based on linear theory have
also shown the possibility of suppression of R–T instability by phase change.

The nonlinear dynamics of an evaporating interface can be well captured using
thin-film models as demonstrated by Burelbach et al. (1988) and Oron, Davis &
Bankoff (1997) among others. These works use one-sided models, ignore vapour
dynamics and correspond to a liquid evaporating into a passive medium. Total mass
of the evaporating liquid is therefore not conserved with time, which limits the
relevance of their models to thin films that disappear due to evaporation into an open
ambient medium. Nonlinear one-sided models used by Bestehorn & Merkt (2006)
and Narendranath et al. (2014) showed evaporative stabilization of R–T instability.
Narendranath et al. (2014) accounted for additional effects of vapour recoil in their
model. To the best of our knowledge, only Kanatani & Oron (2011) have used a
two-sided nonlinear model to investigate the interface dynamics in the presence of
evaporation. Under reasonable assumptions of small density and viscosity ratios, they
obtained a simplified model that incorporated the majority of the relevant physics.
In addition, their study is limited to creeping flow conditions. In this study, we
retain both momentum and thermal inertia to investigate their role in the interfacial
dynamics and show that they can play a significant role. In addition, as our model
is not restricted to small density and viscosity ratios, its validity extends to systems
that may have similar viscosities and densities such as systems near thermodynamic
critical point (cf. McFadden et al. 2007). Our model also differs from Kanatani &
Oron (2011) in the treatment of interfacial conditions. While, their model incorporates
a non-equilibrium description of the interface based on the Hertz–Knudsen theory, our
model assumes local thermodynamic equilibrium based on the Clausius–Clapeyron
equation. It will be shown that this equilibrium assumption is capable of capturing
all the relevant dynamics of the interface. Further, we have also included the effect
of disjoining pressure to investigate the rupture dynamics of the interface.

As described earlier, evaporation of a quiescent interface is governed by an
imbalance in the conductive heat fluxes at the interface. The characteristic velocity
scale associated with the instability is therefore obtained by a balance of conduction
and latent heat terms in the interfacial energy balance. In this work, we have chosen
the water–water vapour bilayer as a representative system to study the dynamics of
an evaporating interface. We show that the typical Reynolds number associated with
the instability is of O(1), even for thin bilayer systems of 0.7 mm depth. Momentum
inertia is therefore expected not to be insignificant. In addition, the properties of water
and vapour at saturation conditions of 100 ◦C and 1 atm. as listed in table 1 suggest
that the Prandtl numbers of both fluids are close to 1. Hence, thermal inertia also
contributes to the dynamics of an evaporating interface. In this work, we consider a
nonlinear model for a two-sided evaporating bilayer that include the effects of inertia
and gravity. The objective is to investigate the dynamics towards either nonlinear
saturated states or to film rupture.

The nonlinear model in this study assumes that both phases are thin layers.
The method of weighted-residual integral boundary layer (WRIBL) for a confined
two-phase system is used. The WRIBL method was first introduced by Ruyer-Quil
& Manneville (2000) in the context of modelling of a thin liquid film falling down
an inclined plane. They showed that the model so developed was successful in
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Interfacial dynamics of an evaporating bilayer 5

ρl = 960 kg m−3 ρv = 0.6 kg m−3

µl = 2.9× 10−4 kg m−1 s−1 µv = 1.3× 10−5 kg m−1 s−1

Kl = 6.8× 10−1 J (m s ◦C)−1 Kv = 2.5× 10−2 J (m s ◦C)−1

αl = 1.7× 10−7 m2 s−1 αv = 2.0× 10−5 m2 s−1

Prl =µl/ρlαl = 1.08 Prv =µv/ρvαv = 1.77

S= 3637.3 Pa ( ◦C)−1 γ = 5.8× 10−2 N m−1

L= 6.63× 105 J kg−1

TABLE 1. Thermophysical properties of water and water vapour used for calculations.
A value of Hc = 0.7 mm is used in calculating the dimensionless groups.

accurately predicting the stability threshold. In addition, it was also able to overcome
the finite-time singularities observed far from threshold in earlier modelling attempts
such as Benney’s equation, the Shkadov model or their own earlier model based on
the mixed integral-collocation method. Further, they also conclusively showed that
the Galerkin method was the most efficient weighted-residual strategy in obtaining
evolution equations, as compared to any other technique (Ruyer-Quil & Manneville
2002). The WRIBL method has since then been used to include heat transfer in
falling liquid films and a good review of these works can be found in Kalliadasis
et al. (2011). The method has also been successfully applied to model two-phase
flows in narrow planar channels (Dietze & Ruyer-Quil 2013) as well as circular
tubes (Dietze & Ruyer-Quil 2015). In this work, we follow the two-phase modelling
as outlined in Dietze & Ruyer-Quil (2013) and extend it to include heat transfer
in both phases. Our treatment of heat transfer is, in effect, an extension of the
‘improved KKD (Kalliadasis–Kiyashko–Demekhin)’ model for non-isothermal falling
films (Trevelyan & Kalliadasis 2004) to a two-phase confined system. In contrast to
the one-sided evaporation models in the literature, our model is relevant to a liquid
evaporating into vapour within a closed confinement.

The paper is structured as follows. A detailed derivation of the reduced-order model
is discussed in § 2, along with the numerical methodology employed to solve the
governing equations. In § 3, significant results obtained from the model are discussed.
Both zero-gravity evaporation as well as evaporation in the presence of destabilizing
gravity are explored. We conclude by summarizing the key results of our work in § 4.

2. Mathematical model
Consider a bilayer system of a liquid lying above its own vapour confined between

two flat plates as depicted in figure 1. The distance between the flat plates is denoted
by Hc and the undisturbed interface is located at z = H. Both fluids are considered
to be Newtonian with constant thermophysical properties. All liquid and vapour
variables are denoted with subscripts l and v. The densities, viscosities, thermal
conductivities and thermal diffusivities of the two phases are denoted by ρi, µi, Ki and
αi (i= l, v). The horizontal and vertical components of velocity are denoted by ui and
wi. The bottom wall in contact with the vapour phase is maintained at temperature
Tvap and the top wall in contact with the liquid phase is maintained at temperature Tliq.
Gravity acts downward. Both phases are assumed to be thin films and therefore the
long-wave approximation, (Hc�Λ), is used where Λ is the characteristic horizontal
length scale arising from the instability. This separation of length scales helps us to
obtain a reduced set of evolution equations for the interface position, h, the phase
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6 D. S. Pillai and R. Narayanan

flow rates, ql and qv, as well as the interface temperature, θ . In thin films, buoyancy
convection is deemed to be insignificant (cf. Zhang 2006) and is therefore ignored in
this study. We now proceed to derive the long-wave equations.

2.1. Long-wave equations
We first introduce the following scales to non-dimensionalize the variables, denoted
with an asterisk.

x=
x∗

Λ
, z=

z∗

Hc
, t=

t∗

Λ/U
, ui=

u∗i
U
, wi=

w∗i
εU
, pi=

p∗i
µiU/Hc

, Ti=
T∗i − Tliq

1T
.

(2.1a−g)
Here, ε is a small parameter defined as ε = H/Λ and 1T = Tvap − Tliq represents
the imposed temperature difference across the plates. The characteristic velocity scale,
U= (Kl|1T|)/(ρvLHc), is obtained by a balance of conduction and latent heat terms
in the interfacial energy balance. As expected, the characteristic velocity ought to be
proportional to the magnitude of 1T , which would be the true control variable in a
physical experiment.

We then obtain the non-dimensional equations using the above scales. These
equations, neglecting the terms of O(ε2) and smaller, are

∂ui

∂x
+
∂wi

∂z
= 0, i= l, v (2.2)

−ε
∂pl

∂z
− εG= 0, −ε

∂pv
∂z
− ε

ρ

µ
G= 0 (2.3a,b)

εRe
(
∂ul

∂t
+ ul

∂ul

∂x
+wl

∂ul

∂z

)
=−ε

∂pl

∂x
+
∂2ul

∂z2
(2.4a)

ε
ρ

µ
Re
(
∂uv
∂t
+ uv

∂uv
∂x
+wv

∂uv
∂z

)
=−ε

∂pv
∂x
+
∂2uv
∂z2

(2.4b)

εRe Prl

(
∂Tl

∂t
+ ul

∂Tl

∂x
+wl

∂Tl

∂z

)
=
∂2Tl

∂z2
(2.5a)

and

ε
Kρ
µ

Re Prv

(
∂Tv
∂t
+ uv

∂Tv
∂x
+wv

∂Tv
∂z

)
=K

∂2Tv
∂z2

, (2.5b)

where several parameters appear in the above equations and are defined below

ρ =
ρv

ρl
, µ=

µv

µl
, K=

Kv

Kl
, Re=

ρlUHc

µl
G=

ρlgH2
c

µlU
, Pri =

µi

ρiαi
, i= l, v.

(2.6a−f )

Equations (2.2)–(2.5) are the long-wave equations consistent with the first-order
approximation. To arrive at the above governing equations, we have assumed the
Reynolds (Re) and Prandtl numbers (Pri) to be of O(1). A quick calculation using
properties of water from table 1, shows that the Reynolds number is indeed of O(1)
for moderate temperature differences, when 1T ∼O(1). Prandtl numbers of the fluids
are also close to 1. Therefore, inertial effects are not ignored.
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Interfacial dynamics of an evaporating bilayer 7

The inertial terms appear in the horizontal component of the momentum balance,
equation (2.4), but do not contribute to the vertical component, equation (2.3), at this
order. This allows us to integrate (2.3) in order to obtain the evolution equations. The
effects of both momentum and thermal inertia have been retained. We also assume
the viscosity ratio, µ, and density ratio, ρ, to be of O(1). In practice, both of these
ratios for a typical liquid–vapour system are much smaller than O(1). Retaining these
quantities only extends the validity of our model for systems that may have similar
viscosities and densities such as systems near the thermodynamic critical point (cf.
McFadden et al. 2007). To obtain (2.5b) in the given form, the energy balance in the
vapour phase was multiplied throughout by K. This form of the energy balance makes
it convenient to apply the WRIBL technique as we shall see later on. The governing
equations are closed using appropriate boundary conditions. These conditions at the
walls are:

uv =wv = 0, Tv = 1 at z= 0 (2.7a,b)

and
ul =wl = 0, Tl = 0 at z= 1. (2.7c,d)

These correspond to the no-slip, no-penetration and constant temperature at both
walls. At the interface, mass balance and kinematics give

wl − ul
∂h
∂x
−
∂h
∂t
= ρ

(
wv − uv

∂h
∂x
−
∂h
∂t

)
. (2.8)

The continuity of velocity at the interface gives

ul = uv and wl =wv. (2.9a,b)

The tangential and normal stress balances at the interface are

µ
∂uv
∂z
=
∂ul

∂z
and µpv − pl =−ε

2 1
Ca
∂2h
∂x2
− PD, where Ca=

µlU
γ
. (2.10a,b)

Thermocapillarity is unimportant in the presence of phase change (Margerit et al.
2003; Ozen & Narayanan 2004; Kanatani & Oron 2011) and therefore has been
neglected in the tangential stress balance. In order to retain the effects of surface
tension in the normal stress balance, the capillary number, Ca, is assumed to be
O(ε2) or smaller. The effects of vapour recoil, which only appear at O(ε2) have been
neglected in the normal stress balance. PD in the above equation accounts for the
disjoining pressure arising due to intermolecular forces. The effect of disjoining
pressure becomes relevant only when a film thins to such small length scales
(approximately 100 nm) that the long-range intermolecular forces such as van der
Waals and London forces become important (Israelachvili 2011). We, therefore, study
the influence of this term only in our discussion on rupture dynamics and ignore this
term in the rest of the results. As our working fluid, water is a polar molecule, our
disjoining pressure consists of the usual Hamaker term due to van der Waals forces
as well as an additional term that takes into account the effect of electric bilayer
formation in polar fluids (Oron et al. 1997; Ajaev 2005) as given below

PD = AΦ

(
1
h3
−

1
(1− h)3

)
− Apol(exp−βh

+ exp−β(1−h)), (2.11)
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8 D. S. Pillai and R. Narayanan

where AΦ = Ah/6πγH2
c is the non-dimensional Hamaker constant and Apol = KsHc/γ

represents the strength of polar interaction (Ajaev 2005). The Hamaker constant (Ah)
is taken to be 10−19J (Israelachvili 2011).

The energy balance at the interface is given by

j≡ ε
(

wv − uv
∂h
∂x
−
∂h
∂t

)
= E

(
K
∂Tv
∂z
−
∂Tl

∂z

)
, (2.12)

where j represents the evaporative mass flux and E is the evaporation number given
as E= (Kl1T)/(ρvULHc) and is assumed to be of O(1). This is indeed true because
E = 1 when heated from the vapour side and E = −1 when heated from the liquid
side.

We assume thermodynamic equilibrium and continuity of temperature along the
interface. This assumption is borne out of the past work of Huang & Joseph (1992),
who concluded that this was valid for low evaporation rates. This is consistent with
our model where the base state evaporation rate is zero and where evaporation takes
place only upon perturbation. It might be noted that non-equilibrium relationships
would be appropriate for problems with large evaporation rates (cf. for example
Shankar & Deshpande 1990; Ward & Stanga 2001; Kanatani 2010; Persad & Ward
2016). To this end, we use the Clausius–Clapeyron equation as the equilibrium
condition at the interface and give it in its linear approximation as

εµ(pv − pref )=Φ(Tv − Tref ) where Φ =
S1THc

µlU
, (2.13)

where S is a dimensional coefficient that appears in the linearized Clausius–Clapeyron
equation and where pref is the saturation pressure at a reference temperature, Tref .
The details of determining S are given in appendix A. In addition, the continuity of
temperature at the interface is given by

Tl = Tv. (2.14)

Equations (2.2)–(2.14) constitute the complete set of long-wave equations that govern
the system.

We now proceed to derive the evolution equations for the interface location from the
above long-wave equations. These are obtained by integrating the vertical component
of the momentum balance (2.3) from a point z inside the domain of each phase to the
interface, h(x, t). Eliminating the pressure fields from the integrated equations using
the transverse component of the momentum balance, the normal stress condition and
the Clausius–Clapeyron equation we get

εRe
(
∂ul

∂t
+ ul

∂ul

∂x
+wl

∂ul

∂z

)
=−εΦ

∂θ

∂x
− ε3 1

Ca
∂3h
∂x3
− ε

∂PD

∂x
− εG

∂h
∂x
+
∂2ul

∂z2
(2.15a)

and

ερRe
(
∂uv
∂t
+ uv

∂uv
∂x
+wv

∂uv
∂z

)
=−εΦ

∂θ

∂x
− ερG

∂h
∂x
+µ

∂2uv
∂z2

. (2.15b)

Here, θ is the interface temperature given by θ = Tl|h = Tv|h. The above
equations, viz., equation (2.15) along with (2.5), constitute the set of ‘boundary
layer’ equations for this system. We now apply the WRIBL technique to derive a set
of reduced-order evolution equations that govern the interface position, h(x, t), flow
rates (ql(x, t), qv(x, t)) and the interface temperature, θ(x, t).
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Interfacial dynamics of an evaporating bilayer 9

2.2. Weighted-residual integral method
To obtain the evolution equations for thin films with two active phases, we follow the
weighted-residual integral boundary layer (WRIBL) methodology described by Dietze
& Ruyer-Quil (2013). They obtain evolution equations for a confined thin liquid film
interacting with its surrounding gas. We extend their methodology for confined two-
phase systems to include inertial effects associated with heat transfer as well. Our
treatment of heat transfer equation is similar to the one-sided ‘KKD’ (Kalliadasis et al.
2003a; Kalliadasis, Kiyashko & Demekhin 2003b) and ‘improved KKD’ (Trevelyan
& Kalliadasis 2004) models developed for non-isothermal falling thin films. We now
proceed to describe the methodology.

First, we integrate the continuity equation (2.2) across the thickness of each phase.
Then making use of the Leibnitz’s integration rule along with the no-penetration
(2.7a,b) and kinematic (2.8) conditions, we obtain

(ρ − 1)
∂h
∂t
=−

(
ρ
∂qv
∂x
+
∂ql

∂x

)
. (2.16)

In the above, qv and ql are flow rates associated with the respective phases and are
defined as

qv =
∫ h

0
uv dz, ql =

∫ 1

h
ul dz. (2.17a,b)

Next, the boundary layer equations for both phases given by (2.5) and (2.15) are
multiplied by appropriate weight functions and integrated across each film thickness.
The resulting integral equations are then summed to give∫ h

0
BLEvFv dz+

∫ 1

h
BLElFl dz= 0, (2.18)

where BLEi are the boundary layer equations for the two phases given by (2.5)
and (2.15) and Fi are the appropriate weight functions, which shall be defined later.
This procedure yields the evolution equations that govern the system. It should
be noted that (2.18) represents a general weighted-residual methodology. Various
weighted-residual strategies such as Galerkin, collocation, the method of moments
and subdomains differ from each other only in their treatment of the unknowns being
solved (such as u, w, T) and the choice of the weight functions being employed
(Fl, Fv). The Galerkin method offers the fastest convergence with minimum algebra
(Ruyer-Quil & Manneville 2002) and is therefore adopted in this work.

Toward this, we decompose the horizontal velocity component and temperature as
follows:

ui(x, z, t)= ûi(x, z, t)︸ ︷︷ ︸
O(1)

+ ũi(x, z, t)︸ ︷︷ ︸
O(ε)

, wv =−

∫ z

0

∂uv
∂x

dz, wl =−

∫ z

1

∂ul

∂x
dz (2.19a−c)

Ti(x, z, t)= T̂i(x, z, t)︸ ︷︷ ︸
O(1)

+ T̃i(x, z, t)︸ ︷︷ ︸
O(ε)

. (2.19d)

In the above, the hatted variables are of O(1) and the variables with tilde denote
their respective O(ε) corrections. The vertical components of velocity (wi), as shown
in (2.19a–c), are obtained from horizontal velocity components by integrating the
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10 D. S. Pillai and R. Narayanan

continuity equation. Next, the O(1) contribution to the horizontal velocity components
are chosen to satisfy the following conditions:

∂2ûl

∂z2
=Kl,

∂2ûv
∂z2
=Kv,

∫ h

0
ûv dz= qv,

∫ 1

h
ûl dz= ql (2.20a−d)

ûv|0 = 0, ûl|1 = 0, ûv|h = ûl|h, µ
∂ ûv
∂z

∣∣∣∣
h

=
∂ ûl

∂z

∣∣∣∣
h

. (2.20e−h)

Equation (2.20) defines the leading-order velocity profile in each phase to be locally
parabolic at each horizontal position. This assumption of parabolic velocity profile
is justified for moderate Reynolds numbers and under these conditions, the ε-order
corrections to the velocity profile remains small. From (2.20), it then follows that the
velocity corrections are required to satisfy∫ h

0
ũv dz= 0,

∫ 1

h
ũl dz= 0 (2.21a,b)

and

ũv|0 = 0, ũl|1 = 0, ũv|h = ũl|h, µ
∂ ũv
∂z

∣∣∣∣
h

=
∂ ũl

∂z

∣∣∣∣
h

. (2.21c−f )

Now, as far as the energy equation is considered, the leading-order temperature
profile is assumed to be locally linear. This assumption is justified because in our
base state, there is no evaporation and the temperature fields in both phases exhibit
a linear conduction profile. Therefore, it is reasonable to assume that at the onset
of the long-wave instability, a locally linear temperature profile continues to persist.
This assumption is, of course, not valid when evaporation rates are high and the
temperature profiles exhibit significant deviations from linear profiles. Thus T̂l and T̂v
satisfy

∂2T̂l

∂z2
= 0,

∂2T̂v
∂z2
= 0 (2.22a,b)

and
T̂v = T̂l = θ, T̂v|0 = 1, T̂l|1 = 0. (2.22c−e)

It should be noted that the leading-order temperature profile does not satisfy the
boundary condition (2.12). However, the weighted-residual strategy helps to satisfy
this boundary condition, via the so-called tau method (Trevelyan & Kalliadasis
2004), while considering the integral associated with thermal diffusion term. The
leading-order temperature profile as defined by (2.22) is valid for moderate Reynolds
and Prandtl numbers. The ε-order corrections to the temperature profile remain small
and from (2.22), they are required to satisfy

T̃l|h = T̃v|h = 0, T̃v|0 = 0, T̃l|1 = 0. (2.23a−c)

Next, we substitute for velocity and temperature as given by (2.19) into (2.18). To
obtain the evolution equations in terms of the variables h, ql, qv and θ alone, the
unknown O(ε) corrections to temperature and velocity profiles have to be eliminated.
For this, in accordance with our first-order approximation, all terms of O(εũ)=O(ε2)
and smaller are neglected. We neglect altogether the velocity and temperature
corrections appearing in the inertial terms (left-hand side of (2.5) and (2.15)) as
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Interfacial dynamics of an evaporating bilayer 11

these are of O(ε2). This yields a simplified first-order model valid for moderate
Reynolds and Prandtl numbers. The only terms that still contain the corrections of
O(ε) are due to the vertical component of momentum and thermal diffusion. These
terms can be eliminated by a suitable choice of weight functions. The weight function
associated with velocity shall be henceforth denoted by Fi and that associated with
temperature shall be denoted by F̂i, where i= l, v. The conditions imposed on Fi to
eliminate the O(ε) corrections are given by

∂2Fv
∂z2
= Av,

∂2Fl

∂z2
= Al, Fv|0 = 0, Fl|1 = 0, Fv|h = Fl|h, µ

∂Fv
∂z

∣∣∣∣
h

=
∂Fl

∂z

∣∣∣∣
h

.

(2.24a−f )
The two equations corresponding to the unknown variables qv and ql are obtained
by choosing (Av, Al) to be (1, 1) and (1, −1) for the first and second equations
respectively. The weight functions obtained from these choices of (Av, Al) shall be
denoted by F(+)

i and F(−)
i respectively. It is to be noted that these weight functions

are completely determined using (2.24). The functional form of F̂l and F̂v is similar
to the leading-order velocity profile (ûl and ûv). Similarly, the conditions imposed on
F̂i to eliminate the correction terms are given by

∂2F̂v
∂z2
= 0,

∂2F̂l

∂z2
= 0, F̂v|0 = 0, F̂l|1 = 0, F̂v|h = F̂l|h,

∂F̂v
∂z

∣∣∣∣∣
h

= 1. (2.25a−f )

This then yields the dynamic equation for the interface temperature, θ . The final set
of evolution equations are

(ρ − 1)
∂h
∂t
=−

(
ρ
∂qv
∂x
+
∂ql

∂x

)
(2.26a)

εRe
[

L1
∂ql

∂t
+ L2

∂ql

∂x
+M1

∂h
∂x
+ V1

∂qv
∂t
+ V2

∂qv
∂x

]
=−εΦ

∂θ

∂x
(I(+)v + I(+)l )

−

(
ε3 1

Ca
∂3h
∂x3
+ ε

∂PD

∂x

)
I(+)l − εG

∂h
∂x
(ρI(+)v + I(+)l )+µqv + ql (2.26b)

εRe
[

L̄1
∂ql

∂t
+ L̄2

∂ql

∂x
+ M̄1

∂h
∂x
+ V̄1

∂qv
∂t
+ V̄2

∂qv
∂x

]
=−εΦ

∂θ

∂x
(I(−)v + I(−)l )

−

(
ε3 1

Ca
∂3h
∂x3
+ ε

∂PD

∂x

)
I(−)l − εG

∂h
∂x
(ρI(−)v + I(−)l )+µqv − ql (2.26c)

and

εRe Prv

[
Υ1
∂θ

∂t
+Υ2

∂θ

∂x
+Υ3

∂h
∂x
+Υ4

∂qv
∂x
+Υ5

∂ql

∂x

]

=
εh
E

ρ
∂qv
∂x
+
∂ql

∂x
(ρ − 1)

−
∂qv
∂x

−K(θ − 1)−
hθ

1− h
. (2.26d)
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12 D. S. Pillai and R. Narayanan

Expressions for variables appearing in the above equations are given in the
supplementary material available at https://doi.org/10.1017/jfm.2018.714. Equation
(2.26) represents our nonlinear model consistent at first order. We now rescale the
system by taking Λ→Hc, i.e. ε= 1. This implies that in the discussion of our results,
physical lengths in both horizontal and vertical directions are scaled with Hc. As the
characteristic length scale of instability (Λ) is not known a priori, this rescaling
eliminates the need to specify the unknown parameter ε as an input without any loss
of generality in what follows.

2.3. Linear stability analysis
We carry out a linear stability analysis of the evolution equations (2.26) using the
familiar method of modal analysis. The base state is assumed to be a static no-flow
state with a linear temperature profile in each phase. The variables are perturbed
around their base state as shown below:

h=H + h?eσ t+ikx, qi = q?i eσ t+ikx, θ =
K(1−H)

H +K(1−H)
+ θ ?eσ t+ikx. (2.27a−c)

In the above, the starred variables denote the amplitudes of linear perturbations, k is
the spatial wavenumber and σ is the corresponding linear growth rate. The results of
linear stability of the WRIBL model (2.26) are compared with those of the long-wave
starting equations (2.2)–(2.14). This will help us to check the linear results of the
WRIBL model for moderate Reynolds and Prandtl numbers.

2.4. Nonlinear simulations
For nonlinear calculations, an initial wavy disturbance is imposed on the interface
position and (2.26) are solved for one wavelength of the perturbation. The initial
condition for the time-dependent variables are as given below

h(x, 0)=H + 0.001cos(kx), qi(x, 0)= 0, θ(x, 0)=
K(1− h(x, 0))

h(x, 0)+K(1− h(x, 0))
.

(2.28a−c)
We use the Fourier spectral collocation technique to obtain numerical solutions.
The spatial derivatives are approximated using the Fourier spectral discretization
scheme as outlined in Labrosse (2011). A similar discretization scheme based on
the Chebyshev polynomials has been detailed in Guo, Labrosse & Narayanan (2012).
Fourier spectral collocation technique ensures that periodic conditions are imposed
on the computational domain. This implies that each time-dependent variable and all
its spatial derivatives are equal at both ends of the domain. Spectral methods offer
exponential convergence with an increase in grid points because the error ≈O[(1/N)N]
in such discretization schemes, where N is the number of grid points. The time
integration is performed using the NDSolve subroutine in Mathematicar v.10.3
which uses an adaptive procedure to determine the size of time stepping.

3. Results and discussion
The calculations are carried out using the physical properties of water and water

vapour as listed in table 1. We sequentially investigate the system under various limits
to gain a comprehensive understanding of the underlying physics of the problem. Both
linear and nonlinear stability analyses are carried out for each of these limits and the
observed results are discussed.
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Interfacial dynamics of an evaporating bilayer 13

0.1

0.2

0.3

0 0.03 0.06 0.09 0.12 0.15

Wavenumber (k)

FIGURE 2. Growth rate versus wavenumber for evaporative instability when heated from
liquid side (E=−1) plotted for three different values of 1T . The curves denote the growth
rates obtained from (3.1) and the markers correspond to the growth rates obtained by
linearizing the starting long-wave equations (2.2)–(2.14).1T = −1 or Ca = 1.22 × 10−5

(dashed, triangles), 1T = −3 or Ca = 3.66 × 10−5 (dash-dotted, squares), 1T = −5 or
Ca= 6.1× 10−5 (solid, circles); H = 0.3.

3.1. Evaporation in the absence of gravity
We commence the study where the system is subject to phase change alone. Gravity
is not taken into account. This choice in assumptions physically corresponds to
either extremely thin films or micro-gravity conditions, where the effect of gravity
is negligible. In addition to its physical relevance, the results of this case are also
vital in understanding the basic physics of evaporative instability. The possibility of
condensation due to subcooling of vapour at the wall is ignored. Thus, phase change
is expected to occur only at the liquid–vapour interface.

3.1.1. Inertialess creeping flow limit
In this sub-section, we discuss the results for the case where both momentum and

thermal inertia are ignored. This corresponds to the creeping flow limit of vanishing
Reynolds number (Re→ 0). All past nonlinear studies of evaporating thin films have
been restricted to this limit.

The linear growth rate (σ ) obtained from linearization of the WRIBL model (2.26),
in the creeping flow limit is given by:

σ =
η1k2
+ η2k4

+ η3k6

η4 + η5k2
. (3.1)

The coefficients, ηi, appearing in (3.1) are given in appendix B. In figure 2, we
have plotted the growth rate (σ ) as a function of wavenumber when the system
is heated from the liquid side (1T < 0, i.e. E = −1) for three practical cases of
1T = −1 ◦C, −3 ◦C and −5 ◦C. Recalling that U = (Kl|1T|)/(ρvLHc), these values
of 1T correspond to Ca= 1.22× 10−5, 3.66× 10−5 and 6.1× 10−5. These values of
Ca validate the assumption made in § 2.1 that Ca is of ∼O(ε2) or smaller. The curves
in figure 2 correspond to growth rates obtained analytically from (3.1). The markers
in figure 2 denote the numerically obtained growth rates by linearizing the starting
long-wave equations (2.2)–(2.14) using the Chebyshev spectral collocation technique.
It can be seen that they are identical, and for good reason. A departure from the two
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FIGURE 3. Rescaled growth rate versus wavenumber using velocity scale, Uγ = γ /µ.
The curves denote the growth rates obtained from (3.1) and the markers correspond to
the growth rates obtained by linearizing the starting long-wave equations (2.2)–(2.14).
(a) Evaporation when heated from the liquid side. E =−1.22× 10−5 (dashed, triangles),
E=−3.66× 10−5 (dash-dotted, squares), E=−6.1× 10−5 (solid, circles); (b) evaporation
when heated from the vapour side. E = 1.22× 10−5 (dashed, triangles), E = 3.66× 10−5

(dash-dotted, squares), E= 6.1× 10−5 (solid, circles); H = 0.3.

ways of calculating growth constants will only be seen when thermal and momentum
inertia are taken into account, simply because closure of the long-wavelength model
requires an assumed form for û and T̂ . Even so, the agreement ought to be excellent
for low inertia and small wavenumbers. Positive growth rates in figure 2 indicate
that the system is unstable to long-wavelength disturbances when heated from the
liquid side. The collapse of the dominant growth rates for all cases of 1T to roughly
the same value of O(1) indicates that the chosen velocity scale is indeed correct.
As noted earlier, the velocity scale contains the imposed temperature difference, 1T .
Therefore, in order to make fair comparisons on the basis of physics, it is helpful to
use a velocity scale that does not change with the imposed 1T . Hence, a velocity
scale (Uγ = γ /µl) which depends only on fixed parameters of the system is used
hereon to represent all our results in a physically meaningful way. With this choice of
velocity scale, Ca= 1 and E, which is the scaled 1T , becomes the control variable.
The results so obtained are plotted in figure 3(a) and the values of E under the new
velocity scale, Uγ , are given in the captions. It is evident from the figure that the
higher the magnitude of evaporation number, |E|, the more enhanced is the instability.
It is important to note that this instability is different from the thermocapillary
instability driven by Marangoni stresses. Unlike thermocapillary instability which is
driven by lateral temperature variation along the interface, evaporative instability, as
discussed earlier in the introduction, is driven by an imbalance in the conductive
heat transfer at the interface between the two phases. Thus, the temperature gradients
normal to the interface assume significance in evaporative instability. When heated
from the liquid side, the imbalance is such that it reinforces the interface deformation
rendering the system unstable. However, the opposite is true and the system is stable
when heated from the vapour side (E > 0), as can be seen from the growth rates
plotted in figure 3(b). The linear results of our model have been validated with
those of Ozen & Narayanan (2004) in the limit of long wavelength. The results
also match qualitatively with the results of Kanatani (2010). His model assumes a
phenomenological relation that relates the evaporative mass flux to deviation from
local thermodynamic equilibrium. Our model on the other hand assumes interfacial
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FIGURE 4. (a) Spatio-temporal evolution of the interface profile for evaporative instability
when heated from the liquid side showing vapour rupture (cf. movie 1). (b) Time evolution
of the minimum (solid) and the maximum (dashed) position of interface; H = 0.3,
E=−6.1× 10−5, k= 0.1.

equilibrium given by the Clausius–Clapeyron equation (2.13) and the continuity of
temperature (2.14) at the interface. These differences in the models account for the
quantitative differences observed.

The nonlinear evolution of the interface heated from the liquid side for the case of
low vapour–liquid depth ratio (H= 0.3) is depicted in figure 4(a). It can be seen that
the interface deforms progressively until it ruptures the vapour layer, i.e. h reaches
zero, while the liquid layer remains continuous. A video of the interface evolution
exhibiting vapour layer rupture is shown in the supplementary movie 1. In figure 4(b),
we have plotted the maximum (hmax) and minimum (hmin) position of the interface with
time. The interface deflection is more pronounced towards the vapour side. When hmin
decreases from a value of 0.3 to zero, hmax increases only by approximately one third
from that amount, 0.3 to ∼0.4. These results are very similar to those obtained in
the presence of stabilizing gravity by Kanatani & Oron (2011) in their figure 1. The
lower resistance offered by the vapour phase due to its lower viscosity contributes
to the increased deflection of the interface toward the vapour side. It is therefore
found that the system mostly exhibits vapour rupture. Also, the slope of the curves
in figure 4(b) suggests that the rate of interface deformation progressively increases
with time. This is due to the fact that as the interface deforms, the imbalance in
normal gradients of temperature at the interface is further enhanced, increasing the rate
of evaporation. Although the opposing viscous effects also increase as the interface
deforms and approaches the wall, evaporative effects dominate at all times causing a
progressively increased rate of deformation.

Our calculations have also shown instances of liquid layer rupture for large
vapour–liquid depth ratios. Figure 5(a) shows the time evolution of the interface
profile for such a case with H = 0.8. Supplementary movie 2 shows a video of
the time evolution of the interface exhibiting liquid layer rupture. The interface
evolution for this case is starkly different from that observed during vapour layer
rupture in figure 4. The slope of hmax and hmin in figure 5(b) suggests that the
rate of interface deformation initially increases progressively. However, at a later
time (when t ≈ 6.5 × 106 as shown in the lower inset in figure 5b), a decrease
in slope suggests a slower rate of deformation. This decrease in slope (which was
not seen in figure 4) is attributed to a larger viscous resistance experienced by the
interface close to the wall due to higher viscosity of the liquid phase. The viscous
stresses near the top wall in the lubrication limit typically scale with 1/(1− h)3 and
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FIGURE 5. (a) Spatio-temporal evolution of the interface profile for evaporative instability
when heated from the liquid side showing liquid rupture (cf. movie 2). (b) Time evolution
of the minimum (solid) and maximum (dashed) position of interface; H=0.8, E=−3.66×
10−4, k = 0.1. The insets are magnified profiles of hmax aimed at depicting the changes
in the rate of deformation with time. The solid line in the insets is an extrapolation
of the initial slope therein. Lower inset shows a decrease in the rate of deformation at
t ≈ 6.5 × 106, while the top inset shows an increase in the rate of deformation at
t≈ 8.5× 106.
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FIGURE 6. (a) A typical R–T unstable interface: exhibits sliding as it approaches the
wall. The arrow indicates the direction of sliding (cf. movie 3). (b) A typical long-wave
Marangoni unstable interface: exhibits a cascade of buckling events.

therefore the initial primary crest (with its higher value of h) experiences a greater
viscous force and slows down at a faster rate than either of its sides causing the
crest to widen outward. This widening crest then buckles due to capillary forces,
resulting in the formation of two secondary crests. This viscous buckling of the
interface adjacent to a wall has been observed in other physical problems as well
such as the R–T (Lister, Rallison & Rees 2010), Rayleigh–Plateau (Lister, Morrison
& Rallison 2006; Dietze & Ruyer-Quil 2015) and Marangoni (Alexeev & Oron 2007)
instabilities. Although buckling of the interface is observed in all these problems,
subsequent evolution of the interface is physics dependent. In the case of R–T and
Rayleigh–Plateau instabilities, the secondary crests widen outward similar to the
primary crest. Thereafter, the interface becomes unstable to asymmetric disturbance
and undergoes horizontal translation, resulting in sliding. The fact that the sliding
phenomenon results from an instability was conjectured by Lister et al. (2006) and
was shown to be true using a frozen-time stability analysis by Dietze, Picardo &
Narayanan (2018). Figure 6(a) shows a typical interface profile depicting sliding in
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FIGURE 7. (Colour online) Velocity profile in each phase as the interface approaches
the top wall. Only vector heads are plotted to indicate the direction of flow. Solid curve
denotes the interface; t= 7.6× 106, H = 0.8, E=−3.66× 10−4, k= 0.1.

the case of R–T instability. Also refer to movie 3 in the supplementary material for
a video showing the sliding behaviour of the interface. In the case of Marangoni
instability, here too the secondary crests widen outward as the interface approaches
the wall. However, the thermal Marangoni stresses induce a symmetric drainage of
liquid around the secondary crests within the thinning film. This symmetric flow
structure prevents sliding in the long-wave Marangoni instability. Instead, a series of
viscous buckling events result in a cascade of crests as the interface approaches the
wall (Boos & Thess 1999). Figure 6(b) shows a typical interface profile generated
by a cascade of buckling events in the case of long-wave Marangoni instability. The
lubrication model for Marangoni instability used to obtain figure 6(b) is discussed in
appendix D.

We proceed to explain the interface evolution beyond the formation of secondary
crests in evaporative instability. From figure 5, it is clear that the interface neither
shows sliding nor a cascade of buckling events. In order to investigate whether it is a
symmetric drainage around secondary crests, similar to Marangoni flow, that prevents
hydrodynamic sliding in evaporative rupture of thin films, we plot the velocity field
as the interface approaches the top wall in figure 7. Figure 7, however, shows that
the flow profile in the thinning evaporating liquid exhibits symmetric drainage of
liquid from the central trough toward either side, very similar to the capillarity-driven
draining in a R–T unstable film. Despite this similarity in flow structure with R–T
instability, the secondary crests neither exhibit an outward-widening evolution driven
by viscous forces near the wall nor does the interface exhibit sliding dynamics.
Instead, the secondary crests become sharper with time. This surprising behaviour
is explained by the presence of evaporative mass transfer across the interface. It
is important to note that in both Marangoni and R–T instability, the interface can
approach the wall only if liquid drains out of the thinning film. However, in an
evaporative instability, in addition to liquid drainage (as shown in figure 7), the
presence of evaporative mass flux across the interface is an added cause of thinning.
In figure 8, we have plotted the spatio-temporal variation of scaled evaporative mass
flux corresponding to the interface positions plotted earlier in figure 5. The scaled
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FIGURE 8. Spatio-temporal variation of the scaled evaporative mass flux (J). These
profiles correspond to the times for which interface position is depicted in figure 5;
H = 0.8, E=−3.66× 10−4, k= 0.1.

evaporative mass flux (J) is defined as:

J = (ρ/E)j. (3.2)

A positive value for J represents regions of evaporation and a negative value represents
regions of condensation. It is seen that the magnitude of mass flux undergoing phase
change (|J|) increases with time everywhere along the interface, suggesting an
enhancement of phase change with time. In addition, as the interface approaches the
wall, we see a strong localized increase in evaporative mass flux at the secondary
crests. This localized increase in evaporative mass flux at the secondary crests
dominates viscous effects and results in the formation of sharper secondary crests with
time. The dominance of evaporation over viscous effects as the interface approaches
the vicinity of the wall is also evident from an increase in the rate of interface
deformation at t ≈ 8.5× 106 as shown in the upper inset in figure 5(b). In the case
of vapour rupture in (figure 4), the effects of phase change are always stronger
than the viscous stresses exerted on the vapour side due to its lower viscosity. This
explains why the interface exhibits no buckling and the rate of deformation continues
to increase progressively in figure 4.

Our calculations clearly show that the lateral variations in the interfacial temperature
remain very small despite a significantly complex configuration attained by the
interface close to the wall. This is primarily due to evaporative cooling of the interface
during phase change and explains why thermal Marangoni effects are insignificant in
the presence of phase change. Similar observations were also reported by Kanatani &
Oron (2011), using their non-equilibrium model. The uniform interfacial temperature
then results in a uniform vapour pressure as well, through the Clausius–Clapeyron
equation at the interface. This therefore explains why the vapour flow close to the
interface is predominantly normal to the interface in figure 7.

We now look at role of disjoining pressure in the rupture dynamics of an
evaporating interface. For this, simulations are carried out including the disjoining
pressure term (PD 6= 0). In figure 9(a), we have plotted the final configuration attained
by the interface for low liquid hold-up (H = 0.8). The disjoining pressure results in
the formation of liquid drops connected by a very thin steady film of liquid at the
hot wall. On the other hand, when the vapour hold up is low, vapour bubbles are
formed at the cold wall separated by a very thin vapour film as shown in figure 9(b).
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FIGURE 9. (a) Interface rupture in the presence of disjoining pressure to form drops
separated by thin film of liquid when the liquid hold-up is low; E=−3.66×10−4, H=0.8,
k = 0.1. (b) Interface rupture to form bubbles separated by thin vapour film when the
vapour hold-up is low; E=−6.1× 10−5, H = 0.3, k= 0.1.
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FIGURE 10. Growth rate versus wavenumber for evaporative instability without
momentum inertia (dashed curve, triangles) and with momentum inertia (solid curve,
circles); H= 0.3. The curves denote the growth rates obtained by linearizing the evolution
equations (2.26) and the markers correspond to the growth rates obtained by linearizing
the starting long-wave equations (2.2)–(2.14). (a) System is heated from the liquid side,
E=−6.1× 10−5. (b) System is heated from the vapour side, E= 6.1× 10−5. Momentum
inertia has a stabilizing effect.

Qualitatively similar profiles were obtained by Ajaev (2005) using a one-sided
lubrication model in the study of spreading of a dry patch in an evaporating thin
film.

3.1.2. Role of inertia
We now investigate the role of momentum and thermal inertia in the instability.

Toward this, we introduce each inertial effect one after the other to single out the
physics associated with them. First, we introduce momentum inertia alone into the
problem by retaining Reynolds number but in the limit of vanishing Prandtl numbers
(Pri→ 0). The results of linear stability analysis for this case are plotted in figure 10.
The curves represent the results obtained by linearizing the WRIBL model (2.26) and
the markers denote the growth rates calculated by linearizing the starting long-wave
equations (2.2)–(2.14). It can be seen that both are in excellent agreement. As evident
from the figure, the growth rates associated with the long-wave instability are lower
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FIGURE 11. (a) Growth rate versus wavenumber for evaporative instability without
thermal inertia (dashed curve, triangles) and with thermal inertia (solid curve, circles). The
curves denote the growth rates obtained by linearizing the evolution equations (2.26) and
the markers correspond to the growth rates obtained by linearizing the starting long-wave
equations (2.2)–(2.14). System is heated from the liquid side; E =−6.1× 10−5, H = 0.3.
Thermal inertia has a destabilizing effect. (b) Neutral curve corresponding to instability
threshold; dashed line: creeping flow limit, dots: effect of momentum inertia, solid line:
effect of thermal inertia.

in the presence of momentum inertia, when heated from either liquid or vapour side.
Also, the neutral wavenumber corresponding to zero growth rate remains unaffected
(cf. figure 10a), because the base state velocity is zero. The nonlinear evolution of
the interface is found to be qualitatively similar to the creeping flow limit depicted
in figures 4 and 5. The only difference being that the interface evolves at a slower
rate resulting in a longer rupture time. The stabilizing effect of momentum inertia is
attributed to the domain transients of velocity fields. Momentum inertia causes a delay
in the response of a fluid parcel within the domain to any interface deformation as
opposed to the creeping flow limit where the flow is adiabatically slaved to interface
deformation.

We next investigate the role of thermal inertia in the instability mechanism. Both
Reynolds and Prandtl numbers are taken to be finite. However, we drop the terms
associated with momentum inertia (left-hand sides of (2.26b) and (2.26c)) in order
to selectively incorporate the effects of thermal inertia alone into the problem. The
linear growth rates as a function of wavenumber when heated from the liquid side are
plotted in figure 11(a). It is observed that the growth rates are higher in the presence
of thermal inertia. Though the growth rates of the WRIBL model (curves) are slightly
off compared to the starting long-wave equations (markers), the neutral wavenumber
corresponding to the instability threshold is exactly captured. This is because the
leading-order temperature profile assumption is not valid far away from the threshold.
In appendix E, we show that the accuracy of the WRIBL model can be improved by
considering a higher degree polynomial description for the leading-order temperature
profile. Moreover, as the magnitude of the evaporation number (|E|) is reduced, the
WRIBL model and the complete long-wave model get very close to one another. It
might also be noted that the WRIBL model with linear temperature profile is able to
capture the essential destabilizing effects of thermal inertia and the reader will see
that it is an excellent approximation when the system is heated from the vapour side,
a case of interest, in § 3.2. The neutral wavenumber is found to increase from the
case where thermal inertia is ignored. This suggests a destabilizing effect of thermal
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FIGURE 12. The effect of thermal inertia on net mass flux undergoing phase change;
H = 0.3, E=−6.1× 10−5. Dashed line: creeping flow, solid line: with thermal inertia.

inertia on the system. The effect of thermal inertia is clearer from figure 11(b), where
we have plotted the magnitude of the critical evaporation number (denoted by |Ec|)
corresponding to the onset of instability as a function of the wavenumber. The dashed
line denotes the creeping flow limit. The dots and the solid line reflect the effect
of momentum inertia and thermal inertia respectively. The region above the curve is
unstable and that below the curve, stable. As discussed earlier and now evident from
figure 11(b), momentum inertia does not affect the neutral wavenumber. However, the
presence of thermal inertia lowers the magnitude of Ec corresponding to the onset of
instability, once again indicating that thermal inertia destabilizes.

The destabilizing effect of thermal inertia is explained as follows. In the creeping
flow limit, the temperature profile, Ti is slaved to the interface position, h(x, t).
However, thermal inertia, when included, eliminates this slaved evolution of the
temperature profile within each phase and the temperature profiles are further modified
by thermal convection induced by flow. The convective transport of heat due to the
flow results in a larger imbalance of conductive heat flux at the interface, resulting
in a larger evaporative mass flux. This is depicted in figure 12, where the net mass
flux, Jnet, is plotted with time for both creeping flow (dashed curve) as well as in the
presence of thermal inertia (solid curve). The net mass flux, Jnet, is defined as below

Jnet =

√∫ L

0
(J2) dx. (3.3)

As seen from (3.3), Jnet is a measure of net phase change, including both evaporation
and condensation, at the interface. Figure 12 shows that the presence of thermal inertia
results in higher rates of phase change at the interface and thereby destabilizes the
interface.

The nonlinear spatio-temporal evolution of the interface in the presence of thermal
inertia exhibits qualitatively similar behaviour as in the creeping flow limit depicted
in figures 4 and 5. The interface however evolves at a faster rate, thereby resulting
in a shorter rupture time. This is evident from figure 12, where the rupture time
corresponds roughly to the end of the curves. This is consistent with the higher linear
growth rates observed in the presence of thermal inertia in figure 11(a).
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3.2. Rayleigh–Taylor problem in the presence of evaporation
Our principal interest in this section is on the effect of evaporation on an unstable
liquid-above-vapour arrangement. However, let us first consider the case wherein the
fluids are arranged in a light-over-heavy configuration. Gravity stabilizes the system.
When heated from the vapour side, phase change also has a stabilizing effect and
hence the system is always linearly stable. When heated from the liquid side, the
system is unstable due to evaporative phase change. Gravity in this case then acts to
reduce the range of unstable wavenumbers and mitigates the linear growth rates. The
nonlinear interface evolution and rupture profiles are similar to that discussed in the
previous section (in the absence of gravity) and therefore shall not be discussed here.
In accordance with the linear theory, gravity also results in a delay in the nonlinear
rupture time.

Now, focus on the case where the system is in a heavy-over-light configuration. In
this case, the system is inherently unstable due to buoyancy-induced R–T instability.
When heated from the liquid side, evaporation introduces added instability. We have
learnt that the destabilizing effect of phase change becomes stronger as the interface
approaches the heated wall. This is evident from figure 4(b), wherein the rate of
interface deformation is seen to increase sharply with time as the interface approaches
the wall. In contrast, for the R–T instability, the destabilizing effect of buoyancy is
strongly damped by viscous forces near the wall and the rate of interface deformation
decreases as the interface approaches the wall (cf. Lister et al. 2010). Therefore, for
a R–T unstable system heated from the liquid side, the long-time interface dynamics
is dominated by evaporation and the rupture dynamics is similar to that described for
pure evaporation. The interface develops sharp crests (or troughs) that lead to rupture
without sliding or cascade of buckling events. When heated from the vapour side,
phase change counteracts the destabilizing R–T instability. As pointed out earlier, this
was observed by several earlier workers (Hsieh 1978; Ho 1980; Adham-Khodaparast
et al. 1995; Kanatani 2010). In the following sub-sections, we discuss this case under
various limits and make several new observations.

3.2.1. Inertialess creeping flow limit
We first investigate the case where inertia is absent, inertia being taken into

account in § 3.2.3. In figure 13(a), we have plotted the linear growth rates as a
function of wavenumber for three different values of 1T = 10 ◦C, 5 ◦C and 1 ◦C, i.e.
E= 1.22× 10−4, 6.1× 10−5 and 1.22× 10−5. The curves correspond to the linearized
evolution equations (2.26) and the markers denote the linearized starting long-wave
equations (2.2)–(2.14). It can be seen from the panel that both of them are identical.
Figure 13(a) shows that phase change stabilizes R–T configuration. With an increase
in evaporation number, a decrease in both growth rates as well as the range of
unstable wavenumbers is observed. This effect of phase change is depicted clearly in
figure 13(b), wherein we have plotted the neutral curve corresponding to the division
of stable (shaded) and unstable (unshaded) regions. It can be inferred from the figure
that there exists a critical evaporation number (E ≈ 1.22 × 10−4) that can linearly
stabilize the system. This implies that a flat interface between a heavy-over-light fluid
continues to remain so if E exceeds this critical value. Importantly, it is seen that
for weaker evaporation (see E = 6.1× 10−5 and E = 1.22× 10−5 in figure 13a), two
neutral points emerge. We contrast this with the case of Marangoni suppression of
R–T instability (Alexeev & Oron 2007) where only one bifurcation point is possible in
appendix F. The bifurcation behaviour close to the two neutral points shall be analysed
in the next section. For wavenumbers bounded by these two neutral wavenumbers,
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FIGURE 13. (a) Growth rate versus wavenumber for R–T unstable configuration, heated
from the vapour side. The curves denote the growth rates obtained from (3.1) and the
markers correspond to the growth rates obtained by linearizing the starting long-wave
equations (2.2)–(2.14). E= 1.22× 10−4 (dashed, circles), 6.1× 10−5 (dash-dotted, squares)
and 1.22 × 10−5 (solid, triangles). The system is stabilized with increase in E and is
linearly stable for E = 1.22 × 10−4. (b) Neutral curve corresponding to the division of
stable (shaded) and unstable (unshaded) regions; H = 0.3.
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FIGURE 14. (a) Steady-state interface profile for R–T unstable configuration, heated from
the vapour side; E= 1.22× 10−4 (dotted), 6.1× 10−5 (dashed) and 1.22× 10−5 (solid). (b)
Temporal evolution of hmin and hmax corresponding to the unstable cases of E= 6.1× 10−5

(dashed) and 1.22× 10−5 (solid); H = 0.3, k= 0.2. Also cf. movies 4 and 5 for interface
evolution.

linear growth rates are positive suggesting that the interface is unstable and should
undergo deformation, but not necessarily break-up. In figure 14(a), the steady-state
interface profile for three values of evaporation number, viz., E= 1.22× 10−4 (dotted),
E= 6.1× 10−5 (dashed) and E= 1.22× 10−5 (solid) are plotted. The fastest growing
linear mode (k = 0.2) is chosen as the imposed perturbation. From figure 14(a),
it can be seen that for the linearly stable case of E = 1.22 × 10−4, the interface
returns to its flat configuration. For E= 6.1× 10−5 and E= 1.22× 10−5, although the
system is linearly unstable, the interface nonlinearly saturates to a steady non-ruptured
configuration. A decrease in evaporation (lower E) causes the interface to saturate
closer to the walls (cf. figure 14b). The videos of the interface evolution corresponding
to these two unstable cases of E = 6.1 × 10−5 and E = 1.22 × 10−5 are provided in
the supplementary movies 4 and 5 respectively. Qualitatively, similar results were
obtained using a one-sided model by Bestehorn & Merkt (2006) as well as by
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FIGURE 15. (a) Initial velocity profile in each phase for the R–T unstable configuration,
heated from the vapour side. (b) Velocity profile in each phase when the interface attains
a steady configuration shows flow reversal in the liquid (also cf. movie 6). Only vector
heads are plotted to indicate the direction of flow. Solid curve denotes the interface;
H = 0.3, E= 2.44× 10−5, k= 0.2.

Kanatani & Oron (2011) using their two-sided model. In figures 15(a) and 15(b)
respectively, we have plotted the the initial transient as well as the steady-state
velocity profiles within each phase. It is interesting to note here that the velocity
profile in the liquid phase in the initial stages is dominated by buoyancy (flow is
from crest to trough). The vapour flow is from trough to crest. As the interface
deforms due to buoyancy, the trough approaches the hot wall. This results in strong
evaporation at the trough and generates a strong vapour flow due to the large density
difference between the two phases. This vapour flow then eventually drags the liquid
along with it, causing a flow reversal in the liquid phase opposing the effect of
buoyancy (also cf. movie 6). This shear-induced flow reversal in the liquid phase by
the evaporating vapour is the reason for saturation. One-sided evaporation models
that do not account for an active vapour phase must therefore be more unstable. For
negligibly low evaporation rates, it is found that the system behaviour resembles that
of a pure R–T instability. The interface initially evolves as in figure 14(b). However,
due to negligible evaporation, the interface continues to deform and saturated steady
profiles are not obtained. Instead, the buckled interface exhibits sliding at very long
times as the film approaches rupture, similar to that reported by Lister et al. (2010) in
the case of a pure R–T instability. The temporal evolution of the interface depicting
sliding is shown in figure 16 for an initial hold-up of H= 0.8. It can be seen that the
primary crest of the perturbed interface (dashed, t = 8.2 × 105) undergoes buckling
as it approaches the wall (dot-dashed) at t = 8.2 × 106. This buckled profile of the
interface is a quasi-steady configuration and it continues to evolve at extremely slow
rates. At very long times (dashed, t= 3.1× 108 and solid, t= 3.7× 108), the interface
exhibits spontaneous sliding as was also shown by Lister et al. (2010). In the next
sub-section, we proceed to analyse the bifurcation behaviour of the two neutral points
that we encountered in this sub-section.

3.2.2. Bifurcation behaviour at the neutral points
In § 3.2.1, we saw that strong evaporation can linearly stabilize an interface

which is otherwise R–T unstable. When evaporation was decreased just enough for
gravitational effects to dominate, we saw the emergence of two neutral points that
bound the unstable wavenumbers in figure 13(a). In this section, we evaluate the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.714


Interfacial dynamics of an evaporating bilayer 25

0 5 10 15 20 25 30

0.7

0.8

0.9

1.0

0.4

0.6

0.5

x

h

FIGURE 16. Sliding of the interface as it nears rupture for very weak evaporation. The
arrow indicates the direction of sliding. The profiles are plotted for t= 8.2× 105 (dotted),
t = 8.2 × 106 (dot-dashed), t = 3.1 × 108 (dashed), and t = 3.7 × 108 (solid); H = 0.8,
E= 1.22× 10−9, k= 0.2.

bifurcation behaviour at the two neutral points using a weak nonlinear analysis. The
analysis is carried out in the limit of vanishing inertia (Re→ 0). This is because the
inertial effects are only expected to slightly alter the bifurcation points. The nature
of bifurcation, however, is expected to remain the same. The control parameter, G is
advanced by a small amount from its critical threshold value, i.e. G= Gc + (1/2)δ2,
where δ is a small parameter that quantifies the distance from critical threshold value
of the control parameter, Gc. The variables are expanded as a regular perturbation
series in δ. Solvability at third order is imposed to obtain an amplitude equation as
given below:

A− ζ A3
= 0. (3.4)

Here, A is the amplitude of the interface position. The details of the analysis
are presented in appendix C. The bifurcation is supercritical when ζ > 0 and
subcritical if ζ < 0. A supercritical bifurcation indicates nonlinear saturation of
the interface, whereas a subcritical bifurcation indicates the possibility of rupture. In
our calculations, we choose δ = 0.005 and the value of ζ is calculated numerically.

From figure 13(a), we know that for sufficiently strong evaporation (E >

1.22 × 10−4), the linear growth rates are negative and the system is linearly stable.
We now look at the case of E= 1.1× 10−4, wherein evaporation is strong but gravity
just overcomes the effects of evaporation. The linear growth rate curve for this
case is presented in figure 17(a) and it shows the emergence of two neutral points
(denoted by kc,L and kc,R). The two neutral wavenumbers are closely spaced and the
unstable wavenumbers are bounded between them. Our weak nonlinear calculations
show that both these neutral wavenumbers are supercritical with ζ > 0. The nonlinear
evolution of the interface corresponding to these two neutral wavenumbers is shown
in figure 17(b,c). As expected from the weak nonlinear analysis, the interface saturates
to a small amplitude cosine profile, indicating a supercritical bifurcation. Thus, the
onset of instability results in similar interface profile irrespective of the choice of the
neutral point.

Next, we look at the case of E= 3.66× 10−5, where evaporation is further reduced
and the neutral wavenumbers are far apart. Figure 18(a) shows the linear growth
rate curve for this case. It will be shown that this particular case is chosen for good
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FIGURE 17. (a) Growth rate versus wavenumber for R–T unstable configuration when
heated from the vapour side; H= 0.3, E= 1.1× 10−4. (b) Steady interface profile close to
the left neutral wavenumber (k= 1.01 kc,L); kc,L = 0.167. (c) Steady interface profile close
to the right neutral wavenumber (k= 0.99 kc,R); kc,R = 0.227.
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FIGURE 18. Growth rate versus wavenumber for R–T unstable configuration when heated
from the vapour side; H = 0.3, E= 3.66× 10−5. (b) Steady interface profile close to the
left neutral wavenumber (k = 1.01 kc,L); kc,L = 0.081 (cf. movie 7). (c) Steady interface
profile close to the right neutral wavenumber (k= 0.99 kc,R; kc,R = 0.269).

reason. Here, the range of unstable wavenumbers bounded between the two neutral
wavenumbers includes the higher harmonics of kc,L. It is the presence of these higher
unstable harmonics that will be shown to be of importance. Our weak nonlinear
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FIGURE 19. Growth rate versus wavenumber for R–T unstable configuration when heated
from the vapour side; H = 0.3, E = 1.22 × 10−11. (b) Interface approaches rupture close
to the right neutral wavenumber (k= 0.99 kc,R), kc,R = 0.282.

calculations show that the two neutral points are supercritical. Therefore the interface
is expected to nonlinearly saturate and it does. In figure 18(b), the steady interface
profile corresponding to the left neutral wavenumber (kc,L) shows nonlinear saturation
of the interface. However, since the domain length corresponding to kc,L allows higher
unstable harmonics such as 2kc,L and 3kc,L, the final steady profile is dominated by
these higher harmonics. A video of the interface evolution for this case is shown
in the supplementary movie 7. Figure 18(c) on the other hand shows that for kc,R,
the interface evolves to a small amplitude cosine profile as in the earlier case. This
is because all higher harmonics of kc,R are stable with negative growth rates. Thus,
depending on the choice of the critical domain size, the onset of instability can result
in two very distinct interface profiles.

Our calculations suggest that kc,L remains supercritical for further decrease in
E and below a critical evaporation number, kc,L disappears and the system has
only one neutral wavenumber, kc,R. At this value of E, kc,R is still supercritical.
With further decrease in E, the neutral wavenumber, kc,R then approaches the pure
R–T neutral point and kc,R turns subcritical with ζ < 0. In figure 19(a), we have
plotted the linear growth rate curve for such a case. As seen from the panel, there
exists only one neutral wavenumber kc,R. The linear growth rate curve matches
exactly with the pure R–T instability. In figure 19(b), it can be seen that unlike
earlier cases where the interface showed saturation, here the interface profile evolves
towards rupture indicating a subcritical bifurcation. The calculations depicted in the
figure were stopped when the interface position reached 0.001 as significantly high
spatio-temporal resolution is required for the simulation to continue beyond. If the
calculations were to be continued, the interface is expected to buckle and exhibit
sliding. In fact, for the case of k= 0.9kc,R, it was verified that buckling followed by
sliding occurred. We next investigate the role of inertia in the evaporative suppression
of R–T instability. It should be noted here that the fastest growing linear mode is
quite far away from the instability threshold. Our computations have shown that the
fastest growing linear mode, as it is quite far from the instability threshold, exhibits
sliding and associated rupture before kc,R turns subcritical. Therefore, in a practical
experiment where all unstable wavenumbers are present, nonlinear saturated states are
guaranteed when both neutral wavenumbers (kc,L and kc,R) are supercritical.
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FIGURE 20. Effect of momentum and thermal inertia on growth rate versus wavenumber
for a R–T unstable system, heated from the vapour side. The curves denote WRIBL model
and the markers denote the long-wave equations. Dashed curve or circles denote creeping
flow. Dot-dashed curve or triangles denote the effect of momentum inertia. Solid curve or
squares denote the effect of thermal inertia. H = 0.3, E= 2.44× 10−5.

3.2.3. Effect of inertia in a R–T unstable system, heated from the vapour side
The results of linear stability analysis with inclusion of inertia are plotted in

figure 20 for 1T = 2 ◦C, i.e. E = 2.44 × 10−5. The curves denote the growth rates
obtained by linearizing the evolution equations (2.26) and the markers correspond to
the growth rates obtained by linearizing the starting long-wave equations (2.2)–(2.14).
The dashed curve and circles denote creeping flow, dot-dashed curve and triangles
denote the effect of momentum inertia, while the solid curve and squares denote the
effect of thermal inertia. It is evident from the figure that the linear growth rates
obtained from the WRIBL model are in good agreement with that of the starting
long-wave equations. As shown earlier in the absence of gravity, momentum inertia
lowers the linear growth rates. The effect of thermal inertia on the linear growth
rates is almost negligible in figure 20. However, by artificially increasing the Prandtl
numbers to larger values than in table 1, it was found that the linear growth rates
increase similar to the results obtained in the absence of gravity. The results of
nonlinear calculations for the fastest growing linear mode are depicted in figure 21.
In figure 21(a), the temporal evolution of the minimum and maximum positions of the
interface are plotted for creeping flow (dashed curves) as well as in the presence of
momentum inertia (solid curves). It can be seen that the momentum inertia slows the
rate of interface evolution consistent with its lower linear growth rates. Importantly,
momentum inertia results in an oscillatory approach to the final steady configuration
as shown in figure 21(a). The supplementary movie 8 shows a video of this oscillatory
saturation of the interface. The interface finally attains the same steady non-ruptured
configuration as in the creeping flow limit. It is interesting to note here that although
the final non-ruptured configuration involves flow within each phase, momentum
inertia does not affect the final steady interface configuration. This is attributed to the
insignificant role played by the convective terms in momentum inertia as discussed
earlier in § 3.1.2. Momentum inertia only affects the transient dynamics. A similar
oscillatory saturation to a final steady state in the presence of momentum inertia has
been observed by Smith & Vrane (1999), although for a different problem involving
interface deformation of thin films driven by thermocapillarity. In figure 21(b), we
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FIGURE 21. Temporal evolution of hmax and hmin for a R–T unstable system, heated from
the vapour side. (a) Momentum inertia results in an oscillatory saturation (cf. movie 8). (b)
Thermal inertia destabilizes and causes the interface to saturate closer to the wall. Dashed
curves denote the evolution without inertia and the solid curves are with inertia; H= 0.3,
E= 2.44× 10−5, k= 0.2.

have plotted the nonlinear time evolution of the minimum and maximum positions
of the interface for creeping flow (dashed curves) as well as in the presence of
thermal inertia (solid curves). We see that in the presence of thermal inertia, the
interface undergoes larger deformation and settles to a steady configuration closer to
the bottom wall. In the presence of thermal inertia, convective heat transfer modifies
the temperature profile within each fluid domain. This, in effect, alters the normal
gradients of temperature at the interface, thereby affecting the final non-ruptured state.

4. Summary
A WRIBL model for a bilayer system undergoing phase change with inertial effects

is developed. The model is valid for moderate Reynolds and Prandtl numbers. For pure
evaporation, it is shown that phase change can cause the bilayer system to become
unstable when heated from the liquid side. This evaporative instability may result in
rupture of either the liquid or vapour layer to form drops or bubbles depending on
system parameters such as vapour–liquid depth ratio. The interface evolution leading
to rupture is shown to be different from Marangoni or R–T instability. Neither sliding
nor a cascade of buckling events is observed. An enhanced rate of phase change as
the interface approaches the wall results in the formation of ever-steepening crests
(or troughs) that result in rupture. The role of inertia can be summarized as: (i)
momentum inertia has a stabilizing effect, and (ii) thermal inertia has a destabilizing
effect. When gravity is included, a R–T unstable configuration can be stabilized by
phase change when heated from the vapour side. Strong evaporation linearly stabilizes
the R–T instability. As evaporation is decreased, two neutral wavenumbers emanate
which are found to be supercritical from a weak nonlinear analysis and the interface
evolves to a non-ruptured steady state. The steady state is found to be a consequence
of shear-induced flow reversal in the liquid due to strong vapour flow generated
by evaporation. Inclusion of momentum inertia results in a slower and oscillatory
saturation to the same unruptured steady state as in the creeping flow limit. Thermal
inertia, however, results in a larger deformation of the interface and the steady
non-ruptured interface shifts closer to the wall. As evaporation is reduced further, one
of the neutral points disappears, while the other remains supercritical until it turns
subcritical upon further reduction of evaporation. The interface evolution in this case
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resembles pure R–T instability (Lister et al. 2010) and shows spontaneous lateral
sliding of the interface as it approaches the wall. As the fastest growing linear mode
is quite far from the instability threshold, the interface may exhibit sliding before the
second neutral wavenumber turns subcritical. Therefore, nonlinear saturated states are
guaranteed in an experiment when both neutral wavenumbers are supercritical.
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Appendix A. Linear approximation to Clausius–Clapeyron equation
In this appendix, we discuss how the linear Clausius–Clapeyron parameter, S was

determined for water–water vapour system. The Clausius–Clapeyron equation is given
as

log
P1

P2
=
1Hvap

R

(
1
T2
−

1
T1

)
. (A 1)

In the above, the gas constant, R = 8.314 J mol−1 K−1, 1Hvap = 40.7 kJ mol−1,
P1 = 101 325 Pa and T1 = 373.15 K. Saturation pressure as a function of temperature
obtained from (A 1) is depicted in figure 22 (denoted by markers). A linear
approximation with a R-squared value of 0.993 is shown by the solid line and
the corresponding equation is:

Psat = 3637.3 T − 1.2× 106. (A 2)

The slope of the curve (A 2) gives the linear Clausius–Clapeyron parameter,
S= 3637.3.

Appendix B. Linear stability analysis
The coefficients, ηi, appearing in (3.1) are listed below:

η1 = 3CaE (G(−HK+H +K)2 (H4(µ2
+µ(−4ρ2

+ 6ρ − 4)+ ρ2)

− 4H3µ(µ− ρ2
+ 3ρ − 3)+ 6H2µ(µ+ ρ − 2)− 4H(µ− 1)µ+µ2)

−ΦK (H4(µ− 1)(µ− ρ)− 2H3µ(2µ+ ρ − 3)+ 3H2µ(2µ+ ρ − 3)
− 4H(µ− 1)µ+µ2 )) (B 1)

η2 = −(H − 1)2(H(K− 1)−K) (3Eµ(H(K− 1)−K)
× (H2(µ+ 3ρ − 4)− 2H(µ− 2)+µ)+ΦGCa(H − 1)2H4(ρ − 1)ρ
× (H(µ− 1)−µ)) (B 2)
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FIGURE 22. Saturation pressure as a function of temperature for water–water vapour
system as obtained from the Clausius–Clapeyron equation (solid markers) and its linear
approximation (solid line) in the neighbourhood of 373.15 K and 1 atm.

η3 =−ΦH4ρ(H − 1)4(H(K− 1)−K)(H(µ− 1)−µ) (B 3)

η4 = 36ECaµ(ρ − 1)(−HK+H +K)2(H(µ− 1)−µ) (B 4)

η5 = 3CaΦ(H − 1)Hρ(H(K− 1)−K)
× (H4(µ− 1)2 − 4H3(µ− 1)µ+ 6H2(µ− 1)µ− 4H(µ− 1)µ+µ2). (B 5)

Appendix C. Weak nonlinear analysis
This appendix discusses the details pertaining to the weak nonlinear analysis carried

out in § 3.2.2. We choose G to be the control parameter. The bifurcation is conjectured
to be a pitchfork and the control parameter is advanced from its critical value, Gc, by
an amount (1/2)δ2, i.e. G=Gc + (1/2)δ2. In response, the variables (h, ql, qv, θ) are
assumed to be series expansions in δ as given below.

h(x)=H + δh1(x)+
δ2

2
h2(x)+

δ3

6
h3(x)+ · · · . (C 1)

qv(x)= δq1(x)+
δ2

2
q2(x)+

δ3

6
q3(x)+ · · · . (C 2)

ql(x)= δq∗1(x)+
δ2

2
q∗2(x)+

δ3

6
q∗3(x)+ · · · . (C 3)

θ(x)= θ0 + δθ1(x)+
δ2

2
θ2(x)+

δ3

6
θ3(x)+ · · · . (C 4)

In the above, it is to be noted that h(x) and θ(x) are surface variables, whereas
the flow rates (ql and qv) are domain integral quantities. The relation between the
perturbed flow rates (q) and the horizontal velocity component (u) at each order is
as given below:

q1(x)=
∫ H

0
u1 dz, q∗1(x)=

∫ 1

H
u∗1 dz (C 5a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.714


32 D. S. Pillai and R. Narayanan

q2(x)=
∫ H

0
u2 dz+ h1u1|H, q∗2(x)=

∫ 1

H
u∗2 dz− h1u∗1|H (C 6a,b)

q3(x)=
∫ H

0
u3 dz+ 3h1u2|H + 3h2u1|H + 3h2

1u1|H (C 7)

q∗3(x)=
∫ 1

H
u∗3 dz− 3h1u∗2|H − 3h2u∗1|H − 3h2

1u∗1|H. (C 8)

We substitute the expansions given by (C 1)–(C 4) into the nonlinear evolution
equations (2.26) and solve order by order in δ. The analysis is carried out in the
limit of vanishing inertia (Re → 0). At O(δ), the coefficients h1, q1, q∗1 and θ1
are determined up to an arbitrary amplitude, A. Our intention is to determine the
amplitude A. For this, we go to the next order, i.e. equations at O(δ2/2). At this
order, it is observed that the inhomogeneous terms are multiples of A2 and solvability
is satisfied. This allows us to solve for h2, q2, q∗2 and θ2 at this order in terms of A2.
We then proceed to the next order, i.e. O(δ3/6), where solvability condition requires
a balance between the terms containing A3 and A to give us the amplitude equation:

A− ζ A3
= 0. (C 9)

In the above, ζ is the Landau constant and the bifurcation is supercritical when ζ > 0
and subcritical for ζ < 0.

Appendix D. Lubrication model for Marangoni instability
This appendix discusses the lubrication model for a one-sided Marangoni problem.

The interface evolution obtained from this model is shown in figure 6(b) while
comparing the interface evolution toward rupture with that of pure evaporation
instability. The schematic for pure one-sided Marangoni instability is shown in
figure 23. The unperturbed liquid is of depth, H, and maintained in contact with a
hot wall at temperature, TH . The gas in contact with the liquid is assumed to be
hydrodynamically passive and at a temperature, T∞. At the interface, the heat transfer
is given by Newton’s law of cooling as

−Kl
∂T
∂z
(h)= htr[T(h)− T∞]. (D 1)

In the above, htr and Kl are interfacial heat transfer coefficient and liquid thermal
conductivity. Choosing the length, velocity and time scales to be H, αl/H and H2/αl,
wherein αl is the liquid thermal diffusivity, and using the usual long-wave lubrication
theory, the evolution equation for the interface can be easily derived as

ht =

[
Ma Bi h2

2
hx

(1+ Bi h)2
−

h3

3

(
hxxx

Ca
−Ghx

)]
x

. (D 2)

In the above, Ma = γT1TH/µlαl, G = ρgH3/µαl, Ca = µlαl/γ H and Bi = htrH/Kl,
where γT , 1T , µl and γ , respectively denote the temperature sensitivity of surface
tension, temperature difference between the wall and passive gas (TH − T∞), liquid
dynamic viscosity and interfacial tension. For pure Marangoni instability, G is set
to zero. While plotting the interface shape in figure 6(b), we use a coordinate
transformation given by z∗= ((h− 1)/h)z+ 1 so that the liquid domain is transformed
from z= [0, h] to z∗ = [1, h]. This transformation results in a vertically inverted plot
that aids in easier visual comparison with the results of pure evaporation obtained in
figure 5.
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FIGURE 23. Schematic of pure one-sided Marangoni problem.

Appendix E. Improved WRIBL model with quadratic temperature and weight
function

A particular limitation of the WRIBL model, while retaining thermal inertia, is
the assumption for the form of the leading-order velocity (ûi) and temperature (T̂i)
profiles. In our work, we assume the leading-order velocity profile to be parabolic
and the temperature profile to be linear. This assumption restricts the validity of the
WRIBL model to conditions with moderate inertial effects. In the neighbourhood
of the instability threshold (close to kc), the linear temperature profile is valid and
hence the instability threshold is captured accurately by the WRIBL model. However,
as we move far away from the instability threshold, the linear assumption for the
temperature profiles ceases to be valid and the temperature profiles may become
significantly nonlinear. This is evident from figure 24(a), wherein the temperature
eigenfunction in the liquid phase at a crest obtained from the starting long-wave
equations is plotted for k= 0.02, far away from the threshold (kc = 0.171). It can be
seen that the temperature profile deviates from linearity in this case. This explains
the discrepancy in the linear growth rates obtained from the WRIBL model and
the starting long-wave equations. The discrepancy in the growth rates due to the
linear assumption for leading-order temperature can be rectified by improving the
leading-order description of temperature. Toward this, we derived a WRIBL model by
considering a quadratic functional form for the leading-order temperature profiles and
taking the residual of the energy equation with the corresponding quadratic weight
functions as detailed by Trevelyan & Kalliadasis (2004). This procedure yields two
equations governing the evolution of local average temperature in each phase (θl and
θv) as compared to one surface temperature (θ ) obtained in § 2.2. In figure 24(b), we
have plotted the linear stability results so obtained and compared with that obtained
in figure 11(a). It can be seen that the WRIBL model with quadratic temperature
and weight functions is in good agreement with the starting long-wave equations. In
principle, incorporating even higher degree polynomial description for temperature
profiles and taking residuals with the corresponding higher degree weight functions
continue to improve the accuracy as well as validity of the model to regimes with
significant inertia. Pursuing this, of course, leads to a mathematically involved
nonlinear model. We have not pursued nonlinear calculations for the quadratic model
as part of the current work. This is because, we believe the WRIBL model with linear
assumption is capable of capturing all the physics of the inertial effects such as (i)
the destabilizing effect of thermal inertia in pure evaporation, (ii) the saturation of the
interface closer to the bottom wall due to thermal inertia in evaporative suppression
of R–T instability.
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FIGURE 24. (a) The temperature eigenfunction in the liquid phase (solid) exhibits
deviation from the linear profile. The dashed line depicts a straight line joining the
interface temperature to the wall temperature. System is heated from the liquid side;
E=−6.1× 10−5, H= 0.3, k= 0.02. (b) Reproduction of figure 12(a) along with the linear
stability results obtained by linearizing the WRIBL model with quadratic temperature and
weight functions (dotted curve).

Appendix F. A note on suppression of R–T instability

In this appendix, we compare the difference in the suppression behaviour of R–T
instability by evaporation with that of thermal Marangoni stresses. As observed from
figure 13, the evaporative suppression of R–T instability may exhibit up to two
neutral wavenumbers. However, in the Marangoni suppression of R–T instability, only
one neutral wavenumber emerges for any value of imposed Marangoni number. This
is because the destabilization offered by gravity in an R–T unstable configuration
typically scales with wavenumber as k2. The stability offered by evaporation, however,
has a very strong dependence on wavenumber (k) close to k = 0 and then more or
less saturates with wavenumber until surface tension forces become important (cf.
figure 3b). This dependence on wavenumber is primarily due to the physics of
evaporation. Phase change depends principally on the normal temperature gradients
at the interface. The cause of evaporative stabilization is thus not sensitive to the
lateral variations or the wavenumber of the perturbation. Therefore, when perturbed,
the growth rate immediately reaches a non-zero value close to k= 0, which continues
to remain independent of the wavenumber until surface tension effects dominate. This
may also be inferred from (3.1), where η4 is typically much less than η5. Therefore,
for small k2, the linear growth rate (σ ) is given approximately by σ ∼ η1/η5. This
is also evident from figure 25(a), where we have plotted this approximate value
of growth rate along with that obtained from (3.1), when heated from the vapour
side. Thermocapillarity, on the other hand, is primarily driven by lateral variations of
temperature along the interface. The stability offered by thermocapillarity, therefore
is always dependent on the perturbation wavenumber and scales as k2 (cf. Alexeev &
Oron (2007)). The similar dependence of destabilizing effect of gravity and stabilizing
effect of thermocapillarity on wavenumber (as k2) results in a monotonic decrease
of the neutral wavenumber from kc,RT to kc = 0 with Ma, beyond which the system
becomes linearly stable. This is evident from figure 25(b), where the results of
Marangoni suppression of R–T instability from model equation (D 2) are plotted.
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FIGURE 25. (a) Linear growth rate for evaporation heated from vapour side (solid line),
dashed line represents the approximate growth rate given by η1/η5; E = 6.1 × 10−5,
H = 0.3. (b) Marangoni suppression of R–T instability. Only one neutral wavenumber
exists for any value of Ma. Pure R–T with Ma = 0 (solid line), Ma = −2.02 × 10−4

(dashed), Ma=−6.08× 10−5 (dash-dotted) and Ma=−1.21× 10−5 (dotted); Ca= 23 854,
G= 1.7× 10−6, Bi= 0.2.
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