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We study the unsteady flow of a viscous fluid passing through a circular aperture
in a plate characterized by a non-zero thickness. We investigate this problem by
solving the incompressible linearized Navier–Stokes equations around a laminar base
flow, in both the forced case (allowing us to characterize the coupling of the flow
with acoustic resonators) and the autonomous regime (allowing us to identify the
possibility of purely hydrodynamic instabilities). In the forced case, we calculate
the impedances and discuss the stability properties in terms of a Nyquist diagram.
We show that such diagrams allow us to predict two kinds of instabilities: (i) a
conditional instability linked to the over-reflexion of an acoustic wave but requiring
the existence of a conveniently tuned external acoustic resonator, and (ii) a purely
hydrodynamic instability existing even in a strictly incompressible framework. A
parametric study is conducted to predict the range of existence of both instabilities
in terms of the Reynolds number and the aspect ratio of the aperture. Analysing the
structure of the linearly forced flow allows us to show that the instability mechanism
is closely linked to the existence of a recirculation region within the thickness of
the plate. We then investigate the autonomous regime using the classical eigenmode
analysis. The analysis confirms the existence of the purely hydrodynamic instability in
accordance with the impedance-based criterion. The spatial structure of the unstable
eigenmodes are found to be similar to the structure of the corresponding unsteady
flows computed using the forced problem. Analysis of the adjoint eigenmodes and of
the adjoint-based structural sensitivity confirms that the origin of the instability lies
in the recirculation region existing within the thickness of the plate.

Key words: jet noise

1. Introduction
The unsteady flow through an aperture separating two fluid domains, either closed

(ducts, chambers, resonators) or open, is encountered in a large number of applications.
This situation is also of fundamental importance in the design of musical instruments.

† Email address for correspondence: david.fabre@imft.fr
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A fundamental milestone in the study of such problems is the classical Rayleigh
(1945) solution of the inviscid, potential flow through a circular hole, in the absence
of mean flow. This solution shows that the situation is globally equivalent to the
simple assumption of a rigid plug of fluid with an ‘effective length’ leff oscillating
across the aperture. This Rayleigh solution is often invoked in simple models of
acoustic devices and is, for instance, a key ingredient in the modelling of the
so-called Helmholtz resonator.

In the case where the aperture is traversed by a mean flow, the fluid no longer
behaves as an ideal, rigid plug but generally acts as an energy dissipator. This property
is used in many industrial applications where one wants to suppress acoustic waves
(see for instance the bibliography cited in Fabre et al. (2019)). This energy dissipation
is generally associated with a transfer of energy to the flow through the excitation of
vortical structures along the shear layer bounding the jet. Howe (1979) investigated
theoretically this situation and introduced a complex quantity called conductivity KR
which generalizes Rayleigh’s ‘effective length’. The knowledge of KR(ω) as function
of the forcing frequency ω, or of the closely related quantity Z(ω)=−iω/KR(ω) called
the impedance, allows us to fully characterize the possible interaction of the flow with
acoustic waves. In particular, the real part of the impedance (which is positive for a
zero-thickness hole), is directly linked to the energy flux transferred from the waves
to the flow. Howe subsequently derived a potential model predicting the conductivity
(and impedance) in the case of a hole of zero thickness. Despite its mathematical rigor,
Howe’s model starts from very simplified hypotheses regarding the shape and the
location of the vortex sheet and its convective velocity. Recently, Fabre et al. (2019)
reviewed Howe’s problem using linearized Navier–Stokes equations in order to take
into account the effect of the viscosity and the exact shape of the vortex sheet. They
showed that, for Re & 1500, results are quite independent of the Reynolds number
but significantly deviate from Howe’s ones, above all for intermediate frequencies.
Nevertheless, in both Howe’s model and Fabre et al.’s (2019) improved solution, the
behaviour of the hole remains dissipative (associated with a positive real part of the
impedance), in accordance with experimental and numerical investigations.

The case where the thickness of the plate, in which the hole is drilled, is not small
compared to its diameter leads to a completely different situation, as the jet flow can
now act as a sound generator instead of a sound attenuator. The first observation of
this property seems to have been made by Bouasse (1929), who reported that jets
through thick plates could produce a well-reproducible whistling, with a frequency
roughly proportional to the hole thickness. This observation remained unnoticed
(as did many other findings of the rich experimental work of Bouasse), but was
rediscovered in the 21st century by Jing & Sun (2000) and Su et al. (2015) who, in
an effort to improve the design of perforated plates used as sound dampers, reported
that, in some circumstances, these devices could lose their ability to damp acoustic
waves and lead to self-sustained whistling. Numerical simulations by Kierkegaard
et al. (2012) showed that, in the range of parameters where such whistling occurs,
the mean flow through the hole is characterized by a recirculation bubble, either
trapped within the thickness of the plate, or fully detached. However, the precise
role of this recirculation bubble in the sound-production phenomenon remains to be
clarified.

The ability of the jet flow to provide acoustic energy is associated with a positive
real part of the impedance, so computation or measurement of this quantity offers
a convenient way to characterize these phenomena. A number of analytical and
semi-empirical models (Jing & Sun 2000; Bellucci et al. 2004) have been proposed
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to predict the impedance of such finite-length holes. Confrontation with experiments
(Su et al. 2015) and numerical simulations (Eldredge, Bodony & Shoeybi 2007) have
revealed the lack of robustness of such models which all contain ad hoc parameters.
Yang & Morgans (2016) and Yang & Morgans (2017) developed a more elaborate
semi-analytical model based on the actual shape of the vortex sheet, including the
effect of compressibility within the thickness of the hole. However, their approach
remains potential and cannot account for the effect of viscosity within the thickness
of the shear layer, nor for the dependence of the impedance on the Reynolds number.

Linearized Navier–Stokes equations (LNSE) offer a more satisfying framework
to access the impedance of such holes, with a full incorporation of viscous effects.
This approach has been carried out in Fabre et al. (2019) for a zero-thickness hole,
leading to notable improvements of Howe’s classical inviscid model. This approach
has also been applied to the flow through a finite-thickness hole by Kierkegaard et al.
(2012) in a range of parameters characterized by self-sustained whistling. However,
Kierkegaard et al. (2012) considered a compressible, turbulent case in a specific
configuration involving an acoustic pipe acting as a resonator. In our case, we wish
to characterize the potential of the jet to lead to self-sustained oscillations regardless
of the nature of the acoustic environment, and even in the case where there are no
acoustic resonators at all. The situation we investigate is thus more generic, but by
ruling out the geometry of the upstream and downstream domains and the Mach
number parameter, we are able to conduct a full parametric study of the problem,
an objective which was not achievable considering the choices of Kierkegaard et al.
(2012).

The remainder of the paper is organized as follows:

(i) In § 2, after defining the geometry and the parameters of the study, we define the
concept of impedance, and explain how, thanks to the use of Nyquist diagrams,
this quantity can be used to predict the stability properties of the jet flow. We
show that two kinds of instabilities are possible in this context: (i) a conditional
instability corresponding to an over-reflexion of acoustic waves in some range
of frequencies, leading to an effective instability only if the jet is coupled to a
conveniently tuned acoustic resonator, and (ii) a purely hydrodynamic instability
which manifests regardless of the existence of an acoustic resonator, and exists
even in the case of a strictly incompressible flow.

(ii) In § 3, we present the linearized Navier–Stokes equations and the numerical
method. We show how this formalism can be used to solve both a harmonically
forced problem for real frequencies ω, allowing us to compute the impedances,
and a homogeneous eigenvalue problem allowing us to compute the complex
frequencies ωr + iωi allowing us to characterize the purely hydrodynamic
instabilities.

(iii) In § 4, we detail the structure of the base flow corresponding to the steady jet as
a function of the Reynolds number Re and aspect ratio β of the hole. We detail
in particular the discharge coefficient characterizing the relationship between the
mean pressure drop and mean flux through the hole, and the range of existence
and spatial structure of the recirculation region occurring within the thickness of
the hole.

(iv) In § 5, we present results of the LNSE approach in the harmonically forced
case. The computed impedances for selected values of Re and β are reported.
We document the structure of the linearly forced flows, in particular within
the recirculation region. We eventually provide a parametric map allowing us to
predict the ranges of existence of both conditional and hydrodynamic instabilities
in the Re− β parameter plane.
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FIGURE 1. Sketch of the flow configuration (not to scale) representing the oscillating flow
through a circular hole in a thick plate, with definition of the geometrical parameters, and
indication of the global quantities describing the flow.

(v) In § 6, we present results of the LNSE approach in the homogeneous regime.
We confirm the existence of the purely hydrodynamic instability, in accordance
with the impedance-based predictions. We further detail the structure of the
eigenmodes, the adjoint eigenmodes and the adjoint-based structural sensitivity,
allowing us to highlight once again the role of the recirculation region on the
instability mechanism.

(vi) In § 7, we compare our results with a number of available experimental and
numerical works with related geometries.

(vii) Finally, § 8 summarizes the findings and discusses a few perspectives opened by
our work.

2. Problem definition
2.1. Geometry, parameters and modelling hypotheses

The geometrical configuration investigated in the present paper is sketched in figure 1.
We consider a fluid of viscosity ν and density ρ discharging through a circular
aperture of radius Rh in a planar thick plate with thickness Lh. The domains located
upstream and downstream of the hole are supposed large compared to the dimensions
of the hole, so that the geometry is characterized by a single dimensionless parameter,
the aspect ratio β defined as

β =
Lh

2Rh
. (2.1)

The zero-thickness limit case (β = 0) is investigated in detail in Fabre et al. (2019);
in the present paper we consider holes with finite thickness in the range β ∈ [0.1− 2].

The pressure difference between the inlet and the outlet domain, namely 1P =
[Pin − Pout], generates a net flow Q=UMAh through the hole, where Ah = πR2

h is the
area of the hole and UM is the mean velocity. This mean flow is characterized by a
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Impedance and instabilities of a jet through a thick hole 885 A11-5

Reynolds number defined as:

Re=
2RhUM

ν
≡

2Q
πRhν

. (2.2)

As in Fabre et al. (2019), we will suppose that the Mach number is small, and
that the dimensions of the hole are small compared to the acoustic wavelengths
(acoustic compactness hypothesis). These hypotheses allow us to assume that the flow
is locally incompressible in the region of the hole. An example of matching with an
outer acoustic field is presented in appendix A.

2.2. Characterization of the unsteady regime and impedance definition
To characterize the behaviour of the jet in the unsteady regime, we assume that far
away from the hole the pressure levels in the upstream and downstream regions tend
to uniform values denoted as pin(t) and pout(t). We will further assume that both the
pressure drop 1p(t) and the flow rate q(t) are perturbed by small-amplitude deviations
from the mean state characterized by a frequency ω (possibly complex),(

1p(t)
q(t)

)
=

(
[Pin − Pout]

Q

)
+ ε

(
[p′in − p′out]

q′

)
e−iωt
+ c.c., (2.3)

where the amplitude ε is assumed small. We can now define the hole impedance as

Zh(ω)=
[p′in − p′out]

q′
. (2.4)

Note that with the present definition the impedance has physical units kg · s−1 m−4.
We will also introduce a non-dimensional impedance defined as

Z =
R2

h

ρUM
Zh ≡ ZR + iZI, (2.5)

where the real part ZR is the dimensionless resistance while its imaginary part ZI is
the reactance. In the presentation of the results, the frequency will be represented in
a non-dimensional way by introducing the Strouhal number Ω as follows:

Ω =
ωRh

UM
. (2.6)

2.3. Impedance-based instability criteria
We now explain the links between impedance and instabilities, and show how simple
instability criteria can be formulated using Nyquist diagrams (namely representations
of Zr versus Zi).

(i) First, the sign of the real part of the impedance ZR(ω) (or resistance) as function
of the real frequency ω is a direct indicator of a possible instability. However, one
should insist that the condition ZR < 0 is a necessary but not sufficient condition
for instability. In the context of electrical circuits (Conciauro & Puglisi 1981), a
system with negative resistance is said to be active in the sense that it effectively
leads to an instability if connected to a reactive circuit allowing oscillations in
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the right range of frequencies. In the present context, this situation is referred
as conditional instability and requires the presence of a correctly tuned acoustic
oscillator (a cavity and/or a pipe) connected upstream (or downstream) of the
aperture.
The demonstration that ZR < 0 is a necessary condition for conditional instability
can be explicated in two ways. First, ZR is directly linked to the energy flux
transferred from acoustic waves to the jet. The demonstration of this property can
be found in Howe (1979), and is also reproduced in Fabre et al. (2019). Thus,
if ZR > 0 the jet behaves as an energy sink, while if ZR < 0 it acts as an energy
source. Secondly, one can also establish this link by studying the reflection of
acoustic waves onto the hole. This argument is carried out in appendix A, where
we conduct an asymptotic matching between the locally incompressible solution
in the vicinity of the hole and an outer solution of the acoustic problem. The
conclusion of this analysis is that, in the limit of small Mach number, an incident
acoustic wave coming from the upstream domain is over-reflected if and only if
ZR < 0.
A situation leading to conditional instability is illustrated in figure 2(a,b). Panel
(a) shows the real and imaginary parts of the impedance in a situation where ZR
is negative in an interval [ω1, ω2], and Zi does not change sign. When represented
in a Nyquist diagram, the criterion can be formulated as follows: the system is
conditionally unstable if the Nyquist curves enter the half-plane ZR < 0.

(ii) Second, when considered as an analytical function of the complex frequency
ω = ωr + iωi, the impedance can be used to formulate a second instability
criterion, namely: the system is unstable, regardless of the properties of its
environment, if there exists a complex zero of the impedance function such
that ωi > 0. Indeed, for complex values of ω the modal dependence reads
e−iωt
= e−iωr teωit, thus solutions with the form (2.3) are exponentially growing if

ωi> 0. In the context of electrical circuits, this situation is referred to as absolute
instability in opposition to the conditional instability discussed above. Since the
term ‘absolute’ has a different meaning in the hydrodynamic stability community
(as opposed to convective instabilities, see e.g. Huerre & Monkewitz (1990)), we
prefer to adopt the term purely hydrodynamic instabilities to describe this case,
emphasizing the fact that they can occur in a strictly incompressible framework.
Physically, the condition Zh(ω) = 0 implies that there exist modal solutions of
the linearized problem in which pressure jump [p′in − p′out] is exactly zero. In
other terms, the total pressure jump across the hole is imposed as a constant (i.e.
[pin(t) − pout(t)] = [Pin − Pout]) but the flow rate q(t) is allowed to vary. This
kind of boundary condition is a bit uncommon for incompressible flow problems.
However, one must keep in mind that the incompressible solution is only valid
locally in the vicinity of the hole. In appendix A, we conduct an asymptotic
matching with an outer acoustic solution and show that, in the limit of small
Mach number, the condition Zh(ω)= 0 with complex ω and ωi > 0 corresponds
to a spontaneous self-oscillation of the flow across the hole associated with the
radiation of acoustic waves in both the upstream and downstream domains.
In practice, the number of complex zeros of the analytically continued impedance
Zh(ω) and their location in the complex plane can be deduced from the
representation of Zh(ω) for real values ω using the classical Nyquist criterion,
which states that there exists an unstable zero of the impedance if and only if the
Nyquist curve encircles the origin in the anticlockwise direction. A weaker but
practically equivalent version of this criterion can be formulated as follows: the
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FIGURE 2. Illustration of the Nyquist-based instability criteria. (a,b) Example of situations
leading to conditional instability. (c,d) Example of situations leading to hydrodynamic
instability. The regions of conditional and hydrodynamic instabilities are represented by
yellow and orange areas, respectively. Left: plot of ZR (solid line) and ZI (dashed line) as
a function of the real frequency ω. Right: Nyquist diagrams.

system is unstable in a purely hydrodynamic way if the Nyquist curve enters the
quarter-plane defined by ZR < 0; ZI > 0. We refer the reader to Kopitz & Polifke
(2008) for the theoretical background on the use of Nyquist criteria in acoustic
applications. Note that the second ‘weak’ form of the criterion used here is
not rigorous as it may happen that the Nyquist contour enters the quarter-plane
and leaves it by the same side without encircling the origin, in which case the
criterion would erroneously predict instability. We carefully checked that such
behaviour does not occur in the computed cases. (A situation leading to purely
hydrodynamic instability is illustrated in figure 2(c,d).)
In addition to providing an instability criterion, the knowledge of the impedance
for real ω can also be used to predict an approximation of the complex zeros in
the case where ωi is small. For this sake, let us suppose that the Nyquist curve
passes close to the origin, and let us denote ω0 the value for which the norm of
the complex impedance |Z(ω)| is smallest. The location of this point is illustrated
in figure 2(c,d). Searching for the complex zero as ω=ω0+ δω and working with
a Taylor series around ω0 leads to

Z(ω0)+ (∂Z/∂ω)ω0
δω= 0, (2.7)
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885 A11-8 D. Fabre, R. Longobardi, V. Citro and P. Luchini

hence providing an estimation as follows:

ω≈ω0 −
Z(ω0)(∂Z/∂ω)ω0

|(∂Z/∂ω)ω0
|2

. (2.8)

It can be shown that Z(ω0)(∂Z/∂ω)ω0
is purely imaginary (a simple geometrical

interpretation being that the line joining the point Z(ω0) to the origin and the
line tangent to the Nyquist curve at ω0 are orthogonal to each other). Hence, the
correction appearing in (2.8) directly provides an estimation of the amplification
rate ωi.

3. Linearized Navier–Stokes equations and numerical methods
In the previous section, the linearly perturbed flow across a hole was considered

from a general point of view, focusing on the impedance and its link with possible
instabilities. In the present section, we introduce the LNSE framework, and show how
this framework can be used both to compute the impedance through solution of a
forced problem and to directly address the instability problem through solution of an
autonomous problem.

3.1. Starting equations
The fluid motion is governed by the Navier–Stokes equations,

∂

∂t

[
u
0

]
=NS

([
u
p

])
=

[
−u · ∇u−∇p+ Re−1

∇
2u

∇ · u

]
, (3.1)

where u and p are the velocity and pressure fields.
The linearized Navier–Stokes framework consists of expanding the flow as a steady

base flow plus a small-amplitude modal perturbation as follows:[
u
p

]
=

[
u0
p0

]
+ ε

([
u′
p′

]
e−iωt
+ c.c.

)
, (3.2)

where c.c. denotes the complex conjugate.
In practice, the base flow [u0, p0] and perturbation [u′, p′] will be computed in a

computational domain of finite size with boundaries denoted Γin, Γout, Γwall, Γlat, Γaxis
(see figure 3). The matching with the global quantities Pin, Pout etc. will be done
through the boundary conditions on Γin and Γout. This matching procedure involves a
number of caveats, which were discussed at length in Fabre et al. (2019). We refer to
this work for full details, but restrict ourselves in this paragraph to a simple exposition
of the procedure.

3.2. Base-flow equations
The base flow is the solution of the steady version of the Navier–Stokes equations,

NS[u0; p0] = 0, (3.3)

with the following set of boundary conditions:∫
Γin

u0 · n dS=Q0 (3.4)
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Lin Lout

˝axis

˝lat
˝w ˝out

˝out

˝inRin

Rout

˝axis

FIGURE 3. Structure of the mesh M1 obtained using complex mapping and mesh
adaptation for β = 1, and nomenclature of the boundaries (see appendix B for details
on mesh generation and validation). A zoom of the mesh is reported in the range X ∈
[−2.5; 0.5]Rh and R ∈ [0.1; 1.8]Rh.

p0 = Pin on Γin, (3.5)
p0 = Pout on Γout. (3.6)

In practice, (3.4) is enforced as a Dirichlet boundary condition by prescribing a
constant value of the axial velocity component, i.e. u0,x = Q0/(

∫
Γin

dS). Noting that
the pressure reference can be arbitrarily chosen such that Pout= 0 and that the viscous
stress is negligible along the outlet plane, (3.6) is enforced as a no-stress condition.
This problem is solved iteratively using Newton’s method, exactly as done in Fabre
et al. (2018). Eventually, (3.5) is used to extract Pin as the average value of p0 along
the inlet plane, allowing us to deduce the discharge coefficient α (see § 4).

3.3. Linear equations
The linear perturbation obeys the following equations:

− iωB[u′; p′] =LNS0[u′; p′], (3.7)

where LNS0 is the linearized Navier–Stokes operator around the base flow and B is
a weight operator defined as follows:

LNS0

[
u′
p′

]
=

[
−(u0 · ∇u′ + u′ · ∇u0)−∇p′ + Re−1

∇
2u′

∇ · u′
]
; B=

[
1 0
0 0

]
. (3.8a,b)

This set of equations is complemented by the following boundary conditions:∫
Γin

u′ · n dS= q′, (3.9)

p′(x, r)= p′in on Γin, (3.10)
p′(x, r)= p′out on Γout. (3.11)
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This system governs the evolution of the perturbations and is relevant to both
the forced problem and the autonomous problem. The difference is in the possible
dependence with respect to the azimuthal coordinate θ and in the handling of the
boundary conditions:

(i) For the forced problem, the forcing being axisymmetric, the perturbation
is expected to respect this symmetry and is thus searched under the form
[u′; p′] = [u′r(r, z), u′x(r, z), ; p′(r, z)]. Furthermore, a non-zero q′ is imposed
(fixed arbitrarily to q′ = 1). Equation (3.9) thus leads to a non-homogeneous
Dirichlet boundary condition at the inlet plane treated by imposing a constant
axial velocity u′x. For the same reasons as for the base-flow equations, (3.11)
can be replaced by a no-stress boundary condition on Γout. The problem can be
symbolically written as

[LNS0 − iωB][u′; p′] =F , (3.12)

where the definition of LNS0 implicitly contains the homogeneous boundary
condition at the outlet, and F represents symbolically the non-homogeneous
boundary condition at the inlet. This problem is non-singular and readily solved.
The pressure p′in is subsequently deduced from (3.10) by extracting the mean
value of the p′ component along the inlet boundary Γin of the computational
domain, eventually allowing us to compute the impedance.

(ii) For the homogeneous problem, on the other hand, there is no a priori reason
to assume axisymmetry, hence the perturbation may be assumed to have
azimuthal dependence with a wavenumber m, namely [u′, p′] = [û, p̂]eimθ . For
axisymmetric modes (m = 0), as discussed in § 2 and appendix A, the relevant
boundary conditions arising from a matching with an outer acoustic solution are
p̂in = p̂out = 0, which can be practically enforced as no-stress conditions at both
the inlet and the outlet. When looking for non-axisymmetric modes (m 6= 0), on
the other hand, it makes more sense to impose u′x = 0 on the inlet (as there is
no net flux q′ through the hole in such cases) and no stress at the outlet. The
problem can be symbolically written in the form

[LNS∗0 − iωB][û; p̂] = 0, (3.13)

where the operator LNS∗0 implicitly contains the homogeneous conditions at both
upstream and downstream boundaries. For m= 0, the flow rate q̂ associated with
the eigenmodes through (3.9) is generally non-zero, so the eigenmodes can be
rescaled such that q̂= 1.
After discretization of the operators LNS∗0 and B as large matrices, we are led
to a generalized eigenvalue problem, which admits a discrete set of complex
eigenvalues ω=ωr+ iωi. As usual in stability analysis of open flows, only a small
number of these eigenvalues correspond to physically relevant global eigenmodes.
The remainder, often referred to as ‘artificial modes’, include both a discretized
version of the continuous spectrum and spurious modes induced by the truncation
of the domain to a finite size (Lesshafft 2018). Appendix B details how to sort
‘physical modes’ from ‘artificial modes’ and details the effect of the complex
mapping technique used here on the latter set of modes.

Aside from the determinations of the (direct) eigenmodes [û, p̂], it is also useful
to study the structure of the adjoint eigenmodes [û†

, p̂†
], namely the eigenmodes of
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the adjoint operator LNS∗†0 . We refer to Luchini & Bottaro (2014) for a detailed
discussion of the topic. In the present paper we adopt a discrete adjoint approach.

The structural sensitivity (Giannetti & Luchini 2007) of a hydrodynamic oscillator is
also used in the present manuscript to identify the flow region where the mechanism
of instability acts. In particular, we follow Giannetti & Luchini (2007) to build a
spatial sensitivity map by computing the spectral norm of the sensitivity tensor:

S(x, r)=
û†
(x, r)⊗û(x, r)∫

D
û†
(x, r)û(x, r) dD

, (3.14)

where D is the computational domain.

3.4. Numerical method
The results presented here are obtained with the same numerical method as used in
Fabre et al. (2019). The mesh construction and adaptation, computation of the base
flow and of the linear problems are implemented using the open-source finite element
software FreeFem++. The main originalities of the present implementation are the use
of complex mapping in the axial direction to overcome problems associated with the
large convective amplification of structures in the downstream direction (see Fabre
et al. 2019), and the systematic use of mesh adaptation to substantially reduce the
required number of degrees of freedom (following a methodology described in Fabre
et al. (2018) and previously used for the zero-thickness hole in Fabre et al. (2019)).
An example of an unstructured grid obtained in this way is displayed in figure 3.
Note that the downstream dimension Lout in numerical coordinates seems rather short;
however, as the coordinate mapping used in this case involves a stretching, the actual
dimension in physical coordinates is much larger.

The loops over parameters and generation of the figures are performed using
Octave/Matlab thanks to the generic drivers of the StabFem project (see a presentation
of these functionalities in Fabre et al. (2018)). According to the philosophy of this
project, all the codes used in the present paper are available from the StabFem website
(gitlab.com/stabfem/StabFem), and a simple script reproducing the main results of the
present paper is provided (gitlab.com/stabfem/StabFem/STABLE_CASES/WHISTLE/
SCRIPT_chi1.m.). On a standard laptop, all the computations discussed below can be
obtained in a few hours. Numerical convergence issues are discussed in appendix B
by comparing results obtained with four different meshes, with variable domain
dimension and grid density (controlled by using several mesh adaptation strategies).

4. Base flow: study of the recirculation region
A typical base flow is depicted in figure 4 for a Reynolds number Re= 1500 and

β = 1. The flow is characterized by an upstream radially converging flow turning
into an almost parallel jet. However, an important feature is the occurrence of a
recirculation region within the thickness of the hole. The vorticity field reaches its
maximum near the leading edge, namely the left edge of the hole, and is highly
concentrated in the region of maximum shear stress. Figure 5 illustrates the structure
of the flow in the close vicinity of the aperture, for β = 1. The recirculation region at
Re= 800 takes the form of a narrow bubble trapped close to the upstream corner. As
the Reynolds is increased, this recirculation region expands towards the lower corner,
eventually becoming an open recirculation region.
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FIGURE 4. Contour plot of (a) axial velocity of the base flow and (b) vorticity field
computed at Re= 1500 and β = 1.
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FIGURE 5. Contour plot of the axial component of the base flow for β = 1 at:
(a) Re = 800, (b) Re = 1200, (c) Re = 1600, (d) Re = 2000. The structure of the
recirculation region is highlighted using streamlines.

The intensity of the recirculation region can be characterized by the maximum level
of negative velocity within the thickness of the hole, namely Umax =max(−ux0). This
quantity is plotted in figure 6(a) as a function of the Reynolds number for β= 0.3, 0.6
and 1. It is observed that, in all cases, the recirculation region shows up for Re≈ 400.
The intensity of the recirculation region first grows as the trapped bubble extends to
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FIGURE 6. (a) Intensity of the recirculation flow inside the hole and (b) discharge
coefficient as functions of Re. Solid line (——): β = 0.3; dashes (– – –): β = 0.6;
dash-dotted line (— · —): β = 1.

reach the downstream corner, and then decreases as it turns into a fully open one. Not
surprisingly, the intensity is larger in the case of a thicker hole, as the bubble is able
to extend over a longer region.

The steady flow is characterized by the so-called discharge coefficient α, defined as

α =

√
ρU2

M

2(Pin − Pout)
. (4.1)

This coefficient can be thought of as a measure of the vena contracta phenomenon:
assuming that the jet contracts to a top-hat jet with constant velocity UJ and radius
RJ (see figure 1) and using the Bernoulli law, one classically shows that α=UM/UJ =

(πR2
J)/(πR2

h), so it can be interpreted as an area contraction ratio of the jet.
We document in figure 6(b) the discharge coefficient α deduced from the pressure

drop computed from the base flows. It is found that for Re ≈ 104 the discharge
coefficient reaches a value close to 0.61 in all cases. Note that for the thicker case
(β = 1) α is lower than in the other cases for Re . 100, meaning that the pressure
drop is weaker, but it is maximal for Re≈ 2000, a value corresponding approximately
to the transition from a closed to an open recirculation region.

There exist several estimations of this coefficient. For instance, the hodograph
method leads to α ≈ 0.61 (Gilbarg 1960) which is consistent with the large-Re limit
of our computations. Note that Blevins (1984) reports that, for β = 0.3, the discharge
coefficient decreases from 0.70 to 0.61 as Re increases from 103 to 104. This is
consistent with our findings. The literature generally attributes this decrease of α to
the laminar–turbulent transition. Since our base-flow solution is strictly laminar, we
can rule out this argument. It seems more relevant to attribute the decrease of α to
the transition of the recirculation region from an attached state to a fully detached
state.

5. Linear results for the forced problem

We turn now to analysing the results obtained by the numerical solution of the
forced problem. We chose two different cases characterized by β = 0.3 and β = 1.
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FIGURE 7. Impedance of the flow through a circular aperture with aspect ratio β = 0.3.
(a,c,e,g) Plot of ZR (solid line) and ZI (dashed line) as a function of the perturbation
frequency Ω; (b,d, f,h) Nyquist diagrams for (a,b), Re= 800, (c,d), Re= 1200, (e, f ), Re=
1600, (g,h), Re= 2000. Points (C1), (S1) and (C2) indicate the locations corresponding to
the structures shown in figures 8 and 9. Point ‘O’ indicates the starting point (Ω = 0) of
the Nyquist curves.

5.1. Case β = 0.3

As previously introduced, the most important quantity associated with the unsteady
flow is the impedance Z = ZR + iZI . This quantity is plotted as function of the
frequency in figure 7 for Reynolds numbers ranging from 800 to 2000. The plots in
the left column display ZR and ZI as functions of Ω (note that as ZI is generally
negative and decreasing with Ω , it is convenient to plot −ZI/Ω). The right column
displays the corresponding Nyquist diagrams.
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FIGURE 8. Structure of the unsteady flow for β = 0.3 and Re= 1600. (a,c,e) Real part of
the pressure component; (b,d, f ) imaginary part of the pressure component. First row (C1):
Ω = 2.6 (conditionally unstable case with Zr < 0); second row (S1) Ω = 5.45 (stable case
with Zr > 0); third row (C2) Ω = 8.25 (conditionally unstable case with Zr < 0).

For Re = 800 (a,b), the system presents a small frequency interval near Ω ≈ 2.2
with negative values of the real part of the impedance ZR. As explained in § 2.3, this
property is directly related to a possible instability. On the other hand, the imaginary
part ZI is always negative in the range of frequencies considered.

As the Reynolds number is increased further, one observes that the region of
negative ZR gets larger and reaches larger values. Note also that the negative,
minimum value of ZR is associated with a maximum of −ZI/Ω . Increasing the
Reynolds number enlarges the range of ω where the system has negative values
of ZR. The cases (e,g) associated with Re = 1600, 2000 show a second region of
conditional instability for higher frequencies in the range near Ω ≈ 8.5. This is again
associated with a maximum of −ZI/Ω . Note that for Reynolds numbers up to 2000
we do not find a hydrodynamic instability. We recall that the number of unstable
modes (absolute instability) is associated with the number of times the contour of
the complex impedance Zh encircles the origin. This condition is never satisfied in
figure 7.

To explain these trends, and in particular the possibility of negative ZR, we now
depict in figure 8 the structure of the flow perturbation for three values of the
frequency, corresponding to points C1, S1 and C2, as indicated in figure 7( f ). The
cases C1 and C2 correspond to the two first negative minima of ZR, hence to
conditionally unstable cases, while case S1 corresponds to a positive maximum of
ZR(Ω), hence to a maximally stable case. The plot shows the real and imaginary
part of the pressure component p′, which correspond respectively to the components
in phase with the oscillating flow rate and a quarter period after (at the instant when
the oscillating flow reverses). The figure shows that the harmonic forcing generates
alternating high and low pressure regions which propagate along the shear layer
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FIGURE 9. Left: vorticity component ω′r (real part) of the perturbation. Right:
reconstruction of the structure of the perturbed shear layer (base flow+perturbation) at the
instant corresponding to maximum flow rate through the hole for β = 0.3 and Re= 1600.
Cases (C1), (S1), (C2) as in figure 8.

and are amplified downstream. Note that the plots use a logarithmically stretched
colour scale, allowing us to visualize the structure despite the very strong spatial
amplification.

Thanks to the normalization of the oscillating flow by q′ = 1 and the pressure
reference taken as p′out = 0, the impedance Z = [p′in − p′out]/q

′ can be directly read
on the figures from the uniform value of the pressure in the upstream domain.
Accordingly, for the conditionally unstable cases, C1 and C2, one can see that the
real part of p′in is negative, while for the stable case (c) it is positive. On the other
hand, the imaginary part of p′in is negative in the three cases (see the plots in the
right column of the figure), consistently with the fact that ZI is always negative for
β = 0.3.

Figure 9 complements the description of the structure of the perturbation for the
same three values of the frequency, by analysing the dynamics of the shear layer.
For this we focus on the real part of the vorticity component ω′r corresponding to
the instant of the cycle where the flow rate through the hole is maximum. For case
(C1) (first row), at this instant the vorticity perturbation consists of two layers of
vorticity of opposite sign, with positive sign in the region closest to the hole. When
superposing this perturbation onto the base flow, which consists of a shear layer of
positive vorticity (see e.g. the lower half of figure 4), the result is to shift the shear
layer towards the walls, as schematically represented in the plot on the right. The
section of the jet is thus locally enlarged in the outlet section, hence the velocity
is reduced, and according to the Bernoulli law the pressure p′s at the outlet section
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(which may be identified with the real part of p′out) at this location is increased.
This simple argument allows us to explain why the fluctuating pressure jump at the
considered instant of the cycle Re[p′in − p′out] is negative.

For the case C2 with Ω=8.25 (third row), the structure of the vorticity perturbation
is more complex and changes sign twice between the upstream and downstream sides
of the holes. Superposing this onto a base flow leads to a situation where the shear
layer is first displaced towards the wall, then away from it and again towards it. The
simple Bernoulli argument thus leads to the same conclusion, namely an increase of
the pressure p′s in the outlet plane.

On the other hand, for the stable case (S1) with Ω = 5.45 the structure of the
vorticity perturbation changes sign only once. The result is that the shear layer is
displaced away from the wall in the outlet plane. The simple Bernoulli argument leads,
in this case, to a decrease of the pressure p′s in the outlet plane.

The explanation presented here is not fully rigorous, in particular because the
impedance is based on the pressure p′out far downstream and not the one p′s at the
outlet of the hole. The validity of the Bernoulli law is also questionable in such
unsteady regimes. Eventually, the argument assumes a fully detached shear layer
and does not explain why instability is also possible in ranges of Reynolds numbers
where the recirculation bubble is closed. Still, we believe this reasoning gives a
simple explanation to the fact that minima of ZR (potentially unstable situations) are
associated with an odd number of structures within the thickness while maxima of
ZR (most stable situations) are associated with an even number of structures within
the thickness of the hole.

5.2. Case β = 1
We now consider the case of a thicker hole with aspect ratio β = 1. Figure 10 plots
the impedance for Re from 800 to 2000. As in the previous case detailed in § 5.1, one
can see the existence of several frequency intervals where ZR becomes negative.

The real and imaginary parts of the impedance Zh are always positive for
Re = 800 (see figure 10a). As a consequence, the associated Nyquist curve plotted
in figure 10(b) does not cross the ZR = 0 axis. The system displays two intervals of
conditional instability at Re= 1200, around Ω ≈ 2.5 and Ω ≈ 4.7, respectively. Note
that the real part ZR presents larger oscillations than in the corresponding case at
β = 0.3.

When the Reynolds number is increased, both real and imaginary parts of the
impedance reach very large values. Figure 10(e) plots ZR and −ZI/Ω for Re= 1600
and reveals four intervals of conditional instability and one interval of hydrodynamic
instability. Another important result which can be seen in this figure is the existence
of true zeros of the impedance. This happens in particular at Ω ≈ 2.07. This property
reveals the existence of a purely hydrodynamic instability, as discussed in § 3. This
point will be further confirmed in § 6. Further increasing the Reynolds number to
Re= 2000 produces a second interval of hydrodynamic instability around Ω = 4.4.

In figures 11 and 12, we represent the pressure and vorticity components of the
perturbations for Re = 2000 for five selected values of Ω corresponding to points
C1, S1, H2, C2, S2 as indicated in figure 10(h). Cases (C1, C2) and (S1, S2)
correspond to minima and maxima of ZR, while case (H2) correspond to the first
positive maximum of ZI .

In the pressure plots (figure 11), the same observations can be made as previously
for β = 0.3, namely the real part of the pressure in the upstream domain is negative
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FIGURE 10. Impedance results for β = 1. (a,c,e,g) Plot of ZR (solid line) and ZI (dashed
line) as functions of the perturbation frequency Ω . (b,d, f,h) Nyquist diagrams for (a,b),
Re = 800, (c,d), Re = 1200, (e, f ), Re = 1600, (g,h), Re = 2000. Points (C1), (S1), (H2),
(C2) and (S2) indicate the locations corresponding to the structures shown in figures 11
and 12. Point ‘O’ indicates the starting point (Ω = 0) of the Nyquist curves.

for conditionally unstable cases (C1) and (C2) and positive for stable cases ((S1) and
(S2)). The case (H2) (third row) differs from all other cases by one property: the
imaginary part of the upstream pressure is positive (see right plot).

Inspecting the real part of the vorticity perturbation (left column in figure 12) allows
us to draw the same conclusions as in the previous section, namely conditionally
unstable cases display an odd number of structures within the thickness and stable
ones display an even number of structures. We may thus conclude that the simple
argument explained in the previous paragraph and illustrated in the right column of
figure 9 is also valid for β = 1.
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FIGURE 11. Structure of the unsteady flows for β = 1 and Re= 2000. Real (a,c,e) and
imaginary (b,d, f ) parts of the pressure component: (C1) conditionally unstable case with
Ω = 0.95; (S1) stable case with Ω = 1.85; (H2) unconditionally unstable case with Ω =
2.5; (C2) conditionally unstable case with Ω = 2.7; (S2) stable case with Ω = 3.8.

For the unconditionally unstable case H2, the real part of the vorticity is quite
similar to the conditionally unstable case (C2) and allows us to justify that ZR is also
negative in this case. On the other hand, inspecting the imaginary part of the vorticity
perturbation (plot in the right column) does not easily allow us to justify that ZI is
positive for case (H2), unlike all the other cases. It does not seem possible to give a
simple explanation of the unconditional instability in terms of oscillations of the shear
layer. We assume that the mechanism is more complex and includes some feedback
mechanism occurring within the recirculation region.

5.3. Parametric study
In the previous sections, we documented the impedance results for β = 0.3 and β = 1.
In both cases, when increasing the Reynolds number, we observed the emergence
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FIGURE 12. Structure of the unsteady flows for β = 1 and Re = 2000. Real (a,c,e)
and imaginary (b,d, f ) parts of the vorticity component, for the same values of Ω as in
figure 11.

of an increasing number of intervals of conditional instability, associated with the
crossing of the real axis in the Nyquist diagram by successive ‘loops’ of the Nyquist
curve. In addition, but only for β = 1, we observed the emergence of an increasing
number of purely hydrodynamic instabilities associated with the encircling of the
origin by successive loops of the same curve. In this section, we present the results
of a parametric study which allowed us to identify the regions of the conditional and
hydrodynamic instabilities in the range β = [0.1− 2]; Re= [500− 2000].

Figure 13 shows the critical Reynolds number associated with each instability
branch as a function of the aspect ratio β. In this figure, curves labelled C1 to C4
correspond to the first four branches of the conditional instabilities, while branches
H2 and H3 correspond to the first two branches of the hydrodynamic instabilities.
We adopted this labelling because these instabilities are associated with the same
‘loops’ in the Nyquist curve as modes C2 and C3. Note that no crossing of the origin
was ever observed along the first loop; this is why the figure does not display any
H1 branch.
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FIGURE 13. Thresholds for the onset of conditional instability (C1 to C4) and of
hydrodynamic instability (H2 and H3).

For short holes, branch C1 is the first to become unstable and branches C2, C3 etc.
are only encountered at substantially larger Re. This is compatible with the results of
figure 7 for β = 0.3, which indicates that branch C1 becomes unstable slightly below
Re= 800 and branch C2 between 1200 and 1600. The situation is different for longer
holes as branches C2, C3 successively become the most unstable ones. For instance,
for β = 1, conditional instability first happens along branch C2 just above Re= 800,
and, as Re is further increased, branches C3, C4 and C1 are then encountered in this
order. This is again fully compatible with the Nyquist diagrams of figure 10.

Hydrodynamic instabilities generally occur at larger Reynolds numbers than
conditional instabilities, and are encountered only for sufficiently thick holes (β > 0.5).
For β = 1, branch H2 becomes unstable for Re≈ 1500 and branch H3 for Re≈ 1700.
This is again fully compatible with the Nyquist representations in figure 10.

We finally notice that for β < 0.1 no instability is found in the range investigated.
This suggests that the limiting case of zero thickness is unconditionally stable, in
accordance with the classical model of Howe and our previous investigation of this
case (Fabre et al. 2019).

The frequencies associated with each of the instability branches are plotted in
figure 14. We start by plotting the Strouhal number based on the hole radius Rh as a
function of the aspect ratio β. Note that the frequencies associated with hydrodynamic
instabilities H2 and H3 closely follow those associated with conditional instabilities
C2 and C3, thus confirming our nomenclature choice.

It is interesting to note that all branches indicate that the frequency is inversely
proportional to the aspect ratio of the hole. This suggests that, instead of the definition
Ω used up to now, it may be better to define a Strouhal number based on the
thickness of the hole as follows:

StL =
f L
UM
≡
Ωβ

π
. (5.1)

Plotting results using this definition leads to figure 14(b), which confirms that the
Strouhal number is almost independent of the aspect ratio for all branches.
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FIGURE 14. Frequencies corresponding to conditional instability (C1 to C4) and
hydrodynamic instability (H2 and H3).

6. Linear stability results

We now present the results of the global stability approach to the problem. Before
presenting the results, we stress two important points. First, in the whole range
of parameters considered, non-axisymmetric perturbations (m 6= 0) were found to
be always stable. Secondly, for axisymmetric modes (m = 0), unstable eigenmodes
could only be found using stress-free conditions both upstream and downstream
(p̂in = p̂out = 0; q̂ 6= 0). On the other hand, changing the upstream condition to the
more standard ‘inlet’ condition (q̂= 0; p̂in − p̂out 6= 0) yielded no unstable mode at all.
Note that both choices of boundary conditions are perfectly relevant but correspond
to different physical situations. Using a strictly incompressible liquid, these two
cases could be realized in an experimental set-up where the upstream domain is of
finite dimension and supplied by either a perfect pressure-imposing pump or a perfect
volumetric pump. The choice p̂in= p̂out= 0 considered in the following is also justified
for a compressible gas in the case that both upstream and downstream domains are
considered of large dimension (see appendix A).
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FIGURE 15. (a) Non-dimensional growth rates Ωi = (Rh/UM)ωi and (b) non-dimensional
oscillation rates Ωr = (Rh/UM)ωr as functions of Re, computed through the linear stability
approach (lines) and the order-one expansion based on impedance predictions (symbols).

6.1. Eigenvalues
The stability characteristics of the base flow are assessed by monitoring the evolution
of the leading global modes. Figure 15(a) shows the growth rate ωi for the three least
stable modes for β= 1. Two of them become unstable in the plotted range of Re. The
first branch becomes unstable at Re ≈ 1500 while the second one presents a critical
Reynolds number equal to Re ≈ 1700. This is fully compatible with the impedance
predictions corresponding to branches H2 and H3 discussed in the previous section.

Figure 15(b) displays the oscillation rate ωr for the same three modes. The three
branches display an almost constant value of the radius-based Strouhal number Ω . The
values for the unstable modes are Ω ≈ 2.1 and Ω ≈ 4.2, in perfect accordance with
the expected values for modes H2 and H3.

Note that figure 15(a,b) displays the existence of a third branch of eigenvalues
which is always stable. The corresponding frequency is observed for Ω ≈ 0.5, which
corresponds to a value for which the first ‘loop’ of the Nyquist curve comes close
to zero, but does not encircle it. This allows us to identify this mode with the ‘H1’
mode which was missing in figure 13. This mode actually exists as a global mode
but remains stable for all values of Re and β in the investigated range.

As discussed in § 2, in addition to providing an instability criterion, knowledge of
the impedance for real ω also provides an estimation of the eigenvalues associated
with the purely hydrodynamic instability valid in the case where ωi is small. To
demonstrate this, we have plotted with symbols in figure 15(a) the prediction of
the asymptotic formula (2.8). As can be seen, this formula coincides very well with
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FIGURE 16. Structure of the unstable eigenmodes H2 for β = 1; Re= 1500 (a,b) and H3
for β = 1; Re= 1570 (c,d). (a,c) Pressure component; (b,d) axial velocity component.
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FIGURE 17. Structure of the adjoint eigenmodes (a,c) and structural sensitivity fields (b,d)
associated with the eigenmodes plotted in figure 16.

the numerically computed eigenvalues, but deviations are observed as soon as the
dimensionless growth rate exceeds a value of about 0.1.

6.2. Eigenmodes and adjoint-based sensitivity
We now depict in the upper part of figure 16 the structure of the unstable modes
computed for Re = 1500 and Re = 1700, respectively. We display the pressure
component (a,e) and the axial velocity component (b, f ) using the same representation
as for the forced structures in figure 11.

The structure of the modes are dominated by axially extended streamwise velocity
disturbances located downstream of the aperture and is indeed very similar to the
structures obtained in the linearly forced problem. Note that the levels of the pressure
components are now tending to zero both upstream and downstream, in accordance
with the boundary conditions expected for the purely hydrodynamic instabilities. Apart
from this, the eigenmode H2 has strong similarities to the corresponding mode in the
forced case previously plotted in figures 11 and 12.

Finally, figure 17 completes the description of the eigenmodes by a plot of their
associated adjoint fields and structural sensitivities. The adjoint modes (a,b) show
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that the region of maximum receptivity to momentum forcing is localized near the
leading edge of the hole. The spatial oscillations develop in the upstream region.
The distribution of the adjoint fields are also preserved over the range of Reynolds
numbers investigated here.

The sensitivity is displayed by plotting the quantity Sw corresponding to the norm of
the structural sensitivity tensor defined by (3.14). The sensitivity for both eigenmodes
is essentially localized along the shear layer detaching from the upstream corner of
the hole. This confirms that the region responsible for the instability mechanism is
the boundary of the recirculation bubble formed within the thickness of the plate.

The fact that recirculation regions can lead to global instabilities is not surprising,
and has actually been observed in a number of related studies considering recirculation
bubbles along a flat wall (Hammond & Redekopp 1998; Rist & Maucher 2002;
Avanci, Rodríguez & Alves 2019) or after a bump (Ehrenstein & Gallaire 2008) or a
backward-facing step (Lanzerstorfer & Kuhlmann 2012). In the cases where the bubble
has a long extension, the instability mechanism can be explained by inspecting the
local velocity profile, which indicates the presence of a region of inflectional absolute
instability (in the sense of Huerre & Monkewitz (1990)). The studies cited above all
indicate that this kind of instability is expected when the recirculation velocity Umax
is approximately 0.15 times the outer velocity, which is in good agreement with our
findings (see figure 6a). Recent works have also identified that separation bubbles
can sustain several unstable modes (Ehrenstein & Gallaire 2008) quantified by the
number of vortical structures within the recirculation bubble, again in agreement
with our findings. These arguments suggest that the present purely hydrodynamic
instability belongs to the same class of global self-sustained instabilities. However,
local arguments based on the inspection of the velocity profiles and identification
of an absolute region cannot explain an important feature, namely the fact that the
instability only exists with boundary conditions p′in = p′out and disappears when the
condition is changed to q′ = 0.

Interestingly, the structural sensitivity also reaches significant levels in a second
region located downstream of the aperture, especially for the mode H3. Note that a
similar feature was also observed for instabilities of co-flowing jets (Canton, Auteri &
Carini 2017). This result indicates that a positive instability feedback enhancing the
instability mechanism may also come from the downstream region. This finding may
be linked to the role of wavepackets propagating along the shear layer bounding the
jet in the emergence of self-sustained oscillations (Schmidt et al. 2017).

7. Comparison with previous studies
In this section we review existing results obtained experimentally or numerically for

configurations approaching the one investigated here. Compared to the large amount
of literature devoted to the related situation of grazing flow over a perforated plate (a
situation directly relevant to acoustic liners, see the literature cited in the introduction
of Fabre et al. (2019)), a much more limited number of studies have considered the
flow through apertures (bias flow) and among them, most have considered either a
large plate perforated by an array of apertures, or a single constriction in a long
pipe with a constriction ratio d/D (where d = 2Rh is the constriction diameter and
D the pipe diameter) in the range [0.5, 0.8]. Due to these different geometries, direct
comparisons of impedances with our results are not possible, but a comparison of the
range of frequencies leading to unstable behaviour leads to very good agreement.

Among the studies considering a multiply perforated plate, Jing & Sun (2000)
measured experimentally the impedances for several configurations with variable hole
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thickness parameter β = Lh/(2Rh). Their results for the case β = 1.2 (see their figure
10) indicate negative impedances in a range of Mach number M ∈ [0.18, 0.22] which
corresponds to StL ∈ [0.24, 0.3]. This range of frequencies is in good accordance with
the value StL ≈ 0.25 associated with the conditional instability C1 found in our study.
Note that their experiments correspond to a value of the Reynolds number Re≈ 2000,
in the same range as our study.

The experiment by Su et al. (2015) also reports, for β = 0.5, (see their figure
12) substantially negative impedances for values of the Strouhal number (based on
diameter) larger than 2.8. When translated into our set of parameters, this corresponds
to Ω ≈ 1.4 or StL ≈ 0.23. This is again in good agreement with the C1 conditional
instability frequency range.

Next, Moussou et al. (2007) investigated experimentally a long pipe fitted with a
constriction for a number of values of the constriction ratio and the thickness ratio β.
They observe that the conditional instability criterion ZR > 0 (or arg(B) > π/2 using
their notation) is verified in a range StL≈[0.2,0.25], again in good agreement with the
C1 conditional instability frequency range. Furthermore, in several cases (especially
β = 0.4 and 0.5) they observe a second range of frequencies StL ≈ 0.7 where the
instability criterion is met. This second range is in good accordance with the C2
conditional instability frequency range.

Apart from impedance measurements in a forced case, a number of experimental
works have observed spontaneous whistling in an unforced case and reported the
corresponding Strouhal numbers. Testud et al. (2009) report values in the range
[0.2–0.3], while Anderson (1954) recorded values in the range [0.26, 0.29]. All these
values are again in good agreement with our own results.

A next highly relevant work, considering again the configuration of a pipe with
a single constriction, is the numerical study of Kierkegaard et al. (2012) based on
LNSE. As discussed in the introduction, despite the similar approach, a number of
differences in the staring hypotheses make a direct comparison with our own study
difficult. However, it must be emphasized that their results (presented in terms of the
scattering matrix formalism instead of the impedance) predict an energy amplification
for StL ∈ [0.26, 0.29] (see their figure 9), again in excellent agreement with our
results. They further elaborate a Nyquist-based instability criterion incorporating the
properties of the whole system (including acoustic reflexion at the pipe extremities).
This criterion shows that, for given dimensions of the hole (namely d/D= 0.63 and
β = 0.27), the dimension of the downstream pipes may render the whole system
instable (case A) or stable (cases B and C). This conclusion is fully consistent with
our characterization of the instability as a conditional instability.

Finally, the branch H2 indicates the existence of a purely hydrodynamic instability
associated with an almost constant value of the Strouhal number StL ≈ 0.65 in the
whole range β ∈ [0.4, 1.5]. This implies that a jet through a hole joining two open
domains would spontaneously whistle at such frequencies, even in the absence of any
acoustic resonator. We are not aware in the recent literature of such an observation, as
in all the cited works the hole was fitted at the outlet of a long pipe which played the
role of the acoustic resonator needed for conditional instability. To our knowledge, the
only observation of the whistling flow through a large plate is the work of Bouasse
(1929). This author indeed reported that the whistling frequency is proportional to the
hole thickness, but unfortunately did not express this result in terms of a Strouhal
number.
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8. Conclusions and perspectives
In this paper, we investigated the unsteady behaviour of a laminar viscous jet

through a circular aperture in a thick plate, using linearized Navier–Stokes equations.
This method allows us to compute the impedance of the flow, which provides
useful information on the coupling between the flow and the acoustic waves, and
on the prediction of the stability or instability of the system. Impedance calculations
allowed us to map the regime of existence of two kinds of possible instability: (i)
a conditional instability associated with an over-reflection of acoustic waves, and
(ii) a purely hydrodynamic instability associated with the spontaneous self-oscillation
existing in the absence of any incoming acoustic wave. Both of these instabilities can
be predicted in a simple way by plotting the impedance on a Nyquist diagram.

The main outcome of our study is the parametric study of § 5.3, providing a
cartography of the regions of instability as functions of the Reynolds number and the
aspect ratio β of the hole. The zero-thickness case (β = 0) is stable in accordance
with previous studies. For β & 0.1 we observe conditional instabilities in several
frequency intervals, the preferred mode of conditional instability (C1) for short
holes corresponds to a Strouhal number St ≈ 0.25, a value for which experimental
observations confirm the existence of an instability mechanism coupling the jet to
its acoustic environment. The purely hydrodynamic instability, on the other hand, is
observed for longer holes (β & 0.5) and higher Reynolds numbers (Re & 1500). The
preferred mode for β ≈ 1 is associated with a higher value of the Strouhal number,
namely St≈ 0.65.

In addition to the characterization of both types of instability through impedance
calculations, we conducted a standard linear stability analysis (based on the
computation of eigenvalues) which confirmed the range of existence of the purely
hydrodynamic instability and allowed us to characterize the spatial structure of the
eigenmodes. Downstream of the aperture, the eigenmodes are characterized by a
strong spatial amplification due to the convectively unstable nature of the jet. The
instability mechanism is better revealed by inspecting the adjoint eigenmodes and
the adjoint-based structural sensitivity, which reveal that the core of the instability
mechanism lies in the shear layer detaching from the upstream edge of the hole. This
observation suggests that the recirculation region existing within the thickness of the
hole plays a key role.

By considering a locally incompressible flow and an idealized geometry correspond-
ing to a circular hole with sharp corners connecting two domains of large extension,
we have been able to focus on the hydrodynamic aspects of the whistling jet
phenomenon, and characterize them without any precise reference to the acoustic
environment. However, the study shows that the first to emerge is the conditional one.
We thus plan to continue this study considering more realistic situations involving a
resonator. Three configurations are particularly interesting. The first is the case where
the upstream domain is a closed cavity acting as a Helmholtz resonator. The second
is the case where the hole is fitted at the outlet of a long pipe. This configuration
is called the Pfeifenton and was made the object of investigations in the 1950s
(see Anderson 1954) which have to be reconsidered in view of the present model.
The last one is the hole-tone configuration corresponding to a jet passing through
two successive holes. NLSE has been recently applied to this case (Longobardi
et al. 2018) considering both a fully compressible approach and an ‘augmented
incompressible approach’ in which resonators are modelled by equivalent impedances.
Such an approach is a promising one for the whole class of problems considered
here, and more generally for the study of musical instruments (Fabre et al. 2014).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

95
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.953


885 A11-28 D. Fabre, R. Longobardi, V. Citro and P. Luchini

Aside from the characterization of the conditional instability in more realistic
geometries, future works should be conducted to confirm the existence of the purely
hydrodynamic instability in the absence of acoustic resonators. To our knowledge, the
only report of a whistling jet in the case of a hole connecting two open domains of
large dimensions is the work by Bouasse in the 1920s. Experiments and numerical
simulations should be conducted in this range to confirm our predictions.

Finally, since our study points out the important role of the shear layer formed at
the upstream corner of the hole, future experimental and numerical studies should pay
special attention to the sharpness of this corner. A preliminary study using LNSE and
considering rounded corners indeed reveals that even a very small radius of curvature
notably delays the onset of instabilities.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Link between impedance and reflection coefficient

The objective of this appendix is to establish the link between the impedance of
the aperture and the reflection coefficient of an acoustic wave. For this purpose, we
will perform an asymptotic matching between the incompressible ‘inner’ solution
investigated in the main part of the paper and a compressible ‘outer solution’
expressed in terms of spherical acoustic waves.

We thus consider an outer solution composed in the upstream domain of an incident
convergent spherical wave of amplitude A and a reflected divergent spherical wave of
amplitude B, and in the downstream region of a transmitted spherical diverging wave
of amplitude C. We use spherical coordinates and assume a pressure field p′(rs, t) and
a velocity field u′ = u′rs(rs, t)ers where rs =

√
r2 + x2 is the spherical radial coordinate

and ers is the unit vector in the radial direction. The pressure and axial velocity fields
have the classical expressions,

p′(rs, t)=


A
rs

e−i(krs+ωt)
+

B
rs

ei(krs−ωt) x< 0;

C
rs

ei(krs−ωt) x> 0,
(A 1)

u′rs(rs, t)=


A

iρω

(
1
r2

s

−
ik
rs

)
e−i(krs+ωt)

+
B

iρω

(
1
r2

s

+
ik
rs

)
ei(krs−ωt) x< 0;

C
iρω

(
1
r2

s

+
ik
rs

)
ei(krs−ωt) x> 0,

(A 2)

where k = ωc0 is the acoustic wavenumber and c0 is the speed of sound. The inner
limit (rs→ 0) of this outer solution can be expressed as follows:

p′(rs, t)≈


(
(A+ B)

rs
+ ik(B− A)

)
e−iωt x< 0;(

C
rs
+ ikC

)
e−iω x> 0,

(A 3)
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u′rs(rs, t)≈


(A+ B)
ρiωr2

s

e−iωt x< 0;

C
ρiωr2

s

e−iωt x> 0.
(A 4)

The outer limit of the inner solution (i.e. the incompressible solution considered in
the main part of the paper) is a spherical source (respectively sink) of flow rate q′ in
the downstream (respectively upstream) domain and reads,

u′rs(rs, t)≈


−q′

2πr2
s

e−iωt x< 0;

q′

2πr2
s

e−iωt x> 0,
(A 5)

p′(rs, t)≈


(

p′in +
ρiωq′

2πrs

)
e−iωt x< 0;(

p′out −
ρiωq′

2πrs

)
e−iω x> 0.

(A 6)

Note that the latter expressions comprise both the constant levels p′out, p′in and a
subdominant term proportional to 1/rs which was not mentioned in the main part of
the paper. The latter corresponds to the pressure field associated with an unsteady
incompressible source/sink.

The matching is done by identifying the coefficients of similar terms in (A 3), (A 4),
(A 5), (A 6). This leads to,

(A+ B)=
−ρiωq′

2π
, (A 7)

ik(B− A)= p′in, (A 8)

C=
−ρiωq′

2π
, (A 9)

ikC= p′out. (A 10)

The two latter relations can be combined with the introduction of the radiation
impedance Zrad,

Zrad =
p′out

q′
=
ρω2

2πc0
. (A 11)

The expressions can be eventually combined to express the amplitude reflection
coefficient B/A in terms of the hole impedance Zh and the radiation impedance just
introduced,

B
A
=

−Zh

Zh + 2Zrad
. (A 12)

The energy reflection coefficient R is eventually deduced as:

R=
|B|2

|A|2
=

|Zh|
2

|Zh|
2 + 4Zrad(Re(Zh)+ Zrad)

. (A 13)

These expressions yield the following conclusions:
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(i) The energy reflection R is larger than 1 (over-reflexion condition) if and only if
Re(Zh)+ Zrad < 0. In dimensionless terms, this leads to

ZR +
MΩ2

2π
< 0 (A 14)

(where M is the Mach number), which reduces to the simpler condition ZR < 0
given in § 2 in the limit M� 1.

(ii) B/A is infinite if and only if Re(Zh) + 2Zrad = 0. The situation B/A = ∞
corresponds to a situation where a wave is emitted upstream (B 6= 0) in the
absence of an incident wave (A = 0), hence to a spontaneous self-oscillation
associated with emission of sound both upstream and downstream. We recognize
the definition of the purely hydrodynamic instability described in § 2. In
dimensionless terms, the condition leads to

Z +
MΩ2

π
= 0, (A 15)

which reduces to the simpler condition ZR=ZI=0 given in § 2 in the limit M�1.

Note that the assumption of an incident converging spherical wave coming from a
semi-infinite space adopted here is questionable; clearly, other choices are possible for
modelling the upper domain. For instance, the case where the upper domain is a long
pipe of radius Rp�Rh and the incident wave is a plane wave can also be considered,
and the analysis leads to practically identical conclusions.

Appendix B. Details on the complex mapping technique and mesh validations
As identified in Fabre et al. (2019), a severe numerical difficulty arises in the

solution of the LNSE equations (for both forced and autonomous problems) due to
the strong spatial amplification of linear perturbations. In this previous paper, use of
a complex coordinate mapping was proposed as an efficient way to overcome this
difficulty. Fabre et al. (2019) demonstrated that, in conjunction with mesh adaptation,
this method allows us both to significantly reduce the required number of mesh points
and to extend the range of application of the LNSE up to Re≈ 3000.

In this appendix we give some details about the implementation and efficiency of
this technique for the present study. The technique has been used for both forced
(impedance) and autonomous (eigenvalues) computations, but we only document its
performance for the autonomous problem, restricting ourselves to the case β = 1.

In the present paper, the mappings from numerical coordinates (X, R) to physical
coordinates (x, r) are slightly different from the ones used in Fabre et al. (2019), and
defined as follows:

x= Gx(X)= LM +
X−LM1−

 X − LM

LA − LM

2


2

[
1+ iγc tanh

(
X−LM

2LC

)2
]

for X < LM,

= X for LM < X < Lout.

(B 1)

r= Gr(R)= RM +
R− RM[

1−
(

R− RM

RA − RM

)2
]2 for X > 0 and RA < R< Rout,

= R otherwise.

(B 2)
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Lout Rout LM LC LA γc RM RA xmax rmax δM Adapt. Nv

M1 15 15 0 2.5 17 0.3 5 17 503+ 149i 337 1 BF+ F 19 320
M2 20 15 5 1 — 0.5 — — 20+ 8i 15 * BF+ F+m 17 915
M3 30 20 — — — — — — 30 20 1 BF+M+A 30 695
M4 60 20 — — — — — — 60 20 0.25 BF+ F 78 300

TABLE 1. Description of meshes M1–M4 built for β= 1 following four different strategies.
[LM, LC, LA, γc, RM, RA]: parameters defining the coordinate mapping. [xmax, rmax]: effective
dimensions in physical coordinates. δM: prescribed value of the maximum grid step. Adapt.:
mesh adaptation strategy (see text). Nv: number of vertices of the mesh obtained at the
outcome of the adaptation process.

Note that the mapping of the x-direction involves both an imaginary part (controlled
by the parameter γc) and a stretching (controlled by the parameter LA). The difference
from Fabre et al. (2019) is the presence of an additional parameter Lm such that the
complex mapping only applies for x> Lm.

The set of parameters used and the corresponding dimension of the domain in
complex coordinates are reported in table 1.

For validation of the method it is essential to demonstrate that the results are
effectively independent of the values of the parameters. In the present study we
have mainly used two kinds of meshes involving complex mapping, with properties
detailed in table 1. The first one, named M1, and already plotted in figure 3, is very
similar to the one used in Fabre et al. (2019) for the case of the zero-thickness hole.
This kind of mesh has been used for the impedance-based parametric study of § 5.3.
On the other hand, since the coordinate mappings applies for x > LM = 0, it is not
suited to representing the linear forced flow and eigenmode structures. The second
kind of mesh, named M2, has no stretching (thus parameters LA and RA are not
relevant) but only complex mapping. This kind of mesh has been used to plot the
structures (figures 8, 10 and 14) since complex mapping only applies for x> LM = 5,
outside of the chosen range of these figures. The two meshes also differ in the mesh
adaptation strategy: mesh M1 is adapted to the base flow (BF) for Re = 2000 and
two forced flow (F) structures computed for two values of Ω spanning the range
of the parametric study, namely Ω = 0.5 and Ω = 4.5, following the same strategy
as in Fabre et al. (2019). For this mesh a maximum grid step δM = 1 is prescribed.
Mesh M2 is designed in the same way but a variable δM is prescribed using the
‘Adaptation masks’ (m) strategy, as described in the documentation of StabFem
(available on the website of the project). Namely, we impose δM = 0.1 in an inner
box defined by (x, r) ∈ [−1, 3] × [0, 1.5], δM = 0.3 in an intermediate box defined by
(x, r) ∈ [0, 20] × [0, 3], and δM = 4 outside.

For validation purposes, we have also designed two meshes, M3 and M4, which
do not involve coordinate mapping. These meshes are designed with a longer axial
dimension Lout, and are characterized by a larger number of vertices. For M3, mesh
adaptation is performed using the base flow and the two leading eigenmodes H1 and
H2 using both direct and adjoint modes (M+ A), following the same strategy as in
Fabre et al. (2018).

Figure 18(a) displays the structure of meshes M2 and M4. It is found that the mesh
adaptation strategy used for mesh M2 is most efficient to concentrate the grid points
in the most significant regions of the flow (inside the hole) while M4 concentrates a
much larger number of points in the far downstream regions.
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FIGURE 18. (a) Structure of meshes M2 (upper) and M4 (lower); (b) pressure component
of the eigenmode H3 for Re= 1600, as computed using mesh M2 (upper) and M4 (lower).

Figure 19 superposes the numerically computed spectra using meshes M1, M3 and
M4 for Re= 1700 and 2000. As usual, along with the eigenvalues of the proper global
eigenmodes H1, H2, H3, the spectra display a large number of so-called ‘artificial
eigenvalues’. As can be seen, both meshes M3 and M4 lead to the presence of artificial
modes in the unstable part (ωi> 0) of the complex plane, and as the Reynolds number
is increased they come dangerously close to the physical eigenvalues. On the other
hand, the complex mapping used for mesh M1 results in a good separation between
the physical eigenvalues and the artificial ones, which are substantially shifted in the
stable part (ωi < 0) of the complex plane. Note, however, that use of the complex
mapping does not allow us to compute the complex conjugates of modes H1, H2, H3
located in the ωr < 0 half-plane. For reasons discussed in Fabre et al. (2019), using a
complex mapping with γc > 0 only allows us to suppress the spatial amplification of
linear forced structures (or eigenmodes) with ωr > 0. Instead, choosing γc < 0 would
give access to the other half of the spectrum.

Table 2 displays the eigenvalues associated with H1, H2, H3 computed for
Re = 1600 and 2000 using all meshes considered here. The table confirms that
the results obtained using complex mapping are independent of the values of the
parameters (value for M1 and M2 are very close to each other despite the fact that
the parameters are very different). They also show that the meshes M3 and M4 are
less reliable, despite the fact that they contain a larger number of vertices.

Finally, figure 18(b) depicts the structure of the eigenmode H2 computed using
meshes M2 and M4 for Re=1600. As the complex mapping for mesh M2 only applies

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

95
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.953


Impedance and instabilities of a jet through a thick hole 885 A11-33

543210
ør

øi

-1-2-3-4-5

0.4
(b)

0.2

0

-0.2

-0.4

-0.6

543210

øi

-1-2-3-4-5

0.4
(a)

0.2

0

-0.2

-0.4

-0.6

H3H2
H1

H3H2

H1

FIGURE 19. Spectra computed with three different meshes: × (red online): mesh M1
(complex mapping); ∗ (green online): mesh M3 (no mapping, Xmax= 30); + (blue online):
mesh M4 (no mapping, Xmax = 60). (a) β = 1; Re= 1700; (b) β = 1; Re= 2000.

Re= 1600

H1 H2 H3

M1 −0.1176i+ 0.5000 0.0809i+ 2.1007 −0.0942i+ 4.1245
M2 −0.1156i+ 0.5024 0.0854i+ 2.0985 −0.0926i+ 4.1230
M3 −0.1259i+ 0.5017 0.13916i+ 2.1051 −0.1051i+ 4.1359
M4 −0.1189i+ 0.5017 0.0826i,−2.1017i −0.0944i+ 4.1240

Re= 2000
H1 H2 H3

M1 −0.0450i+ 0.5610 0.3010i+ 2.2434 0.2408i+ 4.3205
M2 −0.0435i+ 0.5615 0.3032i+ 2.2436 0.2418i+ 4.3184
M3 −0.0421i+ 0.5645 0.3114i+ 2.2467 0.2287i+ 4.3268
M4 −0.0437i+ 0.5619 0.3030i+ 2.2438 0.2400i+ 4.3195

TABLE 2. Eigenvalues computed with four different meshes for Re= 1600 and
Re= 2000 (β = 1).

for x> Lm= 5, the structure for x< Lm is expected to be identical as when computed
without this method. The figure confirms that this is effectively the case. On the other
hand, for x > Lm the eigenmode computed in physical coordinates still displays a
spatial amplification up to a very large downstream distance. On the other hand, the
complex mapping results in a suppression of this spatial amplification.

Note that figure 18(b) makes use of a non-uniform colour map. Without this trick,
it would be impossible to give a good representation of the structure, as the maximum
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values p′ are of order 1.6 × 103 and 5.8 × 104 for M2 and M4, respectively. Hence
use of the complex mapping limits the round-off errors due to the very large maximal
levels reached far downstream. Note that, on the other hand, this visualization method
enhances the numerical imprecision in the external parts of the flow where the mesh
is less refined (but where mesh refinement is not necessary for accurate computation
of the eigenvalues).
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