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Abstract

In this work, an artificial neural network model is established to understand the relationship
among the tensile properties of as-printed Ti6Al4V parts, annealing parameters, and the ten-
sile properties of annealed Ti6Al4V parts. The database was established by collecting pub-
lished reports on the annealing treatment of selective laser melting (SLM) Ti6Al4V, from
2006 to 2020. Using the established model, it is possible to prescribe annealing parameters
and predict properties after annealing for SLM Ti-6Al-4V parts with high confidence. The
model shows high accuracy in the prediction of yield strength (YS) and ultimate tensile
strength (UTS). It is found that the YS and UTS are sensitive to the annealing parameters,
including temperature and holding time. The YS and UTS are also sensitive to initial YS
and UTS of as-printed parts. The model suggests that an annealing process of the holding
time of fewer than 4 h and the holding temperature lower than 850°C is desirable for as-
printed Ti6Al4V parts to reach the YS required by the ASTM standard. By studying the col-
lected data of microstructure and tensile properties of annealed Ti6Al4V, a new Hall-Petch
relationship is proposed to correlate grain size and YS for annealed SLM Ti6Al4V parts in
this work. The prediction of strain to failure shows lower accuracy compared with the predic-
tions of YS and UTS due to the large scattering of the experimental data collected from the
published reports.

Introduction

Titanium alloys are widely used as advanced structural materials, due to their desirable proper-
ties such as high strength to weight ratio, biocompatibility, corrosion resistance , desirable frac-
ture toughness, and good fatigue performance (Donachie, 2000; Tamilselvi et al., 2006;
Banerjee and Williams, 2013; Lin et al., 2017). However, Titanium alloys are difficult to
machine because of the low thermal conductivity of the alloys (Qian, 2010). They are not
easy to cast, either due to the high reactivity of liquid Titanium or the high melting point
of Titanium alloy. Consequently, Titanium parts are frequently acquired by forging process.
However, forging has issues such as long process time and a large fraction of raw material
being wasted (Luo et al., 2010; Tirelli et al., 2015). Thus, the additive manufacturing (AM)
technology, which enables the fabrication of Titanium parts with high geometric freedom,
high accuracy, and great complexity, became attractive (Frazier, 2014; Herzog et al., 2016).
Among AM technologies, selective laser melting (SLM) is a laser-based powder-bed melting
process. It uses a precisely controlled, high-energy laser to fabricate 3D parts from a CAD
file, in a layer-by-layer fashion (Carpenter Technical Datasheet Titanium Alloy Ti 6Al-4V;
Herzog et al., 2016). Among all Titanium alloys, Ti6Al4V accounts for more than 50% of
total usage (Carpenter Technical Datasheet Titanium Alloy Ti 6Al-4V). Ti6Al4V is also the
most extensively studied Titanium alloy for AM process (Qian et al., 2016). Many studies
have investigated fabricating Ti6Al4V parts by the SLM method (Simonelli et al., 2012; Rafi
et al., 2013; Kumar et al., 2018).

The mechanical properties of Ti6Al4V parts prepared by the SLM process is the key factor
in determining quality and applicability. It is well known that the nonequilibrium phase of
martensite forms in the as-printed sample, instead of the more desirable equilibrium α+β
phases. This is due to the high-temperature gradient and the high solidification rate in the
melting pool. This microstructure results in rather low elongation (EL) and a low strain-
hardening rate of as-printed Ti6Al4V samples (Ahmed and Rack, 1998; Ducato et al., 2013;
Huang et al., 2016; Barriobero-Vila et al., 2017). It has also been widely reported that there
was a high residual stress in as-printed Ti6Al4V (Simonelli et al., 2014; Yadroitsev and
Yadroitsava, 2015; Yadroitsava et al., 2015; Parry et al., 2016). Furthermore, it was found
that the laser scan strategy had a significant influence on the direction of grain growth, and
led to an anisotropic tensile property in as-printed parts. In order to resolve these problems,

https://doi.org/10.1017/S0890060422000117 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060422000117
mailto:jianyul@wpi.edu
https://orcid.org/0000-0002-3278-508X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0890060422000117&domain=pdf
https://doi.org/10.1017/S0890060422000117


annealing is widely applied to as-printed parts. Multiple studies
have been conducted to examine the annealing process and inves-
tigate the effect of annealing for Ti6Al4V, including reaction
kinetics (Stefansson et al., 2002; Semiatin et al., 2005), phase mor-
phology (Katzarov et al., 2002; Semiatin et al., 2003), corrosion
resistance (Xu et al., 2017; Ettefagh et al., 2019), microstructure,
and mechanical properties under different annealing conditions
(Wang et al., 2016; Bilgin et al., 2017). However, there is still a
need to build a model that can predict the tensile properties of
the post-treatment Ti6Al4V parts prepared by the SLM process,
based on the tensile properties of the as-printed parts and the
annealing parameters. According to Shi et al., it is well recognized
that the relation between microstructure and properties of
Ti6Al4V is nonlinear and interactive. So, it is challenging to
describe this connection as a mathematical relationship (Shi
et al., 2015). In the recent years, the artificial neural network
(ANN) has emerged as a powerful tool to solve multivariable non-
linear modeling problems in different subject fields. For example,
ANN has been successfully employed to predict the tensile prop-
erties of wrought titanium alloys, using composition and fabricat-
ing features as inputs (Kar et al., 2006; Glavicic and Venkatesh,
2014; Ghamarian et al., 2016; Hayes et al., 2017).

As shown in Figure 1, the goal of this work is to establish an
effective model through an ANN algorithm, one that uses the
mechanical properties of as-printed Ti4Al4V parts prepared by
SLM and annealing parameters as inputs and uses the tensile
properties of post-annealing parts as outputs. The software pack-
age, Tensorflow, was adopted to build the model. Data of the
annealing treatment and tensile properties of Ti6Al4V parts
were collected from publications and reports between 2006 and

2020. Using data from different research groups across this exten-
sive time span to build the model reduces potential bias due to
machine-to-machine and process-to-process variation. The results
of this study show that final tensile properties depend on the
annealing conditions such as holding time and temperature, as
well as on the initial tensile properties of as-printed parts. In addi-
tion, this study proposes a Hall-Petch relation with a new σ0 of
767 MPa and a new Hall-Petch coefficient of 191 MPa μm1/2

for powder-bed fusion Ti6Al4V. By using the established ANN
model, the tensile properties of annealed Ti6Al4V parts fabricated
by SLM can be predicted with high accuracy.

Data and methods

Artificial neural network

This work used the ANN algorithm to build the relationships
among mechanical properties of as-printed Ti-6Al-4V prepared
by the SLM process, annealing parameters, and the final mechan-
ical properties of heat-treated parts. As shown in Figure 2, the
ANN algorithm has three sections: an input layer, two hidden
layers, and an output layer. There are different amounts of artifi-
cial neurons in each layer. All the neurons work in the same
mathematical pattern (Theodoridis, 2015).

The activation function used in this study was the ReLU func-
tion, as shown in Eq. (1):

O = z, z ≥ 0,
0, z , 0,

{
(1)

Fig. 1. Graphical abstract of this work.
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where O is the output of the neuron and z is the input of each
neuron. Equation (2) is the cost function for the ANN:

C = 1
2m

∑m
j=1

(Oj − yj)
2, (2)

where m is the total value of data series and y is the target value
given by the dataset. The new w and b values after one iteration
were obtained by Eqs (3) and (4):

wi = wi − a
∂C
∂wi

, (3)

b = b− a
∂C
∂b

. (4)
Iteration was conducted for selected times, in order to reduce

the number of w and b, until the model reached a global
minimum.

The ANN model is a feed-forward and back-propagation algo-
rithm, which can be expressed by Eqs (5)–(8):

dW[l] = ∂L
∂W[l]

= 1
m
dZ[l]dA[l−1]T, (5)

db[l] = ∂L

∂b[l]
= 1

m

∑m
i=1

dZ[l](i), (6)

dA[l−1] = ∂L
∂A[l−1]

W[l]TdZ[l], (7)

dZ[l] = dA[l]∗g ′(Z[l]), (8)

where the dw, db, dA, and dZ are derivatives of cost function, m is
the value of examples, L is the cost function, and l is the vector of
the layers.

Before modeling, a data normalization process was performed
to reduce the variance of data scale in different input features. To
improve the model’s accuracy, normalization is an essential step
and is widely used in data pre-processing for machine learning
and model-fitting (Alam, 2020). A standardization (Z-score nor-
malization) was used in this study, as shown in Eq. (9):

Xnew = x − m

s
, (9)

where μ is the mean value, and σ is a standard deviation.
The number of neurons in the input layer was decided by the

inputs. Each model produced one specific output (YS, or UTS, or
EL). Table 1 summarizes the number of parameters in the ANN
model: 448 parameters in hidden layer 1, 4160 parameters in hid-
den layer 2, and 65 parameters in the output layer. A RMSprop

Fig. 2. Schematic architecture of the artificial neural network.

Table 1. The values of parameters in the ANN model

Parameters ANN

Number of neurons in the input layer 6

Number of hidden layers 2

Number of neurons in the first hidden layer 64

Number of neurons in the second hidden layer 64

Number of neurons in the output layer 1

Learning cycle 1000

Total parameters 4673

RMSprop factor 0.001

Activation function ReLU
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function was added to adjust the learning rate, which could
reduce the size of the gradient steps, to dampen the oscillations
(Gandhi, 2018). It is represented by Eqs (10) and (11):

E[g2]t = bE[g2]t−1 + (1− b)
∂C
∂w

( )2

, (10)

wt = wt−1 − n�����
E[g2

√
]

∂C
∂w

, (11)

where E[g] is the moving average of the squared gradients, dC/dw
is the gradient of the cost function, β is the moving average
parameter, and n is the learning rate. The feed-forward, back-
propagation was conducted 1000 times (epochs). These parame-
ters were chosen because they resulted in high accuracy of predic-
tion results without excessive computational complexity.

Data

The data used in this study were collected from published reports
on heat-treatment studies of powder-bed fusion (SLM and elec-
tron beam melting) Ti6Al4V from 2006 to 2020, using Google
Scholar, Science Direct, Research Gate, and Springer. The data
from SLM studies were used to build the ANN model. The data
from both SLM and electron beam melting (EBM) studies were
used to update the Hall-Petch relation.

The data entries of the SLM studies that were used in the ANN
modeling are summarized in Table 2. Forty-four groups of col-
lected data were used to build and test the model for the annealing
treatment of SLM Ti6Al4V samples. The data were collected from
16 published studies that conducted tensile property tests for both
as-printed and annealed Ti6Al4V samples and provided detailed
annealing parameters, including holding time, annealing tem-
perature, and cooling method. The database consisted of tensile
properties (YS, UTS, and elongation) of SLM Ti6Al4V before
and after annealing, the microstructure information, and the
annealing process parameters (temperature, holding time, and
cooling method). The cooling method was labeled with different
numbers that represent different cooling methods. In most of
the studies that contributed data to this study, the cooling method
for annealing was found to be furnace cooling under protective
gas. So, the cooling method was not included in this model as a
variable.

Before the training process, the dataset was randomly divided
into a training set and a testing set. The training set was used to
train the model, and the testing set was used to test the accuracy of
the model. For the training set, 80% of data were used, and the
remaining 20% served as the testing set. Dividing the database

into training and testing sets is a well-established method for
the ANN process (Alpaydin, 2020).

Results and discussion

Yield strength

The established model was first used to predict the YS after
annealing of Ti6Al4V prepared by SLM.

The mean absolute error (MAE) signifies the difference
between prediction and experimental value, and in addition to
accuracy, was used as a main indicator of the model’s perfor-
mance. The MAE was defined by Eq. (12):

MAE =
∑n

I=1 |yi − xi|
n

=
∑n

I=1 |ei|
n

, (12)

where yi is the prediction result, xi is the experimental data, and n
is the quantity of the data. The prediction error ei is the difference
between the experimental value and the predicted value for a data
point. A small MAE value indicates high consistency between the
prediction by the model and the experimental data. In the mod-
eling process, the MAEs of the training set and testing set were
obtained and compared. The error calculated from the training
set is referred to as train error, and the error from the set is referred
to as the validation error. The results of the train error represent the
performance of the model in the learning process, and the results of
the validation error reflect the model’s ability to generalize. The
mean square error (MSE) was also used to show accuracy; MSE
is the mean of the squares of prediction error ei.

As shown in Figure 3a, during the learning process, the MAE
dropped drastically between 0 epochs (iterations) and 400 epochs
for both train error and validation error. The validation error
decreased to 20 MPa at 620 epochs and stayed at this level until
the learning process ended. At 1000 epochs, the final MAE of
all data (including both training set and testing set) was found
to be very small (31.2 MPa), which indicated a desirable learning
result from the modeling process. As shown in Figure 3b, MSE for
both the training set and the validation set gradually approached a
small number during the learning process, which also indicated
the high accuracy of prediction results.

Figure 4a shows the prediction results versus experimental
results. The black line indicates that the prediction results are
equal to the experimental data. The blue points are defined by
the predicted results in the y-axis and the corresponding experi-
mental data in the x-axis. The closer the blue points to the
black line, the higher the accuracy of the model. Figure 4a clearly
shows that the prediction results are in good agreement with the
experimental data. Figure 4b shows the distribution of the predic-
tion error within certain ranges. In previous studies on the

Table 2. The range of the input parameters in the ANN model

Parameters Mean Minimum 25% 50% 75% Maximum Standard Deviation

APYS (MPa) 1056 920 1009 1053 1095 1262 67

APTS (MPa) 1195 1080 1166 1200 1241 1280 58

APEL (%) 6.3 1.6 2.9 6.2 9 11.8 2.9

Temperature (°C) 810 650 730 800 830 1080 96.4

Time (h) 2.7 0.5 1.8 2.0 2.0 12.0 1.8

4 Zhaotong Yang et al.

https://doi.org/10.1017/S0890060422000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060422000117


simulation and prediction of properties of Ti6Al4V, the accepta-
ble error range was defined as 10% (Malinov et al., 2001). In this
study, a 5% error range was used as the measure of the model’s
accuracy. As shown in Figure 4b, 88.6% of the predicted values
using the full data (including both training set and testing set)
were within the 5% error range, which confirmed a satisfactory
accuracy of the model. The accuracy number of the model is
described by Eq. (13):

accuracy number = 100%− 100% ∗
∑n

i=1 (|yi−xi |/xi)
n

, (13)

where xi is the experimental data, yi is the prediction result, and n
is the quantity of the data. The accuracy number of the ANN
model in predicting yield strength for annealed SLM Ti6Al4V
parts was found to be 96.7%. Thus, in summary, the model was
successfully established with high accuracy.

The model was then used to reveal the correlation between the
mechanical properties and the annealing process parameters. As
shown in tables in Figure 5a,b, six groups of the data, which con-
tained as-printed YS, as-printed UTS, as-printed elongation, and
annealing temperature or annealing holding time, were used as
inputs to the model. The inputs of the first three groups were
YS of as-printed samples (APYS), UTS of as-printed samples

(APTS), and elongation of as-printed samples (APEL) at the 25
percentile, 50 percentile, and 75 percentile of corresponding
data ranges in Table 2. In Group 1, 25 percentile of YS for
as-printed samples (APYS); 25 percentile of UTS for as-printed
samples (APTS); and 75 percentile of elongation for as-printed
samples (APEL) from Table 2 were used as inputs. In group 2,
the 50 percentile of YS (APYS), UTS (APTS), and El (APEL)
for as-printed samples in Table 2 were used. In Group 3, 75 per-
centile of YS for as-printed samples (APYS); 75 percentile of UTS
for as-printed samples (APTS), and 25 percentile of elongation for
as-printed samples (APEL) from Table 2 were used as inputs. The
other three groups of data were randomly selected. The predic-
tions of the YS of annealed parts as a function of time and tem-
perature are shown in Figure 5a,b. As shown in Figure 5a, in
general, the YS decreased with the increase in holding time: it
decreased from 1011–837 MPa to 883–711 MPa, when the hold-
ing time increased from 1 to 4 h. Figure 5b reveals that the YS
also decreased with the increase in holding temperature in the
range of 650–1000°C. It is well known that long holding time
and high holding temperature promote grain growth and result
in low YS for annealed parts. Ter Haar and Becker (2018)
found that the median α lamellar width increased from 1.5 to
8 μm when the annealing time was increased from 0.5 to 4 h.
Vrancken et al. (2012) observed that the α–β morphology was

Fig. 3. (a) Mean absolute error (MAE) and (b) mean square error (MSE) in the training process for predicting yield strength of annealed SLM Ti6Al4V.

Fig. 4. (a) The correlation of the reported and predicted yield strength (YS) values of annealed AM Ti6Al4V, in the ANN model and (b) the distribution of YS pre-
diction error in each range.
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coarser for higher holding temperatures, and the YS dropped
from 1110 ± 9 MPa to 760 ± 19 MPa after the sample was
annealed at 1020°C, followed by furnace cooling.

In the classic theory, Hall-Petch relationship as shown in Eq.
(14) was widely used to describe the yield strength (σY), in
order to capture the effect of microstructural morphologies
(Labusch, 1970), as seen in Eq. (14):

sY = s0 + kHP����
Da

√ , (14)

where Dα is the mean grain size of α phase (in microns), kHP is the
Hall-Petch coefficient of a given material, and σ0 is the friction
stress that is the critical resolved shear stress to initiate slip in a
grain. Galarraga et al. (2017) studied the heat-treatment influence
on electron beam melting (EBM) samples and concluded that the
σ0 was 737 MPa and kHP was 144 MPa μm1/2. The Hall-Petch
relationship predicts that the yield strength decreases as the α
grain grows. As shown in Figure 6, a new relationship between
predicted YS and α lath thickness of AM Ti6Al4V samples is
established using the SLM and EBM data collected in this
study. Figure 6 compares the reported YS and α lath thickness
from the literature (purple and green points), the Hall-Petch pre-
diction using the σ0 and kHP reported by Galarraga et al. (2017)
(black line), the Hall-Petch prediction with the new σ0 and kHP,

obtained by fitting the YS and α lath thickness data in our data-
base for AM Ti6Al4V (blue dot line), and the prediction by the
established ANN model (red line). The ANN model predicted
that when the α lath thickness increases from 0.7 to 3.4 μm, the
yield strength decreases from 966 to 868 MPa. The new
Hall-Petch prediction (blue dotted line) agrees well with the
ANN prediction (red line). By fitting the collected SLM and
EBM data with the Hall-Petch equation, a new σ0 of 767 MPa,
which is very close to that of Galarragam’s study, and a new
kHP of 191 MPa μm1/2, which is significantly larger than that of
the Galarragam’s study, were found, as shown in Eq. (15):

sY = 767MPa+ 191MPa+ mm1/2����
Da

√ , (15)

where Dα is the mean grain size of α phase (in microns). The dif-
ferences in the Hall-Petch coefficients obtained in this study and
in the Galarragam et al.’s study (Galindo-Fernández et al., 2018)
may be related to the very long exposure time (20–170 h) used in
Galarragam et al.’s heat-treatment process. It is known that a long
heat-treatment period reduces the dislocation pile-up and results
in a softening effect. Another possible cause of the Hall-Petch
coefficient difference is the difference in composition. The mate-
rial used in Galarragam et al.’s study was Ti6Al4V ELI with very
low level of impurities such as Fe and O, in comparison with
Ti6Al4V (Salmi et al., 2012). This difference in alloy composition
may have contributed to the decrease in tensile strength (the
Hall-Petch coefficient) but increase in failure strain. Even though
previous studies showed that there was a notable difference in the
microstructure of Ti6Al4V parts produced by SLM and EBM
(Rafi et al., 2013), Figure 6 suggests that the new Hall-Petch equa-
tion can be used for post-annealing Ti6Al4V parts produced by
both the SLM and EBM processes. However, the Hall-Petch equa-
tion only considers the mean grain size of α phase (in microns).
The volume fraction of α, Feret diameter of α, solid solution
strengthening effect, etc., are factors that could also influence
the yield strength (Galindo-Fernández et al., 2018; Masuo et al.,
2018). These factors may be worth consideration in future studies.

According to the ASTM standard (Standard Specification for
Wrought Titanium-6Aluminum-4Vanadium Extra Low
Interstitial) for Surgical Implant Applications (UNS R56401)),
the requirement of YS for Ti6Al4V is 795 MPa (ASTM, F,
2013). Overall, the ANN result suggests that an annealing process
of the holding time of fewer than 4 h and the holding temperature
lower than 850°C is desirable for as-printed Ti6Al4V parts to
reach the YS required by this standard.

The mechanical properties of as-printed samples showed a
strong influence on post-annealing properties, as seen in
Figure 7. The table in Figure 7 summarizes the six groups of
data used as inputs to the model to generate the predicted YS
in this figure. The data groups were selected so that the elongation
inputs were from 2% to 12%, with a 2% step. The temperatures
were selected according to 25 percentile, 50 percentile, and 75 per-
centile of the annealing holding temperature, as shown in Table 2.
In addition, the holding times were randomly chosen as between

Fig. 5. The influence of heat treatment parameters: (a) holding time and (b) holding temperature, on the tensile strength of annealed AM Ti6Al4V. By the prediction
result generated from the artificial neural network model.
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2 and 3 h, since most reported studies had holding time within
this range. As seen in Figure 7, in general, the YS of annealed
Ti6Al4V parts increases with the increase in the YS of as-printed
parts. It is well recognized that the annealing process cannot

remove the porosity in as-printed samples, which means that
the defects remain after the annealing process. As a result, the
printing quality strongly influences the quality and mechanical
properties of post-annealing samples, and the mechanical

Fig. 6. The influence of a lath thickness of heat-treated sample on the yield strength of heat-treated AM Ti6Al4V by the prediction result generated from the artificial
neural network model.

Fig. 7. The influence of mechanical properties of as-fabricated sam-
ple: yield strength (YS), on the yield strength of annealed AM Ti6Al4V.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7
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properties of as-printed sample is recognized as a strong influen-
tial factor for annealed final products.

Ultimate tensile strength

The error and the prediction accuracy of the established ANN
model for UTS are shown in Figure 8. As seen in Figure 8a,b,
the reduction of MAE and MSE in the UTS prediction are similar
to that in the prediction of YS. The MAE after the learning pro-
cess was found to be 35.5 MPa, and the accuracy number was
96.6%. The prediction results show a high accuracy with 88.6%
of the prediction results within the 5% error range, as seen in
Figure 8c,d. The prediction of UTS as a function of annealing
time, holding temperature, and initial UTS, are summarized in
Figures 8 and 9. The tables in Figure 9a,b summarize the six
groups of data used for results shown in Figure 9a,b, respectively.
Again, three groups of inputs were selected according to 25 per-
centile, 50 percentile, and 75 percentile data range of APYS,
APTS, and APEL in Table 2, and the other three groups were ran-
domly selected. As shown in Figure 9a, the UTS decreased with
increase in holding time. It dropped from 933–1098 MPa to
861–975 MPa when the holding time increased from 1 to 4 h
for all six scenarios in table in Figure 9a. The UTS decreased
with the increase in holding temperature. UTS decreased from
1035–1220 MPa to 810–1129 MPa when the annealing tempera-
ture increased from 650°C to 1000°C in all six scenarios in
table in Figure 9b. This trend is similar to that of YS (as discussed

previously). Thus, holding time and temperature are identified as
strong influencing factors of UTS in annealing.

The table in Figure 10 summarizes the inputs used to obtain
the results in Figure 10. As shown in Figure 10, in general the
UTS of annealed Ti6Al4V parts increases with the increase in
the UTS of as-printed parts, similar to the observation obtained
in YS. Thus, it is concluded that the initial UTS has a strong influ-
ence on annealed UTS for SLM Ti6Al4V parts.

Elongation

The error and the prediction accuracy of the established ANN
model for elongation (EL) are shown in Figure 11. In general,
the prediction of EL shows relatively low accuracy when compared
with the prediction of YS and UTS. Although the MAE of the
training set approached 0% when the iteration reached 1000
epochs, the validation error was around 2%, as shown in
Figure 11a,b. The MAE for the whole dataset was found to be
0.82%, and the accuracy number was 90.56%. As shown in
Figure 11c,d, 86% of prediction results were within 15% error
range. The prediction accuracy of EL is lower than those for YS
and UTS. As discussed previously, grain size has a significant
effect on the YS and UTS of the annealed Ti6Al4V. The grain
size is influenced by the microstructure of the as-printed material
and heat-treatment process parameters. However, the defects,
especially porosity, are widely reported as important factors in
determining elongation in as-printed Ti6Al4V parts prepared

Fig. 8. Prediction of ultimate tensile strength (UTS) of annealed parts (a) mean absolute error (MAE) and (b) mean square error in the training process for predicting
yield strength of annealed AM Ti6Al4V. (c) The correlation of the reported and predicted UTS values of annealed AM Ti6Al4V. (d) The distribution for UTS prediction
error in each error range of annealed Ti6Al4V.
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by the SLM process (Vilaro et al., 2011; Luo et al., 2015; Zhao
et al., 2016; Cao et al., 2018; Romero et al., 2018; Fatemi et al.,
2019). There are two main mechanisms that result in porosity
in as-printed SLM Ti6AL4V parts: the lack of fusion of the melt-
ing pool (Liu et al., 2014) and entrapped gas among Ti6Al4V
powders (Gong et al., 2015). The porosity accelerates the propaga-
tion of cracks and diminishes elongation at failure (Vilaro et al.,
2011; Clark et al., 2012). The porosity introduced in the printing
process could be very different from machine to machine and pro-
cess to process. Moreover, the orientation of elongation in laser-
processed Ti6Al4V may differ, due to the change in printing
direction (Cao et al., 2017). It has been shown that the annealing
process has limited effect on removing or changing porosities

(Yan et al., 2018). However, the annealing can significantly
change the microstructure around defects and change the behav-
ior of defects in failure. It was difficult to find sufficient data on
defects to include in the database used in this study. Thus, the
model lacks information to develop an accurate prediction on
elongation. These factors can each contribute to large scattering
of the elongation data in the dataset used in this study, and,
thus, result in low prediction accuracy for elongation. In order
to understand the role of defects in failure, a microstructure
image-based, deep learning method may be needed to create a
model that can directly factor in the influence of volume fraction,
shape, and the distribution of defects on elongation of Ti6Al4V.
As shown in Figure 12, three groups of the data were used as

Fig. 9. The influence of heat treatment parameters: (a) holding time and (b) holding temperature, on UTS of annealed AM Ti6Al4V. By the prediction result gen-
erated from the artificial neural network model.

Fig. 10. The influence of mechanical properties of as fabricated sam-
ple: UTS, on the tensile strength of annealed AM Ti6Al4V by the pre-
diction result generated from the artificial neural network model.
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inputs, to reveal the influence of holding time on the predicted EL
of heat-treated parts. The data of the three groups used here was
the same with the second, third, and fourth groups of data in table
for Figure 5, because they have similar holding temperatures. In
Figure 12, it was observed that there were large variations in the
predicted elongation of the annealed parts, even with similar heat-
treatment parameters (holding time and temperature). This may
be also attributed to the large scattering of elongation data in
the database.

Figure 13 shows a plot of raw data used in the ANN modeling
for EL. The black points represent EL of as-printed parts in the
x-axis and EL of annealed Ti6Al4V parts in the y-axis. It can
be observed that there is a larger scattering of EL data for both
as-printed and heat-treated samples. The printing quality may
have played an important role in the observed large variation of
elongation in the as-printed parts. Voisin et al. (2018) found
that a small volume ratio of porosity resulted in low failure strain
in as-printed samples. They concluded that the nucleation and
growth could have reduced the failure strain. Yan et al. (2020)
observed large insufficiently fused areas in as-printed SLM
Ti6Al4V, which led to low failure strain. The experimental data
in this study were collected from reports using a variety of prin-
ters and printing procedures. This difference could result in dif-
ferent structural defects in the samples in these reports and lead

to a large scattering of the elongation in as-printed samples.
Linear regression of all the elongation data resulted in a general
increasing trend, represented by the red line in Figure 13. The
blue dotted line indicates that the elongation for annealed
Ti6Al4V parts is equal to the elongation for the as-printed sam-
ple. Most of the collected data are located above the blue dotted
line. This observation suggests that the annealing treatment
indeed improves elongation in general. It was shown that the
annealing treatment could change the microstructure of
as-printed Ti6Al4V samples from martensite to a ductile lamellar
a+β and result in improvement of elongation (Yadroitsev et al.,
2014). But the annealing process cannot close the defects, and
the defects still have a significant influence on elongation of
annealed parts.

Conclusion

In this research, an ANN model was built to predict the mechan-
ical properties, including YS, UTS, and EL, of annealed Ti6Al4V
prepared by SLM. The model exhibited a high accuracy in predic-
tion YS and UTS. For YS prediction, 88.6% of prediction results
were within 5% error range, and the accuracy number was
96.7%. For UTS prediction, 88.6% of prediction results were
within 5% error range, and the accuracy number was 96.6%.

Fig. 11. Prediction of elongation (EL) of annealed parts (a) mean absolute error (MAE) and (b) mean square error in the training process for predicting EL of
annealed AM Ti6Al4V. (c) The correlation of the reported and predicted EL values of annealed AM Ti6Al4V. (d) The distribution for El prediction error in each
range of annealed Ti6Al4V.
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The established model was then used to reveal the relationship
between the mechanical properties of final parts and various
inputs, including initial mechanical properties and heat-treatment
parameters. The model showed that the final YS and UTS after
annealing were sensitive to annealing temperature and holding
time. A new Hall-Petch relationship with σ0 = 767 MPa and
kHP = 191 MPa μm1/2 was proposed for AM Ti6Al4V parts after
annealing. It was found that the YS and UTS were also sensitive
to properties of the as-printed Ti6Al4V, since the annealing pro-
cess could not effectively remove defects in the as-printed sam-
ples. The prediction of EL showed relatively low accuracy
compared with that of YS and UTS. The MAE for the whole data-
set was found to be 0.82%, and the accuracy number was 90.56%.
There were large variations in predicted elongation of the
annealed parts, even with similar heat-treatment parameters.
This was attributed to the difference in printers and printing con-
ditions used in the many studies that provided data for the current
model. Differences in printing processes may have resulted in dif-
ferent structural defects in the samples studied in these reports

and led to a large scattering of the elongation data. These results
indicate that optimizing the printing process to reduce the defects
and improve the overall mechanical properties for as-printed
parts is desirable in order to achieve good mechanical properties
in annealed Ti6Al4V parts prepared by the AM process.
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