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We describe a polymorphic, typed lambda calculus with substructural features. This calculus

extends the first-order substructural lambda calculus αλ associated with bunched logic. A

particular novelty of our new calculus is the substructural treatment of second-order

variables. This is accomplished through the use of bunches of type variables in typing

contexts. Both additive and multiplicative forms of polymorphic abstraction are then

supported. The calculus has sensible proof-theoretic properties and a straightforward

categorical semantics using indexed categories. We produce a model for additive

polymorphism with first-order bunching based on partial equivalence relations. We consider

additive and multiplicative existential quantifiers separately from the universal quantifiers.

1. Introduction

Formal languages with substructural inference mechanisms are powerful tools in logic and

computer science. They can be characterised by the absence or restriction of the traditional

structural proof rules of weakening, contraction and exchange. Perhaps the best known

substructural logic is Linear Logic (Girard 1987). This has a strong proof-theoretic

justification, but also admits a resource reading, which is concerned with the number of

uses of the resources (assumed formulae) in deriving a formula. This interpretation gives

rise to many applications.

Bunched logic (O’Hearn and Pym 1999; Pym 2002; Pym et al. 2004), abbreviated BI, is

another substructural logic. It also has a resource reading, called the sharing interpretation.

Here the resource reading is concerned with sharing relationships on the resources used by

a formula. This is achieved by decomposing logical connectives into additive/multiplicative

pairs: for example, conjunction, ∧, becomes (∧, ∗), and implication, →, becomes (→) −−∗.

The additive variants are intended to be like their traditional, structural versions. In

contrast, the multiplicatives are subject to certain sharing constraints: for example, in a

formula φ ∗ ψ, the two formulae φ and ψ must not share resources. This logic is the

foundation of the assertion language in Separation Logic (Reynolds 2002), which gives

an efficient Floyd–Hoare logic for imperative programs with mutable state.

Bunched logic has a good proof theory and a natural notion of categorical model.

These models can be realised in certain functor categories based on sets, and this gives

rise to a host of applications. Some of these functor categories are closely related to
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possible-worlds models for higher-order languages with store (Reynolds 1981; Oles 1982).

The bunched type theory αλ corresponding to BI has been developed in O’Hearn (2003)

and Pym (2002). In conjunction with the sharing interpretation and possible-world models,

it has been used in O’Hearn (2003) to give a refined treatment of Idealized Algol, IA, and

a treatment of memory operations on references in functional languages (Berdine and

O’Hearn 2006).

Polymorphic quantifiers and polymorphic lambda-calculi were first introduced in

Girard (1971; 1972) and again in Reynolds (1974), where their use in programming was

emphasised. In logics of this kind, formulae have second-order propositional variables,

that is, variables that may be instantiated with propositions. Polymorphic lambda calculi

and programs may contain second-order variables (also known as type variables) that may

be instantiated with types. Such lambda calculi also have a mechanism for polymorphic

abstraction: this is used to construct functions with type variables as arguments. These

calculi have a semantics in certain indexed categories. A particular instance of such a

model is constructed using partial equivalence relations (PERs) on the natural numbers –

see, for example, the early work by Girard (Girard 1972) or the modern treatment in

Jacobs book (Jacobs 1999).

In this paper we study combinations of bunching and polymorphism. We not only

combine ordinary polymorphism with αλ, but also make a bunched treatment of the

second-order variables. Bunching at the first- and second-order levels are essentially

orthogonal to each other, so there are perfectly sensible calculi with bunching at both,

either or neither of the two levels. The presence of bunching at second order means

that there are additive and multiplicative variants of polymorphism within the calculus.

There are additive polymorphic types ∀α.τ, polymorphic abstraction terms Λα.M : ∀α.τ
and instantiations App(M,σ) : τ[σ/α] that behave in essentially the same way as ordinary

polymorphism. There are also multiplicative polymorphic types ∀∗α.τ, terms Λ∗α.M : ∀∗α.τ

and instantiations of the form App∗(M,A, σ) : τ[σ/α]. We give a detailed account of the

theory and models of such calculi by carefully extending the standard treatments for

ordinary polymorphism. We also study polymorphic existential quantifiers as these are

well known to be related to abstract data-types (Mitchell and Plotkin 1988). An additive

existential, ∃, that mimics ordinary existential types may be added, as may a multiplicative

variant, ∃∗. However, the form of the proof rules for ∃∗ suggested by the proof theory does

not agree precisely with what would fit naturally with the indexed category approach.

In Section 2 we introduce the most basic bunched polymorphic lambda calculus, α2λ2,

its derivation rules and reductions. In Section 3 we study the metatheory associated

with this calculus. We provide appropriate versions of basic proof-theoretic results such

as substitution (cut-elimination), subject reduction and normalisation. In Section 4 we

present categorical models for α2λ2 in the form of hyperdoctrines (indexed categories),

and prove soundness and completeness theorems for the calculus in such models. In

Section 5 we study polymorphism in a category of partial equivalence relations, and show

that additive polymorphism with first-order bunching may be interpreted in this category.

A calculus with bunched polymorphic existential quantifiers is studied in Section 6. The

paper concludes with a summary and a discussion of further avenues and open problems

in Section 7.
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2. The calculus

The main bunched polymorphic lambda calculus, which we shall call α2λ2, is an extension

of the bunched, simply-typed calculus αλ presented in O’Hearn (2003) and Pym (2002).

Bunches are contexts that are structured in a particular way. The calculus α2λ2 produces

judgements of the form

X | Γ � M : τ

saying that a term M is typed with τ, given a bunch of type variables X and a bunch of

(ordinary) variables Γ.

We will first consider bunches in general. Suppose that we have some given syntactic

category B. A bunch of B-elements is a binary tree with each leaf labelled by a B-element

or one of the symbols � or �∗, and each internal node labelled with either of the symbols

‘;’ or ‘,’. Thus, bunches are generated by the grammar

B := � | �∗ | b | B;B | B,B

where b ranges over B-elements. The symbols ‘;’ and ‘,’ are referred to as additive and

multiplicative combination, respectively. The bunches � and �∗ are the additive and

multiplicative units, respectively. The formation of bunches is sometimes subject to the

restriction that any B-element may occur at most once in any bunch. We refer to this as

the linearity condition.

A sub-bunch B′ of a bunch B is a subtree of B such that all leaves of B′ are leaves of

B. Let B(B1 | . . . | Bn) be the notation for a bunch B with distinguished, non-overlapping

sub-bunches B1, . . . , Bn. We write B[B′
1/B1, . . . B

′
n/Bn], or sometimes B(B′

1 | . . . | B′
n), for

the bunch formed by replacing each bunch Bi in B with a bunch B′
i . For any bunch

B(B1 |B2), the bunches B1 and B2 are combined at some minimal internal node. If this

node is labelled with ‘;’, we say that B1 and B2 are additively combined in B, or write

B1;B2 in B for short. If it is labelled with ‘,’, we say that they are multiplicatively combined

in B or write B1, B2 in B. We use these notations sparingly since, for example, B1, B2 in B

does not entail that B1, B2 is a sub-bunch of B.

A pair of equivalence relations normally appear with bunches. The first equivalence,

≡, is used to build structural rules that allow us to permute leaves. It is a congruence

generated by commutative monoid rules for ‘;’ and ‘,’. Thus the commutative monoid

axioms can be applied at arbitrary depth in any bunch. To be precise, ≡ is generated by

the following rules on bunches:

— If B2 ≡ B3, then B[B3/B1] ≡ B[B2/B1], where B(B1) is any bunch.

— If B1 ≡ B2 and B2 ≡ B3, then B1 ≡ B3.

— B ≡ B; � and B ≡ B,�∗.
— B1; (B2;B3) ≡ (B1;B2);B3 and B1, (B2, B3) ≡ (B1, B2), B3.

— B1;B2 ≡ B2;B1 and B1, B2 ≡ B2, B1.

Additional axioms may be required in specific situations. For example, we often wish to

consider affine bunches, for which � ≡ �∗ is required.

The second equivalence relation, ∼=, is used to control contraction in the derivation

of judgements. We will discuss the relations ∼= used with bunches of type variables and

variables separately, since they are slightly different.
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We assume a countable collection of type variables is given, and let the letters α, β range

over type variables. A hub is an affine bunch of type variables, subject to the linearity

condition. For brevity, we use the unit � but not �∗, since hubs are affine. Thus hubs

are generated by

X := � | α | X,X | X; X

such that every type variable may occur at most once in a bunch. We let the letters

X,Y , Z range over hubs.

The equivalence ∼= on hubs is simply renaming of type variables: X ∼= Y if Y can be

obtained from X by renaming bijectively with type variables. Notice that both X and Y

then have the same internal structure.

The types of the calculus are generated by

τ := � | I | α | τ ∨ τ | τ ∧ τ | τ ∗ τ | τ → τ | τ−−∗τ | ∀α.τ | ∀∗α.τ

where α is a type variable. The constructors �, ∧, → and ∀ are referred to as the additive

unit, product, abstraction and polymorphic abstraction (universal quantifier), respectively.

Matching these, there are multiplicative unit I , product ∗, abstraction −−∗ and polymorphic

abstraction (universal quantifier) ∀∗. The additive sum, ∨, is also included. We let the letters

σ, τ, υ range over types.

We assume a countable collection of variables is given, and let x, y, z range over these

variables. A (typing) context is a bunch of typed variables, subject to a linearity condition.

Contexts are generated by the grammar

Γ := � | �∗ | x : τ | Γ,Γ | Γ; Γ

where x is a variable, τ is a type and any variable occurs at most once. On the other

hand, types may occur more than once in a bunch: for example, x : τ, y : τ is a bunch

for any type τ. Note that, in general, contexts are not required to be affine, but if it were

required, we would still get a sensible, specialised calculus. This is similar to the situation

for αλ. The units � and �∗ are distinct from each other, and from the unit � for hubs.

These contexts are nothing more than the contexts of αλ, but such that types may contain

type variables and may be formed using the polymorphic quantifiers. The letters Γ and Δ

are reserved for contexts.

The relation Γ ∼= Δ between contexts holds just when Δ can be obtained by a type-

preserving, bijective relabelling of the leaves of Γ. That is, any leaf x : τ of Γ must

correspond to a unique leaf y : τ of Δ.

The terms of the language are given by the grammar

M := x | � | I | let I be M in M

| inl(M) | inr(M) | case M of inl(x) ⇒ M or inr(y) ⇒ M

| 〈M,M〉 | π1M | π2M | M ∗M | let (x, y) be M in M

| λx : τ.M | app(M,M) | λ∗x : τ.M | app∗(M,M)

| Λα.M | App(M, τ) | Λ∗α.M | App∗(M,A, τ)
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where τ is a type, x is a variable, α is a type variable and A is a finite set of type-

variables. The forms we have added to αλ are the additive polymorphic abstraction

Λα.M, multiplicative polymorphic abstraction Λ∗α.M, additive instantiation App(M, τ) and

multiplicative instantiation App∗(M,A, τ).

Let fv (−) be the operation that produces the set of variables that occur in a context or

free in a term. We use the notation ftv (−) for the operation that returns the set of type

variables that occur in a hub, or free in a type, or free in at least one of the types of the

variables in a context. In particular, in the types ∀α.τ, ∀∗α.τ, the type variable α is not free

and

ftv (∀∗α.τ) = ftv (∀α.τ) = ftv (τ) � {α}

holds.

We define the set of free type variables ftvΓ(M) that are free in a term as follows

given in a context Γ that includes all of the variables that are free in M. The idea is

that the set ftvΓ(M) will include all free types of sub-terms used in the construction of

M, not just those types appearing in the type of the term. The recursive definition is as

follows:

ftvΓ(�) = ftvΓ(I) = �

ftvΓ(x) = ftv (τ) where x : τ is in Γ

ftvΓ( let I be M in N) = ftvΓ(M) ∪ ftvΓ(N)

ftvΓ(inl(M)) = ftvΓ(inr(M)) = ftvΓ(M)

ftvΓ(case M of inl(x) ⇒ N1 or inr(y) ⇒ N2) = ftvΓ(M) ∪ ftvΓ(N1) ∪ ftvΓ(N2)

ftvΓ(〈M,N)〉 = ftvΓ(M ∗N) = ftvΓ(M) ∪ ftvΓ(N)

ftvΓ(π1M) = ftvΓ(π2M) = ftvΓ(M)

ftvΓ( let (x, y) be M in N) = ftvΓ(M) ∪ ftvΓ(N)

ftvΓ(λx : σ.M) = ftvΓ(λ∗x : σ.M) = ftvΓ(M) ∪ ftv (σ)

ftvΓ(app(M,N)) = ftvΓ(M) ∪ ftvΓ(N)

ftvΓ(app∗(M,N)) = ftvΓ(M) ∪ ftvΓ(N)

ftvΓ(Λα.M)) = ftvΓ(Λ∗α.M)) = ftvΓ(M) � α

ftvΓ(App(M,σ)) = ftvΓ(M) ∪ ftv (σ)

ftvΓ(App∗(M,A, τ)) = A ∪ ftvΓ(M) ∪ ftv (τ).

We will usually drop the subscript Γ and write ftv (M) when the context Γ is clear.

We write X � τ and say that τ is well formed over X whenever ftv (τ) ⊆ ftv (X).

Similarly, write X � Γ and say Γ is well formed over X whenever ftv (Γ) ⊆ ftv (X)

holds.

We introduce a syntactic measure μ that assigns to each term the set of type variables

that are free and occur in some application of the multiplicative universal quantifier. This
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may be defined recursively as follows:

μ(�) = μ(I) = μ(x) = �
μ(〈M,N〉) = μ(M ∗N) = μ(M) ∪ μ(N)

μ( let (x, y) be M in N) = μ(M) ∪ μ(N)

μ(inl(M)) = μ(inr(M)) = μ(M)

μ(case M of inl(x) ⇒ N1 or inr(y) ⇒ N2) = μ(M) ∪ μ(N1) ∪ μ(N2)

μ( let I be M in N) = μ(M) ∪ μ(N)

μ(app(M,N)) = μ(M) ∪ μ(N)

μ(app∗(M,N)) = μ(M) ∪ μ(N)

μ(π1M) = μ(π2M) = μ(M)

μ(λx : σ.M) = μ(λ∗x : σ.M) = μ(M)

μ(Λα.M) = μ(Λ∗α.M) = μ(M) � {α}
μ(App(M, τ)) = μ(M)

μ(App∗(M,A, τ)) = μ(M) ∪ A .

We call μ(M) the instantiation set of M.

The typing of terms uses the type and context formation judgements. The term formation

judgements are derived from the system of rules shown in Figure 1. We write X | Γ � M : τ

and say that M is well formed with type τ over X and Γ if it is produced by this system.

The rules (�I), (II) introduce the additive and multiplicative units. Taken together

with (Ax ), they are the rules that occur at the leaves of derivations. The rules (�E) and

(IE) eliminate the units. The rules (∧I) and (∧E) give the additive product, and the rules

(∗I) and (∗E) give the multiplicative product. The rules for additive and multiplicative

functions are (→ I), (→ E), (−−∗) and (−−∗E). The additive coproduct is given by the rules

(∨I) and (∨E). There are structural rules of exchange (E), weakening (W ), and contraction

(C) for bunches of (ordinary) variables. There are rules for additive polymorphism (∀I),
(∀E) and multiplicative polymorphism (∀∗I), (∀∗E). Finally, there are structural rules of

exchange (E2), weakening (W2) and contraction (C2) for hubs.

Notice that we have presented all of the first-order rules relative to a fixed hub X. They

are essentially the familiar rules for αλ, but parametrised by the hub.

Many of the rules are subject to side conditions. These will sometimes be written as

additional premises of rules. The side condition on the rules (Ax ), (∀E) and (∀∗E) ensure

that in a derivation X | Γ � M : τ all of the free type variables of τ occur in X. As well as

the side conditions on (W ), (∀I) and (∀∗I), we also have that all of the free type variables

in Γ occur in X. The elimination rules (�E), (IE), (∧E), (∗E), (→ E), (−−∗E) are each

subject to a side condition

μ(N) ∩ ftv (M) = � (†)

that requires the separation of certain free type variables. In a similar way, the rule

(∨E) requires the conditions (†i), being μ(Ni) ∩ ftv (M) = �, for both i = 1, 2. These

eliminations work through substitutions and, when substituting, we must ensure that

the disjointness conditions on type variables in N are not violated. Such side conditions

are necessary in order to have a standard substitution property for terms, namely that a

substitution of a well-formed term for a first-order variable in another well-formed term
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(�I)
X | � � � : � (Ax )

X | x : τ � x : τ
(X � τ)

X | �∗ � I : I
(II)

(TE)
X | Γ(�) � N : τ X | Δ � M : �

X | Γ(Δ) � N[M/�] : τ
(†)

X | Γ(�∗) � N : τ X | Δ � M : I

X | Γ(Δ) � let I be M in N : τ
(IE)

(∧I)
X | Γ � M : σ X | Δ � N : τ

X | Γ; Δ � 〈M,N〉 : σ ∧ τ
X | Γ � M : σ X | Δ � N : τ

X | Γ,Δ � M ∗N : σ ∗ τ (∗I)

(∧E)
X | Γ; (x : φ; y : ψ) � N : τ X | Γ � M : φ ∧ ψ

X | Γ � N[π1M/x, π2M/y] : τ
(†)

(∗E)
X | Γ(x : φ, y : ψ) � N : τ X | Δ � M : φ ∗ ψ

X | Γ(Δ) � let (x, y) be M in N : τ
(†)

(→ I)
X | Γ; x : σ � M : τ

X | Γ � λx : σ.M : σ → τ

X | Γ, x : σ � M : τ

X | Γ � λ∗x : σ.M : σ −−∗τ
(−−∗I)

(∨Il)
X | Γ � M : σ

X | Γ � inl(M) : σ ∨ τ
X | Γ � M : τ

X | Γ � inr(M) : σ ∨ τ (∨Ir)

(∨E)
X | Γ � M : τ1 ∨ τ2 X | Δ(x : τ1) � N1 : σ X | Δ(y : τ2) � N2 : σ

X | Δ(Γ) � case M of inl(x) ⇒ N1 or inr(y) ⇒ N2 : σ
(†1, †2)

(→ E)
X | Γ � N : σ → τ X | Δ � M : σ

X | Γ; Δ � app(N,M) : τ
(†)

X | Γ � N : σ −−∗τ X | Δ � M : σ

X | Γ,Δ � app∗(N,M) : τ
(−−∗E)

(∀I)
X; α | Γ � M : τ

X | Γ � Λα.M : ∀α.τ (α /∈ ftv (Γ))
X, α | Γ � M : τ

X | Γ � Λ∗α.M : ∀∗α.τ
(∀∗I)

(∀E)
X | Γ � M : ∀α.τ

X;Y | Γ � App(M,σ) : τ[σ/α]
(Y � σ)

(∀∗E)
X | Γ � M : ∀∗α.τ

X, Y | Γ � App∗(M, ftv (Y ), σ) : τ[σ/α]
(Y � σ)

(W )
X | Γ(Δ) � M : τ

X | Γ(Δ; Δ′) � M : τ
(X � Δ′) (Γ ≡ Δ)

X | Γ � M : τ

X | Δ � M : τ
(E)

(C)
X | Γ(Δ; Δ′) � M : τ

X | Γ(Δ) � M[Δ/Δ′] : τ
(Δ ∼= Δ′) (X ≡ Y )

X | Γ � M : τ

Y | Γ � M : τ
(E2 )

(C2 )
X(Y ;Y ′) | Γ � M : τ

X(Y ) | Γ[Y /Y ′] � M[Y /Y ′] : τ[Y /Y ′]
(Y ∼= Y ′)

Y | Γ � M : τ

X(Y ) | Γ � M : τ
(W2)

Fig. 1. Term formation rules
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produces a well-formed term. The asymmetry of this side condition (between M and N)

comes from the asymmetry of substitution (of, say, M, for some variable in N). This is

explained in more detail below.

It should be noted that the calculus only allows weakening (W ) around ‘;’ in first-order

contexts. In contrast, rule (W2) is equivalent to having weakening around both ‘;’ and ‘,’

in a hub. We say that the calculus is affine in the hubs. This is why we use just one unit

for hubs – more discussion of affine calculi may be found in O’Hearn and Pym (1999),

O’Hearn (2003) and Pym (2002). It appears that hubs are required to be affine in order to

get a sensible proof theory. In particular, it seems necessary for the substitution property

(admissibility of the cut rule). This property is given for α2λ2 in Proposition 1 below.

Contraction is not available around a multiplicative combination. As a consequence,

we may regard a hub X,Y as consisting of two hubs whose variables are strongly

distinguished. The multiplicative quantifier differs from the additive quantifier in that

we may only instantiate with types whose variables are thus distinguished. This lifts the

sharing interpretation for bunched calculi (O’Hearn and Pym 1999) to the second-order

level.

Let X be a bunch and A be a set of type variables, and let X�A be the bunch formed

by:

— erasing all leaves of X that feature a variable not in A

— deleting edges into such leaves

— if an internal node is not branching, deleting that node and replacing the two incident

edges with a single edge between the two previously adjacent vertices

— if everything is deleted, inserting a �.

We introduce the notation X � Y to mean that Y can be recovered from X by

weakenings and equivalences. To be precise, Y can be produced from X by attaching a

finite number of bunches using the constructors ‘;’ and ‘,’, and using the congruence rules

for ≡.

Recall that bunches are defined here as (binary) trees, and a sub-bunch X of a bunch

Y is defined to be a sub-tree X of the tree Y . Note that if X is a sub-bunch of Y , then

X � Y , but not vice-versa.

Definition 1. Let X and Y be bunches and ftv (Y ) = {β1, . . . , βn}. A (type) substitution

s : X −→ Y is a sequence

[σ1/β1, . . . , σn, βn]

such that

— X � σj for each 1 � j � n

— if Y1 and Y2 are bunches such that Y1, Y2 �Y , then there are bunches X1 and X2 with

X1, X2 �X and, for i = 1, 2 and 1 � j � n, if βj ∈ ftv (Yi), then Xi � σj .

We sometimes use the usual liberal variant of the above sequence notation for substitution

in which only the variables that are not replaced by themselves are mentioned.

It follows that substitutions have the following property: if βi and βj are multiplicatively

combined in Y , then ftv (σi) ∩ ftv (σj) = �. This reinforces the sharing interpretation for
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type variables in such calculi, as the multiplicative combination of type variables requires

that they use disjoint resources.

Any substitution s as above defines a map s∗ from sets of type variables in Y to sets of

type variables in X. This is given by

s∗(A) =
⋃

i∈{i|βi∈A}

ftv (σi)

for any A that is a finite subset of Y .

The substitution s : X −→ Y maps any type Y � τ to a type X � s∗(τ) by simulatneously

replacing each βj with σj for 1 � j � n. We also write τ[σ1/β1, . . . , σn/βn] for s∗(τ). This

assignment is defined to work in the usual way. For example, we have

s∗(σ−−∗ τ) = s∗(σ)−−∗ s∗(τ)

s∗(∀∗α.τ) = ∀∗α.s
∗(τ)

for multiplicative function and polymorphic types.

We extend the substitution to act on contexts: any context Y � Γ is mapped to a

context X � s∗(Γ) where s∗(Γ) is formed by re-typing the variables of Γ with the images

of the original types under s∗. That is, x : τ is in Γ if and only if x : s∗(τ) is at the

corresponding node in s∗(Γ) and all internal nodes (‘;’ and ‘,’) and units are unchanged.

The substitution s : X −→ Y maps any term M with free type variables in Y to one

with free type variables in X. The substitution is defined in the usual way: in particular,

we have

s∗(Λ∗α.M) = Λ∗α.s
∗(M)

s∗(App∗(M,A, τ)) = App∗(s
∗(M), s∗(A), s∗(τ))

for dealing with the multiplicative polymorphic abstraction. An important consequence of

this definition is that substitution commutes with both kinds of polymorphic abstraction.

We shall see later that under such a substitution any well-formed term Y | Γ � M : τ is

mapped to a well-formed term X | s∗(Γ) � s∗(M) : s∗(τ). Notice that in the rule (∀∗E),

the context of the conclusion is extended with the entire hub of the type with which we

are instantiating, but that the substitution used to perform the instantiation only uses the

free type variables of the instantiating type.

For any hub Y , with, say, ftv (Y ) = {β1, . . . , βn}, the sequence [β1/β1, . . . , βn/βn] is the

identity substitution. For any pair of substitutions

s = [σ1/β1, . . . , σn/βn] : X −→ Y

t = [τ1/α1, . . . , τp/αp] : Y −→ Z

there is a composite substitution

t ◦ s = [s∗(τ1)/α1, . . . , s
∗(τp)/αp] : X −→ Z

from types over Z to types over X. Furthermore, the following lemma holds.

Lemma 1. There is a category with hubs as objects and type substitutions as arrows.

If X ∼= Y , there is a substitution s : Y −→ X, written [Y /X], given by replacing every

free type variable from X with the corresponding variable from Y .
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We will also use the notation

[M1/x1, . . . ,Mn/xn]

for substitutions of terms Mi for variables xi in a term. When Γ ∼= Δ, we use the notation

[Δ/Γ] to replace occurrences of variables in a context or term that also occur in Γ with

their correspondents (under the chosen bijection) from Δ.

2.1. Reductions

The usual rules for βηζ-conversions for αλ are retained. They are

(βI) let I be I in N →β N

(ηI) let I be M in I →η M

(β ∧ 1) π1〈M1,M2〉 →β M1

(β ∧ 2) π2〈M1,M2〉 →β M2

(η∧) 〈π1M,π2M〉 →η M

(β∗) let (x, y) be M1 ∗M2 in N →β N[M1/x,M2/y]

(η∗) let (x, y) be M in x ∗ y →η M

(β →) app(λx : σ.N,M) →β N[M/x]

(η →) λx : σ.app(M,x) →η M

(β−−∗) app∗(λ∗x : σ.N,M) →β N[M/x]

(η−−∗) λ∗x : σ.app∗(M,x) →η M

and x /∈ fv (M) for both (η →) and (η−−∗). No rules for � are required. The ζ-rules

(commuting conversions) are required for I , ∗ and ∨ only, and are the same for αλ.

In order to state these, we use the notion of context. In brief, a context is just a

term-with-hole. We may substitute terms for the hole, allowing variable capture. We write

C[−] for a such a context (with a hole [−]). The setting in which this terminology is used

should always make it clear whether we mean such a context or a bunch of variables.

More details on contexts for αλ can be found in Pym (2002).

So we have

C[ let I be M in N] →ζ let I be M in C[N]

C[ let (x, y) be M in N] →ζ let (x, y) be M in C[N]

C[case M of inl(x) ⇒ N1 or inr(y) ⇒ N2] →ζ case M of inl(x) ⇒ C[N1]

or inr(y) ⇒ C[N2] ,

where in the second clause we require that C does not bind x, y.

In addition, we have four βη-conversions for polymorphic quantifiers:

(β∀) App(Λα.M, σ) →β M[σ/α]

(β∀∗) App∗(Λ∗α.M,A, σ) →β M[σ/α]

(η∀) Λα.App(M, α) : τ →η M

(η∀∗) Λ∗α.App∗(M, {α}, α) : τ →η M ,

where these terms are all typed over the same hub X and context Γ such that α is not

free in Γ. Let � be the reduction relation generated by the single-step conversions. These
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relations give rise to a system of βηζ-equalities, namely the system generated by taking

two terms to be equal when there is a reduction of (either) one to the other.

3. Metatheory

Many of the standard properties (substitution, subject reduction, normalisation) of a

lambda calculus hold for α2λ2. The proofs are refinements of the proofs for αλ and λ2.

We begin with a couple of strengthening lemmas.

Lemma 2. If X | Γ(Δ ; x : σ) � M : τ and x is not free in M, then X | Γ(Δ) � M : τ.

Proof. The proof is essentially as for αλ, that is, by induction on the derivation of the

given judgement. The essential point to observe is that the variable x must have been

added spuriously using weakening. The rules for polymorphism add no real complications.

As usual, the multinary version is proved in order to deal with contraction (C).

Now, whenever X | Γ � M : τ is derivable, we have ftv (τ) ⊆ ftv (M) ⊆ ftv (X) and

ftv (Γ) ⊆ ftv (X). However, it is not always the case that ftv (τ) = ftv (M) holds.

Suppose that there is a derivation D of X | Δ � M : τ and that X is a sub-bunch of

Y . Then we say that Γ may be recovered from Δ by weakenings over Y if a derivation

of Y | Γ � M : τ may be produced by appending some sequence of weakenings – (W2)

and (W ) – to the root of D. Note that this definition is really independent of D, M and

τ, since it is the same as saying that, using ‘;’ only, we can append to Δ all variables

of fv (Γ) \ fv (Δ) to recover Γ, and have Γ well formed over Y . We have the following

strengthening lemma for type variables.

Lemma 3. If X(Z) | Γ � M : τ is derivable, α /∈ ftv (M) and either Z = Y ; α or Z = Y , α,

then there is a context Γ′ such that X[Y /Z] | Γ′ � M : τ is derivable, α /∈ ftv (Γ′), and

Γ can be recovered from Γ′ by weakenings over X(Z). Furthermore, if α /∈ ftv (Γ), then

Γ′ = Γ.

Proof. If α /∈ ftv (M), there are no (free or bound) variables in M that have types

involving free occurrences of α. Therefore, any variables x : σ(α) occurring in Γ have been

inserted by weakenings (W ) in the derivation of X | Γ � M : τ. Hence, by Lemma 2, we

can replace this derivation with a derivation of X | Γ′ � M : τ in which those extraneous

variables are never inserted. Since α does not feature in any of Γ′, M or τ, it can only have

been introduced into X through some weakening using (W2). We may therefore derive

X[Y /Z] | Γ′ � M : τ by not inserting α at any such weakening.

The fact that hubs are affine yields an admissible substitution rule for terms.

Proposition 1 (Substitution). If X | Γ(x : σ) � N : τ and X | Δ � M : σ are derivable and

μ(N) ∩ ftv (M) = �, then X | Γ[Δ/x] � N[M/x] : τ is derivable.

Notice that substitution takes place over a fixed hub. To see why the substitution

side condition (†) is necessary, observe that α, β | x : α � App∗(Λ∗γ.x, {β}, β) : α and

α, β | y : β → α; z : β � app(y, z) : α are both derivable but that α, β | y : β → α; z : β �
App∗(Λ∗γ.app(y, z), {β}, β) : α is not since the formation of app(y, z) requires β. The side
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condition (†) is used in clause (∀∗E) of the proof in conjunction with Lemma 3. Notice

that weakening around ‘,’ in a hub via (W2) is used in clauses (∀∗I) and (∀∗E) of the

proof.

Proof. Let Γ[(Δi/Δ
′
i)1�i�n] and N[(Mi/xi)1�i�n] be the notation for n simultaneous sub-

stitutions into contexts and terms, respectively. The proof of admissibility of substitution

is done for the multinary version,

X | Γ(x1 : σ1 | . . . | xn : σn) � N : τ (X | Δi � Mi : σi)1�i�n

X | Γ[(Δi/xi)1�i�n] � N[(Mi/xi)1�i�n] : τ
(†1) . . . (†n)

for all n, in order to deal with contraction. Each (†i) says μ(N) ∩ ftv (Mi) = �.

We use induction on derivations by considering cases of the last rule (r) used in the

derivation of the left premise of the substitution. Note that the induction hypothesis is

that the rule is admissible for all substitutions into all derivations of lesser height and for

all n.

All the cases that introduce or eliminate a connective other than a multiplicative

quantifier are straightforward, as are the structural rules. We simply push the substitution

towards the leaves, splitting it as appropriate at rules with two premises.

(∀∗I). For simplicity, we present the case with n = 1, that is, where we substitute for

just one variable. The version for arbitrary finite n is no more difficult. Suppose we have

a derivation ending with

X, α | Γ(x : σ) � N : τ

X | Γ(x : σ) � Λ∗α.N : ∀∗α.τ

where α is not free in Γ. For any given substitution premise

X | Δ � M : σ,

we can weaken via (W2) to form

X, α | Δ � M : σ,

then apply the induction hypothesis to get

X, α | Γ[Δ/x] � N[M/x] : τ,

and, finally, since α is not free in Δ, we may use (∀∗I) to get

X | Γ[Δ/x] � Λ∗α.N[M/x] : ∀∗α.τ,

as required.

(∀∗E). Suppose we have a derivation ending with

Y | Γ(x : σ) � N : ∀∗α.τ

Y , Z | Γ(x : σ) � App∗(N, ftv (Z), ρ) : τ[ρ/α]
(Z � ρ)

for the unary substitution case. The matching substitution premise is of the form

Y ,Z | Δ � M : σ

with

μ(App∗(N, ftv (Z), ρ)) ∩ ftv (M) = �
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as side condition. In particular, this gives

ftv (Z) ∩ ftv (M) = � .

Then, by repeated application of Lemma 3, there is some Δ′ such that

Y | Δ′ � M : σ

is derivable, and Δ may be recovered from Δ′ by weakenings over Y ,Z .

The condition

μ(N) ∩ ftv (M) = �

is satisfied, so the induction hypothesis means that

Y | Γ[Δ′/x] � N[M/x] : ∀∗α.τ

is derivable. From this it follows by (W2) that

Y ,Z | Γ[Δ′/x] � App∗(N[M/x], ftv (Z), ρ) : τ[ρ/α]

by an application of the (∀∗E) rule, and

Y ,Z | Γ[Δ′/x] � (App∗(N, ftv (Z), ρ))[M/x] : τ[ρ/α]

is just the same term. Finally, we can weaken using (W ) to give

Y ,Z | Γ[Δ/x] � (App∗(N, ftv (Z), ρ))[M/x] : τ[ρ/α] ,

as required.

There is a substitution property for types.

Proposition 2. If Y | Γ � M : τ is derivable and s : X −→ Y is a substitution of types,

then X | s∗(Γ) � s∗(M) : s∗(τ) is derivable.

Proof. The proof is by induction on the derivation of Y | Γ � M : τ. Most of the

cases are straightforward. The rule (C2) means we really need to prove the multinary

simultaneous substitution to get a strong enough induction hypothesis. The structural

rules require a number of simple results indicating the compatibility of substitution with

the relations ∼= and ≡ on both fibres and contexts. We will just consider the two most

difficult cases explicitly (in unary rather than multinary form):

(∀∗I). Suppose we have a derivation ending

Y , α | Γ � M : τ

Y | Γ � Λ∗α.M : ∀∗α.τ
(α /∈ ftv (Γ))

and a substitution s = [σ1/β1, . . . , σn/βn] : X −→ Y . There is a substitution t of the

form [σ1/β1, . . . , σn/βn, α/α] : X, α −→ Y , α. The induction hypothesis gives X, α | t∗(Γ) �
t∗(M) : t∗(τ), and from this we get X | t∗(Γ) � Λ∗α.t

∗(M) : ∀∗α.t
∗(τ), from which we may

conclude X | s∗(Γ) � s∗(Λ∗α.M) : s∗(∀∗α.τ). The (∀I) case is very similar.

(∀∗E). Suppose that we have a derivation ending

Y1 | Γ � M : ∀∗α.τ

Y1, Y2 | Γ � App∗(M, ftv (Y2), φ) : τ[φ/α]
(Y2 � φ)
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and that ftv (Y1) = {β1, . . . , βm} and ftv (Y2) = {βm+1, . . . , βn}, where both of these sets may

be empty. We further suppose that we have a substitution

s : X −→ Y ; [σ1/β1, . . . , σm/βm, σm+1/βm+1, . . . , σn/βn] .

Let Ai =
⋃

{ftv (σj) | βj ∈ ftv (Yi)} for i = 1, 2. Note that A1 ∩ A2 = �.

Let Xi = X�Ai for i = 1, 2, and consider the sequences s1 = [σ1/β1, . . . , σm/βm] and

s2 = [σm+1/βm+1, . . . , σn/βn]. Now X1 � σj for 1 � j � m and X2 � σj for m+ 1 � j � n.

Fix i = 1 or i = 2 and suppose W 1,W 2 �Yi. We have W 1,W 2 �Y1, Y2, so there are V 1

and V 2 with V 1, V 2 �X and Vk � σj for all 1 � j � n and k = 1, 2 such that βj ∈ ftv (Wk).

Define Uk = Vk�Xi for k = 1, 2. Then βj ∈ Wk implies Uk � σj for k = 1, 2 and 1 � j � n.

Furthermore, U1, U2 �Xi since Uk�Xi for k = 1, 2 and U1, U2 �X and Xi�X. Therefore,

both s1 : X1 −→ Y1 and s2 : X2 −→ Y2 are substitutions.

Hence we know that X2 � s∗
2(φ) and, using the induction hypothesis, we have a

derivation of X1 | s∗
1(Γ) � s∗

1(M) : s∗
1(∀∗α.τ). Since s∗

1(∀∗α.τ) = ∀∗α.s
∗
1(τ), we may apply the

rule (∀∗E) to derive

X1, X2 | s∗
1(Γ) � App∗(s

∗
1(M), ftv (X2), s

∗
2(φ)) : (s∗

1(τ))[s
∗
2(φ)/α] .

Now this is the same as

X1, X2 | s∗(Γ) � s∗(App∗(M, ftv (Y2), φ) : s∗(τ[φ/α]) ,

and we may apply the rules (W2) and (E2) to give

X | s∗(Γ) � s∗(App∗(M, ftv (Y2), φ) : s∗(τ[φ/α])

as required.

The additive case (∀E) follows by a simpler version of the above argument.

There are inversion properties for all four abstractions.

Proposition 3. The following four rules are admissible:

X | Γ � λx : σ.M : σ → τ

X | Γ; x : σ � M : τ

X | Γ � λ∗x : σ.M : σ −−∗τ
X | Γ, x : σ � M : τ

X | Γ � Λα.M : ∀α.τ
X; α | Γ � M : τ

X | Γ � Λ∗α.M : ∀∗α.τ

X, α | Γ � M : τ

Proof. The proof for all four rules is similar – we will only consider the ∀∗ case here as

it is the most complicated.

The essential point to observe is that the derivation of X | Γ � Λ∗α.M : ∀∗α.τ must

finish with the rule (∀∗I) followed by a (possibly empty) sequence of uses of rules (W ),

(C), (E), (C2), (W2), (E2), (TE) and (∧E). Let (r) range over these rules. We then use

induction on the length l of the sequence of rules following the final (∀∗I). If l = 0,

the derivation we want is just the derivation of the premise of (∀∗I). Now suppose that

l = n+1. Suppose that the n+1th rule is an instance of rule (r) with a premise of the form

X ′ | Γ′ � Λ∗α.M
′ : ∀∗α.τ

′. A suitable induction hypothesis gives that X ′, α | Γ′ � M ′ : τ′.
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For all cases of (r), rule (r) commutes with (∀∗I). We may then apply rule (r) to conclude

X, α | Γ � M : τ, as required.

The propositions above can be used to prove subject reduction.

Theorem 1. If X | Γ � M : τ and M � N, then X | Γ � N : τ is derivable.

Proof. For the proof it is enough to show that each conversion step preserves derivab-

ility. This is done in the usual way using the inversion and substitution properties.

The β-reductions for −−∗ and → require only shallow versions of the substitution law,

that is, those in which we substitute for x in a typing context Γ, x : τ or Γ; x : τ. However,

the β-reduction relation for ∗ requires the deep form of substitution, as given in

Proposition 1. The side condition required for the substitutions is guaranteed in cases →,

−−∗, ∗ and ∨ by the side conditions (†) in the elimination laws (in fact, this is why these

side conditions were placed on the elimination laws). The cases for the β-reductions for ∀
and ∀∗ make use of Proposition 2.

The η-reduction cases are proved straightforwardly using inversion and by considering

the forms of derivations that are forced by the given redex terms: derivations must (without

loss of generality) end with the rules corresponding to the pairing of introduction and

elimination in the redex followed by a sequence of structural rules. We can obtain the

desired reduced term from a sub-derivation by means of (some of) the same structural

rules.

We will sketch the proof by giving a number of representative cases:

(β−−∗). A derivation of a term app∗(λ∗x : σ.N,M) : τ can be assumed (without loss of

generality) to end with

(−−∗E)

(−−∗ I)

...

X | Γ, x : σ � N : τ

X | Γ � λ∗x : σ.N : σ−−∗ τ

...

X | Δ � M : σ

X | Γ,Δ � app∗(λ∗x : σ.N,M) : τ

so we must have (μ(λ∗x : σ.N) ∩ ftv (M) = �) in order to apply the final rule. We then

have μ(N) ∩ ftv (M) = �, so we may make a substitution

X | Γ, x : σ � N : τ X | Δ � M : σ

X | Γ,Δ � N[M/x] : τ

instead. The argument for case (β →) is almost identical. The arguments for (β∗) and

(β∧) are similar, except that the full, deep form of substitution is used. In the case of (β∨)

we see that both side conditions on (∨E) are necessary in order that we may apply the

substitution to the appropriate branch.

(β∀∗). Without loss of generality we have a derivation ending

X, α | Γ � M : τ

X | Γ � Λ∗α.M : ∀∗α.τ

X, Y | Γ � App∗(Λ∗α.M, ftv (Y ), σ) : τ[σ/α]
(Y � σ)
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where α /∈ ftv (Γ). By Proposition 2, we have that X,Y | Γ � M[σ/α] : τ[σ/α] is derivable,

since α /∈ ftv (Γ).

The case for (β∀) is similar.

(η−−∗). Suppose we have a derivation of X | Γ � λ∗x : σ.app∗(M,x) : σ−−∗ τ. Then, using

invertibility, we know, without loss of generality, that there is a derivation that ends with

X | Γ � M : σ−−∗ τ X | x : σ � x : σ

X | Γ, x : σ � app∗(M,x) : τ

X | Γ � λ∗x : σ.app∗(M,x) : σ−−∗ τ
The result is then immediate. The case (η →) is essentially the same.

(η∀∗). Without loss of generality, we have a derivation ending

...

X1 | Γ1 � M1 : ∀∗α.τ

X1, α | Γ1 � App∗(M1, {α}, α) : τ

X1 | Γ1 � Λ∗α.App∗(M1, {α}, α) : ∀∗α.τ

...
X | Γ � Λ∗α.App∗(M, {α}, α) : ∀∗α.τ

for some X1, Γ1 and M1. We can then recover X | Γ � M : ∀∗α.τ from X1 | Γ1 � M : ∀∗α.τ

by using the rules from the sequence between the abstraction and the root of the original

derivation, thus omitting the polymorphic abstraction and application.

All reductions of the calculus terminate.

Theorem 2. The calculus is strongly normalising.

Proof. The proof is by the translation method. A similar proof for αλ is contained

in Pym (2002). We define recursively a translation of our calculus into the terms of the

ordinary polymorphic lambda calculus in the natural way: additive and multiplicative

variants of connectives are sent to the same connective in the ordinary polymorphic

lambda calculus (for example, ∗ is sent to ∧ and Λ∗ is sent to Λ). Each one-step reduction

of our calculus corresponds to a reduction of the ordinary calculus. Since each reduction

sequence of the ordinary calculus is of finite length, every reduction sequence of our

calculus must also be of finite length.

Confluence (the Church–Rosser property) in α2λ2 has not been studied in detail.

4. Categorical semantics

The calculus α2λ2 has a categorical semantics that is a hybrid of the indexed category

(hyperdoctrine) semantics of λ2 with the doubly closed category semantics of αλ. We will

omit discussion of disjunction (coproducts) for the remainder of the paper.

Before giving the modified version of a hyperdoctrine, we will introduce some termin-

ology for a certain structure on a category. Consider a symmetric monoid, (⊗, I, a, l, r, s),
on a category �, where ⊗ is the tensor operation, I is its unit and r : A ⊗ I −→ A,
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l : I ⊗ A −→ A, aA,B,C : (A ⊗ B) ⊗ C −→ A ⊗ (B ⊗ C), sA,B : A ⊗ B −→ B ⊗ A are the

components of the right-unit, left-unit, associativity and symmetry natural isomorphisms,

respectively.

Let 1� : � −→ � be the identity functor. Let B : � −→ � be the constant functor

to any given object B ∈ �. Now recall the definitions of monoidal functor and monoidal

natural transformation. The functors 1�, B and 1� ⊗B are all monoidal. The full definitions

of symmetric monoidal category, monoidal functor and monoidal natural transformation

can all be found in Mac Lane (1971).

Definition 2. The monoid ⊗ is a pseudoproduct if there is a monoidal natural transform-

ation ψ1
B : 1� ⊗ B =⇒ 1� : � −→ � for every object B in �.

The following lemma provides a useful alternative definition.

Lemma 4. A symmetric monoid (⊗, I, a, l, r, s) on � is a pseudoproduct if for every object B

in � there is a (first) pseudoprojection, that is, a natural transformation ψ1
B : 1� ⊗B =⇒ 1�

satisfying the following two coherence diagrams:

(A⊗ B) ⊗ C
a� A⊗ (B ⊗ C) A⊗ I

r � A

A⊗ B

ψ1

� ψ1
�

�

1A
⊗ ψ

1

A
�

ψ1

A⊗ I

1A⊗I

� ψ1
� A

�

1A

Proof. The proof of this lemma just makes use of the defining diagrams for monoidal

functors and natural transformations and the coherence property for symmetric monoidal

closed categories.

We will write the component at an object A as ψ1
A,B : A ⊗ B −→ A. Using the

symmetry isomorphisms s, it is straightforward to construct a second pseudoprojection

ψ2
A : A ⊗ 1� =⇒ 1� with components ψ2

A,B where A,B are any objects of �. We will

frequently omit both subscripts and superscripts on pseudoprojections.

All products are pseudoproducts, but not vice versa. The category Set⊥ of pointed

sets A⊥ and functions that preserve the distinguished element ⊥ has a pseudoproduct

given by the coproduct. A pseudoprojection from A⊥ + B⊥ to A⊥ may be taken to be

⊥, b �→ ⊥, a �→ a for all a ∈ A, b ∈ B.

Lemma 5. If the unit of a symmetric monoid on � is the terminal object, that is I = �,

then that monoid has precisely one pseudoprojection, and

ψ1
A,B = rA ◦ (1A ⊗ !B)

for any objects A and B, where rA is the component of r at A, and !B is the unique arrow

from B into the terminal object.

Proof. The arrows ψ1
A,B are easily verified to satisfy the conditions of Lemma 4.

Furthermore, the left-hand diagram of Lemma 4 together with the coherence conditions
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for the monoid (in particular, the isomorphism r) force the arrow ψ1
A,B to be given by the

above equation.

A cartesian doubly closed category (CDCC) is a category with a pair of symmetric

monoidal closed structures, one of which is cartesian. We write the cartesian closed

structure as ×,→ and the other closed structure as ⊗,�. A functor between CDCC’s

is strict if it preserves both the cartesian closed and the monoidal closed structure on-

the-nose. Let CDCC be the category of cartesian doubly closed categories and strict

functors.

A split indexed category consists of a functor

P : �op −→ �

from a base category � to some category of categories �. For any object B in the base,

the category P (B) is called the fibre over B. The functors P (s) : P (B′) −→ P (B) induced

by base arrows s : B −→ B′ are known as reindexings or substitutions. The notation s∗ is

often used in place of P (s).

Split indexed categories can be used to model λ2 following Seely (1987). These models

are called hyperdoctrines and are an extension of the method of modelling quantification

in Lawvere (1969). A detailed account of split indexed categories and hyperdoctrines is

given in Jacobs (1999). Hyperdoctrines for λ2 require the fibres to be cartesian closed

and their substitutions to preserve this structure appropriately (usually on-the-nose). For

quantification over types they also require a distinguished base object Ω, called the generic

object, which is characterised by the property that there is a natural bijection

ιJ : (PJ)0
∼=−→ hom(J,Ω) ,

where hom(−,Ω) is the contravariant hom functor for � and (PJ)0 is the set of objects

of the fibre PJ . This corresponds to the substitution of arbitrary types for type variables.

In addition, the right adjoints to certain of the substitutions are required to satisfy the

Beck–Chevalley condition.

Definition 3. An α2λ2-hyperdoctrine is a split indexed category

P : �op −→ CDCC

with the following structure and properties:

— a generic object Ω;

— finite products in �, including terminal object �;

— a symmetric monoid (⊗, I, a, l, r, s) in �, with I = �;

— for any projection π : B × Ω −→ B in �, the functor P (π) has a right adjoint Π;

— each P (π) satisfies the Beck–Chevalley condition (detailed below);

— for each pseudoprojection ψ : B ⊗ Ω −→ B induced by the monoid and terminal

object, the functor P (ψ) has a right adjoint, Ψ;

— each P (ψ) satisfies the multiplicative Beck–Chevalley condition (see below).
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Consider any projection π and pseudoprojection ψ as in Definition 3, and suppose that

u : C −→ B is an arrow of �. Let

ε : P (π) ◦ Π =⇒ 1P (B×Ω) and ζ : P (ψ) ◦ Ψ =⇒ 1P (B⊗Ω)

be the co-units of the adjunctions P (π) � Π and P (ψ) � Ψ, respectively. For each object

τ over P (B × Ω), there is a natural transformation

m : P (u) ◦ Π =⇒ Π ◦ P (u× 1)

called the (additive) canonical natural transformation. The transpose of P (u× 1)(ετ) under

the adjunction P (π) � Π,

P (u× 1)(ετ) : (P (π) ◦ P (u) ◦ Π)(τ) −→ P (u× 1)(τ)

mτ : (P (u) ◦ Π)(τ) −→ (Π ◦ P (u× 1))(τ)
,

gives the component mτ at each object τ of P (B × Ω). In a similar way, the adjunction

P (ψ) � Ψ gives rise to the (multiplicative) canonical natural transformation

n : P (u) ◦ Ψ =⇒ Ψ ◦ P (u⊗ 1)

using the transpose of P (u⊗ 1)(ζτ) to give the component nτ at each τ in P (B ⊗ Ω).

Definition 4 (The (additive) Beck–Chevalley condition). Let u : C −→ B be an arrow of

�. Then the following square commutes:

P (B × Ω)
Π� P (B)

P (C × Ω)

P (u× 1)

� Π� P (C)

P (u)

�

and the canonical natural transformation m is the identity.

For multiplicative quantification we have a modified version of the Beck–Chevalley

condition. This is the same as the ordinary Beck–Chevalley condition in the case where

the monoid is a product.

Definition 5 (The multiplicative Beck–Chevalley condition). Let u : C −→ B be an arrow

of �. Then the following square commutes:

P (B ⊗ Ω)
Ψ� P (B)

P (C ⊗ Ω)

P (u⊗ 1)

� Ψ� P (C)

P (u)

�

and the canonical natural transformation n is the identity.

We will now turn to the interpretation of hubs, types, contexts and terms. This is

uniquely determined by the structure specified in the α2λ2-hyperdoctrine.
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�X � T : T � = � �X � I : I� = I �X(α) � α� = ι−1
�X�(�X(α))

�X � τ ∧ τ′� = �X � τ� × �X � τ′� �X � τ → τ′� = �X � τ′��X�τ�

�X � τ ∗ τ′� = �X � τ� ⊗ �X � τ′� �X � τ−−∗τ′� = �X � τ� � �X � τ′�

�X � ∀α.τ� = Π�X; α � τ� �X � ∀∗α.τ� = Ψ�X, α � τ�

Fig. 2. Interpretation of types

Hubs are interpreted as objects in the base �, with

��� = � �α� = Ω �X;Y � = �X� × �Y � �X,Y � = �X� ⊗ �Y �

using the objects �, I and operations × and ⊗ in the base.

Types are interpreted as objects �X � τ� of the fibre P (�X�). The interpretation is given

in Figure 2, where �, ×, →, I , ⊗ and � come from the doubly closed structure of the

fibre P (�X�), Π is the right adjoint to P (π), induced by π : �X� × Ω −→ �X�, and Ψ is the

right adjoint to P (ψ), which comes from ψ : �X� ⊗ Ω −→ �X�. Finally, �X(α) : �X� −→ Ω

is the arrow in � that tracks the weakening of α to X(α). That is,

�α = 1Ω

�X(α);X ′ = �X(α) ◦ π1 �X ′;X(α) = �X(α) ◦ π2

�X(α),X ′ = �X(α) ◦ ψ1 �X ′ ,X(α) = �X(α) ◦ ψ2

using projections π1 : �X(α)� × �X ′� −→ �X(α)� and π2 : �X ′� × �X(α)� −→ �X(α)� and

pseudoprojections ψ1 : �X(α)� ⊗ �X ′� −→ �X(α)� and ψ2 : �X ′� ⊗ �X(α)� −→ �X(α)�.

Contexts are interpreted as objects of P (�X�) by extension of the interpretation of

types:

�X � x : τ� = �X � τ�

�X � Γ; Δ� = �X � Γ� × �X � Δ� �X � Γ,Δ� = �X � Γ� ⊗ �X � Δ�

where this uses the product and monoidal structure of fibres.

Before we give the semantics of terms, we will introduce some auxiliary concepts and

notation. Contexts-with-holes are of the form X � Γ(−) and are defined recursively by:

— X � (−) is a context-with-hole.

— If we have the context X � Δ and the context-with-hole X � Γ(−), then

X � Γ(−); Δ X � Δ; Γ(−) X � Γ(−),Δ X � Δ,Γ(−)

are contexts-with-holes.

Let

CA : P (�X�) −→ P (�X�)
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be the constant functor to the object A of the fibre over �X�. For any context-with-hole

X � Γ(−) there is a functor

FX�Γ(−) : P (�X�) −→ P (�X�)

given by the recursive definition:

— FX�(−) = idP (�X�) (the identity functor on P (�X�))
— FX�Γ(−);Δ = FX�Γ(−) × C�X�Δ�

— FX�Δ;Γ(−) = C�X�Δ� × FX�Γ(−)

— FX�Γ(−),Δ = FX�Γ(−) ⊗ C�X�Δ�

— FX�Δ,Γ(−) = C�X�Δ� ⊗ FX�Γ(−)

where × and ⊗ are taken pointwise.

In a similar way, the hubs-with-hole are defined as follows:

— (−) is a hub-with-hole.

— If X(−) is a hub-with-hole, then so are

X(−);Y Y ;X(−) X(−), Y Y ,X(−) .

Given any arrow m : �Y � → �Z� and any hub-with-hole X(−), there is an arrow

mX(−) : �X(Y )� −→ �X(Z)�

defined by:

1 If X(−) = (−), then mX(−) = m.

2 If X(−) = X ′′; (X ′(−)), then mX(−) = id �X ′′� × mX ′(−).

3 If X(−) = (X ′′(−));X ′, then mX(−) = mX ′′(−) × id �X ′�.

4 If X(−) = X ′′, (X ′(−)), then mX(−) = id �X ′′� ⊗ mX ′(−).

5 If X(−) = (X ′′(−)), X ′, then mX(−) = mX ′′(−) ⊗ id �X ′�.

Terms X | Γ � M : τ are interpreted as morphisms

�X | Γ � M : τ� : �X � Γ� −→ �X � τ�

in P (�X�). The interpretation is given in Figures 3 and 4.

In Figure 3, the arrow π1 is the first projection, the arrow i : �X � Γ� −→ �X � Δ� is

the isomorphism from the CDCC structure and δ : �X � Δ� −→ �X � Δ�× �X � Δ′� is the

diagonal. The operators (−)∧ and (−)∨ give the transposes of the additive exponential, (−)�

and (−)� give the transposes of the linear exponential. The functors FX�Γ(−) are used to lift

arrows m : �X � Δ� −→ �X � Δ′� into arrows FX�Γ(−)(m) : �X � Γ(Δ)� −→ �X � Γ(Δ′)�.

In Figure 4, the operations (−)� and (−)	 give the transposes of P (π) � Π, and (−)�

and (−)� give the transposes of P (ψ) � Ψ. The morphism ι(B) : �Y � −→ Ω in the

base arises because Ω is generic. The arrow w : �Y (X)� −→ �X� is weakening (arising

from projections and pseudoprojections). The arrow i : �Y � −→ �X� is the isomorphism

induced by X ≡ Y . The arrow δ : �X� −→ �X;X ′� is the diagonal, where X ∼= X ′.

4.1. Soundness

We have shown above that every well-formed term X | Γ � M : τ can be interpreted as

an arrow �X � Γ� −→ �X � τ� in P (�X�).
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�X | x : τ � x : τ� = 1�X�τ� �X | � � � : �� = 1� �X | �∗ � I : I� = 1I

�X � Γ(�) � N : τ� = n �X | Δ � M : �� = m

�X | Γ(Δ) � N[M/�] : τ� = n ◦ FX�Γ(−)(m)

�X | Γ(�∗) � N : τ� = n �X | Δ � M : I� = m

�X | Γ(Δ) � let I be M in N : τ� = n ◦ FX�Γ(−)(m)

�X | Γ � M : τ� = m �X | Δ � N : τ′� = n

�X | Γ; Δ � 〈M,N〉 : τ ∧ τ′� = m× n

�X | Γ � M : τ� = m �X | Δ � N : τ′� = n

�X | Γ,Δ � M ∗N : τ ∗ τ′� = m⊗ n

�X | Γ � M : φ ∧ ψ� = m �X | Γ; (x : φ; y : ψ) � N : τ� = n

�X | Γ � N[π1M/x, π2M/y] : τ� = n ◦ 〈1�X�Γ�, m〉

�X | Γ(x : φ, y : ψ) � N : τ� = n �X | Δ � M : φ ∗ ψ� = m

�X | Γ(Δ) � let (x, y) be M in N : τ� = n ◦ FX�Γ(−)(m)

�X | Γ; x : φ � M : ψ� = f

�X | Γ � λx : φ.M : φ → ψ� = f∧

�X | Γ, x : φ � M : ψ� = f

�X | Γ � λ∗x : φ.M : φ−−∗ψ� = f�

�X | Γ � M : φ → ψ� = m �X | Δ � N : φ� = n

�X | Γ; Δ � app(M,N) : ψ� = m∨ ◦ (1�X�Γ� × n)

�X | Γ � M : φ−−∗ψ� = m �X | Δ � N : φ� = n

�X | Γ,Δ � app∗(M,N) : ψ� = m� ◦ (1�X�Γ� ⊗ n)

�X | Γ(Δ) � M : τ� = m

�X | Γ(Δ; Δ′) � M : τ� = m ◦ FX�Γ(−)(π1)

�X | Γ � M : τ� = m

�X | Δ � M : τ� = m ◦ i (Γ ≡ Δ)

�X | Γ(Δ; Δ′) � M : τ� = m

�X | Γ(Δ) � (M : τ)[Δ/Δ′]� = m ◦ FX�Γ(−)(δ)
(Δ ∼= Δ′)

Fig. 3. Interpretation of terms I

The substitution operations for terms and types may be interpreted. We indicate this for

(unary) substitution of a type in another type and for a term in another term. As usual,

term substitution corresponds (essentially) to composition whilst type substitution makes

use of the generic object. The substitution of a term for a variable takes place in a fixed

hub, and its interpretation is modelled in the corresponding CDCC as in Pym (2002).
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�X; α | Γ � M : τ� = g : �X; α � Γ� −→ �X; α � τ�
�X | Γ � Λα.M : ∀α.τ� = g� : �X � Γ� −→ �X � ∀α.τ�

�X, α | Γ � M : τ� = h : �X, α � Γ� −→ �X, α � τ�
�X | Γ � Λ∗α.M : ∀∗α.τ� = h� : �X � Γ� −→ �X � ∀∗α.τ�

�X | Γ � M : ∀α.τ� = m : �X � Γ� −→ �X � ∀α.τ� �Y � σ� = B ∈ P (�Y �)

�X;Y | Γ � App(M,σ)� = P (1�X� × ι(B))(m	)

�X | Γ � M : ∀∗α.τ� = m : �X � Γ� −→ �X � ∀∗α.τ� �Y � σ� = B ∈ P (�Y �)

�X,Y | Γ � App∗(M, ftv (Y ), σ)� = P (1�X� ⊗ ι(B))(m�)

�X | Γ � M : τ� = m

�Y (X) | Γ � M : τ� = P (w)(m)

�X | Γ � M : τ� = m

�Y | Γ � M : τ� = P (i)(m)
(X ≡ Y )

�Y (X;X ′) | Γ � M : τ� = m

�Y (X) | Γ[X/X ′] � (M : τ)[X/X ′]� = P (δY (−))(m)
(X ∼= X ′)

Fig. 4. Interpretation of terms II

Proposition 4 (Substitution). The operations of type and term substitution have inter-

pretations in P . Furthermore, these agree with the interpretations of substitutions in the

syntax.

1 A substitution s = [σ1/β1, . . . , σn/βn] : X −→ Y gives a functor �s� : P (�Y �) −→
P (�X�). In the particular case s = [σ/β], the generic object gives �s� = P (ι(A)) :

P (Ω) −→ P (�X�), where �X � σ� = A ∈ P (�X�). If �Y (β) � τ� = B ∈ P (�Y �) and

�X � σ� = A ∈ P (�X�), then

�Y (X) � τ[σ/β]� = P ((ι(A))Y (−))(B).

2 If

�X | Γ(x : τ) � N : σ� = n : �X � Γ(x : τ)� −→ �X � σ�

and

�X | Δ � M : τ� = m : �X � Δ� −→ �X � τ�
and

μ(N) ∩ ftv (M) = � ,

then �X | Γ(Δ) � N[M/x] : σ� is given by the arrow

�X � Γ(Δ)�
FX�Γ(−)(m)

−→ �X � Γ(x : τ)�
n−→ �X � σ�

over �X�.

Proof. The proof of part 1 is an induction on the structure of types. The proof of part 2

is a lengthy induction consisting of pushing substitutions to the leaves of derivations.
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The equalities arising from reductions are sound in the model.

Proposition 5 (Equational soundness). If an equality X | Γ � M = M ′ : τ is derivable, then

�X | Γ � M : τ� = �X | Γ � M ′ : τ� holds in P (�X�).

Proof. The syntactic equalities are generated by the βηζ-conversions and all of these

take place over a fixed hub, except for the reductions for the quantifiers. We know that

the equalities over any hub (which are just the equalities for αλ) are all validated in the

corresponding CDCC.

The β- and η-rules for the multiplicative quantifier are witnessed, respectively, by the

equations

(P (1�X� ⊗ 1Ω))((m�)�) = m ((P (1�X� ⊗ 1Ω))(n�))� = n,

given interpretations

�X, α | Γ � M : τ� = m : �X, α � Γ� −→ �X, α � τ�

and

�X | Γ � N : ∀∗α.τ� = n : �X � Γ� −→ �X � ∀∗α.τ� .

These equations hold because the indexed category is split. The equalities for additive

quantification follow by the obvious modifications.

We have not explicitly given a coherence theorem for interpretations. Strictly speaking,

the interpretations above are defined for derivations of sequents; we have not shown

that all interpretations of the same sequent are equal, and we shall not do so here.

We are not aware of a detailed coherence proof for the interpretation of αλ in CDCCs

either, although it is suggested in both Pym (2002) and O’Hearn (2003) that this is

unproblematic. Supposing this to be the case, we also believe that the coherence property

holds for our hyperdoctrine interpretation of bunched polymorphism. This is in view

of the Beck–Chevalley conditions, the soundness of interpretation of substitution and

the soundness of syntactic equality. We can see no reason why the standard categorical,

cut-elimination-like, method cannot be used to complete the proof.

4.2. Completeness

We now turn our attention to the issue of the completeness of the hyperdoctrine

interpretation. We prove this by the usual method, following the construction for λ2-

hyperdoctrines. That is, we build a generic (term) model from the syntax such that if an

equation holds between interpreted terms, then it must also hold in the theory.

We construct the base � from the syntax of hubs, types and substitutions. The objects

of � are taken to be the equivalence classes of hubs under the congruence relation ∼=
(this handles α-conversion of type variables). Throughout this construction, we use hubs

as representatives of their equivalence classes. Let Ω be the equivalence class of α and �
be the equivalence class of �.
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The congruence ∼= on hubs extends to well-formed types, type substitutions and terms:

(X � σ) ∼= (Y � τ) ⇐⇒ X ∼= Y & τ = σ[Y /X]

(s = [σ1/β1, . . . , σn/βn] : X −→ Y ) ⇐⇒ X ∼= X ′ & Y ∼= Y ′ &
∼= (t = [τ1/β

′
1, . . . , τn/β

′
n] : X ′ −→ Y ′) (X � σi) ∼= (X ′ � τi)

(X | Δ � M : σ) ∼= (Y | Γ � N : τ) ⇐⇒ X ∼= Y & Γ = Δ[Y /X] &

N = M[Y /X] & τ = σ[Y /X]

for all hubs X and Y . Again, we will tend to use representatives for equivalence classes in

what follows and will often, for example, just write τ rather than X � τ. Taking quotients

as above gives a version of Lemma 1.

Definition 6. The category � has objects consisting of equivalence classes of hubs and

arrows consisting of equivalence classes of type substitutions.

It is a straightforward matter to verify that the category is well defined, in particular, that
∼= is a congruence for composition. It is also straightforward to verify that the category

has the structure required for the base of an α2λ2-hyperdoctrine. The category has a

product: the product of X and Y is given by X;Y (renaming as appropriate so that X

and Y are disjoint); the first projection is given by the substitution π : [α1/α1, . . . , αm/αm] :

X;Y −→ X, where ftv (X) = {α1, . . . , αm} and the second projection is given in the obvious

way. There is also a diagonal map δX : X −→ X;X ′ whenever X ∼= X ′, which is given by

[α1/α1, . . . , αm/αm, α1/α
′
1, . . . , αm/α

′
m]. In a similar way, there is also a symmetric monoid:

the monoidal product of X and Y is X,Y and the unit and symmetry isomorphisms are

the obvious ones. The pseudoprojection is given by ψ : [α1/α1, . . . , αm/αm] : X,Y −→ X,

where ftv (X) = {α1, . . . , αm}. However, there is no analogue of the diagonal map above

because of the disjointness condition on type substitutions.

Lemma 6. � has finite products and a symmetric monoid, which is a pseudoproduct.

Write P (X) for the fibre over the equivalence class of X. The construction of each P (X)

follows the construction of a CDCC from αλ – see Pym (2002). Objects are equivalence

classes of types τ that are well formed over X under the equivalence relation ∼=. A

morphism from σ to τ is an equivalence class of term formations X | x : σ � M : τ, and

we write such an arrow as a pair (x,M). The equivalence is generated by α-equality for

variables, the βηζ-rules of α2λ2 and the congruence ∼= on hubs extended to terms. Taking

equivalence classes with respect to ∼= ensures that the objects and morphisms of fibres are

well defined. Composition of morphisms is achieved through substitution: α-conversion is

used to rename variables and type variables of representatives as necessary, thus avoiding

unwanted variable capture and ensuring that the side condition (on the free type variables,

see Proposition 1) for substitutions is satisfied.

Lemma 7. Each fibre P (X) is a CDCC.

Every arrow u : X −→ Y of � yields a substitution functor P (u) : P (Y ) −→ P (X)

between fibres. The functor is just substitution of types (up to equivalence classes under
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∼=). It is defined by

P (u)(τ) = u∗(τ)

P (u)((x,M)) = (y, u∗(M[y/x])) : u∗(σ) −→ u∗(τ)

for any type τ and arrow (x,M) : σ −→ τ in P (Y ), and any y : ∀∗α.σ that is not bound

by substitution for x in M. Both the object and arrow assignments can be verified to be

well defined and calculations can be performed to show that P (u) is indeed functorial.

Further calculations (which rest upon simple properties of type substitutions) show that

the functors P (u) preserve the CDCC structure on-the-nose.

Lemma 8. Each arrow u : X −→ Y of � yields a substitution functor P (u) : P (Y ) −→
P (X) that preserves the chosen CDCC structure on-the-nose.

The identity arrow in the base category corresponds to the identity substitution.

Considering the identity 1Z : Z −→ Z or the composite of two arrows

X
u−→ Y

v−→ Z

in �, we have that

P (1Z )(τ) = (1Z )∗(τ) = τ

P (u)(P (v)(τ)) = u∗(v∗(τ)) = (v ◦ u)∗(τ) = P (v ◦ u)(τ)
for any type τ in P (Z). A similar calculation for arrows shows that P defines a

(contravariant) functor out of �.

Lemma 9. The object and arrow assignments given above constitute a functor P : �op −→
CDCC.

The projection and pseudoprojection

π : X × Ω −→ X and ψ : X ⊗ Ω −→ X

give rise to weakenings. These are functors

P (π) : P (X) −→ P (X × Ω) and P (ψ) : P (X) −→ P (X ⊗ Ω) ,

respectively, that are inclusions on both objects and arrows.

Lemma 10. The functors P (π) and P (ψ) have right adjoints

Π : P (X × Ω) −→ P (X) and Ψ : P (X ⊗ Ω) −→ P (X) ,

respectively.

Proof. We will only give the proof for pseudoprojection; the proof for projection is a

trivial modification.

The right adjoint

Ψ : P (X ⊗ Ω) −→ P (X)

is defined so that

Ψ(τ) = ∀∗α.τ

Ψ((x,M)) = (y,Λ∗α.M[App∗(y, {α}, α)/x])
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for all objects τ and arrows (x,M) : σ −→ τ over X, α. The choice of variable y is irrelevant

provided it has type ∀∗α.σ.

Consider the identity morphism (x, x) : τ −→ τ over X. Now

Ψ((x, x)) = (y,Λ∗α.(x[App∗(y, {α}, α)/x])
= (y,Λ∗α.App∗(y, {α}, α))
= (y, y)

using the η-rules. So Ψ maps identity arrows to identity arrows.

Consider any two arrows (x,M) : σ −→ τ and (z,N) : τ −→ υ over X. These have

composite (x,N[M/z]) : σ −→ υ. Now

Ψ((z,N) ◦ (x,M))) = Ψ(x,N[M/z])

= (y,Λ∗α.(N[M/z])[App∗(y, {α}, α)/x])
= (y,Λ∗α.N[M[App∗(y, {α}, α)/x]/z])

holds, using an η-rule. On the other hand,

Ψ(z,N) ◦ Ψ(x,M) = (w,Λ∗α.N[App∗(w, {α}, α)/z]) ◦ (y,Λ∗α.M[App∗(y, {α}, α)/x])
= (y, (Λ∗α.N[App∗(w, {α}, α)/z])[(Λ∗α.M[App∗(y, {α}, α)/x])/w]

= (y,Λ∗α.N[App∗(Λ∗α.M[App∗(y, {α}, α)/x], {α}, α)/z])
= (y,Λ∗α.N[M[App∗(y, {α}, α)/x]/z])

holds, using a β-rule. Therefore Ψ is functorial.

There is a bijection

σ = P (ψ)(σ) −→ τ

σ −→ Ψ(τ) = ∀∗α.τ

between arrows, and this is natural in σ over Ω and τ over X ⊗ Ω.

Define, for any σ and τ, the function

fσ,τ : P (X ⊗ Ω)(P (ψ)(σ), τ) −→ P (X)(σ,Ψ(τ))

by

fσ,τ(x,M) = (x,Λ∗α.M)

for all arrows (x,M) of P (X ⊗ Ω). Define the inverse

f−1
σ,τ : P (X)(σ,Ψ(τ)) −→ P (X ⊗ Ω)(P (ψ)(σ), τ)

so that

f−1
σ,τ (x,N) = (x,App∗(N, {α}, α))

for every arrow (x,N) of P (X). The βη-rules for Λ∗ show that fσ,τ is a bijection.

Naturality of the bijection is established using a β-rule as follows. Let (y,N) : σ′ −→ σ

be an arrow over X and (z, Q) : τ −→ τ′ be an arrow over X ⊗ Ω. Let

β =P (X)((y,N),Ψ(z, Q)) :P (X)(σ,Ψ(τ)) −→ P (X)(σ′,Ψ(τ′))

α =P (X ⊗ Ω)(P (ψ)(y,N), (z, Q)) :P (X ⊗ Ω)(P (ψ)(σ), τ) −→ P (X ⊗ Ω)(P (ψ)(σ′), τ′)
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be the obvious functions induced using the hom-functors. The commutativity of the square

P (X ⊗ Ω)(P (ψ)(σ), τ)
fσ,τ� P (X)(σ,Ψ(τ))

P (X ⊗ Ω)(P (ψ)(σ′), τ′)

α

�

fσ′ ,τ′
� P (X)(σ′,Ψ(τ′))

β

�

for fσ,τ is established by the calculations below.

Let (x,M) : P (ψ)(σ) −→ τ be an arrow in P (X ⊗ Ω). We have

(β ◦ fσ,τ)(x,M) = β(x,Λ∗α.M)

= (w,Λ∗α.Q[App∗(w, {α}, α)/z]) ◦ (x,Λ∗α.M) ◦ (y,N)

= (w,Λ∗α.Q[App∗(w, {α}, α)/z]) ◦ (y,Λ∗α.M[N/x])

= (y,Λ∗α.Q[(App∗(Λ∗α.M[N/x], {α}, α))/z])
= (y,Λ∗α.Q[(M[N/x])/z])

where w : ∀∗α.τ and the final step is by a β-rule. On the other hand,

(fσ′ ,τ′ ◦ α)(x,M) = fσ′ ,τ′((z, Q) ◦ (x,M) ◦ (y,N))

= fσ′ ,τ′((y, Q[(M[N/x])/z]))

= (y,Λ∗α.Q[(M[N/x])/z]) ,

and this completes the proof.

Lemma 11. The Beck–Chevalley conditions hold for Π and Ψ.

Proof. We give the proof for Ψ only. The proof for Π is almost identical. Given a

substitution u = [σ1/β1, . . . , σn/βn] : X −→ Y , we perform a couple of straightforward

calculations. Note that there is a substitution u⊗1 = [σ1/β1, . . . , σn/βn, α/α] : X, α −→ Y , α,

which we usually write as [σ1/β1, . . . , σn/βn]. We have

(P (u) ◦ Ψ)(τ) = u∗(∀∗α.τ) = ∀∗α.((u⊗ 1)∗τ) = (Ψ ◦ P (u⊗ 1))(τ)

for any object τ of P (Y ⊗ Ω). Also,

(P (u) ◦ Ψ)((x,M)) = u∗(Ψ((x,M)))

= u∗((y,Λ∗α.M[App∗(y, {α}, α)/x]))
= (z, (Λ∗α.M[App∗(y, {α}, α)/x])[z/y][σ1/β1, . . . σn/βn])

= (z, (Λ∗α.M[App∗(z, {α}, α)/x])[σ1/β1, . . . σn/βn])

= (z,Λ∗α.((M[w/x][σ1/β1, . . . σn/βn])[App∗(z, {α}, α)/w]))

= Ψ((w,M[w/x][σ1/β1, . . . σn/βn]))

= Ψ((u⊗ 1)∗((x,M)))

= (Ψ ◦ P (u⊗ 1))((x,M))

for any arrow (x,M) : σ −→ τ in P (Y ⊗ Ω) and any variables y : ∀∗α.σ in P (Y ),

z : ∀∗α.σ[σ1/β1, . . . , σn/βn] in P (X) and w : σ[σ1/β1, . . . , σn/βn] in P (X ⊗ Ω) that are not

bound by the above substitutions.
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The obvious calculations show that the additive and multiplicative canonical natural

transformations are both identities.

An arrow from X to Ω in � simply consists of a type τ such that X � τ. Hence, the

identity gives a natural bijection between the hom-sets �(X,Ω) and fibres P (X).

Lemma 12. The indexed category P has a generic object Ω.

Putting all of the above information together, we have established that P has the

required structure for a model.

Theorem 3. The functor P : �op −→ CDCC is an α2λ2-hyperdoctrine.

The completeness theorem is an immediate corollary, since P is constructed from the

syntax and each term is interpreted by its own αβηζ-equivalence class.

Corollary 1 (Completeness). If �X | Γ � M : τ� = �X | Γ � M ′ : τ� holds in every

α2λ2-hyperdoctrine, then X | Γ � M = M ′ : τ is derivable in the calculus.

5. Hyperdoctrine structure on partial equivalence relations

Partial equivalence relations on the natural numbers give rise to one of the simplest and

most elegant models of the polymorphic lambda calculus. This was shown in Girard (1972)

at an early stage, and has been much studied since. Building upon this, we will show how

the category of partial equivalence relations supports a model for additive polymorphism

and first-order bunching. As usual, this is structured as a suitable hyperdoctrine. We

exhibit a system of pseudoprojections and adjoints between the fibres that is distinct

from those used to model additive polymorphism. The idea is to take multiplicatively

combined type variables to refer to disjoint PERs, thus providing a disjointness reading for

multiplicative polymorphism. However, the system of adjoints (for the pseudoprojections)

fails to satisfy the required Beck–Chevalley condition, for which we give an example.

5.1. The category of PERs

A partial equivalence relation, PER for short, consists of a symmetric, transitive, binary

relation R ⊆ � × � on the natural numbers. We define the domain of R to be the set

dom(R) = {n ∈ � | nRn}

and write

dom(R)/R = {[n] | n ∈ dom(R)}
for the set of (non-empty) equivalence classes of R.

Recall the elementary fact from recursion theory that natural numbers may be used as

codes for recursive functions. The letter e is traditionally used for such codes. We write

{e} for the partial function coded by e.

Let R and S be PERs. A partial function f : � −→ � is said to track (from R to S) if

mRn =⇒ (fm)S(fn)

for all natural numbers m, n.
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We define an equivalence relation ∼ between codes for such functions by

e ∼ e′ iff ∀n. nRn =⇒ ({e}n)S({e′}n)

for any codes e and e′. We write [e]R,S for the equivalence class of such a code (but we

will often omit the subscripts). A map between PERs consists of just such an equivalence

class of codes. Let PER be the category of partial equivalence relations and let PERo be

its set of objects.

The category PER is cartesian closed. The terminal PER is such that every number is

related to every other. Let

(−,−) : � × � −→ �

be one of the standard recursive operations for encoding pairs of natural numbers as

natural numbers. Then the product R × S of PERs R and S is given by the condition

(m, n)(R × S)(m′, n′) ⇐⇒ mRm′ & nSn′

for all m, n, m′, n′ ∈ �, and there are corresponding first and second projections with codes

p1 and p2, respectively. In fact, PER has all finite limits. The exponent R → S is defined

by

n(R → S)n′ iff ∀m,m′. mRm′ =⇒ ({n}m)S({n′}m′)

for any two pers R and S . The intersection of any (set-indexed) family of PERs is a PER.

The category PER has binary coproducts: embed isomorphically the two given PERs

into PERs with disjoint domains, then take the union of the relations. Since PER is

cartesian closed and has a symmetric monoid (given by the coproduct), we might think

that we can use these two structures to model αλ. However, the monoid is not closed. This

can be remedied by moving to a model based on pairs of PERs, motivated by a similar

construction for sets.

The category Set ×Set of pairs of sets (and pairs of functions) is a CDCC (O’Hearn and

Pym 1999; Pym 2002). Finite products and exponentials are given pointwise. Moreover,

there is an additional symmetric monoidal closed structure with

(A0, A1) ⊗ (B0, B1) = ((A0 × B0) + (A1 × B1), (A0 × B1) + (A1 × B0))

(A0, A1) � (B0, B1) = ((A0 → B0) × (A1 → B1), (A0 → B1) × (A1 → B0)) ,

for all A0, A1, B0, B1 ∈ Set , where A + B is the coproduct of A and B in Set . This can

be viewed as an instance Set2 of Day’s closure construction (Day 1970; 1973), where

2 = {0, 1} is the discrete category with the monoid given by addition modulo two.

Definition 7. Define the category PER × PER to have:

— objects consisting of pairs R = (R0, R1) of PERs;

— arrows consisting of equivalence classes

[e]R,S : R −→ S

of codes, where

– R = (R0, R1) and S = (S0, S1)

– e = (e0, e1) ∈ �, where [e0] : R0 −→ S0 and [e1] : R1 −→ S1
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– the partial equivalence relation on such codes for pairs of codes is given by

e ∼ f ⇐⇒ e0 ∼ f0 and e1 ∼ f1

for any two suitable codes for pairs of codes e, f.

As before, we will usually omit the subscripts on equivalence classes. Note also that an

arrow between objects is really just a coding for the evident pair of PER arrows.

The category PER × PER can be viewed as PER2, so, following Day (1970; 1973),

we know that it is doubly closed. The product and exponential are lifted pointwise from

PER. That is

R × S = (R0 × S0, R1 × S1)

R → S = (R0 → S0, R1 → S1)

for all R = (R0, R1) and S = (S0, S1). The monoidal closed operations (⊗,�) are defined

in the same way as those of Set × Set . Note that the + in the definition of ⊗ is now the

coproduct in PER.

For any pair (A0, A1) of PERs, let (A0, A1)0 = A0 and (A0, A1)1 = A1. We extend the

notion of domain to pairs of PERS by taking

dom(A,B) = dom(A) × dom(B)

for any PERs A and B. For any function f : A −→ B and C ⊆ A, let f�C be the restriction

of f to C .

5.2. A hyperdoctrine

Let X be a bunch of type variables. Let

dom(ρ) =
⋃

α∈ftv (X)

dom(ρ(α))

for any function ρ : ftv (X) −→ PER0 × PER0.

Definition 8. An environment for X is a function ρ : ftv (X) −→ PER0 × PER0 such that

if any (Y ,Z) is a sub-bunch of X, we have

dom(ρ�Y ) ∩ dom(ρ�Z ) = � .

Let Env (X) be the set of environments for X.

Definition 9. A semantic type (over X) is a function τ : Env (X) −→ PER0 × PER0 from

environments to pairs of PERs.

A map from τ to τ′ (over X) is an equivalence class [e] of codes for pairs of codes

e = (e0, e1), where the recursive function corresponding to each ei is a PER map from

(τρ)i to (τ′ρ)i for all environments ρ. If we have maps [e] : τ −→ τ′ and [f] : σ −→ τ, we

have a composite map [e]◦ [f] : σ −→ τ′ given by [e]◦ [f] = [e.f] where e.f = (e0.f0, e1.f1)

and ei.fi is a code for the recursive function defined by composition of the functions {ei}
and {fi} for i = 1, 2. This gives a category P (X) of semantic types over X.
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These definitions give a natural generalisation of a standard PER model of polymorph-

ism, in which an environment consists of a tuple of PERs and a semantic type consists of

a map from environments to PERs.

Definition 10. Let β1, . . . , βn be the variables of Y . A (semantic) substitution

s = [τ1/β1, . . . , τn/βn] : X −→ Y

for Y consists of a sequence of semantic types τ1, . . . , τn over some bunch X. Furthermore,

if βi and βj are multiplicatively combined in Y , then

dom(τiρ) ∩ dom(τjρ) = �

holds for every environment ρ ∈ Env (X).

Note the special case of the nullary substitution [] : � −→ � when n = 0.

Lemma 13. Suppose τ is a semantic type over Y and s = [τ1/β1, . . . , τn/βn] : X −→ Y is

a substitution. Then there is a map

(−)s : Env (X) −→ Env (Y )

given by

ρs(βi) = τi(ρ)

for every environment ρ for X. Moreover,

s∗(τ) = τ[τ1/β1, . . . , τn/βn]

is a semantic type over X with

s∗(τ)(ρ) = τ(ρs)

for every environment ρ of X.

The proof is immediate and uses the disjointness condition for substitution.

For each type variable α, let τα be a semantic type defined over any hub X containing

α by

τα(ρ) = ρ(α)

for each environment ρ for X.

Let X have free variables α1, . . . αn for some n 
 0. Then the identity map from X to X

is given by the substitution

[τα1
/α1, . . . , ταn/αn] ,

which may, of course, be nullary.

Given substitutions

s = [σ1/β1, . . . , σn/βn] : X −→ Y t = [τ1/γ1, . . . , τp/γp] : Y −→ Z ,

we can form a composite substitution

t ◦ s = [τ′
1/γ1, . . . , τ

′
p/γp] : X −→ Z
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where

τ′
i = s∗(τi)

for 1 � i � p.

Definition 11. Let Bun be the category of hubs and semantic substitutions.

Let X be a hub with ftv (X) = {α1, . . . , αn}. Then

[τα1
/α1, . . . , ταn/αn]

defines maps

π : X; α −→ X and ψ : X, α −→ X

in Bun .

Lemma 14. The map π is a projection and the map ψ is a pseudoprojection.

Lemma 15. If s is the identity substitution on X, then ρs = ρ for every environment ρ for

X. Given substitutions s : X −→ Y and t : Y −→ Z , we have

ρt◦s = (ρs)t

for every environment ρ for X.

The proofs of both of the above lemmas are routine verifications.

Proposition 6. The above assignments define a functor P : Bun
op −→ CDCC (so it is a

strict indexed category) and this has a generic object.

Proof. Every category P (X) is doubly closed with operations inherited pointwise from

PER × PER.

Suppose we are given a substitution s = [τ1/β1, . . . , τn/βn] : X −→ Y in Bun . The

substitution defines object and arrow assignments from P (Y ) to P (X). Given any object

τ of P (Y ), we have P (s)(τ) = s∗(τ) in P (X). Given any map f : σ −→ τ in P (Y ), we

define a map P (s)(f) : P (s)(σ) −→ P (s)(τ) in P (X) by P (s)(f)(ρ) = s∗(f)(ρ) = f(ρs) for

any ρ ∈ ftv (X). The fact that P (s) is functorial follows almost immediately from the fact

that composition is defined pointwise (with respect to environments) in the fibres. The

fact that P is functorial follows immediately from Lemma 15.

The generic object is given by (any choice of) a bunch consisting of a single type

variable. Indeed, the arrows of the base category have been chosen so as to make this

generic.

Lemma 16. There are functors

P (π) : P (X) −→ P (X; α) P (ψ) : P (X) −→ P (X, α)

induced by projection π : X; α −→ X and pseudoprojection ψ : X, α −→ X. For

ρ ∈ Env (X; α) ρ ∈ Env (X, α)

we have

P (π)(τ)(ρ) = τ(ρ�ftv (X)) P (ψ)(τ)(ρ) = τ(ρ�ftv (X))

https://doi.org/10.1017/S0960129508007159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007159


M. Collinson, D. Pym and E. Robinson 1124

and

P (π)([e])(ρ) = [e] P (ψ)([e])(ρ) = [e] ,

respectively, for types τ and arrows [e] : τ −→ τ′ over X.

If ρ is an environment for X and A ∈ PER0 × PER0, we define a function

ρA : ftv (X) ∪ {α} −→ PER0 × PER0

by

ρA(β) =

{
A if β = α

ρ(β) if β �= α .

Now ρA is an environment for X; α. If A satisfies dom(A) ∩ dom(ρ) = �, then ρA is also

an environment for X, α.

Lemma 17. There are functors

Π : P (X; α) −→ P (X) Ψ : P (X, α) −→ P (X)

between fibres.

The object assignments are

(Π(τ))(ρ) =
⋂

A∈PER0×PER0

τ(ρA) (Ψ(τ))(ρ) =
⋂

A∈PER0×PER0

dom(A)∩dom(ρ)=�

τ(ρA) ,

respectively, for each semantic type τ in the fibre that is the domain in each case and

environment ρ for X.

The arrow assignments are

Π([e]) = [e] Ψ([e]) = [e] ,

respectively, where [e] : τ −→ τ′ is an arrow in the domain.

These functors describe the additive and multiplicative polymorphic quantifiers.

Proposition 7. The functor Π is right adjoint to P (π) and the functor Ψ is right adjoint

to P (ψ).

Proof. Let τ be a semantic type over X, and τ′ be a semantic type over X; α or X, α,

respectively. In the first case, a map from τ to Π(τ′) is a code that defines an arrow from

P (π)(τ) to τ′. In the second case, a map from τ to Ψ(τ′) is a code that defines an arrow

from P (ψ)(τ) to τ′. The disjointness condition in the indexing of the intersection defining

Ψ(τ′) over X precisely matches the disjointness conditions on environments for X, α. In

fact, it easy to verify that

τ −→ Π(τ′)

P (π)(τ) −→ τ′
τ −→ Ψ(τ′)

P (ψ)(τ) −→ τ′

are natural bijections.
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Proposition 8. The Beck–Chevalley condition for additives holds.

We will omit the proof as it consists of routine calculations.

Theorem 5. The functor P : Bun
op −→ CDCC is a model for additive polymorphism and

first-order bunching.

To summarise, we have shown that there is the appropriate structure on PER to provide

a model of additive polymorphism. Our claim that additive polymorphism is just ordinary

polymorphism is supported by the interpretation in this model: it is essentially just the

standard interpretation of a polymorphic quantifier. This claim is further reinforced by

the way that additive quantification and weakening interact.

On the other hand, there are counterexamples to the Beck–Chevalley condition for

multiplicative quantification. For example, consider the empty PER 0 (empty relation)

and total PER 1 (all pairs related). Let τ be the semantic type over the bunch �, α that

maps every environment to 0. Let ρ be the environment over the bunch �, β that maps β

to 1. Now consider the pseudoprojection ψ : 1Bun ⊗ β =⇒ 1Bun . We find that

(P (ψ) ◦ Ψ)τρ =
⋂
A∈PER0×PER0

τ((ρ��)A) =
⋂
A∈PER0×PER0

0 = 0

(Ψ ◦ P (ψ))τρ =
⋂
A∈{PER0×PER0|A∩ρ(β)=�} τ((ρ

A)�α) =
⋂
A∈� 0 = 1 ,

which are clearly not equal.

6. Existential quantifiers

Existential quantifiers are available in the polymorphic lambda calculus λ2 and are closely

connected to the concept of abstract data type (Mitchell and Plotkin 1988). First-order

additive and multiplicative existential quantifiers have been studied in O’Hearn and

Pym (1999) and Pym (2002). Here we describe additive and multiplicative polymorphic

existential quantification

Additive existential quantification ∃ is quite straightforward to add to the system α2λ2,

but the multiplicative quantifier ∃∗ is very delicate. In particular, it requires a number of

side conditions that interfere with the side condition (†) used throughout α2λ2. Rather

than attempting to describe such a system in its full complexity, we will first remove the

universal quantifiers and instances of (†) before adding the existentials.

The grammars generating types and terms are extended as follows:

τ ::= . . . | ∃α.τ | ∃∗α.τ

M ::= . . . | 〈φ,M〉 | unpack M as 〈α, x〉 in M

| 〈X,φ,M〉∗ | unpack∗ M as 〈α, x〉 in M

where α and x are bound in unpack and unpack∗ terms. Notice that terms may now

contain bunches of type variables.
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(∃I)
X | Γ � (M : τ)[φ/α]

X | Γ � 〈φ,M〉 : ∃α.τ

(∃E)
X | Γ � M : ∃α.τ X; α | Δ(x : τ) � N : σ

X | Δ(Γ) � unpack M as 〈α, x〉 in N : σ

(∃∗I)
X,Y (Z) | Γ � (M : τ)[φ/α] Y (Z) � φ

X,Z | Γ � 〈Y (Z), φ,M〉∗ : ∃∗α.τ

(∃∗E)
X | Γ � M : ∃∗α.τ X, α | Δ(x : τ) � N : σ

X | Δ(Γ) � unpack∗ M as 〈α, x〉 in N : σ

Fig. 5. Existential rules

The notion of free type variable is extended so that

ftv (∃α.τ) = ftv (∃∗α.τ) = ftv (τ) � {α}

ftv (〈φ,M〉 : ∃α.τ) = (ftv (φ) ∪ ftv (M)) � {α}

ftv (〈X,φ,M〉 : ∃∗α.τ) = (ftv (X) ∪ ftv (φ) ∪ ftv (M)) � {α}

ftv (unpack M as 〈α, x〉 in N) = ftv (M) ∪ (ftv (N) � {α})
= ftv (unpack∗ M as 〈α, x〉 in N) .

Just as with the multiplicative universal quantifier, we are forced to use an additional

syntactic measure with the multiplicative existential. The set WR(M) of witnessing

resources of a term M is the set of type variables that occur in the component X

of any sub-term 〈X,φ,N〉∗.

The rules for existentials, which follow the generalised forms for natural deduction

introduced in Prawitz (1978), are presented in Figure 5. Both of (∃E) and (∃∗E) are

subject to the side condition

α /∈ ftv (Δ) ∪ ftv (σ) ,

which is standard for the elimination of existentials. In addition, both are subject to the

side condition

WR(M) ∩ WR(N) = � α /∈ WR(N)

because of the presence of the multiplicative. Furthermore, both rules (∃I) and (∃∗I) are

subject to the condition ftv (τ) ⊆ ftv (X) ∪ {α}. Finally, we require that X,Z � Γ for (∃∗I).

The typed terms (M : τ)[φ/α] in the premises of (∃I) and (∃∗I) are formed by taking the

raw (that is, untyped term) M and replacing all occurrences of α by φ, and similarly in

the type.

The additive quantifier behaves essentially as the standard polymorphic existential. The

multiplicative is more unusual. This partially hides the resources (type variables) used
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in its formation. The work on first-order BI suggests a form in which Y is completely

hidden. This rule is derivable from the one given. The more general version is adopted in

order to give a corresponding η-rule.

We must be a little bit careful with substitution because of the occurrences of bunches

of witnessing resources in the terms. We use the notation M[(Y , ψ)/α] for the term formed

by substituting Y for all witnessing occurrences of α and ψ for all other occurrences of α

in M. We write M[ψ/α] when there are no witnessing occurrences of α in M.

The βη-conversions for existentials are

(X | unpack 〈φ,M〉 as 〈α, x〉 in N) →β (X | N[M/x][φ/α])

(X | unpack M as 〈α, x〉 in (N[〈α, x〉/z])) →η (X | N[M/z])

(X | unpack∗ M as 〈α, x〉 in (N[〈α, α, x〉∗/z]) →η (X | N[M/z])

(X,Z | unpack∗ 〈Y (Z), φ,M〉∗ as 〈α, x〉 in N) →β (X,Y (Z) | N[M/x][φ/α])

and suitable ζ-conversions for existentials are also possible, provided no universal quan-

tifiers are present. Notice how the hub changes in the β-conversion for the multiplicative.

Let � be the reduction relation generated by →β and →η .

Most of the metatheory goes through in the same way as it did for the system

with universals rather than existentials. In particular, strong normalisation can again be

proved by the translation method. However, there are a few important changes, notably

to substitution and subject reduction.

Proposition 9 (Substitution).

— If X | Γ � M : τ and W � ψ are derivable, X[W/β] is well formed, W does not contain

any bound variables from Γ or τ, W is free from all witnessing resources in M, and β

is not among the witnessing resources of M, then X[W/β] | Γ[ψ/β] � (M : τ)[ψ/β] is

also derivable.

— If X | Γ(x : τ) � N : σ and X | Δ � M : τ are both derivable and WR(M) ∩ WR(N) =

�, then X | Γ(Δ) � N[M/x] : σ is derivable.

The proofs of both parts are by the standard kind of induction, so we omit them for

brevity. The only point worth noting is that the side conditions on the existential rules

have been chosen to match the conditions on these substitution rules so that we may

permute all substitutions towards the leaves of derivations.

Proposition 10 (Subject reduction). If X | Γ � M : τ is derivable and there is a reduction

(X | M) � (Y | N), then Y | Γ � N : τ is derivable.

The proposition follows more or less immediately from the substitution laws once one

has correctly established the side conditions on rules. The condition on the substitution

law for terms forces us to place the side condition WR(M) ∩ WR(N) = � on the binary

elimination rules (∧E), (→ E), (∗E), (−−∗E), and is why we need the same condition for

the existentials.

The multiplicative existential does not have a simple interpretation in a hyperdoctrine,

and, in particular, we cannot just use a left adjoint to the pseudoprojection substitution.

The introduction rule (∃∗I) for the multiplicative existential hides not only the rep-

resentation type, but also the resources associated with the representation type. Once
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hidden, these resources are no longer visible to terms formed over the same hub (see the

substitution rule) and are only revealed by a subsequent use of the elimination rule (∃∗E),

leading to a hub-changing β-conversion, as above.

There are two special cases of (∃∗I). The first is

X,Y | Γ � (M : τ)[φ/α] Y � φ
X | Γ � 〈Y , φ,M〉 : ∃∗α.τ

together with the usual side condition. In this case the resources Y are completely hidden

in the package 〈Y , φ,M〉. This cannot be described as an adjoint in a hyperdoctrine in a

straightforward way.

The second special case is

X,Y | Γ � (M : τ)[φ/α] Y � φ
X, Y | Γ � 〈Y , φ,M〉 : ∃∗α.τ

(1)

with the usual conditions. Note that none of the resources Y are hidden. This rule,

together with (∃∗E), provides the precise correspondence with existential quantification as

left adjoint to the substitution induced by a pseudoprojection.

Lemma 18 (Mate forms of existentials).

— The rules (∃I), (∃E) are equivalent to the pair of rules

X; α | Γ(x : τ) � N : σ

X | Γ(z : ∃α.τ) � unpack 〈α, x〉 as z in N : σ

X | Γ(z : ∃α.τ) � N : σ

X; α | Γ(x : τ) � N[〈α, x〉/z] : σ

together with appropriate side conditions.

— The rule (∃∗E) together with the restricted rule (1) above are equivalent to the rules

X, α | Γ(x : τ) � N : σ

X | Γ(z : ∃∗α.τ) � unpack∗ 〈α, x〉 as z in N : σ

X | Γ(z : ∃∗α.τ) � N : σ

X, α | Γ(x : τ) � N[〈α, α, x〉/z] : σ

together with appropriate side conditions.

This lemma is established by standard proof-theoretic drudgery using both parts of the

substitution rules of Proposition 9.

To be a little more precise about the categorical structure required for existentials to

be the expected adjoints in an α2λ2-hyperdoctrine P : �op −→ CDCC, we assume that

there is a left adjoint Σ to π∗ arising from every projection π : X × Ω −→ X. Similarly,

we assume that there is a left adjoint Σ∗ to every ψ∗ arising from a pseudoprojection

ψ : X ⊗ Ω −→ X. We also require Frobenius isomorphisms

A× ΣB
fr×

−→ Σ((π∗A) × B) A⊗ ΣB
fr⊗

−→ Σ((π∗A) ⊗ B)

for the additive, and, whenever there is a multiplicative,

A× Σ∗B
fr×

∗−→ Σ∗((ψ
∗A) × B) A⊗ Σ∗B

fr⊗
∗−→ Σ∗((ψ

∗A) ⊗ B)

where A ∈ P (�X�) and B ∈ P (�X�×Ω) in the first case and B ∈ P (�X�⊗Ω) in the second.

The interpretations then work in essentially the standard way: in particular, combinations
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of fr× and fr⊗ are used for the additive because of the depth of the existential type in the

mate form of the rules for ∃; a similar comment applies to fr×
∗ and fr⊗

∗ for ∃∗.

7. Discussion

Polymorphic lambda calculi have been the subject of a great deal of study since

their introduction (Girard 1971; 1972; Reynolds 1974), most often as extensions of an

additive, first-order lambda calculus. A number of authors have considered polymorphic

extensions of linear type theories (Plotkin 1993; Bierman et al. 2000; Maneggia 2004;

Birkedal et al. 2006). More recently, Biering, Birkedal and Torp-Smith have considered

higher-order extensions of the bunched lambda calculus αλ (Biering et al. 2007). Further

to this, they have developed higher-order extensions of Separation Logic.

To our knowledge, all such calculi have used an additive form of polymorphism. The

work presented in this paper diverges from these calculi because we consider multiplicative

polymorphism. Of course, we also consider αλ extended with additive polymorphism –

this was done independently of Biering, Birkedal and Torp-Smith. Furthermore, the two

forms of polymorphism can be combined through the use of bunches of type variables.

There are variant calculi with bunching at both, either or none of the two levels, all of

which have sensible substitution and subject-reduction properties.

In order to get a version of the first-order substitution property (Proposition 1) in

the presence of multiplicative polymorphism, we have introduced a rather cumbersome

syntax for instantiation. In particular, all type variables used in any application of the

multiplicative quantifier are recorded within the term, and we place the side condition (†)

on the formation of certain terms in Figure 1. Thus the logic underlying the calculus is not

particularly well behaved. This appears to be a feature of multiplicative polymorphism

rather than the bunched structure of contexts – the problem remains if we allow ordinary

linear contexts, rather than bunches, and drop the additive quantifier. One way to

eliminate the side conditions would be to take a more restrictive, multiplicative version

of substitution in which the two arguments of the substitution are terms that must be

typed over hubs that may be combined multiplicatively. Those rules of Figure 1 featuring

(†) would be modified correspondingly by typing the premises over distinct hubs X and

Y , and the conclusions over the multiplicative combination X,Y . However, this does not

appear to sit well with our intention that the fibres over X should be CDCCs in any

model (including the term model). Indeed, it is not even clear that the usual kind of

indexed categorical model (hyperdoctrine) would be appropriate for such a calculus.

We have shown in this paper that partial equivalence relations provide a model of

additive polymorphism together with first-order bunching. We have not shown that PER

can support the structure required to model multiplicative polymorphism. Indeed, perhaps

the fundamental outstanding problem in this work is to find a model that satisfies the

multiplicative Beck–Chevalley condition of Definition 5. It seems that the technique we

have used in Section 5 (ensuring environments of type variables map multiplicatively

combined type variables to disjoint PERs) is incompatible with the multiplicative Beck–

Chevalley condition. A comparsion with the way that αλ-contexts are often interpreted

may be helpful. The Day tensor construction (Day 1970; 1973) provides many useful
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doubly closed categories. In particular, the functor category SetF, where F is the discrete

category of finite sets, is discussed in detail in O’Hearn (2003). The category F carries

a partial monoid that is given by union just when the arguments are disjoint sets, and

is undefined otherwise. An assignment is a mapping from variables to objects of SetF.

Contexts are interpreted as maps from assignments to objects of SetF. In particular,

for any assignment η and finite set S , the set �Γ,Δ�ηS consists of pairs of elements

y ∈ �Γ�ηT and z ∈ �Δ�ηU, where S = T ∪ U and T ∩ U = �. The fact that (additive)

weakening commutes with abstraction (for variables other than the variable abstracted)

is related to the fact that the disjointness condition in this model is concerned with

the additional arguments (the finite sets) rather than the assignment. This is in contrast

to the environments for hubs that we have used above, where the interpretation of

the environment itself splits. As yet, we have been unable to adapt this method to

multiplicative polymorphic abstraction.

Many types are known to be definable using polymorphic abstraction in λ2. For

example, the important class of computational types known as inductive types are definable

from ∀ and →: this includes the empty type, booleans, natural numbers, lists and inductive

(free) structures – see, for example, Girard et al. (1989) and Pierce (2002). Now consider

definability in α2λ2. The empty type, booleans, natural numbers, additive products and

inductive types are all definable (from ∀ and →) by immediate adaptations of the standard

constructions. On the other hand, it is unclear if ∨, ∃ or ∗ can be defined from ∀, →, ∀∗
and −−∗. Let the depth of a node of a tree be defined in the usual way. We say that a leaf

of a tree is deep if there are nodes of lesser depth, otherwise we say that it is shallow.

The elimination rules for ∨, ∃ and ∗ in α2λ2 and αλ allow the type being eliminated to

occur deep inside a context. In contrast, the standard encodings of ∨ and ∃ give rise to

elimination laws in α2λ2 in which the eliminated variable is shallow in the context.

An outline of some possible applications to calculi for memory management has

appeared (Collinson and Pym 2006). This calculus has primitives for the allocation and

freeing of regions (sets of machine memory locations). It uses multiplicative polymorphic

types to ensure that allocation always uses a fresh region (without overlapping other

regions in use) and that a region must be disjoint from the others in use before this can

happen. The calculus is an extension of a lambda calculus presented for allocating and

freeing individual memory locations (Berdine and O’Hearn 2006).
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Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 (1) 1–102.

Girard, J-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types, Cambridge University Press.

Hyland, J.M. E. (1988) A small complete category. Annals of Pure and Applied Logic 40 135–165.

Jacobs, B. (1999) Categorical Logic and Type Theory. Studies in Logic and the Foundations of

Mathematics 141, Elsevier.

Lawvere, F.W. (1969) Adjointness in foundations. Dialectica 23 281–296.

Mac Lane, S. (1971) Categories for the Working Mathematician, Springer. (Second edition 1998.)

Mac Lane, S. and Moerdijk, I. (1992) Sheaves in Geometry and Logic: A First Introduction to Topos

Theory, Springer.

MacQueen, D. B., Plotkin, G. and Sethi, R. (1986) An ideal model for recursive polymorphic types.

Information and Control 71 95–130.

https://doi.org/10.1017/S0960129508007159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007159


M. Collinson, D. Pym and E. Robinson 1132

Maneggia, P. (2004) Models of linear polymorphism, Ph.D. thesis, School of Computer Science, The

University of Birmingham.

Mitchell, J. C. and Moggi, E. (1991) Kripke style models for typed lambda calculus. Ann. Pure and

Appl. Logic 51 (1) 99–124.

Mitchell, J. C. and Plotkin, G.D. (1988) Abstract types have existential type. ACM Transactions on

Programming Languages and Systems 10 470–502.

O’Hearn, P. (2003) On bunched typing. Journal of Functional Programming 13 747–796.

O’Hearn, P. and Pym, D. (1999) The logic of bunched implications. Bulletin of Symbolic Logic 5 (2)

215–244.

Oles, F. J. (1982) A Category-Theoretic Approach to the Semantics of Programming Languages, Ph.D.

thesis, Syracuse University, Syracuse, U.S.A.

Pierce, B. C. (2002) Types and Programming Languages, M.I.T. Press.

Plotkin, G.D. (1993) Type theory and recursion. In: Logic in Computer Science, LICS ’93, IEEE

Press 374.

Prawitz, D. (1978) Proofs and the meaning and completeness of logical constants. In: Hintikka, J.,

Niiniluoto, I. and Saarinen, E. (eds.) Essays on mathematical and philosophical logic, D.Reidel

25–40.

Pym, D., O’Hearn, P. and Yang, H. (2004) Possible worlds and resources: The semantics of BI.

Theoretical Computer Science 315 (1) 257–305.

Pym, D. J. (2002) The Semantics and Proof Theory of the Logic of Bunched Implications. Applied

Logic Series 26, Kluwer Academic Publishers. (Errata at: http://www.cs.bath.ac.uk/pym/

BI-monograph-errata.pdf.)

Reynolds, J. C. (1974) Towards a theory of type structure. In: Programming Symposium. Springer-

Verlag Lecture Notes in Computer Science 19 408–425.

Reynolds, J. C. (1981) The essence of algol. In: de Bakker, J.W. and van Vliet, J. C. (eds.) Algorithmic

Languages, North-Holland 345–372.

Reynolds, J. C. (2002) Separation logic: a logic for shared mutable data structures. In: Logic in

Computer Science, LICS ’02, IEEE Press 55–74.

Seely, R.A.G. (1987) Categorical semantics for higher order polymorphic lambda calculus. Journal

of Symbolic Logic 52 969–989.

Tofte, M. (1998) A brief introduction to regions. In: International Symposium on Memory Management

’88, ACM Press 186–195.

https://doi.org/10.1017/S0960129508007159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007159

