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Double-diffusive flux-gradient laws are commonly used to describe the development
of large-scale structures driven by salt fingers – thermohaline staircases, collective
instability waves and intrusions. The flux-gradient model assumes that the vertical
transport is uniquely determined by the local background temperature and salinity
gradients. While flux-gradient laws adequately capture mixing characteristics on scales
that greatly exceed those of primary double-diffusive instabilities, their accuracy
rapidly deteriorates when the scale separation between primary and secondary
instabilities is reduced. This study examines conditions for the breakdown of the
flux-gradient laws using a combination of analytical arguments and direct numerical
simulations. The applicability (failure) of the flux-gradient laws at large (small)
scales is illustrated through the example of layering instability, which results in
the spontaneous formation of thermohaline staircases from uniform temperature and
salinity gradients. Our inquiry is focused on the properties of the ‘point-of-failure’
scale (Hpof ) at which the vertical transport becomes significantly affected by the
non-uniformity of the background stratification. It is hypothesized that Hpof can
control some key characteristics of secondary double-diffusive phenomena, such
as the thickness of high-gradient interfaces in thermohaline staircases. A more
general parametrization of the vertical transport – the flux-gradient-aberrancy law –
is proposed, which includes the selective damping of relatively short wavelengths
that are inadequately represented by the flux-gradient models. The new formulation is
free from the unphysical behaviour of the flux-gradient laws at small scales (e.g. the
ultraviolet catastrophe) and can be readily implemented in theoretical and large-scale
numerical models of double-diffusive convection.
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1. Introduction
Double-diffusive convection can be defined as a set of hydrodynamic phenomena

related to the differences in molecular diffusivities of individual density components.
For instance, in the oceanographic context, two major density components are
temperature and salinity of seawater, and their diffusivities differ by two orders
of magnitude. The primary double-diffusive instabilities – salt fingers and oscillatory
diffusive perturbations – operate on the scale of molecular dissipation, which places
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34 T. Radko

them into the category of microscale processes (∼1 cm in the ocean). However, the
vertical microscale mixing induced by double diffusion leads to the spontaneous
generation of much larger structures: thermohaline intrusions, collective instabilities
and layering modes. These fine-scale (∼10 m vertically) phenomena, in turn, become
active players in controlling the water-mass composition of the ocean, which makes
it critical to elucidate their dynamics and transport characteristics. Comprehensive
reviews of the subject are offered by Schmitt (1994, 2003) and Radko (2013).

Much of the progress in developing the fine-scale theory of double diffusion has
resulted from the application of flux-gradient laws, which link the microstructure-
driven fluxes of temperature and salinity to their local fine-scale gradients. Flux-
gradient laws are often expressed in the form of Fick’s diffusion model:{

FT =−KT T̄z,

FS =−KSS̄z,
(1.1)

where (FT, FS) are the fluxes of temperature (T) and salinity (S). The model assumes
that the diffusivities (KT,KS) are uniquely determined by the fine-scale temperature
and salinity gradients (T̄z, S̄z). Flux-gradient laws have been developed and used
mostly for the fingering regime (e.g. Stern, Radko & Simeonov 2001; Stern &
Simeonov 2002; Radko & Stern 2011), which is the main subject of the present
study. While similar analyses for oscillatory diffusive convection are relatively rare,
they also demonstrate the utility of flux-gradient modelling as a means of representing
fine-scale dynamics (e.g. Mirouh et al. 2012).

Several problems have been successfully treated using flux-gradient laws, including
theoretical investigations of thermohaline interleaving (Stern 1967; Merryfield 2000;
Walsh & Ruddick 2000; Ruddick & Kerr 2003; Mueller, Smyth & Ruddick 2007;
Smyth & Ruddick 2010), collective instability waves (Stern et al. 2001; Stern &
Simeonov 2002; Radko & Stern 2011) and thermohaline staircases (Radko 2003;
Stellmach et al. 2011). Attempts have also been made to validate the flux-gradient
laws numerically (e.g. Stern et al. 2001; Stellmach et al. 2011) by comparing
finger-resolving solutions with their parametric counterparts. These studies document
the adequate performance of flux-gradient models in configurations characterized by
the significant scale separation between salt fingers, which flux laws parametrize,
and fine-scale phenomena, which are modelled using these laws. Unlike other forms
of oceanic microstructure (convective or shear-driven turbulence), salt fingering is a
narrow-band phenomenon operating on a well-defined heat dissipation scale (d). As
long as the flux-gradient laws are applied to relatively large scales L� d, numerical
evidence indicates that the resulting solutions are accurate and physical. A significant
limitation of these analyses is that they describe purely double-diffusive phenomena.
It should be realized that, in the oceanic environment, salt fingers interact with
vertical shear and mechanically driven turbulence, which are seldom incorporated in
the formulation of the flux-gradient laws.

Despite the apparent success in application of flux-gradient laws to large-scale
phenomena, serious complications arise when the scale separation is limited. A
case in point is the problem of spontaneous layering in an unbounded horizontally
homogeneous and doubly stratified fluid (Radko 2003; Stellmach et al. 2011). Linear
stability analysis of the parametrized mean-field equations reveals the existence of
gamma-instability modes, which ultimately transform the uniform background gradient
into a series of mixed layers separated by high-gradient interfaces. The parametric
flux-gradient model predicts that the growth rate of the unstable gamma-modes
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The flux-gradient laws in double-diffusive convection 35

monotonically increases without bound with increasing vertical wavenumber, which
is clearly unphysical. This ultraviolet catastrophe in the parametric model also
contradicts the direct numerical simulations (DNS) showing that the wavelength of the
fastest-growing gamma-instability mode exceeds the salt-finger scale by more than an
order of magnitude (Radko 2003; Stellmach et al. 2011). This apparent discrepancy
signals that the flux-gradient laws fail at relatively small scales. As a result of
this failure, the parametric model cannot predict the fundamental characteristics
of thermohaline staircases, such as the initial layer heights or the thicknesses of
high-gradient interfaces (e.g. Radko 2005). These deficiencies underscore the need to
quantify the applicability range of the flux-gradient laws and to suggest alternative
parametrizations for moderately small scales.

Unfortunately, the flux-gradient laws themselves provide no guidance with regard to
their range of validity, and our insight into the specific conditions that set the point-of-
failure scale is limited. Aside from a few DNS-based attempts to assess the accuracy
of the flux-gradient laws at various scales (e.g. Traxler et al. 2011), the general theory
for their applicability is notably missing. The development of such a theory from first
principles is one of the main objectives of this study. The proposed model is based
on the techniques of multiscale analysis (reviewed most recently by Mei & Vernescu
(2010)), which allow explicit representation of the interaction between small and large
scales of motion. This transparency is exploited here to conceptualize the point-of-
failure effect – the loss of fidelity of flux-gradient laws at small vertical scales. The
problem of spontaneous layering in the initially uniform finger-favourable stratification
is examined using an asymptotic expansion in which the small parameter ε measures
the ratio of the primary (finger) scales and those of larger layering modes.

In our study, the explicit asymptotic (ε→ 0) multiscale solutions representing the
layering modes are compared to their finite-amplitude counterparts. The substantial
deviation of the two solutions at relatively short wavelengths is interpreted as a sign
that the lack of scale separation (i.e. finite ε) is affecting the large-scale dynamics. In
this regime, the relevance of flux-gradient models becomes questionable. Therefore,
the difference between asymptotic and finite-amplitude solutions is used as a criterion
for the applicability or failure of the flux-gradient laws, ultimately resulting in
an explicit model for the point-of-failure scale (Hpof ). The finite-ε solutions also
offer important insights into the mechanics of the flux-law failure. They suggest
that the system of vertically elongated fingers is stable with respect to horizontally
uniform perturbations as long as the vertical scale of these perturbations is small
(H<Hpof ), which explains the damping of short wavelengths observed in DNS. Since
flux-gradient laws do not explicitly represent the details of microscale dynamics, it is
not surprising that they fail to capture the small-scale stabilization effect and suffer
from unphysical behaviours.

Incidentally, the complications related to the failure of the flux-gradient laws
at small scales are not limited to double diffusion. Earlier attempts to represent
turbulence in one-component flows (Phillips 1972; Posmentier 1977) by the flux-
gradient model also reveal analogous dynamics at small scales, ultimately resulting
in the ultraviolet catastrophe (Ruddick et al. 1989). However, we will argue that the
specific mechanisms responsible for the failure of flux laws in double-diffusive and
one-component flows might be substantially different.

This paper is organized as follows. Section 2 reviews the flux-gradient model
of spontaneous layering in uniform finger-favourable background stratification. We
examine a series of DNS, which demonstrate that the flux-gradient model adequately
represents the layering instability for relatively large scales but fails when the scale
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separation between the layering modes and salt fingers becomes less pronounced.
Section 3 presents an alternative view of double-diffusive layering afforded by the
multiscale model and discusses direct analogies that exist between multiscale and
flux-gradient formulations. In § 4, we identify conditions for the breakdown of the
multiscale expansion, develop an analytical model for the point-of-failure scale,
and then (§ 5) test our theory by DNS. To correct the unphysical behaviour of the
flux-gradient laws at small scales, we propose their adjustment (§ 6), which takes
into account the selective damping of short waves. We examine parametric solutions
based on the proposed flux laws and demonstrate that the point-of-failure scale
controls several essential characteristics of double-diffusive convection, such as the
thickness of salt-finger interfaces in fully developed thermohaline staircases. In § 7,
we draw conclusions and summarize our findings.

2. Preliminary considerations
2.1. Formulation

Following the conventional treatment of double-diffusive problems (e.g. Stern et al.
2001), the temperature and salinity fields are separated into the basic state ( ¯̄T, ¯̄S),
representing a uniform vertical gradient, and a departure (T, S) from it. Our focus
is on finger-favourable background stratification ( ¯̄Tz > 0, ¯̄Sz > 0). The governing
Boussinesq equations of motion are expressed in terms of perturbations T and S.
To reduce the number of controlling parameters, the system is non-dimensionalized,
using l = (kTν/gα ¯̄Tz)

1/4, kT/l, l2/kT and ρ0νkT/l2 as the scales of length, velocity,
time and pressure respectively. Here, (kT, kS) denote the molecular diffusivities of
heat and salt, and ρ0 is the reference density used in the Boussinesq approximation.
The expansion/contraction coefficients (α, β) are incorporated in (T, S), and α ¯̄Tzl is
used as the scale for both temperature and salinity perturbations. As a result, the
governing equations reduce to

∂T
∂t
+ v · ∇T +w=∇2T,

∂S
∂t
+ v · ∇S+ w

¯̄Rρ
= τ∇2S,

1
Pr

(
∂

∂t
v+ v · ∇v

)
=−∇p+ (T − S)k+∇2v,

∇ · v= 0,

(2.1)

where ¯̄Rρ = α ¯̄Tz,dim/β
¯̄Sz,dim is the background density ratio (the subscript dim hereafter

denotes dimensional quantities), τ = kS/kT is the diffusivity ratio, Pr = ν/kT is
the Prandtl number, v = (u, v,w) is the velocity vector and k is the vertical unit
vector. Much of the discussion in this study concerns the dynamics of fine-scale
flow components, operating on scales greatly exceeding the typical size of individual
fingers. These fine-scale quantities will be indicated using single overbars. For
quantitative analyses of simulations in this paper, we use a more specific operational
definition of (T̄, S̄, v̄) as the horizontal averages across the model domain.

The non-dimensional formulation (2.1) suggests that, for a given fluid, the
evolution of double-diffusive systems is largely controlled by the density ratio.
Therefore, double-diffusive theory ascribes the utmost significance to the ratio of the
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The flux-gradient laws in double-diffusive convection 37

background gradients of temperature and salinity, rather than to their individual values.
Accordingly, the vertical diffusivities used in the formulation of the flux-gradient
laws (1.1), both dimensional and non-dimensional, are often assumed to be uniquely
determined by the fine-scale density ratio R̄ρ = T̄z/S̄z:{

KT,dim =KT(R̄ρ)kT,

KS,dim =KS(R̄ρ)kT .
(2.2)

The assumed form (2.2) of the flux laws appears to be relevant and physical for
configurations where the spatial variability in mean gradients is limited to long
wavelengths, which greatly exceed the nominal salt-finger scale. In such gently
varying systems, the mean patterns (T̄, S̄) can be locally approximated by the
corresponding linear gradients ( ¯̄T, ¯̄S). This suggests, in light of (2.1), that the key
transport characteristics are determined by R̄ρ ≈ ¯̄Rρ . However, this physical argument
may not be applicable to relatively small-scale phenomena, where the spatial extent
of stratification non-uniformity is comparable to the finger scale.

In addition to the governing equations (2.1), which are relevant for all spatial and
temporal scales, we also consider the one-dimensional (z) parametric model, which
describes the evolution of mean components (T̄, S̄). This parametric system is based
on the flux-gradient laws (1.1) and assumes that the vertical diffusivities are uniquely
determined by the local fine-scale density ratio as indicated in (2.2). Of particular
interest in our investigation are the conditions for its applicability and failure. In terms
of our non-dimensional units, it reduces (e.g. Radko 2003; Traxler et al. 2011) to

∂T̄
∂t
=− ∂

∂z
FT = ∂

∂z

(
KT(R̄ρ)

∂T̄
∂z

)
= ∂

∂z

(
Nu
∂T̄
∂z

)
,

∂ S̄
∂t
=− ∂

∂z
FS = ∂

∂z

(
KS(R̄ρ)

∂ S̄
∂z

)
= ∂

∂z

(
Nu
γ

∂T̄
∂z

)
,

(2.3)

where Nu=KT =KT,dim/kT is the Nusselt number and γ = αFT,dim/βFS,dim = FT/FS =
KT R̄ρ/KS is the flux ratio, both of which are assumed to be uniquely determined by
the fine-scale density ratio. We emphasize, however, that the aforementioned problem
of flux-law failure is not caused by this, rather conventional, assumption. Even if the
diffusivities of flux-gradient laws were instead expressed as functions of individual
mean gradients KT,S =KT,S(T̄z, S̄z), these laws would still exhibit the same unphysical
behaviour at small scales. Therefore, we focus our inquiry on the failure conditions
of the simpler system (2.3).

While the Rρ-dependent form of vertical diffusivities in (2.2) and flux laws in (2.3)
is widely accepted and heavily used in all branches of double diffusion, questions
could be raised with regard to their generality. In particular, it is implicit in the
governing equations (2.1) that double-diffusive transport may also be sensitive to the
spatial scales of the mean T–S gradients. Examining the conditions and ramifications
of the failure of the flux-gradient laws is the major objective of our study.

2.2. Instability of the flux-gradient laws
In order to assess the merits and limitations of the parametric system (2.3), we first
review its linear stability properties (Walsh & Ruddick 2000; Radko 2003). The
net fine-scale stratification (T̄, S̄) is therefore separated into the linear background
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0
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FIGURE 1. Dependence of the flux ratio (γ ) on the density ratio (Rρ).

gradients ( ¯̄T, ¯̄S) and the weak perturbation (Tf , Sf ). The parametric system is
then linearized for (Tf , Sf ) � 1 and its stability is analysed using normal modes
(Tf , Sf )= (T̂, Ŝ) exp(imz+ λt), which results in the growth-rate equation

(
λ

m2

)2

+
(
λ

m2

)(
ANu +Nu( ¯̄Rρ)− AγNu( ¯̄Rρ) ¯̄Rρ −

¯̄RρANu

γ ( ¯̄Rρ)

)
− AγNu2( ¯̄Rρ) ¯̄Rρ = 0,

(2.4)
where

ANu = ¯̄Rρ ∂Nu
∂R̄ρ

∣∣∣∣
R̄ρ=¯̄Rρ

and Aγ = ¯̄Rρ ∂γ
−1

∂R̄ρ

∣∣∣∣
R̄ρ=¯̄Rρ

. (2.5a,b)

The form of the growth-rate equation indicates that the stability of perturbations
does not depend on their vertical scale. A decrease in the vertical scale (larger m)
increases the magnitude of the growth rate, but does not change the sign of Re(λ).
The normalized growth rate λnorm= λ/m2, and hence the stability or instability of our
system, is determined by the coefficients of (2.4) and, ultimately, by the background
density ratio ¯̄Rρ .

Particularly significant is the sign of Aγ . Theoretical arguments and numerical
simulations (Schmitt 1979a,b; Radko 2003; Stellmach et al. 2011) indicate that
the γ (R̄ρ) dependence is non-monotonic. As the density ratio increases from unity,
the flux ratio first decreases, as shown in figure 1, reaches a minimum value (at
R̄ρ = Rρ,min) and then starts to increase. For the background density ratios in the
range 1 < ¯̄Rρ < Rρ,min, the free coefficient of the quadratic equation is negative
(Aγ > 0), which implies that there are two real roots of opposite sign. The existence
of a positive root means that the basic uniform gradient is unstable. It can also be
shown that, under certain unrestrictive assumptions, the flux-gradient laws are stable
for ¯̄Rρ > Rρ,min.

The reason why the uniform gradient is stable for some values of ¯̄Rρ but unstable
for others becomes more apparent from inspection of the parametric density equation,
which is readily obtained by subtracting S and T equations in the flux-gradient
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(a)

(b)

FIGURE 2. Schematics illustrating the stability properties of a uniform finger-favourable
stratification. (a) The destabilizing tendency due to negative diffusivity of density. (b) The
stabilizing effect of variable Rρ-dependent diffusivity.

form (2.3):
∂ρ̄

∂t
= ∂

∂z

(
Kρ

∂ρ̄

∂z

)
=Kρ

∂2ρ̄

∂z2
+ ∂Kρ

∂R̄ρ

∂R̄ρ
∂z

∂ρ̄

∂z
. (2.6)

The diffusivity of density Kρ in (2.6) is related to (KT,KS) as follows:

Kρ = KT(R̄ρ)R̄ρ −KS(R̄ρ)
R̄ρ − 1

, (2.7)

which implies that Kρ is uniquely determined by the fine-scale density ratio.
Equation (2.6) indicates that the growth or decay of small-amplitude perturbations
to the uniform stratification is controlled by the competition between adverse effects
represented by the two terms on its right-hand side. The diffusive term Kρ ∂

2ρ̄/∂z2

is always destabilizing. Double diffusion is driven by the release of potential energy
from the background stratification – the light upper part of the water column becomes
lighter, and the heavy lower part becomes even heavier. Therefore, the eddy diffusivity
of density (Kρ) is negative, which should have a destabilizing effect on smoothly
stratified regions of the ocean (e.g. Schmitt 1994). The physical reasons are illustrated
in figure 2(a). Consider a perturbation to the uniform density stratification (solid
curve), which locally increases the density gradient at z = 0. If the density ratio
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plays a lesser role than the density gradient in terms of controlling variability of
the vertical density flux (−Kρ ∂ρ̄/∂z), then the downward density flux at z= 0 (Fρ2)
would tend to exceed that in the regions above (Fρ1) and below (Fρ3). The associated
flux divergence patterns result in a density decrease (increase) in the z > 0 (z < 0)
region, which reinforces the original perturbation, as indicated in figure 2(a). This
instability is expected ultimately to produce the step-like stratification suggestive of
oceanic thermohaline staircases.

The origin of the negative-diffusivity hypothesis can be traced to the heuristic
arguments put forward by Phillips (1972) and Posmentier (1977) for one-component
turbulent fluids. In the Phillips–Posmentier model, the density equation – the
counterpart of (2.6) – takes the following form:

∂

∂t
ρ̄PP =− ∂

∂z
FPP
ρ (ρ̄

PP
z )=−

∂FPP
ρ

∂ρ̄PP
z

ρ̄PP
zz , (2.8)

where superscript PP refers to the Phillips–Posmentier formulation. The vertical flux
is assumed to be determined by the density gradient and (2.8) is expected to produce
unstable solutions as long as ∂FPP

ρ /∂ρ̄
PP
z > 0. The physical parallels of this idea

with the negative-diffusivity mechanism for double diffusion are apparent. In both
cases, the instability is triggered by variation in vertical transport with the density
gradient. A significant caveat in this analogy is that the density flux in one-component
turbulent fluids is generally directed upwards, whereas the double-diffusive flux is
downwards. Nevertheless, both systems produce similar flux convergence patterns in
response to changes in density stratification, and the dynamical illustration of the anti-
diffusive mechanism (figure 2a) can be readily adapted for the Phillips–Posmentier
configuration. Given the destabilizing tendency of negative-density diffusion in (2.6),
the explanations based on the Phillips–Posmentier paradigm at first glance come
across as a good fit to the thermohaline layering problem.

The major concern with regard to the negative-diffusivity mechanism is that
staircases in the finger-favourable regions of the world’s oceans are not very common.
Even in the controlled setting of laboratory experiments, fingering convection
often maintains smooth vertical stratification (e.g. Krishnamurti 2003). These
observations suggest the existence of some dynamic process capable of neutralizing
the destabilizing tendency of the negative-diffusivity effect. The likely candidate
is the variation of density diffusivity with R̄ρ , represented by the second term
on the right-hand side of (2.6). The mechanics of the variable-density-ratio effect
is illustrated in figure 2(b), which shows a perturbation to the uniform density
stratification (solid curve) that locally increases the density ratio at z= 0. In regions
above and below this level, the density ratio is lower, and therefore the temperature
and salinity gradients are more density-compensated. Thus, density is relatively
homogeneous in z< 0 and z> 0 regions but stratified at z≈ 0. Note that the intensity
of double diffusion rapidly decreases with increasing R̄ρ , as does |Kρ|. Thus, if the
density ratio plays a greater role than the density gradient in terms of controlling
the vertical density flux (−Kρ ∂ρ̄/∂z), then the downward density flux would be
less at z = 0 (Fρ2) than in the regions above (Fρ1) and below (Fρ3). As a result,
the initially step-like distribution gradually relaxes towards the linear background
stratification, as indicated in figure 2(b). The winner of the competition between the
(destabilizing) negative-diffusivity and (stabilizing) variable-diffusivity mechanisms is
ultimately determined by the background density ratio. Salt-finger staircases generally
tend to form in the ocean for relatively low density ratios ( ¯̄Rρ 6 1.7), for which the
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negative-diffusivity effect is expected to dominate. Our subsequent analyses will be
focused on this layering-favourable parameter range.

The foregoing discussion draws attention to the potential risks that are inherent in
the widespread attempts (e.g. Schmitt 1994; Ruddick 1997; Kelley et al. 2003) to
adopt the one-component Phillips–Posmentier conceptualization to double-diffusive
layering. The Phillips–Posmentier model captures only one aspect of the problem
– the ρz effect (figure 2a). The second key dynamical element – the Rρ effect
(figure 2b) – is fundamentally double-diffusive and has no counterpart in one-
component systems. It acts against the ρz effect and can easily control the evolution
of double-diffusive systems for typical oceanic conditions. Therefore any physical
analysis of thermohaline layering has to explore both degrees of freedom in
double-diffusive systems – T̄z and S̄z or, equivalently, ρ̄z and R̄ρ .

2.3. The point-of-failure scale
In order to test the parametric flux-gradient theory and, in particular, to quantify its
range of validity, we first turn to DNS. Layering DNS still represent a considerable
computational challenge, particularly in the oceanographic (heat–salt) context. The
key difficulty is the wide range of spatial and temporal scales that require adequate
resolution. The scale of salt dissipation is less than the scale of heat dissipation
by a factor of τ−0.5 ∼ 10 and the scale of heat dissipation is, in turn, much less
than the typical step height in the staircase. These computational constraints place
three-dimensional (3D) layering DNS for the heat–salt parameters beyond the reach
of modern computers. Numerical modellers have two options: either to compromise
on the governing parameters, using a diffusivity ratio that is higher than the heat–salt
value, or to resort to two-dimensional (2D) simulations. On a positive note, neither
approach leads to qualitative inconsistencies. As discussed in Stern et al. (2001)
and Radko (2008), the use of a moderate diffusivity ratio is not expected to alter
the fundamental physics of salt fingering, as long as τ remains significantly less
than unity. The 3D simulations tend to elevate vertical fluxes by a factor of 2 or
so relative to the corresponding 2D simulations. However, on the qualitative level,
all major double-diffusive phenomena appear to be adequately represented by 2D
models.

In this study we pursue both approaches. We use 2D simulations to focus directly
on the oceanographically relevant parameters (Pr, τ ) = (7, 0.01). To ensure that
our conclusions are not compromised by neglecting fundamentally 3D effects, we
supplement our 2D simulations by 3D runs in a computationally accessible regime
(τ = 0.1). We assume periodic boundary conditions in each spatial direction and
integrate the governing equations (2.1) using the dealiased pseudospectral method
(e.g. Stern et al. 2001; Stellmach et al. 2011). The accuracy of simulations in this
study was ascertained by reproducing selected runs with doubled spatial resolution,
which resulted in minimal (3 % or less) changes in the equilibrium T–S fluxes.
Inspection of the salinity variance spectra confirmed that the salt dissipation scale is
fully resolved.

Each of the following experiments has been initiated by the state at rest, perturbed
by the small-amplitude fundamental harmonic

(T1, S1)= (AT0, AS0) sin(2πz/H), (2.9)

where H is the vertical extent of the computational domain. The amplitude of this
harmonic (AT, AS) was recorded throughout the experiment, and its variation in time
was used to infer the growth rate of layering instability.
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(a)

(b)

(c)

z

z

z

FIGURE 3. (Colour online) Three-dimensional DNS of fingering convection. The
instantaneous temperature fields are shown at various times in the left panels and the
horizontally averaged temperature profiles are on the right. The experiment is performed
for ¯̄Rρ = 1.1 and the vertical extent of the domain is H = 400.

Figures 3 and 4 present some typical 3D experiments performed for the numerically
accessible parameters (Pr, τ , ¯̄Rρ) = (7, 0.1, 1.1). The first simulation (figure 3) was
carried out in the computational domain of size 400 × 400 × 400, which, assuming
stratification typical for the mid-latitude thermocline, corresponds to dimensional
values of 4 m× 4 m× 4 m. The evolutionary pattern is illustrated in a sequence of
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(a)

(b)

(c)

FIGURE 4. (Colour online) The same as in figure 4, but the vertical extent is H = 150.
The change in H alters the stability properties of the system.

temperature snapshots (left panels) and the corresponding horizontally averaged total
temperature profiles T̄(z) (right panels) for t = 44, 143 and 255 (figure 3a–c). This
experiment revealed that the initially introduced fundamental harmonic perturbation
grows monotonically, at a rate consistent with the prediction of the gamma-instability
theory (2.4), and ultimately transforms the initial stratification into a well-defined
two-layer system. The simulation in figure 4 is identical to that in figure 3, except
that the vertical scale is reduced to H= 150. However, the outcome of this experiment
is dramatically different – the system does not evolve into the two-layer configuration.
Instead, the initially introduced perturbation gradually decreases and the system
relaxes to the linear background stratification. This result directly contradicts the
flux-gradient model (2.4), which predicts that the growth rate should increase with
the increasing perturbation wavenumber m= 2π/H.

The effects revealed by 3D simulations are also realized very clearly in two
dimensions. The 2D simulations carry an obvious benefit of numerical efficiency,
which allows us to use the oceanographically relevant diffusivity ratio (τ ) and affords
a more complete exploration of the parameter space (Rρ,H). It should also be noted
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z

(a)

(b)

(c)

z

z

x x x

FIGURE 5. (Colour online) Two-dimensional DNS. The experiment is performed for
¯̄Rρ = 1.5 and H = 400. (a) The instantaneous temperature fields at various times. (b) The
corresponding salinity fields. (c) Enlarged views of the square areas marked in (b).

that sheared environments favour formation of salt sheets aligned in the direction of
the background shear (Linden 1974; Kimura & Smyth 2007), in which case salt-finger
dynamics become effectively 2D. It is perhaps ironic that, since large-scale shears
are ubiquitous in the ocean, salt fingers may be better represented by 2D than by 3D
simulations.

Figure 5 presents a typical 2D simulation in the unstable regime. The governing
parameters are (Rρ, Pr, τ ) = (1.5, 7, 0.01), the domain size is 400 × 400 and the
numerical mesh contains (Nx,Nz)= (6144, 6144) grid points. Figure 5 illustrates the
wide range of dynamically active scales in fingering convection and the associated
numerical complications. The salinity texture (panels b) contains much finer scales
than the corresponding temperature patterns (panels a). The requirement to resolve
these minute salinity filaments (enlarged views of which are shown in panels c)
dramatically increases the computational expense of fingering simulations and
precludes 3D simulations in the same parameter range as shown in figure 5.

As expected from flux-gradient theory, the initially introduced perturbation (2.9)
grows exponentially and eventually transforms the flow pattern into a system
consisting of two well-mixed layers separated by a thin high-gradient interface
(figure 5). To provide a quantitative comparison between DNS and the flux-gradient
theory, the numerical growth rate was computed from the best exponential fit to the
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temperature amplitude record AT(t) of the fundamental harmonic:

Afit(t)= Afit(0)+ Â[exp(λnumt)− 1]. (2.10)

The growth rate estimated from the fit (2.10) for the experiment in figure 5 is

λnum = 1.664× 10−3, (2.11)

representing a dimensional amplification time scale of approximately one week.
To evaluate the corresponding theoretical prediction (λtheor), we use the growth-rate

equation (2.4). The coefficients of (2.4) have been determined through a series of
DNS, simulating salt fingers in uniform gradients for density ratios in the range 1.15<
¯̄Rρ < 1.95. It was found that the equilibrium fluxes in these simulations can be closely
approximated by the following analytical expressions:

FS ≈ aS√
¯̄Rρ − 1

+ bS, (aS, bS)= (136.9,−105.13),

γ ≈ aγ exp(bγ ¯̄Rρ)+ cγ , (aγ , bγ , cγ )= (4.752,−3.318, 0.59),
Nu= γFS.

(2.12)

The general form of the proposed parametrization was suggested by heuristic
arguments in Radko (2008) and Radko & Smith (2012). Since the parametrization
(2.12) was derived using simulations for relatively low density ratios, it is not
expected to capture the non-monotonic character of the flux ratio (figure 1), for
which the minimum occurs at Rρ min∼ 4 (Schmitt 1979a). The flux pattern for ¯̄Rρ > 2
is of secondary importance since, in this regime, finger-induced transport in the ocean
is weak and has very limited impact on the large-scale dynamics.

The flux-gradient model assumes that mixing dependences deduced from linear-
gradient simulations are also applicable to the local fine-scale conditions in
inhomogeneous stratification and can be used to parametrize Nu(R̄ρ) and γ (R̄ρ).
Therefore, ANu and Aγ were evaluated using (2.12). The positive root of (2.4) for
¯̄Rρ = 1.5 is

λnorm = λm2
= 6.348. (2.13)

For the experiment in figure 5 (m= 2π/H= 0.0157, ¯̄Rρ = 1.5), the expression (2.13)
translates to λtheor = 1.565× 10−3, which agrees with the numerically inferred growth
rate (2.11) to within 6 %.

The success of the flux-gradient theory in predicting the growth rate for the
experiment in figure 5 is not surprising. The vertical scale of the amplifying mode
is relatively large (H = 400) and therefore clear scale separation exists between this
mode and the scale of individual fingers (d∼10). The question that arises at this point
is whether similar agreement can be expected for smaller values of H. To address
this concern, a series of eight simulations has been performed in which the height
of the computational domain was set to H = 50, 100, 150, . . . , 400. In other respects,
these simulations were analogous to the DNS in figure 5. For each experiment, the
initial perturbation was represented by the fundamental harmonic. The growth rate
λnum was calculated from the exponential fit (2.10) of the time record of its amplitude
AT(t) during the period of linear growth. The numerical growth rates are plotted
in figure 6(a,b) along with the theoretical prediction λtheor = λnorm(2π/H)2, where
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FIGURE 6. (a) The growth rates of layering modes diagnosed from DNS (indicated
by plus signs) are plotted as a function of the perturbation wavelength along with the
theoretical prediction based on the flux-gradient theory. (b) The same as in (a) but the
growth rate is plotted on the logarithmic scale (only the positive growth rates are shown).
The flux-gradient theory is fully consistent with DNS for large wavelengths (H > 250)
but fails for small ones (H < 250). (c) The difference in the growth rates predicted by
the flux-gradient model and diagnosed from DNS is plotted as a function of wavenumber
m = 2π/H in logarithmic coordinates, along with the straight line with the slope
corresponding to a power law 1λ∝m4.
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λnorm is given by (2.13). The results are suggestive: for H > 250, the flux-gradient
theory is successful in predicting the numerical growth rates, but its performance
dramatically deteriorates for H 6 200. For H 6 150, the flux-gradient theory even fails
to correctly predict the sign of the growth rate. Figure 6(c) plots the deviation of the
theoretical prediction from the numerical results, 1λ = |λnum − λtheor|, as a function
of the wavenumber m in logarithmic coordinates. The data points in figure 6(c)
tend to align along the straight line corresponding to 1λ∝ m4. This specific pattern
in the error growth with increasing wavenumbers is significant and will guide the
modification of flux-gradient models aimed at correcting their unphysical behaviour
at small scales (§ 6).

The instances of the applicability or failure of the flux-gradient model are
remarkably consistent across the full range of parameters ( ¯̄Rρ,H) considered in
this study. The scale separation between fingers and gamma-instability modes by
approximately a factor of 20 appears to constitute both a necessary and sufficient
condition for the adequate performance of the model. However, the mechanisms
responsible for the failure of the flux-gradient laws at small scales are poorly
understood, and a predictive analytical theory for the point-of-failure scale Hpof

is missing. The flux-gradient laws themselves are internally consistent and provide no
guidance with regard to their range of validity. Therefore, we turn to an alternative
framework for the analysis of layering instability based on the techniques of
multiscale analysis. The multiscale model holds the promise of conceptualizing
the point-of-failure effect due to its explicit treatment of the interactions between
fingers and larger layering modes.

3. Layering instability as a multiscale problem

In addition to the flux-gradient model reviewed in § 2, spontaneous layering in
salt-finger favourable stratification can be described using multiscale methods. Our
layering model is analogous to the multiscale models of collective instability (Holyer
1981, 1985) and thermohaline interleaving (Radko 2011). It also bears resemblance
to the multiscale analyses of mixing in one-component flows (Balmforth & Young
2002, 2005) and to models illustrating spontaneous generation of planetary-scale
flows by mesoscale variability (Manfroi & Young 1999, 2002). The starting point for
such analyses is the choice of the periodic small-scale pattern, which is frequently
represented by the Kolmogorov solution – the steady sinusoidal background flow. The
steady state is maintained by introducing into the governing equations a synthetic
external forcing term, conforming to the chosen background pattern (Meshalkin &
Sinai 1961; Sivashinsky 1985).

In this study, we also use the Kolmogorov-based approach. For simplicity,
we consider the 2D flow, although the extension to three dimensions is fairly
straightforward. The governing equations (2.1) are augmented by adding the forcing
function and written in 2D form as follows:

∂T
∂t
+ J(ψ, T)+ ∂ψ

∂x
=∇2T + fT,

∂S
∂t
+ J(ψ, S)+ 1

¯̄Rρ
∂ψ

∂x
= τ∇2S+ fS,

∂

∂t
∇2ψ + J(ψ,∇2ψ)= Pr

[
∂

∂x
(T − S)+∇4ψ

]
+ fM,

(3.1)
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where ψ is the streamfunction, J(a, b) = (∂a/∂x)(∂b/∂z) − (∂a/∂z)(∂b/∂x) is the
Jacobian, and (fT, fS, fM) is the forcing term. The basic state is taken in the form of
vertical salt fingers, so-called elevator modes:

Tbg = T̂bg sin(kx),
Sbg = Ŝbg sin(kx),
ψbg = ψ̂bg cos(kx),

(3.2)

where k corresponds to the fastest-growing finger mode in the unforced system (kmax).
The fastest-growing wavelength clearly dominates the pattern of fully developed
fingers (Gargett & Schmitt 1982; Stern et al. 2001; Traxler et al. 2011). Therefore,
solutions based on the fastest-growing mode offer a much more realistic and physical
representation of salt fingering than, for instance, the elevator mode with zero growth
rate (k = k0). The latter truly steady solution has also been used as a background
pattern for earlier multiscale expansions (e.g. Holyer 1981, 1985). However, for the
layering problem considered herein, the advantages of focusing a multiscale analysis
on the fastest-growing mode (k= kmax) are critical. The arguments presented in Radko
(2003), and reviewed in § 2, suggest that double-diffusive layering is highly sensitive
to the variation in the flux ratio with the density ratio. The fastest-growing finger
model (Schmitt 1979a) is able to capture the flux ratio pattern realized in numerical
(e.g. Radko & Smith 2012) and laboratory (e.g. Schmitt 1979b) experiments with
surprising accuracy. On the other hand, the model based on the elevator mode with
zero growth rate completely misrepresents the flux ratio pattern, which precludes its
use in multiscale analyses of layering.

Another notable feature of the presented model is related to the microscale
instability of our background pattern. Most multiscale models assume stable
background patterns (e.g. Gama, Vergassola & Frisch 1994; Novikov & Papanicolau
2001; Legras & Villone 2009). In such cases, the maintenance of a steady state
amounts to the prevention of its gradual dissipation, which is readily accomplished
by adding the corresponding forcing function to the governing equations. In our case,
the background pattern is unstable, and therefore the forcing function is introduced to
arrest its growth. The physical interpretations of these two types of forced systems,
stable and unstable, are also subtly different. In the former case, the forcing represents
the ultimate source of small-scale variability that may be difficult or otherwise
undesirable to incorporate in the model formulation. In the present model, the source
of variability – the primary salt-finger instability – is introduced explicitly and the
forcing function represents processes that are involved only in the equilibration of its
linear growth.

The equilibration dynamics of salt fingers was most recently considered by Radko
& Smith (2012), who attributed the saturation of primary fastest-growing modes to the
nonlinear adverse action of their secondary microscale instabilities. Importantly, even
after its equilibration, the fastest-growing mode continues to dominate the microscale
T–S patterns. The fact that this mode remains statistically steady implies that, on
average, its linear growth is balanced by the corresponding k = kmax components
of the nonlinear tendency terms in the governing equations. Furthermore, since the
fastest-growing mode dominates the equilibrium (T, S, ψ) distribution, the balancing
nonlinear terms should also be dominated by the same harmonic (k = kmax). In the
present multiscale model, these nonlinear equilibrating processes are represented by
forcing functions (fT, fS, fM).
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The explicit expression for the equilibrating forcing function is obtained by
requiring the background pattern (3.2) to be steady, which results in

fT = [k2T̂bg − kψ̂bg] sin(kx),

fS =
[
τk2Ŝbg − k

¯̄Rρ
ψ̂bg

]
sin(kx),

fM = [k(Ŝbg − T̂bg)− k4ψ̂bg] cos(kx).

(3.3)

We are interested in the asymptotic stability of the basic state (3.2) with respect to
slow, horizontally uniform, long-wavelength perturbations. This is accomplished by
separating the dependent variables into the steady background field of salt fingers
(Tbg, Sbg, ψbg) and a weak perturbation (T ′, S′, ψ ′). Linearization of the governing set
(3.1) about the basic state yields:

∂T ′

∂t
− ψ̂bgk sin(kx)

∂T ′

∂z
− T̂bgk cos(kx)

∂ψ ′

∂z
+ ∂ψ

′

∂x
=∇2T ′,

∂S′

∂t
− ψ̂bgk sin(kx)

∂S′

∂z
− Ŝbgk cos(kx)

∂ψ ′

∂z
+ 1
¯̄Rρ
∂ψ ′

∂x
= τ∇2S′,

∂

∂t
∇2ψ ′ − ψ̂bgk sin(kx)

∂

∂z
∇2ψ ′ − ψ̂bgk3 sin(kx)

∂ψ ′

∂z
= Pr

[
∂

∂x
(T ′ − S′)+∇4ψ ′

]
.

(3.4)
Next, new spatial and temporal variables (Z, t0) are introduced, which are related to
the original variables as follows:

Z = εz, t0 = ε2t, (3.5a,b)

where ε= d/L is the expansion parameter representing the difference in spatial scales
of primary (fingering) and secondary (layering) instabilities – d and L, respectively.
On short spatial scales, we impose the same periodicity as in the basic flow and
derivatives in the linearized system (3.4) are replaced as follows:

∂

∂t
→ ε2 ∂

∂t0
,

∂

∂z
→ ε

∂

∂Z
. (3.6a,b)

To examine the interaction of the homogeneous salt-finger field with large scales in
the asymptotic limit ε� 1, we search for solutions in terms of a series in ε:

(T ′, S′, ψ ′)= (T0, S0, ψ0)+ ε(T1, S1, ψ1)+ ε2(T2, S2, ψ2)+ · · · . (3.7)

Equations (3.6) and (3.7) are substituted in (3.4), terms of the same order in ε are
collected, and the resulting hierarchy of equations is sequentially solved until a closed
explicit solution is found as detailed below.

Our focus is on the evolution of large-scale flows, and therefore it is natural to
open the expansion with the long-wavelength horizontally uniform perturbations in
temperature and salinity. The zero-order balances of the governing equations demand
that there be no additional terms with variation on the short spatial scale in (T0, S0)
and therefore {

T0 = T0(Z, t0),

S0 = S0(Z, t0).
(3.8)
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The interaction of the large-scale modes with the basic field results in the appearance
of T–S modes proportional to sin(kx), but modulated vertically at long scales, and
of the associated streamfunction modes proportional to cos(kx). Thus, the first-order
solution is sought in the following form:T1 = T1B(Z, t0) sin(kx),

S1 = S1B(Z, t0) sin(kx),
ψ1 =ψ1A(Z, t0) cos(kx).

(3.9)

Substituting (3.9) in the first-order balance of (3.4) makes it possible to express the
first-order components in terms of zero-order quantities:

T1B =
ψ̂bg

(
(k4τ ¯̄Rρ − 1)

∂T0

∂Z
+ ¯̄Rρ ∂S0

∂Z

)
k(τk4 ¯̄Rρ + τ ¯̄Rρ − 1)

,

S1B =
ψ̂bg

(
−∂T0

∂Z
+ ∂S0

∂Z
¯̄Rρ(1+ k4)

)
k(τk4 ¯̄Rρ + τ ¯̄Rρ − 1)

,

ψ1A =
ψ̂bg

(
∂S0

∂Z
− τ ∂T0

∂Z

)
¯̄Rρ

τk4 ¯̄Rρ + τ ¯̄Rρ − 1
.

(3.10)

The solution sought is obtained at the second order. When the O(ε2) components of
system (3.4) are averaged in x and (3.10) is used to simplify the result, we arrive at

∂T0

∂t0
= aT

∂2T0

∂Z2
+ bT

∂2S0

∂Z2
,

∂S0

∂t0
= aS

∂2T0

∂Z2
+ bS

∂2S0

∂Z2
,

(3.11)

where
aT = 1− ψ̂

2
bg(1− τk4 ¯̄Rρ)+ T̂bgψ̂bgkτ ¯̄Rρ

2(τk4 ¯̄Rρ + τ ¯̄Rρ − 1)
, bT =

ψ̂2
bg
¯̄Rρ + kψ̂bgT̂bg

2(τk4 ¯̄Rρ + τ ¯̄Rρ − 1)
,

aS =−
ψ̂2

bg + τkψ̂bgŜbg
¯̄Rρ

2(τk4 ¯̄Rρ + τ ¯̄Rρ − 1)
, bS = τ +

kψ̂bgŜbg
¯̄Rρ + ψ̂2

bg
¯̄Rρ(1+ k4)

2(τk4 ¯̄Rρ + τ ¯̄Rρ − 1)
.

(3.12)

System (3.11) represents a closed set of equations written entirely in terms of rescaled
spatial and temporal variables (Z, t0). At this point, the multiscale analysis is complete
and we can safely return to the original variables (z, t) by inverting transformation
(3.5). The stability of the resulting system is analysed using normal modes,

(T0, S0)= (T̂0, Ŝ0) exp(λmst) sin(mz), (3.13)

which produce the growth-rate equation

λ2
ms,norm + λms,norm(aT + bS)+ (aTbS − aSbT)= 0, (3.14)
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where λms,norm= λmsm−2 is the normalized growth rate. According to (3.12) and (3.14),
λms,norm is determined by the background pattern and is independent of m. Therefore,
the dependence of the growth rate on the vertical wavenumber takes a simple quadratic
form

λms = λms,normm2. (3.15)

The growth-rate equation (3.14) suggested by the multiscale theory is structurally
analogous to its flux-gradient counterpart (2.4). The connection between the two
models, however, is not limited to their formal similarity. For instance, it is of
interest to examine the link between λms and the flux ratio pattern in the growing
layering modes (appendix A), which takes the form

λms = ∂γ

∂R̄ρ

¯̄Rρ(ŵbgŜbg − 2τ ¯̄Rρ)(T̂0 − ¯̄Rρ Ŝ0)

2(T̂0 − γbgŜ0)
m2, (3.16)

where ŵbg is the amplitude of the vertical velocity in the background state (3.2),
γbg = T̂bg/Ŝbg is its flux ratio and ∂γ /∂R̄ρ is the variation of the flux ratio with
the density ratio in the linear normal mode (3.13). Equation (3.16) indicates
that perturbation growth in the multiscale model is possible only if the flux
ratio varies with the density ratio. Furthermore, extensive experimentation with
the multiscale model indicates that the coefficient of ∂γ /∂R̄ρ is negative for
background patterns that offer a qualitatively consistent representation of salt fingers
(0< T̂bg/Ŝbg < 1, (T̂bg, Ŝbg, ŵbg)=O(10), T̂bg/ŵbg < 0). Thus, layering instability of a
finger-favourable gradient in both models, flux-gradient and multiscale, is driven by
the gamma-effect – a decrease in the flux ratio with the density ratio.

Despite the direct connection between the flux-gradient and multiscale models, their
strengths and limitations differ considerably. The roles that these models play in the
theory of double diffusion are complementary. For instance, a clear advantage of the
multiscale model lies in its explicit representation of microscale dynamics, which
makes it possible to identify the point of breakdown of multiscale solutions at finite
values of ε = d/L. In contrast, the flux-gradient model by itself offers no clues with
regard to its range of validity. Therefore, in the next section we shall compare the
asymptotic (ε→ 0) multiscale model with its finite-amplitude counterpart to explain
the mechanisms of the point-of-failure effect.

4. Failure of the multiscale expansion
The essence of the multiscale model (§ 3) is the stability analysis of the background

fingering state (3.2) in the asymptotic limit ε→ 0. A natural way to determine the
accuracy of this expansion is through a comparison of the asymptotic solutions
with their finite-ε counterparts. For finite ε, the linear stability of the spatially
periodic system (3.2) has been analysed using two methods. We have considered a
Floquet-based technique in which normal modes are assumed to be harmonic in z
and represented in terms of Fourier series in x – see Holyer (1984) or Radko &
Smith (2012), where this method was applied to the salt-finger problem. The second
approach is based on the Fourier-truncated Galerkin projection of the following form:

T ′ = [T̃0 + T̃1 sin(kx)] exp(λt+ imz),
S′ = [S̃0 + S̃1 sin(kx)] exp(λt+ imz),
ψ ′ = ψ̃1 cos(kx) exp(λt+ imz).

(4.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

24
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.244


52 T. Radko

The Floquet-based and truncated solutions were found to be mutually consistent, and
therefore the following discussion is based on the much simpler truncated model
(4.1). One can easily recognize that the truncated system represents the immediate
generalization of the asymptotic (ε → 0) solutions in § 3. The key difference is
that the truncated model makes no assumption with regard to the magnitude of ε.
Hence, the deviation of the truncated solutions based on (4.1) from their asymptotic
counterparts (§ 3) can be used to evaluate the error of the multiscale model and to
identify its range of validity.

The eigenvalue equation for the truncated model is derived as follows: (i) the
truncated system (4.1) is substituted in the linearized equations (3.4), (ii) the
projections of the resulting equations onto the Fourier modes used in (4.1) are
determined, and (iii) the modal amplitudes (T̃0, T̃1, S̃0, S̃1, ψ̃1) are sequentially
eliminated. The result is the growth-rate equation that takes the form of the
fifth-degree polynomial

5∑
n=0

anλ
n = 0, (4.2)

whose coefficients are represented by algebraic expressions in terms of

an = an(m, k, T̂bg, Ŝbg, ψ̂bg,
¯̄Rρ, τ ). (4.3)

The solutions of the truncated model obtained for various parameters are structurally
similar to each other. A typical calculation is shown in figure 7, which presents the
solution of the growth-rate equation (4.2) as a function of vertical wavenumber
m (solid curves) along with the corresponding estimate of the growth rate based
on the multiscale model (3.14) indicated by the dashed curve. As expected, the
multiscale and truncated models agree closely for low values of m but diverge as
m increases. The pattern of the λ(m) relation predicted by the truncated model in
the Re(λ) > 0 region is characterized by two approximately symmetric branches,
which coalesce at the bifurcation point (mb, λb). Prior to coalescence (m<mb), both
branches are purely real, and after coalescence (m>mb), the growth rate attains large
imaginary component. The lower branch (indicated by the heavy curve) represents
the layering modes, dominated by horizontally uniform harmonics (T ′, S′)∝ exp(imz)
– the modes captured by the asymptotic analysis in § 3. The modes represented by
the upper branch (light curve) and its large-wavenumber extension (m > mb) have a
considerably different spatial structure. They are controlled by Fourier harmonics with
finite horizontal width (T ′, S′) ∝ sin(kx) exp(imz), and therefore these modes per se
are of limited interest in our investigation. However, analysis of the upper branch has
led us to useful inferences about the dynamics of layering modes as follows. The
maximum growth rate on the upper branch can be estimated by considering the limit
m→ 0, τ→ 0 of the growth-rate equation, which results in

λmax ≈ 4Pr

k2 ¯̄Rρ(1+ Pr)2
. (4.4)

Given the approximate symmetry of the two branches in figure 7, we estimate
the growth rate at the bifurcation point λb ≈ λmax/2. Furthermore, noting that at
the bifurcation point (mb) the asymptotic growth rate λms underestimates the value
suggested by the truncated model (λb) by approximately a factor of 2, we assume

λms,normm2
b ∼
λb

2
∼ Pr

k2 ¯̄Rρ(1+ Pr)2
. (4.5)
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FIGURE 7. A typical stability diagram for the basic state consisting of vertical 2D fingers
(3.2). This calculation is made for ( ¯̄Rρ, Pr, τ )= (1.5, 7, 0.01), the wavelength of the most
unstable mode is k = 0.8 and the amplitude of the background pattern (T̂bg, Ŝbg, ψ̂bg) =
(3.91, 6.52, 4.77) is inferred from the corresponding DNS. The dashed curve represents
the multiscale model, which assumes a significant scale separation between fingers and
layering modes. The solid curve represents a generalization of the stability analysis that
does not rely on scale separation; its portion corresponding to layering modes is indicated
by larger line width. The multiscale and generalized solutions are consistent for low
wavenumbers but diverge for large ones. No unstable layering solutions are found using
the generalized model for m>mb.

Finally, we note that the asymptotic and truncated models are qualitatively consistent
(within a factor of 2) over the interval 0< m< mb but become completely different
outside of it. Based on this assumption, we predict the wavelength (Hpof ) for the point
of failure of the asymptotic expansion using (4.5) as follows:

Hpof ∼ 2π

mb
∼ 2πk(1+ Pr)

√
¯̄Rρλms,norm/Pr. (4.6)

The analysis offered in this section leads to a plausible physical explanation for
the failure of the flux-gradient model at small scales and its dramatic manifestation
in terms of the ultraviolet catastrophe. We have argued that vertically elongated
salt fingers are linearly stable with respect to relatively short, horizontally uniform,
perturbations and therefore modes with H < Hpof are damped. Since the microscale
dynamics at such a detailed level are not represented by the flux-gradient model, it is
not surprising that it does not describe the short-wave stabilization effect. Likewise,
the multiscale model (§ 3), which, from the outset, assumes an asymptotically large
scale separation between layering modes and fingers, becomes equally unreliable
on finger scales. The DNS presented in § 2, on the other hand, are free from the
limitations of flux-gradient and multiscale models and therefore they reveal the
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short-wave stabilization very clearly (figures 4 and 6). Next, we proceed to estimate
typical values of the point-of-failure scale suggested by (4.6) and compare it with
that observed in DNS.

5. Validation of the point-of-failure theory
The prediction of the point-of-failure scale (4.6) is the key result of the analytical

theory. The combination of (3.14) and (4.6) makes it possible to evaluate Hpof for
any given amplitude of the background pattern (T̂bg, Ŝbg, ψ̂bg). However, in terms of
practical implementations, it is desirable to express Hpof in terms of more widely used
quantities that are directly accessible from field measurements, laboratory experiments
or simulations. For instance, it is straightforward to base our estimates on the salt flux
FS maintained by the basic state (3.2):

FS = Ŝbgŵbg sin2 kx= 1
2 Ŝbgψ̂bgk. (5.1)

Based on the existing observational and numerical evidence (e.g. Gargett & Schmitt
1982; Shen & Schmitt 1995), we assume that the representative wavenumber k and
the amplitude ratios (γbg= T̂bg/Ŝbg and γbg,ψ = ψ̂bg/Ŝbg) are adequately predicted by the
fastest-growing finger model (Schmitt 1979a). Therefore, the finger amplitude vector
(T̂bg, Ŝbg, ψ̂bg) is linked to FS through

Ŝbg ∼
√

2FS

kγbg,ψ
, T̂bg ∼ γbg

√
2FS

kγbg,ψ
, ψ̂bg ∼

√
2FSγbg,ψ

k
. (5.2a–c)

The salt flux can be deduced from various sources: laboratory experiments (e.g.
Schmitt 1979b), oceanographic field measurements (e.g. Schmitt et al. 2005; Bryden
et al. 2014), numerical simulations (e.g. Traxler et al. 2011) or even other analytical
models designed specifically to predict the equilibrium transport (e.g. Radko 2008;
Radko & Smith 2012).

For instance, an estimate of Hpof can be based on oceanographic measurements
of mixing in thermohaline staircases. In high-gradient interfaces of well-defined
staircases, double diffusion is apparently the dominant mixing process, which removes
any ambiguity in the interpretation of mixing data. However, since the analytical
model (§§ 3 and 4) assumes an effectively unbounded domain, a question can be
raised whether the local T–S diffusivities measured in relatively thin interfaces are
suitable for our purpose. While the convecting layers in staircases undoubtedly
influence the dynamics of interfaces, observations (e.g. Bryden et al. 2014) suggest
that the local diffusivities in interfaces are comparable to their smooth-gradient
counterparts. This proposition will also be supported and quantified by the numerical
models of staircases in § 6.

Reliable estimates of vertical transport are now available for the two major
salt-finger staircases, located in the Caribbean Sea (Schmitt et al. 2005) and in
the western Mediterranean (Bryden et al. 2014). Table 1 summarizes their typical
geometric characteristics, along with the corresponding estimates of the vertical salt
flux. The salt flux for the Caribbean staircase was obtained from the tracer release
experiment, and the western Mediterranean flux was inferred from the analysis of
the large-scale salinity budget. These fluxes were non-dimensionalized using the T–S
gradients in salt-finger interfaces as the basic state ( ¯̄Tz,dim,

¯̄Sz,dim), resulting in FS = 97
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Western Mediterranean Caribbean

Interfacial salinity gradient (p.s.u. m−1) 1.2× 10−3 0.05
Interfacial temperature gradient (◦C m−1) 5.1× 10−3 0.3
Overall salinity gradient (p.s.u. m−1) 0.95× 10−4 0.005
Overall temperature gradient (◦C m−1) 4.1× 10−4 0.03
Interface height (m) 6 2
Layer height (m) 75 20
FS,dim (p.s.u. m s−1) 5.3× 10−8 4.3× 10−7

FS 196 97
Rρ 1.3 1.6
Hpof 347 331

TABLE 1. Representative characteristics of two thermohaline staircases located in the
Caribbean and in the western Mediterranean. Based on the data in Kunze (2003), Schmitt
et al. (2005) and Bryden et al. (2014).

and FS=196 for the Caribbean and the western Mediterranean conditions, respectively.
Next, the point-of-failure scale was estimated using (3.14), (4.6) and (5.2), yielding
Hpof = 331 for the Caribbean and Hpof = 347 for the western Mediterranean. These
estimates are generally consistent with the point-of-failure scales deduced from the
DNS (figure 6). The observationally inferred values are slightly higher, but not more
than by a factor of 2. This is an encouraging result, given that both observational
estimates of fluxes and the theoretical model leading to (4.6) involve significant
approximations. Also suggestive is the finding that these calculations, obtained for
very dissimilar staircases, yield comparable values of Hpof . This can be interpreted as
evidence for the robust nature of the point-of-failure scale and its limited sensitivity
to environmental conditions.

Of course, the alternative – and the most convenient – way of estimating Hpof is
to use the numerically derived values of FS, which are available for a wide range
of density ratios by virtue of (2.12). The observational and numerical estimates of
the point-of-failure scale (4.6) are plotted in figure 8(a) as a function of ¯̄Rρ , which
shows that these two approaches are mutually consistent. The typical point-of-failure
scale deduced from observations is only slightly larger than its numerical counterpart
(figure 8a), and they both reveal the pronounced lack of variability in Hpof (

¯̄Rρ). As
the density ratio varies from 1.1 to 1.8, which covers all known instances of finger-
induced layering in the ocean, the point-of-failure scale changes by ∼15 %.

To be more systematic in assessing the accuracy of the predictions in figure 8(a),
we have performed a series of 48 DNS analogous to those in figures 5 and 6, with
various density ratios ( ¯̄Rρ = 1.2, 1.3, . . . , 1.7) and wavelengths (H= 50, 100, . . . , 400).
Each simulation was initiated with the small-amplitude fundamental harmonic (2.9).
Its growth rate was diagnosed from simulations (λnum) and then compared with the
corresponding growth rate (λtheor) suggested by the flux-gradient model (2.4). The ratio
λnum/λtheor is plotted as a function of ¯̄Rρ and H in figure 8(b). Despite some scatter
in the numerical data, it is clear that these results are generally consistent with the
point-of-failure theory (figure 8a). For relatively large scales (H > 300), the growth
rate is well represented (with the error less than 10 %) by the flux-gradient model. The
reduction in H to 200–250 leads to the rapid deterioration in the predictive capabilities
of the flux-gradient model. For H<150, the numerical solutions (in contrast with their
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FIGURE 8. (a) The point-of-failure scale Hpof suggested by theoretical arguments is plotted
as a function of the background density ratio. The calculations indicated by solid curve
(plus signs) use numerically (observationally) derived fluxes. (b) The quality assessment
of the flux-gradient laws. The ratio of the layering growth rates diagnosed from DNS and
evaluated using the flux-gradient theory are plotted as a function of the density ratio and
the vertical wavelength. Only positive values are shown. Both theory (a) and DNS (b)
indicate that the flux laws are reasonably accurate for H > 250 but fail for H < 250
regardless of the density ratio.

flux-gradient counterparts) are characterized by the decay of perturbations. Another
prominent feature of the diagnostics in figure 8(b), which is also consistent with the
point-of-failure theory, is the lack of systematic variation in λnum/λtheor with ¯̄Rρ . For
all density ratios considered, H∼ 200–300 appears to represent the universal threshold
for the validity of the flux-gradient model.

The systematic failure of the flux-gradient laws at small scales raises the question
of whether they can be altered in a way that would capture the observed (figures 6
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and 8b) stabilization of high wavenumbers. In the following section, we consider a
simple model of this nature.

6. Flux-gradient-aberrancy laws
6.1. Formulation and calibration

An obvious candidate for selective damping of high wavenumbers is biharmonic
diffusion. As suggested by Radko (2005) the flux-gradient model (2.3) can be
modified as follows: 

∂T̄
∂t
=− ∂

∂z
FT = ∂

∂z

(
Nu
∂T̄
∂z

)
−µ∂

4T̄
∂z4

,

∂ S̄
∂t
=− ∂

∂z
FS = ∂

∂z

(
Nu
γ

∂T̄
∂z

)
−µ∂

4S̄
∂z4

,

(6.1)

where the biharmonic coefficient µ depends on the background density ratio.
Relatively large scales are mostly unaffected by the inclusion of biharmonic terms,
but small ones rapidly decay. The inclusion of the fourth-order derivatives in the
model formulation is consistent with the observation (figure 6c) that the error of
the flux-gradient model in predicting the layering growth rate increases with the
wavenumber as ∝m4. The expressions for vertical fluxes (FT, FS) in the model (6.1)
now include components of two types: those determined by the first derivatives of
T̄ and S̄ (gradient terms) and by their third derivatives (aberrancy terms). Therefore,
this formulation will be referred to hereafter as the flux-gradient-aberrancy laws.

Some justification for introducing flux laws in this form can be derived from the
following argument. First, we note that in the most general form, we expect double-
diffusive fluxes at any location z0 to be controlled by the large-scale T–S patterns in
its immediate vicinity. This pattern can be reconstructed, within any desired accuracy,
using the Taylor series expansion:

T̄(z)= T̄(z0)+ ∂T̄
∂z

∣∣∣∣
z=z0

(z− z0)+ ∂2T̄
∂z2

∣∣∣∣
z=z0

(z− z0)
2

2
+ · · · . (6.2)

Hence, it follows that a series of derivatives evaluated at any given point uniquely
determine the double-diffusive transport at that location:
FT = FT(∂T̄/∂z, ∂2T̄/∂z2, . . . , ∂ S̄/∂z, ∂2S̄/∂z2, . . .). In essence, the flux-gradient laws,
which assume that fluxes are controlled by ∂T̄/∂z and ∂ S̄/∂z, simply ignore the
contribution of the second and higher derivatives in the Taylor series (6.2). Thus, the
simplest generalization of the flux-gradient law takes the following form:

FT =
N∑

n=1

CTn
∂nT̄
∂zn

, FS =
N∑

n=1

CSn
∂nS̄
∂zn

, (6.3a,b)

where coefficients CTn and CSn depend on the density ratio. The next step is based
on the axiomatic statement that reversing the direction of the z-axis has no physical
consequences for the evolution of any physical system. Therefore, any consistent flux
law should be invariant with respect to the transformation

(z, FT, FS)→ (−z,−FT,−FS). (6.4)
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In order for the series in (6.3) to satisfy the invariance (6.4) at all spatial locations
and instants of time, their even coefficients should be zero:

CTn =CSn = 0, n= 2, 4, . . . . (6.5)

Thus, the leading-order correction to the flux-gradient model involves not the second
derivative (the curvature term) but rather the third one (the aberrancy term). This
requirement is reflected in the design of the proposed flux-gradient-aberrancy laws
(6.1).

It has recently come to the author’s attention that a similar formulation has also
been proposed for one-component turbulent mixing (Ruddick 2014). In that study, the
aberrancy term was shown to emerge as a result of Gaussian smoothing over the
scale of relevant turbulent eddies, effectively eliminating the ultraviolet catastrophe
in the Phillips–Posmentier model. It remains to be seen whether the same principle
can be adapted for double-diffusive mixing. The successful generalization would offer
yet another, perhaps even more physical, argument in support of the double-diffusive
flux-gradient-aberrancy laws.

The biharmonic model has been used in the past to surmount numerical difficulties
associated with the singularity of the double-diffusive flux-gradient laws as m→∞
(Radko 2005; Radko et al. 2014). However, until now, there has been no guidance
with regard to the choice of the aberrancy coefficient µ. As a result, there has been no
assurance that the flux-gradient-aberrancy model damps the relevant range of scales.
The numerical exploration of the small-scale damping effect in this study, combined
with its theoretical rationalization (§§ 4 and 5), opens an attractive opportunity to
specify the aberrancy coefficient. The intent in this section is to offer the community
a complete – calibrated and tested – closure for modelling of double-diffusively
driven fine-scale variability.

The calibration of the new flux laws is based on the linear stability analysis of
system (6.1), which results in the following growth-rate equation:

λ2 + λm2[ANu +Nu( ¯̄Rρ)− AγNu( ¯̄Rρ) ¯̄Rρ − ¯̄RρANu/γ (
¯̄Rρ)− 2µm2] − AγNu2( ¯̄Rρ) ¯̄Rρm4

+µm6[ANu +Nu− ANu
¯̄Rρ/γ ( ¯̄Rρ)− AγNu( ¯̄Rρ) ¯̄Rρ +µm2] = 0. (6.6)

Equation (6.6) represents a generalization of the corresponding flux-gradient equation
(2.4) to include selective damping of high wavenumbers; setting the biharmonic
coefficient µ to zero makes the two equations identical. The key differences between
solutions based on the flux-gradient and flux-gradient-aberrancy models are illustrated
in figure 9. Here we plot the largest growth rates obtained using (2.4) and (6.6) as a
function of vertical wavelength for µ= 3000. The two models are close for H> 300,
but the agreement rapidly deteriorates for smaller wavelengths. Importantly, the flux-
gradient-aberrancy model offers an adequate description of the DNS-based estimates
(figure 6) at all scales – something that the flux-gradient laws fail to accomplish.

The series of DNS in figure 8(b), as well as the supporting analytical arguments in
§ 4, indicate that the range of validity of the flux-gradient model is rather insensitive
to the background density ratio. For all values of ¯̄Rρ , the growth rate changes sign at
H0 ≈ 150. This observation makes it possible to evaluate the relevant values of µ by
insisting that (λ,m)= (0, 2π/H0) satisfies the growth-rate equation (6.6). The resulting
estimate of µ is plotted as a function of ¯̄Rρ in figure 10. The biharmonic coefficient
rapidly decreases with the density ratio and can be approximated by the exponential
relation

µ= aµ exp(bµ ¯̄Rρ), (aµ, bµ)= (4.433× 104,−1.696), (6.7a,b)

as shown in figure 10.
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FIGURE 9. The growth rate of layering modes (λ) as a function of their wavelength (H).
The solid curve represents the estimate obtained using the flux-gradient-aberrancy law (6.1)
with µ= 3000 and the corresponding estimate obtained using the flux-gradient model (2.3)
is indicated by the dashed curve. The two estimates are consistent for long wavelengths
but rapidly diverge as H decreases.
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FIGURE 10. Calibration of the biharmonic coefficient µ. For each value of ¯̄Rρ , the
coefficient µ is evaluated by insisting that the layering growth rate λ is zero for H= 150
(regardless of the density ratio). The resulting dependence (solid curve) is plotted along
with the empirical approximation (6.7) indicated by the dashed line.

6.2. One-dimensional modelling
It is of interest to examine some one-dimensional (z) numerical solutions based
on the flux-gradient-aberrancy model. Our governing equations are represented
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z

z

(a)

(b)

FIGURE 11. One-dimensional solutions of the flux-gradient-aberrancy model (6.1). (a) The
evolution of temperature profile in the experiment with ¯̄Rρ = 1.5, µ= 3480 and H = 300.
(b) The experiment in (a) is reproduced with H = 100. The reduction in vertical extent
dramatically alters the stability characteristics of the system.

by (6.1) for regions susceptible to fingering (∂ρ̄/∂z< 0), whereas for convective
conditions (∂ρ̄/∂z> 0) we assume uniform and equal diffusivities of heat and salt
(KT = KS = 5000). The resulting system was integrated numerically in time using the
pseudospectral method described and used by Radko (2005). Figure 11(a) presents
an experiment initiated by a small-amplitude fundamental harmonic with wavelength
H = 300. As expected, the perturbation grows monotonically at the rate consistent
with gamma-instability theory, eventually transforming the system into two well-mixed
convecting layers separated by thin fingering interface. The equilibrium thickness of
the interface in this simulation is h = 51. A very different scenario is realized in
the experiment shown in figure 11(b). The experimental set-up is the same as in
figure 11(a), but the wavelength is significantly lower: H = 100. In this case, the
initial perturbation rapidly decays and the final state represents a uniformly stratified
temperature and salinity stratifications.
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FIGURE 12. Diagnostics of one-dimensional simulations using the flux-gradient-aberrancy
model (6.1). The equilibrium thickness h of fingering interface is plotted as a function of
the assumed biharmonic coefficient µ in logarithmic coordinates.

A largely unresolved problem in the theory of double-diffusive convection concerns
the equilibrium thickness of fingering interfaces in thermohaline staircase. Our simple
one-dimensional model offers some insight into the selection of the interfacial
thickness h. Figure 12 presents the values of h diagnosed from a series of simulations
in which the biharmonic coefficient was systematically varied from µ = 250 to
µ=8000. All simulations were initiated by two initially homogeneous layers separated
by a discontinuous interface. In time, the interfaces diffused to equilibrium values.
The interfacial thickness in each experiment was defined as h=1T/max(T̄z), where
max(T̄z) is the maximal temperature gradient (typically found at the centre of an
interface) and 1T is the temperature difference between the well-mixed layers. The
results in figure 12 suggest a distinct, rapidly increasing, dependence of h on µ. The
numerical data points align in the logarithmic coordinates along a straight line, which
indicates that the h(µ) relation can be accurately approximated by the simple power
law

h= ahµ
bh, (ah, bh)= (2.03, 0.40). (6.8a,b)

The exponent of this power law is somewhat different from bh = 1/2, which could
have been expected from the structure of the flux-gradient-aberrancy equations (6.6).
The difference in the exponents is likely to be the result of processes involved in the
interaction between fingering and convective regions. Extrapolation of (6.8) to small
values of µ implies that the interfacial thickness inexorably reduces to zero in the
limit µ→ 0. This, in turn, suggests that the processes controlling interfacial thickness
are closely related to the point-of-failure effect.

Finally, it behooves us to compare the structure and dimensions of fingering
interfaces predicted by the flux-gradient model with the corresponding simulations
and field measurements. Therefore, figure 13(a) presents the mean temperature profile
for the DNS in figure 5. This profile was obtained by averaging the DNS-generated
temperature fields in x and t over the period following the formation of a well-defined
step and its statistical equilibration. This profile is close to the corresponding
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FIGURE 13. (a) Comparison of the final mean temperature profile realized in the DNS
experiment shown in figure 5 (dashed curve) with the corresponding prediction of the
flux-gradient-aberrancy model (solid curve). (b) The vertical profiles of the gradient
(solid curve) and aberrancy (dashed curve) components of the temperature flux in the
flux-gradient-aberrancy model.

prediction of the flux-gradient-aberrancy model, also shown in figure 13(a). The
agreement is particularly impressive in the interior of the interface, implying that the
model is highly successful in predicting the interfacial gradients. Some quantitative
differences can be observed near the edges of the interface, which suggests that the
flux-gradient-aberrancy models can be further improved to capture the dynamics of
the matching regions, separating the finger zones from the adjacent convecting layers.

Figure 13(b) presents the vertical distribution of the two flux components, i.e. the
gradient flux FT,g = −Nu ∂T̄/∂z and the aberrancy flux FT,a = µ∂3T̄/∂z3. These
components vary in a compensating manner, since in the equilibrated state their
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FIGURE 14. One of the temperature profiles taken through the Caribbean staircase during
the Salt Finger Tracer Release Experiment (modified from figure 1(a) in Schmitt et al.
(2005)).

sum is vertically uniform. The largest variability is associated with the transition
from fingering to convective regimes at the edges of the interface. It is interesting
that, despite the utmost significance of the aberrancy term for interfacial dynamics,
numerically the average vertical fluxes in interfaces are clearly dominated by their
gradient components. For the calculation in figure 13, the ratio of the average
gradient temperature flux in the interface to the corresponding aberrancy flux is
〈FT,g〉/〈FT,a〉 ≈ 6.6. The gradient/aberrancy flux ratio is even larger for salinity:
〈FS,g〉/〈FS,a〉 ≈ 23.2. These findings suggest that the heat and salt diffusivities
evaluated locally in relatively thin interfaces are comparable to the diffusivities
realized in effectively unbounded gradients for the same values of R̄ρ .

Finally, we attempt to validate the flux-gradient-aberrancy model using oceanographic
observations. The following comparison is based on a typical vertical temperature
profile (figure 14) taken through the Caribbean staircase during the Salt Finger Tracer
Release Experiment (Schmitt et al. 2005). Figure 14 presents the profile section at
the 250–350 m depth range, which contains five well-defined steps (data courtesy of
Ray Schmitt). In order to compare the model prediction with these observations, we
have run five one-step simulations using the flux-gradient-aberrancy model – one for
each interface in figure 14. In these calculations, the background field ( ¯̄Tz,dim,

¯̄Sz,dim)
was defined based on the parameters of a region extending from the centre of the
mixed layer above the simulated interface to the centre of the layer below. Each
simulation was initiated by homogeneous layers separated by a discontinuous jump
in temperature and salinity. The initial stage of each simulation was characterized
by the vertical spreading of interfaces due to the action of the aberrancy term. The
time integrations were carried on until the systems reached full equilibration. For
ease of comparison, the final steady states of these simulations were referenced to
the depth and temperature of the corresponding observations and plotted together
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FIGURE 15. Temperature patterns in the observed interfaces shown in figure 14 (dashed
curves) are compared with the corresponding predictions of the flux-gradient-aberrancy
model (solid curves).

in figure 15. The agreement of the flux-gradient-aberrancy model with observations
is understandably worse than with the DNS (figure 13a) but still encouraging. In
all simulations the interfacial thickness is systematically underestimated, albeit only
by a factor of 2 or less. This difference should not necessarily be attributed to the
deficiencies of the flux-gradient-aberrancy model, since the oceanic environment is
home to many processes that the model is not meant to represent. These elements
include mechanically generated turbulence due to overturning internal waves, strong
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shears, and active mesoscale and sub-mesoscale variability, all of which could lead
to thickening of the observed interfaces.

Finally, it should be noted that the system (6.1) is written in terms of non-
dimensional variables and the system of non-dimensionalization is based on the
overall background gradients. Therefore, our flux model is implicitly non-local – the
dimensional transport values at given depth depend not only on the local conditions
but also on the mean background stratification. It is not clear whether the assumed
non-locality is realistic or whether it represents an artifact of the model formulation.
Therefore, in appendix B we present a purely local, albeit somewhat more complicated,
version of the flux-gradient-aberrancy model (6.1).

7. Discussion

The most common and, so far, the most effective approach to the analysis
of secondary double-diffusive structures – staircases, thermohaline intrusions and
collective instability waves – is based on the application of flux-gradient laws, which
assume a unique relation between the finger-driven T–S transport and vertical property
gradients. Models based on flux-gradient laws adequately describe the dynamics of
large-scale (relative to individual fingers) phenomena. However, such models are
known to develop unphysical behaviour at small scales, which severely limits their
implementation and predictive capabilities.

The objective of this study is two-fold: (i) the formulation of an explicit analytical
model for the point of failure of the flux-gradient laws and (ii) the development of an
alternative mixing parametrization, capable of representing secondary double-diffusive
phenomena at all scales. The specific problem chosen for the analysis of the point-
of-failure effect and for testing new parametrizations is that of spontaneous layering
in a uniform finger-favourable stratification. This choice is easy to justify: the failure
of flux-gradient laws at small scales is most evident for the layering problem and
its consequences are profound. Layering solutions, obtained using the flux-gradient
model, suffer from ultraviolet catastrophe – an unbounded increase in the growth
rates of unstable modes with decreasing wavelength. While it is generally accepted
that finger/layer scale separation is essential for the applicability of the flux-gradient
laws, the quantification of this requirement, particularly from first principles, is
problematic. The key difficulty here is that the flux-gradient laws themselves offer no
guidance with regard to their range of validity. Therefore, we have also examined the
layering problem using the techniques of multiscale analysis based on the Kolmogorov
background state, representing a series of vertically oriented salt fingers.

The multiscale and flux-gradient models are analogous in many respects. However,
owing to its explicit character, the multiscale model makes it possible to identify
the range of scales where the lack of scale separation has an adverse impact on the
model’s fidelity. This is accomplished by comparing asymptotic multiscale solutions
with their finite-amplitude counterparts, which make no assumption about the scale
separation. The significant difference between the two models at small scales is
interpreted as a sign that the lack of scale separation between fingers and layering
modes affects the system dynamics. This criterion is used to establish the range of
validity for the flux-gradient models. Our theory suggests that the effects associated
with the proximity of finger and layering scales come into play at wavelengths of
Hpof ∼ 200–300, with rather limited variation in Hpof with the background density ratio.
In dimensional units, evaluated for typical stratification in the mid-latitude thermocline,
this estimate corresponds to Hpof ,dim ∼ 2.5 m. These theoretical inferences have been
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supported by a series of DNS (§ 5), which indicate that, for scales exceeding Hpof ,
the growth rates evaluated with the flux-gradient theory closely match the numerically
derived counterparts. For H<Hpof , the flux-gradient model becomes largely irrelevant.

Of course, the interest in the multiscale double-diffusive model is not limited to
the assessment of the applicability of the flux-gradient laws. Perhaps an even broader
theoretical significance of multiscale analyses lies in their ability to adequately
represent a remarkably wide range of layering phenomena. Multiscale solutions have
been used to conceptualize dynamics of planetary jets, generated and maintained by
mesoscale variability (Manfroi & Young 1999, 2002), layering forced by small-scale
turbulence in stratified one-component fluids (Balmforth & Young 2002, 2005),
thermohaline interleaving driven by lateral property gradients (Radko 2011) and, in
this study, the formation of double-diffusive staircases. Their ability to explain the
physics of such dissimilar systems is truly remarkable, and this investigation is yet
another testament to the power and generality of multiscale modelling. The multiscale
double-diffusive model captures such subtle effects as the control of thermohaline
layering by the variation in flux ratio and the selection of the point-of-failure scale.
In contrast, the Phillips–Posmentier anti-diffusive mixing model – another commonly
used conceptualization – is surprisingly limited in representing the dynamics of
double-diffusive layering (§ 2.1).

The theoretical model in § 4 also offers important insights into the specific
mechanisms responsible for the failure of the flux-gradient laws. It suggests that
the system of vertically elongated fingers becomes linearly stable with respect to
horizontally uniform modes at sufficiently small scales. This small-scale stabilization
effect is not captured by flux-gradient models, which are not designed to explicitly
reflect the microscale dynamics of salt fingers. As a result, they erroneously predict
the rapid growth of small-scale modes. While this explanation is plausible and our
theoretical estimates of the point-of-failure scale are consistent with simulations, it is
possible that other mechanisms could also play a role in the failure of flux-gradient
laws. For instance, the model of layering in one-component flows (Balmforth,
Llewellyn Smith & Young 1998) emphasizes the significance of the interplay between
the buoyancy stratification and the turbulent kinetic energy. These dynamics result in
the delayed response of the vertical fluxes to changes in stratification and ultimately
stabilize modes with small wavelength. Undoubtedly, certain delay in the adjustment
of fluxes is bound to occur in double-diffusive systems as well and it is not captured
by the extant flux-gradient laws. This deficiency could also potentially contribute to
their failure at small scales.

A more constructive and practical objective of this study is to offer a simple
remedy for extant double-diffusive parametrizations – the flux-gradient-aberrancy
laws (6.1). These laws incorporate, in addition to gradients, dependence on the
third-order derivatives of large-scale properties (the aberrancy terms), which removes
the aforementioned limitations of flux-gradient parametrizations. The aberrancy
coefficient µ was calibrated by requiring that the model solutions be consistent with
layering DNS and with the point-of-failure theory. We show that the one-dimensional
layered solutions obtained using the flux-gradient-aberrancy laws capture the main
features of oceanic thermohaline staircases. For instance, one of the unresolved
questions in the staircase theory concerns the thickness of fingering interfaces,
sandwiched between well-mixed convecting layers. Our numerical experiments with
the flux-gradient-aberrancy model indicate that the interfacial thickness is directly
controlled by the aberrancy terms, becoming infinitesimally small in the limit µ→ 0.
These terms represent the point-of-failure effect, manifested by selective damping of
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relatively small scales. Hence, we propose that the interfacial thickness is set by a
balance between two adverse processes: convective overturning in the mixed layers,
which acts to reduce the size of the fingering zone, and the tendency of the interface
to spread vertically due to the aberrancy effect.

This possibility leads to an interesting and unorthodox suggestion that the interfacial
thickness in thermohaline staircases is ultimately set by the point-of-failure scale
(Hpof ) – the subject of our current investigation. Our preliminary attempts to apply
these ideas to oceanic staircases are encouraging. For instance, we can assume that
the non-dimensional interfacial thickness scales as h ∼ Hpof ∼ 300, as suggested by
DNS and by the point-of-failure theory (§§ 4 and 5). Upon dimensionalization, we
obtain hdim ∼ 2 m for the Caribbean staircase and hdim ∼ 6 m for the staircase in the
western Mediterranean. These numbers come tantalizingly close to the observations
summarized in table 1. The ideas advocated in this study imply that the thickness
of high-gradient interfaces in fully developed staircases is ultimately set by Stern’s
(1960) nominal finger scale l= (kTν/gα ¯̄Tz)

1/4 with a rather large prefactor (∼300).
Finally, it is emphasized that the problem of failure of the flux-gradient laws is

examined here on an important but perhaps somewhat special problem – spontaneous
layering in an initially homogeneous stratification. However, it is our belief that the
analysis presented here is of much broader relevance and that the proposed flux-
gradient-aberrancy laws can benefit the modelling of other fine-scale double-diffusive
processes. Testing this proposition is left for future studies.
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Appendix A. Gamma-effect in the multiscale model
The leading-order balances of the T–S equations for the linear growing modes

identified by the multiscale model of § 3 can be expressed as
λmsT0 + ∂

∂z
(FT,bg + F′T)= 0,

λmsS0 + ∂

∂z
(FS,bg + F′S)= 0,

(A 1)

where

FT,bg =− 1
2 T̂bgψ̂bgk− 1 and FS,bg =− 1

2 Ŝbgψ̂bgk− τ ¯̄Rρ (A 2a,b)

are the horizontally averaged fluxes of heat and salt associated with the background
state, and

F′T =−
1
2
(T̂bgψ1A + T1Bψ̂bg)k− ∂T0

∂z
and F′S =−

1
2
(Ŝbgψ1A + S1Bψ̂bg)k− τ ∂S0

∂z
(A 3a,b)

are the fluxes associated with the harmonic perturbation (3.13).
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After linearization, the flux ratio is written as

γ ≈ FT,bg + F′T
FS,bg + F′S

≈ γbg + γ ′, (A 4)

where

γbg = FT,bg

FS,bg
(A 5)

is the background flux ratio, and the perturbation takes the form

γ ′ = FT,bg

FS,bg

(
F′T

FT,bg
− F′S

FS,bg

)
. (A 6)

Similarly, we linearize the expression for the local, horizontally averaged, density ratio:

R̄ρ ≈
1+ ∂T0

∂z
1
¯̄R0

+ ∂S0

∂z

≈ ¯̄R0 + ¯̄R0

(
∂T0

∂z
− ¯̄R0

∂S0

∂z

)
. (A 7)

Combining (A 1) with (A 4) results in

λms(T0 − γbgS0)+ ∂γ
∂z

FS,bg = 0. (A 8)

In order to emphasize the link between the multiscale and flux-gradient theories, the
vertical derivative of the flux ratio in (A 8) is expressed in terms of its R̄ρ derivative
as

∂γ

∂z
= ∂γ

∂R̄ρ

∂R̄ρ
∂z
, (A 9)

which is further modified using (A 7) as follows:

∂γ

∂z
= ∂γ

∂R̄ρ
¯̄R0

(
∂2T0

∂z2
− ¯̄R0

∂2S0

∂z2

)
. (A 10)

Finally, combining (A 8) with (A 10), we arrive at

λms =− ∂γ
∂R̄ρ

¯̄RρFS,bg

(
∂2T0

∂z2
− ¯̄R0

∂2S0

∂z2

)
2(T0 − γbgS0)

. (A 11)

Equation (3.16), discussed in § 3, is obtained from (A 11) by expressing (T0, S0) in
terms of modal amplitudes and vertical wavenumber using (3.13).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

24
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.244


The flux-gradient laws in double-diffusive convection 69

Appendix B. The local version of the flux-gradient-aberrancy laws
The dimensional form of the flux-gradient-aberrancy laws (6.1) can be written as

∂T̄dim

∂tdim
= kT

∂

∂zdim

(
Nu(R̄ρ)

∂T̄dim

∂zdim

)
− kT

√
kTν

gα ¯̄Tz,dim

µ( ¯̄Rρ)∂
4T̄dim

∂z4
dim
,

∂ S̄dim

∂tdim
= kT

∂

∂zdim

(
Nu(R̄ρ)
γ (R̄ρ)

∂T̄dim

∂zdim

)
− kT

√
kTν

gα ¯̄Tz,dim

µ( ¯̄Rρ)∂
4S̄dim

∂z4
dim
,

(B 1)

which reveals that T–S fluxes are determined by both the local stratification and the
background gradients ( ¯̄Tz,dim,

¯̄Sz,dim). The obvious advantage of this system lies in
its simplicity – the linearity of the aberrancy term affords analytical and numerical
treatments of (B 1) that would be unsuitable for more complicated representations of
small-scale damping. However, the assumed dependence of the local transport on the
global characteristics of the system may appear somewhat counterintuitive. Therefore,
we also propose a straightforward adjustment of (B 1) that transforms it into a fully
local closure:

∂T̄dim

∂tdim
= kT

∂

∂zdim

(
Nu(R̄ρ)

∂T̄dim

∂zdim

)
− kT

√
kTν

gαT̄z,dim
µ(R̄ρ)

∂4T̄dim

∂z4
dim
,

∂ S̄dim

∂tdim
= kT

∂

∂zdim

(
Nu(R̄ρ)
γ (R̄ρ)

∂T̄dim

∂zdim

)
− kT

√
kTν

gαT̄z,dim
µ(R̄ρ)

∂4S̄dim

∂z4
dim
.

(B 2)

The distinction between (B 1) and (B 2) is limited to replacing the background
gradients in the aberrancy coefficient by the corresponding local values. Importantly,
this modification does not require recalibration of the aberrancy coefficient (6.7) since
this expression was obtained on the basis of numerical stability analyses of linear
mean T–S gradients.

However, important differences appear in the final nonlinear step-like solutions
obtained using local and non-local formulations. For instance, scaling analysis of
the non-local parametrization (B 1) for thin high-gradient interfaces (Radko 2005)
suggests that the interfacial fluxes are proportional to the cross-interfacial temperature
variation: FT,dim ∝ 1Tdim. This result obviously contradicts the well-known 4/3 flux
law (Turner 1967). The inconsistency between these results is not surprising. The
key assumption of Turner’s theory is that the fluxes are uniquely determined by the
cross-interfacial T–S jumps and are independent of (say) the thickness of convecting
layers. This assumption clearly does not hold for the non-local closure (B 1).

In order to examine whether the local parametrization (B 2) conforms to the 4/3 law,
we consider a fully equilibrated interface, in which case its gradient and aberrancy
components are compensating:

kT
∂

∂zdim

(
Nu(R̄ρ)

∂T̄dim

∂zdim

)
∼ kT

√
kTν

gαT̄dim,z
µ(R̄ρ)

∂4T̄dim

∂z4
dim
. (B 3)

Scaling (B 3) in terms of interfacial temperature variation 1Tdim and interfacial
thickness 1hdim yields

1Tdim

h2
dim
∝
√

hdim

1Tdim

1Tdim

h4
dim

→ hdim ∝1T −1/3
dim . (B 4)
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Using (B 4), we scale the cross-interfacial flux as follows:

FT,dim ∝ 1Tdim

hdim
∝1T 4/3

dim , (B 5)

arriving at the 4/3 flux law.
The consistency of (B 2) with Turner’s flux law should not be interpreted as a

sign of its superiority over the non-local form (B 1). The applicability of the 4/3
flux law to fingering interfaces is a controversial subject. Numerous attempts to
evaluate the exponent of the interfacial flux laws on the basis of numerical and
laboratory experiments have produced rather ambiguous results (see table 4.1 in
Radko 2013). The existing experimental and numerical evidence appears insufficient
to either confirm or rule out the 4/3 law for salt-finger interfaces, and its applicability
to the oceanic staircases is even more questionable (Kunze 1987). Given the current
uncertainties, it is perhaps reasonable to recommend utilizing a simpler non-local
closure.
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