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ABSTRACT

We study dynamics, structure and organization of the new paradigm of wavewrinkle struc-
tures associated with multipulse laser-induced RayleighTaylor (RT) instability in the plane
of a target surface in the circumferential zone (C-zone) of the spot. Irregular target surface,
variation of the fluid layer thickness and of the fluid velocity affect the nonlinearity and dis-
persion. The fluid layer inhomogeneity establishes local domains arranged (organized) in the
«domain network». The traveling wavewrinkles become solitary waves and latter on become
transformed into stationary soliton wavewrinkle patterns. Their morphology varies in the
radial direction ofaussian-like spot ranging from the compacton-like solitons to the aperiodic
rectangular waves (with rounded top surface) and to the periodic ones. These wavewrinkles
may be successfully juxtapositioned with the exact solution of the nonlinear differential equa-
tions formulated in the KadomtsevPetviashvili sense taking into account the fluid conditions
in particular domain. The cooling wave that starts at the periphery by the end of the pulse
causes sudden increase of density and surface tension: the wavewrinkle structures become
unstable what causes their break-up. The onset of solidification causes formation of an elastic
sheet which starts to shrink generating lateral tension on the wavewrinkles. The focusing of
energy at the constrained boundary causes the formation of wrinklons as the new elementary
excitation of the elastic sheets.

Introduction

Laser irradiation of solid surface by ns and fs pulses at medium and high power densities gen-
erates a variety of structures like surface undulations, ripples, periodic waves, wrinkles, surface
roughening, etc. The study of their evolution elucidates the mechanism of lasermatter interac-
tion depending on the laser and material parameters and the interaction conditions (Bonse
et al., 2002; Tran et al., 2005; Wang and Guo, 2005; Liu et al., 2011; Reif et al., 2011; Graf
et al., 2018). It was shown that ripples of the wavelength comparable to the laser wavelength
on semiconductors and dielectrics induced by circularly polarized light originate from the
excitation of surface plasmons/polaritons (Varlamova et al., 2007). The subwavelength ripples
on silicon formed by the IR laser pulse result from the synergy of the electron excitation and
the capillary wave formation – basically the hydrodynamic mechanism (Tsibidis et al., 2012).
nteraction between the oscillating plasma (actually the ion acoustic waves in plasma) and mol-
ten surface was identified as the origin of the ripple formation on metals (Huang et al., 2011).
However, the superwavelength ripples on silicon formed by the UV laser pulses originate from
the solitary waves induced by the hydrodynamic instability (Lugomer et al., 2013).

Regarding the hydrodynamic mechanism, the formation of surface structures may be asso-
ciated or induced by the RayleighTaylor, RichtmayerMeshkov, or other type of instabilities
(Lugomer 2016, 2017). Here we show that laser-generated RayleighTaylor Instability (RTI)
induces formation of the new paradigm of surface structures.

The RTI evolves from the acceleration of a lowdensity fluid ρΗ into highdensity fluid ρL (or
vice versa), as a consequence of baroclinic generation of vorticity at the perturbed interface.
The evolution of RTI depends on the Atwood number, A = (ρH ρL)/(ρH + ρL) and on the initial
conditions. It follows the exponential law in time with the growth rate that depends on the per-
turbation amplitude and the spatial period of the perturbation mode.

Initial conditions

The initial perturbation serves as the seed of the interface instability. Shock interaction with a
narrowband combination of high-frequency modes triggers growth of a turbulent mixing layer
in the linear regime. Later on the evolution enters the nonlinear regime when the growth rate
slows down. This occurs purely via mode coupling of the wavenumbers when modes stay in
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some defined phase relations (Zhou et al., 2016). Abarzhi and col-
laborators (Abarzhi et al., 2007; Abarzhi and Rosner, 2008;
Pandian et al., 2017) have shown that in such multimode pertur-
bation growth of coherent periodic structures occurs as a result of
interference of perturbation modes for the specific phase and
amplitude relations. However, when a broad range of perturbation
wavelengths is used, it happens that short wavelength modes are
grouped around some short common wavelength, while the
long wavelength ones are grouped around larger common wave-
length and cause formation of structures in the band of certain
width (Lugomer, 2017). The density interface transforms into
the structures which can be periodic or aperiodic, small but also
the large ones (Lugomer, 2017) or into complex wavevortex struc-
tures (Zabusky et al., 2005; Lugomer, 2007).

Mixing width

The growth of structures that follows after initial perturbation is
triggered by formation of a turbulent mixing layer and the mixing
process which relates to the mass, momentum and energy. In RTI,
the ratio of the spike/bubble growth is sensitive to the particular
definitions of the mixing mass and mixing width (e.g. concentra-
tion threshold, product width, or integrated width and their evo-
lution in time (Zhou and Cabot, 2019). The mixing width can be
also defined as visual width of the mixing zone – based on the
identification of structures that are separated from diffuse areas
of strong fluctuations and «noise», those above the identification
threshold.

Mixing mass and Atwood number

An important issue in the mixing process is the A number
because it affects the mixing mass. Namely, in multimode pertur-
bation, different initial modes cause different growth rates of
spikes and bubbles as well as different mixing mass. The mixed
mass M, defined as M = 4rY1Y2dV (Y1 and Y2 are the mass frac-
tions and ρ is the mixed density), is lower fo higher Atwood num-
ber (Zhou and Cabot, 2019). The study of dependence of the
mixing mass on the Atwood number between A = 0.2 and 0.8
by Zhou et al. (2016) has shown that M nonlinearly increases
with time, being higher for the lower A. It is possible, the
mixed mass of two fluids of densities ρ1 and ρ2 may be taken
as appropriate measure in multimode perturbation experiments.

Examples of the physical systems showing the RTI extend from
the micro- to meso- and to the astrophysical scale (Dimonte,
1999). The collection of research and review papers relating to
turbulent mixing, non-equilibrium processes from atomistic to
astrophysical scales by Abarzhi et al. (2010, 2013a, 2013b) and
by Zhou (2017a, 2017b) give a detail view into the models, sim-
ulations, experiments and interpretation.

We consider the RTI and formation of wrinkle structures in
planar geometry by multipulse laser irradiation of metal targets.
Generated in the pulse overlapping area due to the decrease of
the melting threshold they appear after N≥ 5 pulses (silicon)
(Lugomer et al., 2011), after N = 20 (fused silica and borosilicate
glass) (Ben-Yakar and Byer, 2004), and even after N≥ 2 (indium).
Since the melting threshold of indium is decreased after the first
pulse, the RTI evolution is generated after only two pulses. For
infinitesimally thin layer, the RT interface has hypocycloidal
shape. Multimodal perturbation of the target surface causes
pulsations of the shockmomentum and affects the evolution of
wavy structures in the C-zone of the spot. Solidified after the

pulse termination they become wrinkles – henceforth called the
wavewrinkles.

This paper describes the evolution of wavewrinkle structures
associated with the RTI in the plane of the target surface at the liq-
uid/vaporplume interface for medium laser energy density. The
target surface irregularity (in the overlapping area of two pulses)
causes radial and angular variation of the fluid layer thickness and
velocity so that the wavewrinkles are different in various spatial
domains. Their heterogeneous morphology ranges from wrinkles
formed by the solitary waves to the solitary waves without expo-
nential tail called compactons and to the hierarchical series of
smaller wrinkles called wrinklons. We formulate the conceptual
frame assuming that the nonlinear (2 + 1) KadomtsevPetviashvili
(KP) equation – and the equations formulated in the KP sense –
describe all local structures. These nonlinear evolution equations
(NLEE) are different with respect to the terms like dissipation, dis-
persion, and their relation (whether nonlinearity and dispersion are
balanced or not).

Motivation for this study is the elucidation of the wavewrinkle
generation in the C-zone of the RTI which evolves into the new
paradigm of the nanoscale wavewrinkle structures in the plane
of target surface. We also show that the wavewrinkle structures
in the environment of RTI bubbles are different from that of
RTI spikes. The wavewrinkles in the bubble environment are dis-
cussed in this paper (paper I), while those in the spike environ-
ment will be discussed in paper II.

Outlines of the experiment

The experiments were performed in the open configuration in
which the target is directly irradiated. The sample was situated
in the gas chamber and irradiated in the presence of air at the
pressure of P0 = 1 atm. Irradiation (unpolarized) was performed
by two pulses of Gaussian-like power profile by Q-switched
ruby laser (τ = 30 ns; λ = 628–693 nm; spot size r ∼850–900 µm,
E∼150 mJ; Es ∼6.5–7.0 J/cm2). Indium plates of 1 cm × 1 cm ×
0.1 cm (the melting point TM = 429 K and boiling point TB =
2345 K) were used as targets. chematic of the experimental
setup can be found elsewhere (Lugomer, 2016).

The phase explosion causes the formation of vapor/plasma
plume spheroid which starts fast expansion and acceleration of
molten metal. The horizontal shock wave generates the RTI in
the plane of the target surface with a wavylike shape of spikes
and bubbles. The lateral vapor/plasmaplume expansion above
the molten layer in the ambient gas is shown in Lugomer
(2016), and details are described in its Supplementary. The two-
layers of fluids which move horizontally at the same velocity are
formed: a molten metal layer of density ρ1 and vaporplasma
plume layer of density ρ2. It is usually assumed that the density
interface between ρL and ρH layers is just a zero-thickness
plane, , the mathematical interface. Although this is true for the
«low temperature system», for the high temperature system
(such as generated by lasermatter interaction), the situation is
more complex. We assume that the boiling surface layer of thick-
ness h1 is separated from the vapor/plasma layer by the density
interlayer of thickness h′1 (Fig. 1a). Thus, the thickness of fluid
layer in which the waves are excited is not h1 but h; h = (h1 + h′1).
The displacement of the fluid layer from z = 0 is η* (Fig. 1b).

The velocity of accelerated fluid in the C-zone is (sub)sonic
U≲ 1500 m/s and the kinematic viscosity of liquid In is ν≤ 5 ×
10−6 (m2/s). The thickness of the fluid layer which is the highest
near the RTIfront (h≲ 10 µm), decreases with distance. The
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corresponding Re number, Re = hU/ν decreases from Re ∼3 × 103

to the values of <103 in distant zones. The Re number is below the
critical value (Recrit ∼104) for the wave rollup, and the
KelvinHelmholtz (KH) rolls (vortex filaments) do not form.
However due to inhomogeneous RTI it happens that in the vicin-
ity of some RTI bubbles/spikes the KH may be formed.

The RTI front and the wavewrinkle structure become solidified
by the end of the laser pulse in the fast cooling process so that a
posteriori study by the scanning electron microscope (SEM) JEOL
reveals their final morphology.

Conceptual frame

Generation of the wavewrinkles occurs due to the perturbation of
the interface of twolayers of fluids by the gravitational perturba-
tion in front of the RTI spikes and bubbles which have nonlinear
evolution. For the irregular target surface (uneven bottom after
the first pulse) and variable fluid layer thickness, the C-zone is
inhomogeneous. Uneven bottom in nonlinear regime and the
small amplitude assumption play significant role in the evolution
of the velocity field. Variable bottom topography requires one to

take into account not only the amplitude a and wavelength of the
waves, λ, but also the order of amplitude of the variations of the
bottom topography, the wavelength of the bottom variations, the
reference depth and the nonlinearity parameter (Israwi, 2010).
escription of such system requires introduction of the new class
of differential equations – with necessity to confirm relevance
of the steps in the solution procedure– what becomes mathemat-
ically challenging problem.

To simplify the problem – we assume as the first approach –
that the variable surface topography does not change much over
small areas (local domains) of about few tens of micrometers in
size. We look for the evolution of the surface instability from
the perturbation amplitude, d, of the fluid layer of thickness, h,
(h = h1 + h′1) (Fig. 1a). For a weak nonlinearity (d < h), the wave
equation can be derived from general equation for the molten
layer bounded by a solid base from below and by the vapor/plasma
layer from above. The wave equation follows from the continuity
equation and boundary conditions at the interface for viscous liq-
uid (Yang, 2012; Lugomer et al., 2013). For the small thickness of
the molten layer – the “shallow fluid layer” which gives rise to the
nonlinear waves is the most adequate approach.

Consider a layer of twodimensional fluid over an even bottom
(Fig. 1a). The surface elevation is η*(x, t*) measured form the
undisturbed level z* = 0. The domain of the fluid D(η*) is defined
as D(η*) = {(x*,z*) : −h < z* < η*(x*, t*)} (Fig. 1b). Assuming that
the particle velocity can be expressed as the gradient of velocity
potential ϕ(x*, z*), u(x*, z*) = Δϕ(x*, z*) with Δϕ = 0 in D(η*)
and with the boundary condition at the bottom ∂ϕ/∂z* = 0 at z* =
−h, where t*, x*, y*, and z* are the dimensional time the space var-
iables. As the prototype, for the shallow fluid layer thickness h, of
the surface elevation η* above the zero-level, the equation for the
waves propagating in the x-direction can be written (Infeld et al.,
1994, 1995; Berger and Milewski, 2000; Oikawa and Tsuji, 2006):

∂/∂x∗[∂h∗/∂t∗ + c0(1+ 3h∗/2h)∂h∗/∂x∗

+ c0h
2/6(1− 3S/rgh2)∂3h∗/∂x∗3] + c0/2 · ∂2h∗/∂y∗2 = 0.

(1)
Using the transformation

u = +3h∗/2h, x = +b/h(x∗ − c0t
∗),

t = bc0t
∗/6h, b = [+(1–3S/rgh2]−1/2,

(2)

where ρ fluid density, S surface tension, g acceleration of gravity,
while t, u, and x are dimensionless time and space variables, one
gets the equation (Oikawa and Tsuji, 2006):

(ut + uxxx + 6uux)x + 3s2uyy = 0. (3)

The last term, uyy, is added to the above 1D equation and gives
the (2 + 1) KadomtsevPetviashvili (KP) equation for the waves on
a shallow fluid layer. Assuming – for the domain D(x,y) – peri-
odic boundary conditions u(x, y, t) = u(x + Lx, y + Ly, t), the solu-
tion of the above equation can be expressed as a summation of
Fourier components in the form F(kx, ky)exp(ikxx + kyy −4t).
The plane–wave solutions for the phase variable kx +my – ωt sat-
isfy the dispersion relation (Kao and Kodama, 2012):

4(kx, ky) = −(3kx2/ky + kx
3) (4)

where k =
�����������
kx2 + ky2

√
is the wave number.

Fig. 1. Twolayers of fluids which move horizontally with the same velocity. (a) olten
metal layer of density ρ1 and the vaporplasma plume layer of density ρ2 formed dur-
ing laser interaction. The boiling surface layer of thickness h1 is separated from the
vapor/plasma layer by the density interlayer of thickness h′1. The thickness of fluid
layer in which the waves are excited is not h1 but h; h = (h1 + h

′
1). (b) The parameter

h is the thickness of the molten layer and η* is the displacement of the layer from
the level z = 0.
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Depending on the signature of dispersion, σ2, the solutions of
this equation can be (1) stable nonlinear waves for the negative
dispersion (σ2 =−1), described by the KP-II equation, and (2)
unstable nonlinear waves for the positive dispersion (σ2 = +1),
described by the KP-I equation. The KP-II equation describes
the dynamics when gravity effects dominate over surface tension
and gives stable wave solutions (Berger and Milewski, 2000).
The KP-I equation describes dynamics when surface tension
dominates over gravity effects causing the instability and
decay of waves. Which of the above equations is relevant
for description of the waves in particular case is determined by
the criterion (Berger and Milewski, 2000; Oikawa and Tsuji,
2006):

S/(Drgh2)leg; 1/3 (5)

where S is the surface tension at the interface of the liquid layer
and the vapor layer, h is the thickness of the fluid layer, g is the
acceleration of gravity. The fluid density ρ is actually the fluid
density at the interface and written as Δρ is the difference in den-
sity of the two phases (the liquid molten layer and the vapor
layer).

In the first case, the expression (5) is <1/3, and the gravity
effects dominate over surface tension so that stable cnoidal and
line-solitary wave solutions exist. In the last case, the expression
(5) is >1/3, and the surface tension dominates over gravity effects
so that cnoidal and line solitons become unstable. In the interme-
diate case (=1/3), the onset of complex higher order hydrody-
namic instability is possible (Ablowitz and Clarkson, 1992;
Berger and Milewski, 2000; Chakravarty and Kodama, 2009;
Song and Liu, 2012).

Assuming that the surface tension S at the interfacial layer
(between the vapor/plasma plume and hot liquid metal) is very
low, S ∼10−6 N/m, the fluid layer thickness h≤ 10 µm g ∼10 m/
s2, and Δρ (of the interfacial layer) ∼6.5 × 103 kg/m3, one finds
S/(Δρgh2) = 0.153 < 1/3, meaning that the KP equation gives stable
solution.

The irregular target surface and variable fluid layer thickness
affect the fluid layer velocity, nonlinearity and dispersion in var-
ious domains of inhomogeneous fluid layer. The SEM analysis
reveals that domains are well separated (for a distance l≥ λ –
mostly having no common boundaries) and selforganized in
radial direction (along the extension of the bubblefront). Since
the fluid layer thickness decreases from ∼10 µm (near the RTI
front) to h≤ 1 µm (at the periphery), the conditions for the wave-
wrinkle evolution change in the radial direction. Assuming the
shallow fluid layer, weak nonlinearity, and weak dispersion –
the (2 + 1)-dimensional KadomtsevPetviashvili equation and the
equations formulated in the KP sense – are appropriate for the
simulation of structures in spatially separated domains. In this
respect we relay on the solutions of NLEEs derived by various
mathematical groups. For a shallow fluid layer a 2 + 1 description
based on KP equation is the most appropriate. Owing to the fact
that the flow conditions vary from one domain to another –
which are well separated and show different wave structures –
the basic KP equation modified by taking the new terms into
account (characteristic for particular domain) may describe the
solitary wavewrinkles of various characteristics.

Before continuing, we should shortly consider the question
how these waves become solitary waves and how solitary waves
become standing waves that are frozen at the end of laser pulse.

Traveling waves become solitary waves

The wavewrinkles appear as traveling waves and become solitary
waves. Although it is known that transition of traveling into
solitary waves occurs when the traveling waves are dominated
by group velocity dispersion (rather than diffusion) and by nonlin-
ear frequency shift (rather than nonlinear saturation) (Dudley
et al., 2001; Kuriakose and Porsezian, 2010; Liu and Dodin,
2015), this transition is not well understood in dynamical
systems.

Solitary waves become standing solitary waves

The intriguing phenomenon in dynamical systems is the transi-
tion of solitons into stationary solitary waves. Generally, when
two solitary waves of the same frequency and amplitude traveling
through a medium with the same speed but in opposite direction
superimpose on each otherthey give rise to a standing solitary
wave (Wai et al., 1989; Aziz, 2011; Tofeldt and Ryden, 2017
Supplementary A. Such case occurs when the incoming solitary
wave is reflected from the wall, but in the fluid system the reflec-
tion from inhomogeneity has the same effect on the incoming sol-
itary wave. We assume that inhomogeneities of a fluid layer
coincide with the boundaries of local domains and have impor-
tant role in the transition of solitary waves into the stationary
wavewrinkle soliton patterns.

These experimentally obtained, solidified, stationary solitary
wavewrinkle patterns in particular domains are juxtapositioned
with the solitary wavewrinkles generated by mathematical simulation.

Results and discussion

The surface morphology formed by two overlapping pulses on
indium target is shown in Figure 2a. The SEM micrograph of
Gaussian-like spot reveals scalloped circumference at the leftside
and the heataffected zone (HAZ) with small chaotic structures
in the C-zone (Fig. 2b). The rightside (overlapped area with strong
melting) shows RTIfront and the wavewrinkles in the C-zone
(Fig. 2c). For infinitesimally thin layer the RT interface has
hypocycloidal shape. For the thicker layer it is 3D but one can
assume it a quasi-2D because the RTIfront still resembles the
hypocycloidal curve which in the case of multimodal perturbation
appears as two or more intersecting hypocycloidal-like RTI
fronts (Fig. 2c). The evolution of the RTI bubble-front (red) is
associated with formation of different wavewrinkle structures in
the columns A and B due to inhomogeneity of the C-zone of
the spot (Fig. 3).

Column A: The wavewrinkles are formed on relatively thick
fluid layer. The structures in the NF, MF and FF zones are similar
to the structures observed in various laser experiments on solid
targets (Gorodetsky et al., 1985; Zabusky et al., 2005; Lugomer,
2007; Trtica et al., 2007) and shall not be discussed in this paper.

Column B: The structures formed on a thin fluid layer are dif-
ferent from those reported in the literature and reveal the new
wavewrinkle paradigm. This new paradigm evolves from the inho-
mogeneous environment that afects the formation of nonlinear
wavewrinkles. Not only their wavelength, amplitude and the pro-
file but also their nature change with distance from the RTIfront;
the C-zone may be divided into the ear field (NF) (close to the
front of RTI), edium field (MF) and the far field (FF) waverinkle
morphology (enlarged in Fig. 4).
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Near-field zone: Figure 4a shows sharphorseshue parabolic-like
rectangular waves formed in front of the RTI bubble and the shar-
poblique rectangular waves.

Medium-field zone: Figure 4b shows sharp rectangular line-
waves, smooth rectangular aperiodic and the smooth rectangular
periodic linewavewrinkles.

Far-field zone: Figure 4c shows periodic wavewrinkles. They
mostly appear as the small set(s) of waves which correspond to
the early phase of evolution.

By the end of the pulse an ultrafast cooling wave is formed
which moves from the periphery of the C-zone toward the RTI
boundary, freezing the wave wrinkles in various phases of their
evolution. The waves become solidified after pulse termination
in the time between ∼100 ns and few μs stay as permanently fro-
zen wrinkles with characteristics of the former waves.

Wave wrinkles on nanofluid layer

Near-field zone
Sharp horseshue and sharp oblique rectangular waves. The SEM
micrograph of the NF zone (Fig. 5) reveals sharp rectangular
«horseshue» waves. The asymmetry of the RTI bubble and the
irregular target surface cause the asymmetry of the «horseshue»
waves that make robust compact pattern. The fact that such
wave pattern emerges in the parabolic-like form leads to conjec-
ture that analogous dispersive systems support localized patterns

(Liu and Dodin, 2015). They move without change of shape
with different velocity: the first «horseshue» wave is followed by
the next one of the higher amplitude which moves faster what
indicates solitary waves. Their rear-side collision leads to jammed
configuration. At some distance from the jamming zone the sharp
rectangular waves become more stright and oblique with respect
on the symmetry axis of the RTI bubble. The angle of the oblique
waves increases with distance until they become transversal to the
axis of the bubble. They interact forming the «X»- and «Y»-con-
figuration characteristic for the nonresonant and resonant soliton
interaction, respectively (Fig. 5).

Medium-field zone
The MF zone (Fig. 4b) shows wavewrinkles divided into the left-
side and the right-side systems. By the laser pulse termination the
cooling wave causes solidification of a molten layer. Becoming
thin elastic sheet it starts to shrink causing the lateral tension
and breakup of wavewrinkles. Figure 6 shows the left and the
rightside of different wavewrinkles localized in the rectangular
domains – (A), (B) and (C). They form large-scale coherent struc-
tures (waves) inside the cells (local domains) – without the small
scale structures. The flow is well ordered in the domains close to
the RTI front and disordered in distant domains. The rectangular
domains are selforganized into a “domain network” pattern. orma-
tion of domains with the long range order should be associated
with spontaneous symmetry breaking that is usually accompanied

Fig. 2. SEM micrograph of the ruby laser spot on Indium target irradiated in the air at the atmospheric pressure. (a) Two laser shots have being fired forming an
overlapping zone. (b) The leftside of the second shot showsirregular scalloped edge and the heataffected zone (HAZ) with small irregular structures of indium oxide
particles. (c) The rightside of the second shot forms the overlapping zone with the first shot. The RayleighTaylor instability (RTI) with smooth wavy-like circum-
ference of prominences (spikes) and walleyes (bubbles) is formed by horizontal fluid acceleration. The wavewrinkle structures formed in the circumferential zone
(C-zone) follow the shape of the RTI spikes and bubbles in the plane of target surface.
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by topological defects such as domain boundaries (Park et al.,
2014). Tentative explanation may be that fluid inhomogeneities
form the rectangular cells that tend to organize into 2D “domain
network” with p2mm symmetry [Fig. 7 (inset)]. However, the sym-
metry breaking transforms it into an irregular network which still
resembles the short range p2mm organization.

Constant wrinkle profiles are caused by homogeneously well-
organized waves inside the domain. Wavewrinkle direction in all
domains (x-axis in Fig. 7) is transversal to the direction of their prop-
agation that coincides with direction of the fluid acceleration and
direction of the RTI bubble-front propagation (y-axis in Fig. 7).
Notice that wavewrinkles do not meet at the domain boundaries
because every domain is well separated from the other one what jus-
tifies separate treatment of wavewrinkles in the domains A, B and C.

Sharp rectangular wave wrinkles: compacton-like structures.
Domain A: The frame A in Figure 6 – enlarged in Figure 8a –
shows robust unidirectional sharp rectangular line-solitary
waves of equal width with sharp vertical front that suddenly
decreases to zero. Their profile (nset to Fig. 8a) indicates the
compacton-like solitons which are defined as solitons with the
absence of infinite wings (Rosenau and Hyman 1993; Rosenau,

2000, 2005; Wazwaz, 2005; Li and Song, 2014). If the field u(x)
becomes equal to zero at some point x = x0, the dispersion mech-
anism shuts off and the soliton remains stable, preserving its shape
from spreading out. Really, Figure 8 shows the equal width soli-
tons without exponentially decaying tail; instead the field vanishes
identically outside some finite interval. For such solitons, the
function is zero outside of a compact set.

From the mathematical aspect (asuming conditions given in the
Conceptual frame), the equal-width compacton solitary waves may
be generated by the equation formulated in the KP sense (Wazwaz,
2005; Li and Song, 2014; Adem and Khalique, 2015)

(ut + a(un)x + buxxt)x + guyy = 0 (6)

where α, β, γ and are real-valued constants. Taking n = 2 the above
equation includes u2x (quadratic) nonlinear convection term and

Fig. 3. Schematic presentation of the wavewrinkles that evolve in the C-zone in front
of the RTI. The enlarged segment shows the wavewrinkle morphology which changes
with distance from the RTI front: the C-zone is divided into ear field (NF) edium Field
(MF) and the far field (FF). Red arrows: The outflow of a hot low-density fluid and
wavewrinkle structures formed in front of the bubbles. Blue arrows: The inflow of
a cold high-density fluid in front of the spikes. The C-zone is inhomogeneous due
to irregular target surface, variation of the fluid velocity and radial and angular var-
iation of the fluid layer thickness between few microns and few hundreds of nanome-
ters. The column (A) of the wavewrinkles is formed on a «thick» (micron thick) molten
metal layer, while the column (B) is formed on a «thin» nanofluid layer. Notice that
wavewrinkle structures are different in these two columns. The amplitude and wave-
length of the wavewrinkle structures decrease with distance from the RTIfront from
NF to MF and to FF.

Fig. 4. SEM micrographs of the wavewrinkle structures in the «thin fluid layer» of few
hundreds of nanometer. (a) The NF wavewrinkle morphology shows rectangular
horseshoe structures in front of the RTI bubble are bended following the curvature
of the emerging bubble. (b) The MF morphology reveals few sets of wavewrinkle
structures.
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the term uxxx that relates to the dispersion effects. Eq (6) is known
as generalized (2 + 1) KadomtsevPetviasvili Modified EqualWidth
Equation (KP-MEW).

For detail mathematical procedure see Adem and Khalique
(2014, 2015). The mathematical procedure is schematically pre-
sented in Supplementary B and C.

The solution u(x,y,t) which describes sharp rectangular soli-
tary waves is obtained in the form of the trigonometric function
(Adem and Khalique, 2015)

u(x, y, t) = A0 + A1[−l/2+ d2(−C1 sin(d2z
+ C2 cos(d2z))/(C1 cos(d2z) + C2 sin(d2z))]
+ A2[−l/2+ d2(−C1 sin(d2z)
+ C2 cos(d2z))/(C1 cos(d2z) + C2 sin(d2z)] (7)

where z = t− x− ((a + c)/b)y with (a = b = c = 1); d2 =
(1/2)

���������
4m− l2

√
; λ and μ are constants and C1 and C2 are arbitrary

constants. The solution (7) shows a set of compacton-like waves
(Fig. 8b). The generalized KP-MEW equation is solved under
boundary condition limj�+1 u(j) = a (amplitude). A regular
compacton solution corresponds to the case a = 0 (Zhong et al.,
2014). In that case the dispersion operator becomes degenerate
at the front, and its degeneracy generates sharp fronts supporting
the formation of robust compact localized patterns.

The waves are developed between two boundaries of the omain
A (fluid inhomogeneities) that caused their reflection under an
angle ∼180° thus making posible interference with the original
solitary wave. The size of the domain, l≥ 800 nm, establishes
the interference conditions for the formation of only three
compacton-like waves of the wavelength λ ∼200–250 nm. The
compacton-like waves obtained as the exact solution of the
KP-MEW equation in Figure 8b can be succesfully juxtaposi-
tioned with the standing solitary periodic waves of the omain A
in Figure 8a.

Rectangular waves with the rounded top surface. Aperiodic rectan-
gular waves with kinematic dispersion

Domain B: The aperiodic wavewrinkles in the frame B (Fig. 6)
– enlarged in Figure 9a – are the smooth rectangular waves with
rounded top surface and the amplitude a ∼220 nm ee the inset to
Fig. 9a. They may be assumed the long waves with the wavelength
which gradually decreases from λ ∼350 to ∼250 nm. The profile
of the waves indicates that characteristics of flow are somewhat
different in the omain A and that besides dispersion associated
with the term uxxx, the other dispersion mechanisms are present.
Generally, the parameters like velocity and dispersion coefficient
vary from one domain to another, namelymorphologic (target
surface inhomogeneity) and hydrodynamic dispersion play a
role in the evolution of flow structures. However, for the
Domain B we assume that the target surface morphology affects
the flow of the fluid parcels of the molten layer that travel the
same distance by different pathways, by different velocities, in dif-
ferent times that give rise to the kinematic dispersion (Saco and
Kumar, 2002). Therefore, the total dispersion arises from the con-
tribution of the linear hydrodynamic (DLH), morphologic (DM)
and nonlinear kinematic (DNK) dispersion: =DNK +DLH +DM

(Saco and Kumar, 2002). (For details see Supplementary D)
The contribution to total dispersion <D> from a kinematic disper-
sion overcomes the contribution of other two components. One
can define the nondimensional kinematic dispersion DNK

+ =DNK/
DM≡ δ (Saco and Kumar, 2002; Snell et al., 2004), which has
two components, δ1 and δ2 for the x- and y-directions in the
flow basin (Domain B), respectively.

The longwaves with rounded top surface in the Domain B can
be generated by the nonlinear equation formulated in the KP
sense which incorporates kinematic dispersion coefficients δ1
and δ2 (Ganguly and Das, 2015)

(ut + ux − a(u2)x − buxxt)x + guyy = d1uxxx + d2uyyy (8)

where terms ut + ux describe the propagation of wave and (u2)x
is nonlinear term. Equation (8) is known as the generalized
(2 + 1) KadomtsevPetviasviliBenjaminBonaMahony (KP-BBM)
equation.

Assuming periodic boundary conditions, the solution of Eq.
(8) can be expressed as a summation of Fourier components in
the form F(kx, ky) = exp(ikxx + ikyy −4t) and searched in the
form of the traveling wave

u(x, y, t) = u(6); 6 = B1x + B2y − nt (9)

The parameters B1 and B2 are related to the inverse width of
the soliton in x- and y-directions, respectively, and v represents
the traveling wave velocity.

Fig. 5. SEM micrograph of the NF zone showing the formation of the wavewrinkles in
front of the asymmetric RTI bubble. The «horseshoe» solitary wavewrinkles of rectan-
gular profile generated in front of the RTI bubble show jamming and the rear-side
collision. The two sets of the oblique rectangular wavewrinkles collide and merge.
The yellow frame (down left) comprises the set of rectangular unidirectional waves
outside the jamming and collision zone. The rectangular singlelinesoliton, as well
as the interaction of the solitary waves at the leftside that form «Y»type configuration
called «resonant» and other one that form the «X»type configuration called «nonres-
onant», can be seen.
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After few transformations and integrations one finds the solu-
tion of the KP-BBM equation with dispersion δ1, δ2 > 0. The exact
traveling wave solution is derived in terms of the elliptic
Weierstrass We-function (Ganguly and Das, 2015)

where g3 and c4 are constants of integration; g3 is constant of
integration that depends on the boundary conditions, and c4 =
c2 + c3 (c2 is also some constant of integration). The solution
obtained for δ1 = 0.1, δ2 = 0.2, v = 1.5 with α = β = γ = 1, B1 = B2
= 0.5, in t = 0, shown in Figure 9b are the waves with variable

wavelength which have the rectangular-like profile and rounded
top surface.

The reflection of solitary waves from both «wall»-boundaries
(inhomogeneities) in the fluid layer under an angle ∼180°

makes possible interference with the original wave. The interfer-
ence of the solitary waves in this domain of the size l
∼1500 nm establishes the conditions for the formation of four
stationary waves. These waves (Fig. 9a) – with the wavelength
which increases in radial direction of the spot from λ ∼350 to

Fig. 6. SEM micrograph of the MF zone showing various kinds
of the wavewrinkle structures in local domains (yellow
frames) A, B, and C. Domains are well separated (for a dis-
tance l≥ λ – having no common boundaries) and selforgan-
ized in radial direction – along the extension of the bubblefront
and comprise different kinds of waves: (A) Sharpperiodic
rectangular waves – the compacton-like solitons; (B) periodic
rectangular waves with rounded top surface; (C) eriodic rectan-
gular waves with rounded top surface.ormation of the selfor-
ganized cascade of wrinklons (pper left).
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∼500 nm – are developed between two boundaries (fluid inhomo-
geneities) of the Domain B and can be successfully juxtaposi-
tioned with the simulated waves in Figure 9b.

Periodic rectangular waves without kinematic dispersion
Domain C: The periodic rectangular wavewrinkles with

rounded top surface in the frame C (Fig. 6) – enlarged in
Figure 10a – have the profile shown on the inset to Figure 10a.
Such morphology of periodic waves indicates even different flow
conditions from the Domain B. They may be attributed to the
kinematic dispersion which becomes small or zero in the omain
C. Therefore, the generation of such waves can be described by
Eq. (8) taking δ1 ∼δ2≃ 0

(ut + ux − a(u2)x − b(uxxt)x + guyy = 0 (11)
With assumption of periodic boundary conditions the solution
can be expressed as a summation of Fourier components
F(kx, ky) = exp(ikxx + ikyy −4t) (Ganguly and Das, 2015) and
also searched in the form of traveling wave, u(x, y, t) =
u(x + y − nt) = u(6). One takes 6 = B1x + B2y − nt and ν= B1 +
(γB2)

2/B1 with parameters B1 and B2 which are related to the
inverse widths of the soliton in the x- and y-directions, respec-
tively. To find the class of solutions that travel with the velocity

v, requires some additional assumptions to be made. Then, the
KP-BBM equation is transformed into ODE the solution of
which can be expressed by the Jacobi elliptic functions. The
exact traveling wave solution of Eq. (12) may be written in the
explicit form For detail mathematical procedure see Ganguly
and Das (2015):

Fig. 7. Selforganization of rectangular domains (Voroni cells) of inhomogeneous fluid
in a domain network of p2mm symmetry. The formation of domains with long range
order should be associated with spontaneous symmetry breaking that is usually
accompanied by topological defects such as domain boundaries. Wavewrinkle direc-
tion in all domains (x-direction) is transversal to the direction of their propagation
that coincides with direction of the fluid acceleration and direction of the RTI bubble-
front propagation (red arrow; y-direction).

Fig. 8. Domain A: Compactonlike soliton wavewrinkles. (a) SEM micrograph of the
sharp rectangular wavewrinkles (in the yellow frame (a) in). Inset: Profile of the
compacton-like wavewrinkles along the section line. (b) Sharp rectangular traveling
waves (compacton-like) obtained as the explicit solution of the generalized
KadomtsevPetviashvili Modified Evolution Equation (KP-MEW). These nonlinear
waves can be juxtapositoned with the rectangular waves in Figure 6a. (Courtesy of
M. Khalique; Reprinted with permission of Hindawi Publishing Corp., from Adem
and Khalique (2015); Copyright Hindai Publishing Corp, 2015).
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where B is integration constant. The solution for v = 0.5, with α =
β = γ = 1, B1 = B2 = 0.5 at t = 0 is shown in Figure 10b that can be
successfully juxtapositioned with the experimental unidirectional
standing solitary periodic waves of the omain C in Figure 10a. As
in the previous cases, the perpendicular reflection of solitary
waves from the «wall»-domain boundaries (inhomogeneities of
the fluid layer) makes possible interference with the original sol-
itary wave. For the waves with the wavelength of λ ∼300–400 nm,
this domain of the size l ∼1000–1200 nm establishes the interfer-
ence conditions that form fourstanding solitary waves.

Formation of wrinklons

By the end of pulse the ultrafast cooling which starts at the
periphery of the C-zone moves toward the RTI boundary.
Ultrafast solidification transforms the liquid layer into an elastic
sheet which starts to shrink at the liquid/solid phase transition.

Lateral component of surface tension (tension stress ε) on the
wavewrinkles causes their breakup and formation of the left and
rightside of the solitary wavewrinkles [Fig. 6 (upper left)]. The
ends of broken wrinkles on the elastic sheet became fixed by sol-
idification at the point (line) that represents constraint boundary
for the lateral tension field. A strong tension on the elastic sheet
causes focusing of energy and formation of the cascade of wrin-
kles at the smaller wavelengths called wrinklons (Fig. 11). This
is similar to wrinklons on hanged curtains which are fixed at
the top point (line) and exposed to tension by gravitational
field. The formation of selfsmilar wrinklon structures has been
observed on thin elastic sheets of various materials including gra-
phene (Vandeparre et al., 2011; Meng et al., 2013).

A single wrinklon corresponds to the localized transition zone
needed for transformation of two wrinkles of wavelength λ into a
larger one of width 2λ [Fig. 11 (inset)]. This transition requires
distorsion of the layer sheet which relaxes over distance L, mean-
ing that wrinklon can be characterized by the length L. A series of
wrinklons of different L but selfsimilar are organized in the same
way being mostly parallel establish the wrinklon hierarchy.
However, their parallelism is disturbed due to the variation of
the local fluid velocity, dispersion, variation of the layer thickness
etc (Fig. 11). Generally, the wrinklons follow the scaling laws

Fig. 9. Domain B: Aperiodic rectangular wavewrinkles with rounded top surface. (a)
SEM micrograph of aperiodic rectangular wavewrinkles (in the yellow frame (b) in
Fig. 6. Inset: Profile of the wavewrinkles with kinematic dispersion along the section
line. (b) Aperiodic traveling unidirectional waves with rectangular profile and rounded
top surface obtained as the exact solution of the generalized
KadomtsevPetviasviliBenjaminBonaMahony (KP-BBM) equation with presence of
kinematic dispersion (δ1 = 0.1, δ2 = 0.2), expressed in the Weierstrass ℘-elliptic func-
tions for v = 1.5, with α = β = γ = 1, B1 = B2 = 0.5 at t = 0. (Courtesy of A. Das;
Reprinted with permission of Elsevier from Ganguly and Das (2015). Copyright,
Elsevier, 2015).

Fig. 10. Domain C: Periodic rectangular wavewrinkles with rounded top surface. (a) SEM
micrograph of periodic rectangular wavewrinkles (in the yellow frame (c) in Fig. 6.
Inset: rofile of the wave wrinkles without kinematic dispersion along the section line.
(b) Periodic traveling waves with rectangular profile and rounded top surface obtained
as the exact solution of the generalized KadomtsevPetviasviliBenjaminBonaMahony
(KP-BBM) equation without kinematic dispersion (δ1 = δ2 = 0), expressed in the elliptic
Jacobi functions for v = 0.5, with α = β = γ = 1, B1 = B2 = 0.5 at t = 0. (Courtesy of
Prof. A. Das; Reprinted with permission of Elsevier from Ganguly and Das (2015).
Copyright, Elsevier, 2015).
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different for thin and thick sheets analogous to the «light» or the
«heavy» curtains.

The analysis of Figure 11 shows linear dependence of the wrin-
klon amplitude A on the wavelength λ, A =Qλ (Fig. 12a), similar
to A = l

��
D

√
(where Δ is the relative change of the elastic sheet) of

Vandeparre et al. (2011), Deng and Berry (2015) and Meng et al.
(2013). Dependence of the wrinklon’s relaxation length L on the
wavelength which follows the power law, L =Kλ3/2 (K≃ 0.4 nm2/3)
(Fig. 12b), is also in agreement with the behavior of wrinklons
on the elastic sheets. Dependence of the length, L, on the ampli-
tude follows the power law L = CA1/2 (C∼ 81 nm1/2), characteris-
tic for the “heavy curtains” (Fig. 12c). Such interdependence of
the wrinklon parameters A, L, and λ is a mimic of the heavy cur-
tain behavior under tension generating the hierarchy of wrinklons.

Relative change of the length, Δ, of the elastic sheet along the
y-axis occurring in the cooling process (which is equivalent to our
case) can be estimated by Meng et al. (2013)

Dy =
∫T1

T0

aG(T)dT (13)

where αG is the thermal expansion coefficient of material, T0 and
T1 are initial and final temperature during the cooling process,
respectively. Here we use the argument of Meng et al. (2013)
that the temperaturedependent expansion coefficient of material
generates an effective force per unit length of the sheet

F = Eh
∫T1

T0

aG(T)dT (14)

where E is the Young’s module and h is the thickness. Assuming
T1 as the temperature at which the indium fluid layer solidifies
and becomes an elastic sheet (T1 ∼430 K), and T0 the room tem-
perature (T0 = 298 K) at which the cooling ends, one finds the
temperature interval in which the wrinklons are formed, T1 –T0

= 132. During ultrafast cooling (between ∼100 ns and ∼1 µs)
this temperature interval is passed in few hundreds of
nanoseconds.

The expression for total energy after minimization gives the
length L and its dependence on the wavelength λ, and the thick-
ness, h, of the elastic sheet (Meng et al., 2013)

L = [3Dy(1− n2)]1/2l2/hp (15)

where ν is the Poisson ratio (ranging for great number of materials
between 0 and 0.5). Estimating the average layer thickness h
∼300 nm, the shrink distance in the ydirection Δy ∼250 nm,
and taking the wrinklon wavelength from the micrograph

Fig. 11. Formation of wrinklons as selfsimilar hierarchical selforganized structures in
the cooling phase after laser pulse termination at the constraint boundary of the
solidified sheet. SEM micrograph of wrinklons from the yellow frame in Figure 6
(upper left) shows few scales of the wrinklon cascade. Inset: Schematic representa-
tion of the wrinklon formation with merging of two wrinkles of the wavelength λ
into the wrinklon with 2λ.

Fig. 12. Diagrams showing relation between characteristic wrinklon parameters. (a)
The wrinklon amplitude versuswavelength for the cascade of wrinklons show linear
dependence: A = Qλ. (b) The length L of the wrinklon energy equilibration versus wrin-
klon wavelength: L (nm) = Cλ3/2 (C ∼0.4 nm2/3). (c) The length L of the wrinklon energy
equilibration versus wrinklon amplitude: L (nm) = KA1/2 (K ∼81 nm1/2).
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(Fig. 11), we use the relation (15) to estimate L for various wrin-
klon wavelengths. For the wrinklons with the wavelength λ
∼160 nm, h ∼300 nm and ν ∼0.3, one finds L ∼809 nm, while
for λ ∼220 nm, one finds L ∼1326 nm. These values are in very
good agreement with the values of L for the corresponding wrin-
klon wavelength in the diagram (Fig. 12b), what confirms that the
wrinklon generation occurred in the cooling process after pulse
termination.

Conclusion

We have shown that multipulse laser-induced RTI in the plane of
target surface is associated with formation of the new paradigm of
the wavewrinkle structures in the circumferential zone of
Gaussian-like spot. Multipulse laser irradiation causes inhomoge-
neity of the surface fluid layer, fluid velocity, dispersion and the
target surface variation so that formation of the nonlinear wave-
wrinkles become different in various local domains. The superpo-
sition and growth of the density interlayer perturbation with the
background fluid motion cause the formation of the large-scale
coherent structures (waves) inside the cells (domains) – without
occurrence of the smallscale structures. The flow is well ordered
(coherent) in the domains close to the RTI front and is disordered
(incoherent) in distant domains. Domains are organized into a
“domain network” with p2mm symmetry and oriented in radial
direction of Gaussian-like spot, in the direction of the fluid
motion. Wrinkles which appear as the nonlinear traveling waves
become transformed into solitary waves due to balance of the
group velocity dispersion and nonlinear frequency shift. The inho-
mogeneity of the fluid layer – which establishes the domain
boundaries – causes the reflection of solitary waves and interfer-
ence inside the domains. Solitary waves become transformed into
stationary soliton wavewrinkle patterns – different in various
domains. The heterogeneous solitary wavewrinkle morphology
varies ranging from the solitary waves, compacton-like solitons, to
the aperiodic rectangular waves (withrounded top surface) and to
the periodic ones. The structure of the velocity fields and the flow
symmetry determine the family of solutions with distinct local prop-
erties characteristic for the local domains. Consequently, all types of
waves may be successfully juxtapositioned with the exact solutions
of the nonlinear differential equations formulated in the
KadomtsevPetviashvili sense taking into account the conditions in
local domains of inhomogeneous fluid layer.

The wavewrinkle structures experience ultrafast cooling after
laser pulse termination. The cooling wave that starts at the periph-
ery travels toward the center causing sudden solidification and
transformation of a thin molten layer into an elastic sheet
which starts to shrink generating lateral tension on the wrinkles.
This causes their breakup and formation of the cascade of smaller
wrinkles called wrinklons. Wrinklons, called the elementary excita-
tions of condensed matter in the form of elastic sheets and mem-
branes that appear under tension stress, manifest some unique
characteristics regarding the relation between their amplitude,
equilibration length and the wavelength.

Regarding the experimental conditions and eventual control of
the traveling and solitary wavewrinkles formation in lasersolid
interactions, it may be said that they can be formed at the
medium- and higher-energy densities, Es (below the plasma det-
onation threshold), but not on the very high ones. Namely, at very
high Es the plasma detonation causes strong horizontal fluid
acceleration and jetting along the target surface instead of the for-
mation of traveling and solitary waves.

In the future work we will try to shed more light on the A
dependence of the RTI growth.

Supplementary material. The supplementary material for this article can
be found for this article can be found at https://doi.org/10.1017/
S0263034620000105.
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