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Direct numerical simulation of transition in a
sharp cone boundary layer at Mach 6:

fundamental breakdown
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Direct numerical simulations (DNS) were performed to investigate the laminar–
turbulent transition in a boundary layer on a sharp cone with an isothermal wall at
Mach 6 and at zero angle of attack. The motivation for this research is to make a
contribution towards understanding the nonlinear stages of transition and the final
breakdown to turbulence in hypersonic boundary layers. In particular, the role of
second-mode fundamental resonance, or (K-type) breakdown, is investigated using
high-resolution ‘controlled’ transition simulations. The simulations were carried out
for the laboratory conditions of the hypersonic transition experiments conducted
at Purdue University. First, several low-resolution simulations were carried out to
explore the parameter space for fundamental resonance in order to identify the cases
that result in strong nonlinear interactions. Subsequently, based on the results from
this study, a set of highly resolved simulations that proceed deep into the turbulent
breakdown region have been performed. The nonlinear interactions observed during
the breakdown process are discussed in detail in this paper. A detailed description of
the flow structures that arise due to these nonlinear interactions is provided and an
analysis of the skin friction and heat transfer development during the breakdown is
presented. The controlled transition simulations clearly demonstrate that fundamental
breakdown may indeed be a viable path to complete breakdown to turbulence in
hypersonic cone boundary layers at Mach 6.

Key words: boundary layer stability, high-speed flow, transition to turbulence

1. Introduction

Hypersonic flow is physically different from low-speed flow, characterized by
physical phenomena that become relevant only at high Mach numbers. For example,
the enormous aerodynamic heating imposed on the structure of flight vehicles
represents one of the main difficulties in the design and safe operation of hypersonic
vehicles (Haney 1983). At large Reynolds numbers, the boundary layer can be
turbulent and the aero-thermal loads are much increased compared to laminar
flow. Therefore, laminar–turbulent boundary layer transition has an important design
implication, especially also for the design of the thermal protection system (TPS).

† Email address for correspondence: jayahar@email.arizona.edu
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Due to the lack of reliable transition prediction tools for hypersonic flows, engineers
have used a rather conservative approach for designing the TPS, for example, by
assuming the boundary layers to be turbulent over the entire surface (see Berry,
Hamilton & Wurster 2006; Berry & Horvarth 2008). This conservative approach
results in an overly heavy and expensive TPS, thus reducing the range and/or payload
of hypersonic vehicles. Therefore, accurate estimates of the transition location are
of vital importance for the design of future hypersonic vehicles, because only then
can the aero-thermal loads and surface temperatures be adequately predicted. A TPS
design based upon the improved understanding of hypersonic transition, together with
reduced design margins, will ultimately lead to enhanced payload capabilities in the
next generation of hypersonic vehicles (e.g. next generation reusable launch vehicles
(RLV) or space access vehicles).

Transition to turbulence in hypersonic boundary layers is a major unresolved
topic in fluid dynamics. Even after many years of research, crucial aspects of
the transition physics are still unknown. This may be attributed in part to the
increased complexity of the physics when compared to transition in subsonic
boundary layers (see Balakumar & Malik 1992; Tumin 2007; Fedorov 2011). From
linear stability theory (LST) (Mack 1969, 1975, 1984), it is known that multiple
instability modes exist for high-speed boundary layer flows, in contrast to only
one mode (Tollmien–Schlichting, TS) for the subsonic or incompressible case. In
addition to the so-called first mode in supersonic/hypersonic boundary layers, higher
modes exist for supersonic/hypersonic boundary layers that result from an inviscid
instability mechanism. According to LST, for Mach 6 the most unstable of the
higher modes is the second mode. In contrast to the first modes, which have the
highest amplification rates for oblique waves, the second modes have the highest
amplification for two-dimensional or axisymmetric waves. Also from LST, it is
known that the first mode is dominant (higher amplification rates) for low supersonic
Mach numbers while for Mach numbers above 4 (hypersonic boundary layers) the
second mode is dominant. Due to the difficulties in carrying out hypersonic boundary
layer experiments (‘controlled’ experiments, in particular) and due to the existence of
multiple instability modes, the role and importance of the various instability modes in
a realistic transition process are not understood at all (see Schneider 2001, 2004). Of
course, when amplitudes of the various instability modes reach high enough levels,
nonlinear interactions of these modes can occur. As a consequence, the transition
process in hypersonic boundary layers is highly non-unique, which means that slight
changes in the disturbance environment or vehicle geometry may significantly alter
the transition process.

Direct numerical simulations (DNS) that capture part or all of the transition region
in hypersonic boundary layers, on the other hand, require very high grid resolution
and are therefore computationally very expensive. As a consequence, most of the
earlier experimental and numerical efforts have focused on the linear receptivity
(e.g. Maslov et al. 2001; Zhong 2001) process and the linear regime of boundary
layer transition (e.g. Demetriades 1960, 1977). Relatively little is known about the
late nonlinear stages of transition and, in particular, about the final breakdown to
turbulence. Due to the stabilizing effect of compressibility, the nonlinear transition
regime can cover a significant downstream extent of a hypersonic flight vehicle.
As a result, transition prediction tools based on the linear N-factor calculations
cannot estimate the actual transition ‘location’ accurately. Therefore, new transition
prediction tools, which also incorporate nonlinear transition physics, are crucially
needed for the development and safe operation of future high-speed flight vehicles.
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Hence, it is very important to understand the nonlinear stages of transition, including
the final breakdown to turbulence, in order to identify which nonlinear mechanisms
lead to fully turbulent flow and which do not. Therefore, accurate and reliable fully
resolved DNS of hypersonic boundary layer transition are essential for advancing our
understanding of hypersonic transition and for developing reliable transition prediction
tools.

Cones with circular cross-section represent a useful prototypical geometry for
investigating boundary layer stability and transition at high speeds (Schneider
2004). In fact, in many of the modern high-speed applications, the nose region
of the flight vehicle can be approximated as some sort of a cone. Boundary layer
stability investigations have been carried out for sharp cones since the 1970s (earlier
hypersonic measurements were for flat plates, Schneider 2004). Demetriades (1974,
1978) measured second-mode instabilities for 4◦ and 5◦ half-angle cones at Mach 8
using hot wires. Kendall (1975) also made hot-wire measurements of instabilities
for a 4◦ half-angle cone at Mach 8.5 and compared amplification rates with
theory. Both measurements and theory showed a dominance of the second-mode
instability waves. Among the early research efforts, the most detailed experiments on
hypersonic boundary layers on a circular cone are those of Stetson and co-workers
(Stetson et al. 1983, 1984, 1985, 1986, 1989; Stetson & Kimmel 1992, 1993) for a
7◦ half-angle cone at Mach 8. They have investigated the influence of nose radius,
unit Reynolds number, and transverse curvature for a cone boundary layer at Mach
8 in a conventional ‘noisy’ wind tunnel. They made detailed hot-wire measurements
and in all cases they found that the two-dimensional or axisymmetric second-mode
waves were the dominant instability waves. In their experiments streamwise amplified
second-harmonics were observed which is an indication of the presence of nonlinear
effects.

However, from these experiments it was still not clear what role the second-mode
waves play in the nonlinear stages of the transition process. Another major effort was
carried out at NASA Langley in the Mach 6 quiet tunnel (Lachowicz, Chokani &
Wilkinson 1996). In recent experiments, Maslov and co-workers (Bountin, Shiplyuk
& Sidorenko 1999; Shiplyuk et al. 2003; Maslov et al. 2006; Bountin, Shiplyuk &
Maslov 2008) investigated transition in a sharp cone boundary layer at Mach 6 in
a conventional tunnel. They perturbed the boundary layer using a glow discharge
actuator as a harmonic point source. Using the bi-coherence spectrum method (see
Chokani 1999, 2005) they concluded that the basic mechanism of nonlinear interaction
at the location of the maximum root-mean-square (r.m.s.) voltage fluctuation in a
Mach 6 cone boundary layer was a subharmonic resonance. However, poor spatial
and temporal resolution in the experimental data had made it difficult to confirm their
results. In those experiments, the nonlinear wave interactions are typically studied
by performing statistical analysis of the disturbance spectrum obtained at several
streamwise locations along the same azimuthal plane, e.g. the centreline plane (see
for example, Shiplyuk et al. 2003; Bountin et al. 2008). Hence, data are available
only for the frequency interactions and it is very difficult to identify the spanwise or
azimuthal modes involved in the nonlinear interactions.

Some of the first linear stability calculations for a cone boundary layer were
conducted by Malik (1984), Gasperas (1987) and Mack (1987). Malik (1984)
investigated a boundary layer on a sharp cone (5◦ half-angle) at zero angle of attack
for several supersonic Mach numbers. He did not consider the curvature terms for the
calculation of the mean-flow profiles and for the eigenvalue analysis. The mean-flow
conditions used in his calculations matched the flight experiments from Fisher &
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Dougherty (1982) (Mach 1.2, 1.35, 1.6 and 1.92) and the quiet tunnel experiments
by Beckwith et al. (1983) for Mach 3.5 (before shock). Malik (1984) showed that in
these low-free-stream disturbance experiments, transition could be predicted by the eN

method with N ranging from 9 to 11. This was confirmed by the experimental and
numerical studies by Chen, Malik & Beckwith (1988, 1989) for a sharp cone and
a flat plate at Mach 3.5. Gasperas (1987) and Mack (1987) investigated the linear
stability behaviour of disturbances in hypersonic boundary layers on sharp cones at
Mach 8 and compared their results to the Stetson experiments (Stetson et al. 1983).
Results of Gasperas (1987) and Mack (1987) obtained from LST did not agree well
with the experiments. This is probably due to the nonlinear effects in the experiments
since Stetson et al. (1983) used a conventional ‘noisy’ wind tunnel. However, the
experimental results confirmed that two-dimensional or axisymmetric instability waves
(second-mode waves) are the most unstable disturbances at Mach 8 (Mack 1987).

Many numerical investigations have focused on the nonlinear transition regime
of high-speed boundary layers. For example, Eissler (1995) performed simulations
for a boundary layer at Mach 4.8 under wind tunnel (so-called ‘cold’) conditions
and free-flight (so-called ‘hot’) conditions using a radiation-cooled wall model in an
attempt to estimate realistic heat fluxes on the wall during transition. His simulations
with an adiabatic and radiation-cooled wall revealed that the so-called oblique
breakdown (see for example Thumm 1991; Fasel, Thumm & Bestek 1993; Eissler &
Bestek 1996) is the strongest nonlinear mechanism for wind tunnel (‘cold’) conditions
at Mach 4.8. Under atmospheric (‘hot’) conditions, secondary three-dimensional waves
of a fundamental (K-type) breakdown (see Herbert 1988; Kachanov 1994) showed
significant amplitude levels only far downstream and a subharmonic resonance
(N-/H-type) could not be found. Due to limited computer resources available at
that time, Eissler (1995) was not able to perform K-type and N-/H-type breakdown
simulations for an isothermal wall. Several numerical investigations using DNS and
PSE have addressed the transition problem for the flow conditions of the Stetson
Mach 8 experiments (Stetson et al. 1983). Pruett & Chang (1995) and Pruett et al.
(1995) investigated several transition routes and found that subharmonic resonances
(N-/H-type) are an unlikely path to turbulence since the downstream extent of the
instability region of two-dimensional or axisymmetric waves is too short. Instead, they
conjectured that a second-mode oblique breakdown was responsible for transition in
the Stetson experiments. The steady vortices arising due to nonlinear interactions were
found to have a significant impact on the stability behaviour. Later, Fezer & Kloker
(2001) and more recently Husmeier & Fasel (2007) performed numerical simulations
to indentify the relevant breakdown mechanisms. Despite the considerable progress
that has been made towards building a fundamental understanding of the nonlinear
transition regime of hypersonic cone boundary layers many questions remain.

Most of the experimental and numerical investigations that addressed the nonlinear
transition regime for high-speed boundary layers (also discussed above) have focused
on particular transition scenarios, where the flow is perturbed with only a limited
number of waves (‘controlled’ scenario). However, in a natural ‘uncontrolled’ scenario,
the perturbation is composed of a large number of waves and therefore numerous
possibilities of nonlinear interactions exist. Hence, controlled transition can only
provide limited insight into the natural transition scenario. Therefore, in our previous
research we explored which nonlinear mechanisms may be dominant in a broad-band
disturbance environment for a sharp cone boundary layer at Mach 6. Towards this
end, a ‘natural transition’ scenario was modelled and investigated using wavepacket
disturbances, which were generated by a short-duration (localized) blowing and
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Flow parameters

Approach flow Boundary layer edge
Re/L (m−1) 10.5× 106 Ree/L (m−1) 13.6× 106

M (—) 6.0 Me (—) 5.35
T∗0 (K) 430.0 T∗e (K) 63.92

p∗0 (kPa) 1043.0

TABLE 1. Flow parameters used in the simulations presented in this paper (based on the
approach flow conditions in the cone experiments conducted in the Boeing/AFOSR Mach
6 quiet-flow tunnel at Purdue University (Casper et al. 2009; Alba et al. 2010)).

suction pulse (see Sivasubramanian et al. 2009; Sivasubramanian & Fasel 2010, 2012a,
2014). The three-dimensional wavepacket consists of a wide range of disturbance
frequencies and wavenumbers. Several DNS were performed for a hypersonic cone
boundary layer at Mach 6 with varying pulse amplitudes. First, using a low-amplitude
pulse the linear development of a wavepacket was investigated. The amplitude of the
pulse was then increased to investigate the nonlinear effects. These wavepacket
simulations provided strong evidence for the presence of a second-mode fundamental
and oblique breakdown mechanism. In addition, the wavepacket simulations have also
indicated a possible presence of a subharmonic resonance mechanism.

Due to the broad-band forcing of multiple frequencies and wavenumbers in the
wavepacket simulations, the nonlinear interactions between different wave components
are highly complex. Therefore, in order to determine which of these nonlinear
mechanisms were most relevant for the entire transition process, that is, determine
which of these mechanisms can indeed lead to a complete breakdown to turbulence
and to fully developed turbulent flow, it is necessary to perform simulations where
the initial number of possible nonlinear interactions is limited. Towards this end,
controlled transition simulations were performed where only a few specified modes
are forced. In particular, in the present paper the second-mode fundamental breakdown
mechanism is investigated for a cone boundary layer at Mach 6. An overview of the
computational set-up for the DNS is provided and discussed in § 2. In § 4, results
from several DNS are discussed. It is shown in detail how the fundamental secondary
instability develops, from the onset all the way through the late stages of transition
and into turbulence.

2. Physical problem and computational approach
The computational set-up is based on the experiments conducted in the Boeing/

AFOSR Mach 6 quiet-flow Ludwieg Tube at Purdue University by Schneider and
co-workers (Casper et al. 2009; Alba et al. 2010). The cone model used in the Purdue
experiments (see figure 1) has a half vertex angle of 7◦ and a cone length L∗ =
0.517 m. The nose radius of the cone is r∗nose = 0.05 mm and, therefore, the cone
can be considered a ‘sharp cone’. The approach flow has a Mach number of 6 and
a unit Reynolds number of 10.5× 106 m−1. The stagnation temperature and pressure
are 430 K and 1043 kPa, respectively (see Casper et al. 2009; Alba et al. 2010). A
summary of the flow parameters of the Purdue experiments is provided in table 1.
A schematic of the cone model with the computational domain and the boundary
conditions is shown in figure 2. The computational domain starts at x∗0= 0.112 m and,
thus, does not include the nose tip. The outflow boundary is located at x∗L = 0.6 m.
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FIGURE 1. Cone model used in the Purdue experiments (S. P. Schneider 2009, private
communication).

Flow

Inflow

Free stream

Outflow

Wall Azimuthal 
boundary

FIGURE 2. Cone model with the computational domain and boundary conditions. The
‘sharp’ cone has a nose radius of 0.05 mm and a semi vertex angle of 7◦.

A domain longer than the experimental cone model is used in the simulations in
order to accommodate a computational buffer domain. The buffer domain starts at
x∗= 0.58 m. The domain height was chosen to be y∗H= 0.123 m. The main simulation
parameters used for the results presented in this paper are provided in table 2.

2.1. Simulation strategy and initial condition
The simulation strategy for the simulations presented consists of three steps (see
figure 3). First, in a precursor calculation (step 1), using a finite-volume code
developed in our CFD laboratory by Gross & Fasel (2008, 2010), the steady
undisturbed basic flow around the entire axisymmetric cone geometry is computed
using a second-order-accurate discretization (see figure 3). Due to the low-order
accuracy this code is too diffusive to directly perform stability and transition
simulations with a reasonable number of grid points. Therefore, in the second
step, the steady basic flow obtained by the precursor calculation is used as an initial
condition for calculating a highly accurate basic flow using the high-order-accurate
finite-difference code, which was also developed in our laboratory by Laible,
Mayer & Fasel (2008, 2009). The computational domain (see figure 3) for the
high-order-accurate basic flow computation (in step 2) does not cover the entire flow
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Linear (low-amplitude) Parameter study High-resolution
simulations simulations

Domain size
x∗0 (m) 0.112 0.112 0.112
x∗L (m) 0.6 0.6 0.6
y∗H (m) 0.123 0.123 0.123
kc (cone section) (—) 0 60–130 100

Forcing location
x∗1 (m) 0.136 0.136 0.136
x∗2 (m) 0.140 0.140 0.140

Grid size (number of points)
nx (—) 1821 2391 6421
ny (—) 300 300 300
K (modes in z) (—) 1 5 48–128
nz (—) 1 9 95–255

Grid resolution
1t (—) 4.1483× 10−6 4.1483× 10−6 4.1483× 10−6

1x∗ (inflow) (m) 2.67× 10−4 2.69× 10−4 2.69× 10−4

1x∗ (outflow) (m) 2.67× 10−4 1.79× 10−4 5.39× 10−5

1y∗ (wall) (m) 4.1282× 10−6 4.1282× 10−6 4.1282× 10−6

TABLE 2. Main simulation parameters for the results presented in this paper.

around the cone because it is beneficial to focus all computational resources into the
region of interest, i.e. by starting the computational domain downstream of the nose
tip. Thus, in the high-order-accurate finite-difference code, the nose tip is not included.
However, the oblique shock emanating from the nose tip is included by placing the
free-stream boundary above the shock (see § 2.3). The basic flow (initialized using the
precursor results) has to be converged again, since the underlying numerical schemes
of the finite-volume code and the high-order-accurate finite-difference code have
different truncation errors. Finally, in the third step, the newly converged basic flow
serves as an initial undisturbed state for the unsteady simulations with a specified
disturbance input (see § 3) using the same high-order-accurate code. In the following
only the high-order-accurate finite-difference code used for steps 2 and 3 will be
discussed. For details regarding the finite-volume code used in step 1, see Gross &
Fasel (2008, 2010).

For stability and transition investigations it is imperative to have an accurate
undisturbed basic (undisturbed) flow field. For validation purposes, in figures 4
and 5, the streamwise velocity and temperature profiles obtained from the precursor
calculation using the finite-volume code and the high-order-accurate finite-difference
code are compared to Mangler-transformed (Mangler 1948) profiles calculated from
a flat-plate similarity profile. The profiles, plotted here for four different streamwise
locations, show excellent agreement. Note that the finite-volume code used for the
precursor calculation predicts the boundary layer profiles accurately and provides
a high quality initial condition for the simulations performed using the high-order
finite-difference code.
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(a)

(b)

0.80 1.05 1.30 1.55 1.80

0.80 1.05 1.30 1.55 1.80

FIGURE 3. (Colour online) Schematic of the strategy used for the simulations: (a)
precursor calculation; (b) high-order-accuracy DNS. Note that the computational domain
for the high-order simulation does not cover the entire flow. The contours shown here are
for density

2.2. Numerical method
The details of the high-order-accurate finite-difference code used here, along with
its continuing development, have been described in Laible et al. (2008, 2009),
Sivasubramanian et al. (2009), Sivasubramanian & Fasel (2010, 2011) and Laible
(2011). Therefore, only a short overview will be given here. The numerical method
is based on the three-dimensional Navier–Stokes equations, the continuity equation
and the energy equation for compressible flows in conical coordinates. For the
full set of governing equations in conical coordinates the reader is referred to e.g.
Sivasubramanian & Fasel (2012b). The so-called ‘spatial model’ is employed, so that
the disturbance waves can grow or decay in the downstream direction. This is in
contrast to the so-called ‘temporal model’, where the disturbances grow in time. For
a detailed discussion of the spatial versus temporal model for stability and transition
investigation see Fasel (1990).

The governing equations are integrated in time using the standard explicit
fourth-order Runge–Kutta method (Ferziger 1998). The spatial discretization is
mainly based on high-order-accurate standard central finite differences. In particular,
sixth-order central finite differences were used in the streamwise direction and
fourth-order central finite differences were used in the wall-normal direction to
discretize the derivatives of the viscous terms and the source term. The inviscid
fluxes are separated into an upwind flux and a downwind flux using van Leer’s
splitting (van Leer 1982). Then, grid-centred upwind differences (Zhong 1998) with
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Similarity profile
Finite-volume code
High-order code
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0
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)
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)

FIGURE 4. Comparison of streamwise velocity profiles computed by the precursor finite-
volume code, the high-order code and the Mangler-transformed flat-plate similarity profile
at several streamwise locations: (a) x∗= 0.100 m; (b) x∗= 0.200 m; (c) x∗= 0.300 m and
(d) x∗ = 0.400 m.

ninth-order accuracy are applied to evaluate the derivatives for these fluxes. In the
azimuthal direction, a pseudo-spectral discretization using fast Fourier transforms is
employed. Since high-order-accurate boundary closures may develop oscillations and,
hence, are usually unstable, special attention was given to the wall-next boundary
stencils. The present code employs a method suggested by Zhong & Tatineni (2003).
For further details see Laible (2011).

Note that if the high-order-accurate finite differences as described above were
used for the calculation of the shock, strong oscillations would be introduced into
the computational domain. Therefore, before the simulation, the shock position is
detected using the smoothness estimater for the pressure as suggested by Balsara &
Shu (2000). Also the order of accuracy of the wall-normal upwind-difference stencils
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1 2 3 4 5 1 2 3 4 5

1 2 3 4 51 2 3 4 5

0

Similarity profile
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High-order code
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FIGURE 5. Comparison of temperature profiles computed by the precursor finite-volume
code, the high-order code and the Mangler-transformed flat-plate similarity profile at
several streamwise locations: (a) x∗ = 0.100 m; (b) x∗ = 0.200 m; (c) x∗ = 0.300 m and
(d) x∗ = 0.400 m.

is decreased from ninth-order to first-order in the near-shock region in order to avoid
numerical oscillations. Since the shock is multiple boundary layer thicknesses away
from the wall and the gradients in the inviscid region are rather small, the higher
truncation error of the first-order stencils has no significant effect on the overall
accuracy of the scheme and the results. Hence, the instability modes are also not
affected by the inclusion of the shock.

2.3. Boundary conditions
The inflow (see figure 2) for hypersonic boundary layer simulations is separated into
two regions: a subsonic region (M< 1) close to the wall and a supersonic/hypersonic
region (M > 1) away from the wall. In the supersonic/hypersonic region, Dirichlet
conditions for u, v, w, T, p and ρ are specified (obtained in our case from a
precursor calculation, see § 2.1). For the subsonic region in the boundary layer,
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a special treatment is occasionally necessary for some applications to avoid undesired
reflections, e.g. non-reflecting boundary condition are used as suggested by Poinsot
& Lele (1992). However, for the simulations presented here, there was no evidence
of reflections at the inflow boundary, even when the Dirichlet conditions were also
applied for the subsonic region. Therefore, for the simulations presented in this
paper, Dirichlet conditions were prescribed at the inflow over the entire domain
height. On the cone surface, no-penetration (v = 0) and no-slip (u = 0; w = 0)
conditions were enforced. The wall is set to be isothermal with T∗w = 300 K for
the steady base-flow calculations. The wall temperature T∗w = 300 K is slightly
lower than the laminar recovery temperature. For the unsteady simulations the
temperature fluctuations were set to zero at the wall. The value of the pressure
at the wall boundary is obtained from the y-momentum equation. Finally, the density
at the wall is computed using the equation of state. At the outflow boundary, the
second derivatives of the primitive variables u, v, w, T , and p are set to zero:
∂2u/∂x2 = 0, ∂2v/∂x2 = 0, ∂2w/∂x2 = 0, ∂2T/∂x2 = 0, ∂2p/∂x2 = 0. The density was
then determined from the temperature and the pressure by using the equation of state.
For simulations of the nonlinear breakdown a buffer domain technique is applied,
where finite-amplitude disturbances are ramped down to zero at the outflow (see
Meitz & Fasel 2000). Since for all simulations presented here the free stream is
located above the oblique shock emanating from the nose of the cone, Dirichlet
conditions (u, v,w, T, p, ρ prescribed) can be prescribed at this boundary.

In the azimuthal direction a pseudo-spectral approach with Fourier modes (Canuto
et al. 1988) was used to calculate the derivatives. In order to save computational
resources, symmetric transformations (cosine) are considered for all variables except
the azimuthal velocity component, for which anti-symmetric (sine) transformations are
used. The adoption of the symmetric and anti-symmetric transformations automatically
enforces symmetry conditions on the azimuthal boundaries. Therefore, the azimuthal
domain contains only half of the azimuthal wavelength of the primary wave for the
fundamental breakdown simulations presented in this paper.

3. Disturbance generation

In the controlled transition simulations presented in this paper, the disturbances
are introduced into the flow by time-harmonic wall-normal blowing and suction
through a disturbance slot near the upstream end of the computational domain. The
no-penetration boundary condition for the wall-normal velocity component is replaced
at the blowing and suction slot by

v(x, y= 0, ϕ, t)= Aω,kcvp(xp) cos(kcϕ) sin(ωt), (3.1)

where Aω,kc , ω and kc denote the amplitude, frequency and azimuthal wavenumber of
a disturbance. The dimensionless coordinate xp is defined over the slot width (x1 6
x6 x2) by

xp = 2x− (x2 + x1)

x2 − x1
(3.2)

where x∗1 = 0.136 m and x∗2 = 0.140 m.
The wall-normal velocity disturbance distribution (vp) in the streamwise direction

represents a dipole modelled by a fifth-order polynomial, which is smooth everywhere
including the endpoints (Harris 1997) and is shown schematically in figure 6.
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1

0

–1

FIGURE 6. Schematic of the streamwise wall-normal disturbance velocity distribution over
the forcing slot used for introducing controlled disturbances.

4. Results and discussion

The role of second-mode fundamental (K-type) breakdown and its viability to lead
to a complete breakdown to turbulence is investigated for a hypersonic cone boundary
layer at Mach 6. Towards this end, controlled transition investigations were carried
out using high-fidelity DNS. In these simulations, only a few specified waves or
modes are forced. For example, to explore the role of the ‘classical’ fundamental
breakdown (K-type), only three modes are forced, i.e. a primary axisymmetric wave
with a high amplitude and a pair of oblique waves with very small amplitudes. First
the linear instability regime was studied using LST and DNS. Then, the parameter
space was explored using several low-resolution simulations, to identify the cases
that result in the strongest nonlinear interactions and thus lead to the most rapid
breakdown to turbulence. Then, based on the results of this parameter study, highly
resolved simulations that proceed deep into turbulent breakdown region have been
performed. The major results from all these simulations are presented and discussed
in the following.

4.1. Linear regime
The linear transition regime is studied using both LST and DNS. While in a DNS
the complete set of nonlinear governing equations is solved without any simplification,
in LST these equations are linearized assuming very small disturbance amplitudes.
Furthermore, in LST it is assumed that disturbances φ′ follow the wave ansatz

φ′ = φ̂(y) ei(αx+βz−ωt). (4.1)

The complex eigenfunction φ̂ is only dependent on the wall-normal direction y. For
the spatial model considered here, α is complex, while β and ω are real. The wave
angle of a wave with respect to the streamwise direction is given by

ψ = arctan
(
β

αr

)
, (4.2)

where

αr = 2π

λx
and β = 2π

λz
(4.3a,b)
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are the streamwise and spanwise (or azimuthal) wavenumbers, respectively. The
streamwise wavenumber αr is the real part of the complex streamwise wavenumber
α in (4.1) (α = αr + iαi), and ω is the angular frequency. For negative values of αi,
disturbances are amplified in the streamwise direction whereas for positive values they
are damped. The wave ansatz from (4.1) with the appropriate boundary conditions
reduces the linear system of partial differential equations to an eighth-order system
of ordinary differential equations, which in fact reduces to an eigenvalue problem,
which can be solved efficiently.

For the cone geometry, the decreasing spanwise curvature and the decreasing wave
angle of the disturbances as they travel downstream play an important role in both the
linear and nonlinear development of the transition process. The decreasing wave angle
is a consequence of the body divergence due to the cone geometry, which causes the
azimuthal wavelength of a specific wave to increase in the downstream direction. The
azimuthal wavelength at the streamwise position x is defined as

λz(x)= 2πr(x)
kc

. (4.4)

The cone radius r is a function of the streamwise direction x and kc represents the
azimuthal mode number. Here the assumption is made that the ratio of the boundary
layer thickness and the cone radius is small and that the azimuthal wavelength is equal
to the arc length on the cone surface. In this paper, a specific wave is defined by
its azimuthal mode number, kc, and a certain reduced frequency, F. For example, a
wave with azimuthal mode number kc = 1 has an azimuthal wavelength equal to the
circumference of the cone cross-section, a wave with azimuthal mode number kc = 2
has an azimuthal wavelength of half the circumference, etc. Note that for a cone the
azimuthal mode number, kc, has to be an integer and consequently only a discrete
set of physically possible azimuthal wavelengths can exist. This is in contrast to a
flat plate for which the spanwise wavelength can take on any value in a continuous
fashion. The non-dimensional frequency, F, and the local Reynolds number, Rx, are
defined as

F= 2π
f ∗ν∗e
U∗e

2 and Rx =
√

U∗e x∗

ν∗e
, (4.5a,b)

respectively. Here, subscript e indicates the boundary layer edge values.
In order to solve the LST eigenvalue problem for a compressible boundary layer,

the linear stability solver by Mack (1965, 1969, 1987) was employed. Mack’s linear
stability solver is based on the flat-plate equations and does not account for transverse
curvature and body divergence. However, it accounts for the change in azimuthal
wavelength with the streamwise location. For the linear stability analysis, self-similar
compressible boundary layer profiles were used as base flow by employing Mangler
transformation (Mangler 1948). Contours of constant amplification rate (stability
diagram) for axisymmetric disturbances (kc = 0) are presented in figure 7. The first-
and second-mode unstable frequency bands are clearly distinguishable as they are
separated by a stable region. The beginning and the end of the computational domain
is also indicated in the stability diagram in figure 7.

Prior to conducting the fundamental breakdown simulations, DNS with very low
amplitudes were performed such that the linear regime was maintained throughout
the entire computational domain. These simulations allow a direct comparison of the
DNS results with LST. In figure 8 the streamwise wavenumber α from the DNS
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FIGURE 7. (Colour online) Contours of constant amplification rate αi for axisymmetric
disturbances (kc = 0). Generated using Mack’s LST solver (Mack 1965, 1987). The
low-frequency band in the diagram corresponds to the first-mode unstable region and the
high-frequency band represents the second-mode unstable region. The vertical dashed lines
indicate the beginning and the end of the computational domain used in the DNS.

is compared with that from LST for axisymmetric disturbance waves with three
different frequencies of F= 1.1312× 10−4, F= 1.1731× 10−4 and F= 1.2318× 10−4.
In the DNS the complete Navier–Stokes equations are employed and therefore the
non-parallel effects are also included (Gaster 1974; Saric & Nayfeh 1975; Fasel &
Konzelmann 1990). Hence, the spatial growth rate, αi, depends on the criterion used.
Here, the spatial growth rate and the streamwise wavenumbers were calculated based
on the wall pressure disturbance as follows:

αi =− d
dx

[
ln
(
A(x)|p′wall

)]
, αr = d

dx

[
θ(x)|p′wall

]
. (4.6a,b)

Here A represents the amplitude and θ the phase of the wall pressure disturbance.
The streamwise distributions of amplitude A(x) and phase θ(x) were obtained by
performing Fourier transformations of the time signal of wall pressure disturbance.
There is very good agreement between the growth rates and streamwise wavenumbers
from DNS and LST (generally the streamwise wavenumber is less sensitive to the
criterion used and therefore non-parallel effects are less obvious). Close to the
disturbance forcing location, however, the streamwise wavenumber αr and the spatial
growth rate αi as calculated from the DNS data, are modulated by the superposition
of damped waves. This modulation is more pronounced for the spatial growth rate αi
than for the streamwise wavenumber αr. Close to the location where the waves exhibit
maximum growth rate there is good agreement between the spatial amplification rate
αi from DNS and LST. The reason for the small differences in spatial growth rate αi
at other locations is most likely due to non-parallel effects.
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FIGURE 8. Downstream development of the complex streamwise wavenumber α obtained
by LST (symbols) and DNS (using low-forcing amplitude) for axisymmetric waves (kc=0)
with three different frequencies: F = 1.1312 × 10−4 (——, E), F = 1.1731 × 10−4 (- - - -,
�) and F= 1.2318× 10−4 (–·–·–, ♦). (a) αr (streamwise wavenumber) and (b) αi (spatial
amplification rate). LST results were computed using Mack’s solver (Mack 1965, 1987).

In figure 9 the wall-normal amplitude and phase distributions for the streamwise
velocity component, temperature and pressure from the DNS are compared at
Rx = 2501 to results obtained by LST using Mack’s stability solver for axisymmetric
disturbance waves with frequency F=1.1312×10−4. The amplitude distributions from
both linear theory and DNS are normalized by their respective maximum values. The
excellent agreement between both results substantiates that the linear eigenbehaviour
of the unstable mode is correctly reproduced in the DNS. The agreement with theory
confirms that the disturbances introduced via the blowing and suction slot indeed
initiate the desired physically relevant instability waves.

4.2. Parameter study
Fundamental resonance or (K- or Klebanoff-type) breakdown (Herbert 1988; Kachanov
1994) is due to a secondary instability mechanism involving a two-dimensional (here
an axisymmetric) primary wave (1, 0) and a symmetric pair of oblique secondary

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.678


190 J. Sivasubramanian and H. F. Fasel

0 0.2 0.4 0.6 0.8 1.0

0.001

0.002

DNS
LST

0 0.2 0.4 0.6 0.8 1.0

0.001

0.002

0 0.2 0.4 0.6 0.8 1.0

–0.4 –0.2 0 0.2 0.4
0

0.001

0.002

–0.8 –0.6 –0.4 –0.2 0
0

0.001

0.002

–0.6 –0.4 –0.2 0 0.2

0.001

0.002

0

0.001

0.002

(a) (b) (c)

(d) (e) ( f )

(m
)

(m
)

FIGURE 9. (Colour online) Comparison of wall-normal amplitude (a–c) and phase
distribution (d–f ) of the streamwise velocity, temperature and pressure disturbance to
theoretical predictions from LST for frequency F = 1.1312 × 10−4 and azimuthal mode
number kc= 0 (axisymmetric disturbance wave) at Rex= 2501. LST results were computed
using Mack’s solver (Mack 1965, 1987).

waves ((1, 1) and (1, −1)) of the same frequency. Note that in the present paper,
a wave is denoted by (n, k), where n represents the frequency and k the azimuthal
wavenumber, both normalized by the corresponding values of the secondary pair of
oblique waves. For the incompressible case of fundamental resonance, for a flat plate,
the strength of the fundamental resonance is strongly influenced by the amplitude
of the primary wave (1, 0) and the wave angle of the secondary oblique wave pair.
For a cone this issue is even more complicated than for a flat plate, because the
wave angle of a disturbance wave changes in the downstream direction. Therefore, we
first performed a parameter study to find the most strongly resonating oblique wave
pair. Then, we performed a set of highly resolved controlled fundamental breakdown
simulations using the most strongly resonating oblique wave pair as secondary waves.
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FIGURE 10. (Colour online) N-factor curves for axisymmetric waves (kc = 0) obtained
from a low-amplitude wavepacket simulation.

Fundamental resonance is initiated by forcing the primary wave (1, 0) at a large
amplitude and the secondary disturbance waves (1, ±1) at a low amplitude. The
dominant (linearly most amplified) axisymmetric wave was chosen as the primary
wave, which was found from comparing the N-factors for axisymmetric waves
for various frequencies. The streamwise development of the N-factors is plotted
in figure 10 for axisymmetric disturbance waves (kc = 0) as obtained from a
low-amplitude wavepacket simulation (see for example Sivasubramanian & Fasel
2014). The N-factor of an instability wave is defined as

Nn,kc(x)= ln
(

An,kc(x)
An,kc,0

)
, (4.7)

where the subscript n and kc denote the frequency and azimuthal wavenumber of
the wave, respectively; An,kc(x) is the amplitude of the disturbance wave at a certain
downstream position and An,kc,0 is the amplitude of the disturbance wave at its lower
neutral point. The amplitudes of the disturbance waves were obtained by performing
Fourier transformations of the time signal of the disturbance waves. In figure 10 the
N-factor reached by the most amplified axisymmetric wave (kc = 0) is approximately
8.0 with a corresponding non-dimensional frequency of F = 1.1312 × 10−4 ( f ∗ ≈
210 kHz). It was therefore chosen as the primary wave (1, 0) for a parameter study
to determine the most strongly resonating oblique secondary wave pair (1,±1).

Towards this end a series of low-resolution simulations was performed for various
azimuthal wavenumbers (kc). The results from this parameter study are presented in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.678


192 J. Sivasubramanian and H. F. Fasel

100

10 –1

10 –2

10 –3

10 –4

10 –5

10 –6

10 –7

10 –8 10 –8
0.30 0.35 0.40 0.45 0.500.250.200.150.10

(1, 0)
(0, 1)

(1, 1)
(2, 0)

(b)(a)

(c) (d)

100

10 –1

10 –2

10 –3

10 –4

10 –5

10 –6

10 –7

0.30 0.35 0.40 0.45 0.500.250.200.150.10

100

10 –1

10 –2

10 –3

10 –4

10 –5

10 –6

10 –7

10 –8
0.30 0.35 0.40 0.45 0.500.250.200.150.10

100

10 –1

10 –2

10 –3

10 –4

10 –5

10 –6

10 –7

10 –8
0.30 0.35 0.40 0.45 0.500.250.200.150.10

(m) (m)

FIGURE 11. Maximum of streamwise velocity disturbance versus downstream distance for
the cases with azimuthal wavenumber (a) kc=60, (b) kc=80, (c) kc=100 and (d) kc=120.
Shown are selected modes, which play an important role in the early nonlinear stage of
fundamental resonance.

figures 11 and 12. In figure 11, the downstream amplitude development of selected
modes is shown for the low-resolution simulation performed for azimuthal mode
numbers kc= 60, 80, 100 and 120. These curves were obtained from the wall-normal
maximum of the streamwise velocity disturbances. As can be observed in figure 11,
when the axisymmetric primary wave (1,0) exceeds a certain amplitude, the secondary
oblique wave pair (1,±1) and the steady longitudinal vortex mode (0, 1) experience
strong secondary growth. Figure 12 shows the growth rate (σ ) of the secondary
oblique wave pair (1,±1) as a function of azimuthal mode number (kc). The growth
rates (σ ) were extracted at the streamwise position x∗= 0.46 m (Rx= 2501). A broad
band of azimuthal modes experiences resonant secondary growth, but according to
figure 12, waves with kc = 100 exhibit the strongest secondary growth rate.

4.3. High-resolution fundamental breakdown simulations
In the parameter study discussed above for fundamental resonance, oblique waves
with azimuthal mode number kc= 100 were identified as the most strongly resonating
oblique waves. Therefore, a highly resolved fundamental breakdown simulation
(CFUND1) was performed with azimuthal mode kc = 100 for the secondary wave
pair. In these simulations, the axisymmetric primary wave (1, 0) with a frequency
of f ∗ ≈ 210 kHz was forced with a large amplitude (A1,0 = 4.0 % of the free-stream
velocity) and the oblique secondary waves (1, ±1) were forced at a low amplitude
(A1,±1 = 0.1 % of the free-stream velocity). Here each of the two modes (1, 1) and
(1,−1) are forced with the same amplitude of 0.1 % of the free-stream velocity.
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FIGURE 12. (Colour online) Fundamental secondary growth rate (σ ) as a function of
azimuthal mode number (kc).

The downstream development of the wall-normal amplitude maximum of the
streamwise velocity disturbance is presented in figure 13. Selected modes that play
an important role in the nonlinear stages of the fundamental breakdown are shown.
As before, when the axisymmetric primary wave (1, 0) reaches a certain amplitude
(at x∗ ∼ 0.4 m), resonance sets in and the secondary mode (1, 1) and the steady
longitudinal vortex mode (0, 1) start to grow much faster than the primary wave and
eventually reach the same amplitude levels as the primary mode (1, 0) at x∗∼ 0.45 m.
As the steady longitudinal vortex mode (0, 1) starts to grow, it also produces mean
flow distortion (mode 0, 0). Higher harmonic modes (2, 0), (2, 1) and (1, 2) are also
generated. When the amplitudes of modes (1, 1) and (0, 1) approach the amplitude
of the primary mode (1, 0) all higher modes experience rapid streamwise growth
and the transition process becomes strongly nonlinear, which is an indication of the
onset of the final breakdown to turbulence. As more and more higher steady modes
((0, 2), (0, 3), (0, 4), (0, 5) etc.) are generated, the mean flow deformation (mode
0, 0) increases. Note that in the nonlinear region, the steady longitudinal vortex
mode (0, 1) has the highest amplitude (0.45 m < x∗ < 0.57 m). Close to the end of
the computational domain the steady longitudinal vortex mode (0, 2) reaches higher
amplitudes than (0, 1). However, the steady mode (0, 0) has the highest amplitude,
indicating a strong mean flow distortion due to transition to turbulence. A more
detailed presentation of the downstream development of the wall-normal amplitude
maximum of the streamwise velocity disturbance is provided in figure 14. Modes with
the fundamental frequency (1, k), two-dimensional modes (h, 0) and three-dimensional
modes (h, 1) are presented in figures 14(a), 14(b) and 14(c), respectively. They
provide a detailed view of how the spectrum broadens due to nonlinear interactions,
which produce higher modes as the flow transitions from the laminar to the turbulent
state.

The downstream development of the temporally and azimuthally averaged skin
friction coefficient, Cf , is shown in figure 15(a). The skin friction coefficient is
calculated as

cf =
2µ

∂u
∂y

∣∣∣∣
y=0

Re
. (4.8)
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FIGURE 13. (Colour online) Streamwise development of the maximum u-velocity
disturbance amplitude obtained from the fundamental breakdown simulation. Note that
when the axisymmetric primary wave (1, 0) reaches a certain amplitude, the secondary
mode (1, 1) and the steady longitudinal vortex mode (0, 1) grow faster than the primary
wave and eventually reach the same amplitude as the primary mode. Higher harmonics,
modes (2, 0) and (2, 1), are also generated, and when modes (1, 1) and (0, 1) approach
the amplitude of the primary mode (1, 0) all higher modes experience rapid streamwise
growth. In the nonlinear region the steady longitudinal vortex mode (0, 1) has the highest
amplitude. Close to the end of the computational domain, however, the steady mode (0, 2)
reaches higher amplitudes than (0, 1).

The Reynolds number, Re, is based on the reference length, L∗, and the flow quantities
in the free stream. Note that symbols with an overbar, φ, represent Reynolds-averaged,
i.e. time- and spanwise-averaged, flow quantities. The skin friction curves obtained
from the simulations were compared with a correlation for a turbulent boundary layer
from White (2006),

cf ,plate ∼ 0.455(
S ln

[
0.06

S
Rexe

µe

µw

√
Te

Tw

])2 . (4.9)

Here, the subscript e refers to boundary layer edge conditions and the subscript w
refers to wall conditions. The factor S can be obtained from

S=

(
Taw

Te
− 1
)1/2

arcsin(A)+ arcsin(B)
, (4.10)

with A and B defined as

A= 2a2 − b√
b2 + 4a2

and B= b√
b2 + 4a2

, (4.11a,b)
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FIGURE 14. (Colour online) Detailed presentation of the streamwise development of
the maximum u-velocity disturbance amplitude obtained from the fundamental breakdown
simulation. (a) Modes with fundamental frequency (1, k); (b) two-dimensional modes (h,0)
and (c) three-dimensional modes (h, 1).
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FIGURE 15. (Colour online) (a) Time- and azimuthal-averaged skin friction coefficient
and (b) streamwise development of the maximum u-velocity disturbance amplitude for
the fundamental breakdown simulation. The initial rise in skin friction is caused by the
large-amplitude primary wave (1, 0). This is followed by a dip caused by the nonlinear
saturation of the primary wave (1, 0). Then a steeper rise in skin friction occurs when all
higher modes experience nonlinear growth.

where a and b are given by

a=
√
γ − 1

2
M2

e
Te

Tw
and b=

(
Taw

Tw
− 1
)
, (4.12a,b)

respectively. Note that Taw denotes the adiabatic wall temperature for a turbulent
boundary layer at the same flow conditions. Since this value is not known, it has to
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be estimated using the turbulent recovery factor (White 2006; Roy & Blottner 2006),

rturb ∼ (Pr)1/3 ∼ 0.9. (4.13)

The above relationship used for estimating the skin friction is only valid for a
turbulent flat-plate boundary layer. Therefore, a correction for the cone geometry
was employed as suggested by van Driest (1952) and White (2006) based on the
von Kármán momentum integral: Cf ,cone = G × Cf ,plate, where 1.1 < G < 1.15. Note
that the theoretical turbulent skin friction curve in figure 15(a) is calculated with
G = 1.1. The skin friction plotted in figure 15(a) initially follows the laminar curve
up to x∗ ∼ 0.38 m, then it increases from the laminar curve towards the turbulent
curve. However, farther downstream it unexpectedly drops sharply to almost the
laminar value before rising again steeply and eventually overshooting the turbulent
skin friction curve. The skin friction curve suggests that the boundary layer is close
to a turbulent boundary layer at the end of the computational domain.

A close examination of the results shown in figure 15(a,b) reveals that the
initial deviation of the skin friction from its laminar value is due to the large
amplitude reached by the primary wave (1, 0). The first peak in the skin friction
corresponds to the streamwise location where the primary wave (1, 0) seems to
‘saturate’ (x∗ ∼ 0.45 m). This peak in skin friction also roughly coincides with the
location where the secondary disturbances (e.g. modes (1,±1) and (0, 1)) reach their
largest amplitude levels, which in turn cause a mean flow deformation (0, 0). Due to
the mean flow deformation the primary wave starts to decay following its ‘nonlinear
saturation’ and the skin friction dips almost to the laminar value. Together with the
primary wave, higher modes also starts to decay (seen clearly in figure 14b,c at
x∗ ∼ 0.46 m). Following the dip, a much steeper rise in the skin friction occurs as
all higher modes experience very strong nonlinear amplification (x∗ ∼ 0.52 m). As
a result of this steep rise, the skin friction overshoots the theoretical turbulent skin
friction estimate.

Note that this particular development of the skin friction is probably due to the
‘controlled’ transition scenario where only a few selected waves are forced initially.
In a ‘natural’ transition scenario this development may be less pronounced or even
completely absent. Also note that the mode (0,0) is the only mode that directly affects
the development of the temporally and azimuthally averaged skin friction coefficient.
All other modes influence the skin friction development indirectly through their
nonlinear effect on the development of mode (0, 0). More importantly, the maximum
amplitude of mode (0, 0) does not seem to decay noticeably here. Therefore, it is
the change in the shape of mode (0, 0) that influences the skin friction development
and causes the dip following the first peak. Hence, the change in the shape of mode
(0, 0) may very well be connected to the decay of the primary mode (1, 0) and other
higher modes after the first peak in skin friction. These results raise the interesting
question of whether the first peak in the skin friction could be influenced by the
amplitude of the oblique secondary wave pair (1,±1).

In order to answer this question, we performed two more ‘controlled’ fundamental
breakdown simulations, CFUND 2 and CFUND 3, where the forcing amplitudes for
the oblique secondary waves were changed to 0.01 % and 1.0 % of the freestream
velocity, respectively. The forcing amplitude for the primary wave was kept the
same as in CFUND 1 (4.0 % of the free-stream velocity). A summary of the
forcing parameters used in these fundamental breakdown simulations is provided
in table 3. For selected modes, the streamwise velocity disturbances development
from CFUND 2 and CFUND 3 are plotted in figure 16. Overall, the downstream
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CFUND 1 CFUND 2 CFUND 3

A[1,0] 0.04 0.04 0.04
A[1,±1] 1.0× 10−3 1.0× 10−4 1.0× 10−2

TABLE 3. Forcing parameters for the fundamental breakdown simulations. Note that the
notation [n, k] is used in order to identify a particular wave according to its frequency n
and its azimuthal wavenumber k; n denotes multiples of the fundamental forcing frequency
f ∗ = 210 kHz and k multiples of the azimuthal wavenumber.

amplitude development looks very similar to CFUND 1. However, the time- and
azimuthally averaged skin friction coefficients from CFUND 2 and CFUND 3
as plotted in figure 18 look slightly different. As the forcing amplitude of the
oblique secondary waves is decreased (CFUND 2) the first peak in the skin friction
distribution shifts slightly downstream. This is due to the fact that the secondary
growth of the oblique wave starts at a lower amplitude level and therefore reaches
nonlinear amplitudes slightly downstream. However, when the forcing amplitude of
the oblique secondary waves is increased (CFUND 3), the first peak shifts slightly
upstream. Here, it is due to the fact that the secondary growth of the oblique wave
starts at a higher amplitude level and consequently reaches nonlinear amplitudes
slightly upstream. As a result, the onset of the rapid streamwise growth of higher
modes also shifts slightly downstream in CFUND 2 and shifts slightly upstream in
CFUND 3 with increasing forcing amplitude of secondary waves (see figure 16a,b).
In CFUND 2 and CFUND 3, as the primary wave is forced with the same amplitude
as in CFUND 1, the location of transition onset remains the same for all three
cases. This confirms that the initial rise in skin friction (onset of transition) is due
to the large amplitude of the primary wave (1, 0). A comparison of the streamwise
development of the key modes between CFUND 1, CFUND 2 and CFUND 3 is
provided in figure 17. Figure 17(a) clearly presents that the secondary wave (1, 1)
reaches nonlinear amplitudes downstream and upstream (compared to CFUND 1) in
CFUND 2 and CFUND 3, respectively. Similarly, the steady mode (0, 1) reaches
nonlinear amplitudes downstream and upstream compared to CFUND 1 and, as a
consequence, induces mean flow deformation either downstream or upstream (see
figure 17b).

The downstream development of the time- and azimuthal-averaged Stanton number,
St, is presented in figure 19. The Stanton number distribution follows the laminar
curve up to x∗ ∼ 0.38 m and then increases towards the turbulent curve. Eventually
it overshoots the turbulent curve before dropping almost down to the laminar value.
However, downstream it steeply increases again towards the turbulent curve and
stays above the turbulent value curve. The stronger overshoots observed here, even
in the transitional stages, at the streamwise location where the first peak appears
for skin friction coefficient is unique and is a direct result of stronger temperature
gradients produced by the transition process. Such overshoots during the transitional
stages as observed here could lead to localized regions of very large heat transfer.
The downstream development of the time-averaged skin friction and Stanton number
along the streak is plotted in figure 20. The skin friction and Stanton number along
the streak have much larger values compared to their azimuthal-averaged values
and exhibit massive overshoots over the turbulent values both in the early and
late transition region. Note that the particular development of the Stanton number
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FIGURE 16. (Colour online) Streamwise development of the maximum u-velocity
disturbance amplitude from CFUND 2 (a) and CFUND 3 (b). Shown are selected modes
that play an important role in the early nonlinear stage of fundamental resonance.

observed here is strongly affected by the isothermal wall boundary condition used in
the simulations presented in this paper.

Isocontours of the time-averaged skin friction and wall-normal temperature gradient
(dT/dy) at the wall are shown in figures 21(a) and 21(b). Remarkable are the
streamwise aligned ‘hot’ streaks, which are a consequence of the large amplitudes
reached by the steady longitudinal vortex modes. The steady mode (0, 1) is the first
to reach the highest amplitude and it is, therefore, responsible for the first upstream
appearing streaks. Downstream, however, these streaks get weaker. As the steady mode
(0, 2) reaches the highest amplitude close to the end of the computational domain,
there, the azimuthal spacing of the streaks is related to that mode. These streaks look
qualitatively similar to the streamwise pattern observed in the Purdue experiments
(under quiet-flow conditions) for a flared cone using temperature-sensitive paint (see
figure 7b in Berridge et al. 2010 and figure 18 in Ward et al. 2012). The associated
streamwise temperature distribution obtained using temperature-sensitive-paint data
first increases from the laminar reference value, then decreases downstream of the
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FIGURE 17. (Colour online) Comparison of the streamwise development of the maximum
u-velocity disturbance amplitude of key modes from CFUND 1, CFUND 2 and CFUND 3.

first peak and finally increases again as the flow transitions to turbulence (see figure
11a in Berridge et al. 2010).

This behaviour is similar to the trend observed in heat transfer distributions
obtained from the second-mode fundamental breakdown simulations (see figure 19).
Under noisy-flow conditions, however, the streamwise streaks were not observed in
the Purdue experiments (the Purdue tunnel can be run either as a quiet-flow tunnel
or as a conventional noisy-flow tunnel). The streamwise temperature distribution
measured under noisy-flow conditions (see figure 11b in Berridge et al. 2010) was
also different from the distribution measured under quiet-flow conditions: it increased
gradually from the laminar value to the turbulent value (as in Horvath et al. 2002). It
is not understood why the streaks appear under quiet-flow and not under noisy-flow.
Thus, the streamwise streaks and the streamwise temperature distribution measured in
the Purdue experiments under quiet-flow conditions are similar to the streaks and the
heat transfer curves obtained from the second-mode fundamental (K-type) breakdown
simulations. Therefore, we conjecture that second-mode fundamental breakdown
mechanism may have played a role in the natural transition process in the Purdue
experiments under quiet-flow conditions. Overall, the simulations presented in this
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FIGURE 18. (Colour online) Time- and azimuthal-averaged skin friction coefficient from
CFUND 1, CFUND 2 and CFUND 3.
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FIGURE 19. Time- and azimuthal-averaged Stanton number obtained from CFUND 1.

paper demonstrate that second-mode fundamental breakdown is a viable route to
turbulence in hypersonic cone boundary layers at Mach 6 and confirms the findings
of our previous research in which we investigated the ‘natural’ transition process
in hypersonic cone boundary layers using wavepackets and identified second-mode
fundamental breakdown to be a relevant mechanism for transition to turbulence in
Mach 6 cone boundary layers.

4.4. Flow structures
A close observation of the dominant flow structures and their streamwise development
can provide further insight into the underlying physical mechanisms of the transition
process. In figure 22(a) the flow structures from the fundamental breakdown
simulation are plotted using the Q criterion (Hunt, Wray & Moin 1988). The flow
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FIGURE 20. (Colour online) Time- and azimuthal-averaged (a) skin friction and (b)
Stanton number obtained from CFUND 1.

structures reveal the typical evolution of a K-type breakdown: during the initial
stage of the transition process the dominant wave is axisymmetric. Once nonlinear
interactions cause the oblique secondary waves to amplify rapidly, the dominant
axisymmetric waves become modulated (peak–valley splitting) in the circumferential
direction (see figures 22b and 23a). Eventually, the interaction of the dominant
axisymmetric wave and finite-amplitude oblique waves leads to the formation
of Λ-vortices. The Λ-vortices appear in an aligned pattern because the primary
axisymmetric wave and the secondary oblique waves have the same frequency. The
evolution of the flow structures during the final stage of transition can be better
observed in the close-up view of figures 23 and 24. The aligned arrangement of the
Λ-vortices can be seen clearly. The tips of the Λ-vortices lift away from the surface
while the legs remain close to the wall. Hairpin-shaped vortices start to appear on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.678


DNS of fundamental breakdown in a sharp cone boundary layer 203

0.0050
0.0037
0.0025
0.0012

0

1.500
1.125
0.750
0.375

0

(a)

(b)

FIGURE 21. (Colour online) Time-averaged (a) skin friction and (b) wall-normal
temperature gradient (dT/dy) at the wall obtained from the fundamental breakdown
simulation CFUND 1. The streamwise aligned ‘hot’ streaks look qualitatively similar to
the streamwise streaks observed in the Purdue experiments using temperature-sensitive
paint for a flared cone.

the tips of the Λ-vortices. Eventually these structures break down to smaller scales
as the flow starts to become turbulent.

Instantaneous streamwise velocity contours are presented in the x–ϕ plane for
three wall-normal positions inside the boundary layer (see figure 25). This figure
illustrates various flow features such as the transition onset, the breakup region
and the early turbulent region close to the wall (figure 25a) and farther away
(figure 25c). Dark regions denote low-velocity flow and brighter regions correspond
to high-velocity flow. Two-dimensional structures seem to appear upstream in
figure 25 for all three wall-normal positions. These structures correspond to the
second-mode axisymmetric wave (primary wave) forced at a high amplitude. Farther
downstream these two-dimensional structures appear modulated in the azimuthal
direction due to nonlinear interactions between the axisymmetric primary wave and
the secondary oblique waves. The azimuthal modulation becomes stronger downstream,
indicating the presence of strong oblique waves (generated by nonlinear interactions).
Furthermore, the aligned arrangements characteristic of K-type transition are clearly
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(a)

(b)

FIGURE 22. (Colour online) Visualization of flow structures using isosurface of Q
criterion (Q = 20 000) obtained from the fundamental breakdown simulation CFUND 1.
(a) Full view of the cone and (b) last downstream part of the cone. The isosurfaces are
coloured by the streamwise velocity magnitude.

visible (see for example figure 25b). Eventually the flow breaks up into small-scale
structures as the flow transitions to turbulence.

To gain more information about the dynamics of the flow field during the transition
process, contours of the instantaneous spanwise vorticity component are plotted in the
x–y plane for various azimuthal positions (see figure 26). The five selected azimuthal
positions are (a) ϕ = 0 (0◦), (b) ϕ = 0.0078 (0.45◦), (c) ϕ = 0.0157 (0.9◦), (d) ϕ =
0.0235 (1.35◦) and (e) ϕ=0.0314 (1.8◦). Here dark contour regions represent negative
spanwise vorticity and white regions represent positive spanwise vorticity. Figure 26
provides a detailed view of the breakdown region and the downstream development
of the small-scale structures. The plane at ϕ = 0 is located in the spanwise valley
location and the plane at ϕ = 0.0314 is in the spanwise peak location. In the plane
at ϕ = 0.0314 (spanwise peak), prior to breakdown (up to x∗ ∼ 0.51 m) a strong
concentration of spanwise vorticity can be observed away from the wall. Downstream
of this location (x∗ ∼ 0.51 m), for all azimuthal positions, the flow is dominated by
small-scale structures.

Contours of the instantaneous wall-normal density gradient are shown in figure 27
for several azimuthal positions. The selected azimuthal positions are the same as in
figure 26. As before, wall-normal density gradient contours are shown in the x–y
plane for each azimuthal position. This type of flow visualization could be used
for comparison with schlieren photographs which would reveal flow structures in
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(a)

(b)

FIGURE 23. (Colour online) Visualization of flow structures using isosurface of Q
criterion (Q = 20 000) obtained from the fundamental breakdown simulation CFUND 1:
(a) close-up view of a small section of the cone; (b) close-up view of the last downstream
part. The isosurfaces are coloured by the streamwise velocity magnitude.

high-speed experiments. At all azimuthal positions ‘rope-like’ structures appear close
to the boundary layer edge up to the location where the flow starts to break down.
Such structures have been observed in hypersonic boundary layer flows by several
experimentalists (see for example Lachowicz et al. 1996). Flow visualization from
the numerical simulations by Pruett & Chang (1995) and Pruett & Chang (1998)
also clearly reveals instability waves of rope-like appearance. The structures observed
in our simulation are qualitatively similar in appearance to the schlieren image
obtained by Lachowicz et al. (1996) and to the flow visualization by Pruett & Chang
(1998). The wavelength of these structures is approximately twice the boundary layer
thickness, which is consistent with the nature of the second-mode instability waves.
Furthermore, as the boundary layer starts to break down, acoustic waves ‘radiating’
away from the boundary layer and towards the free stream are also observed for all
azimuthal positions (see figure 27).
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FIGURE 24. (Colour online) Visualization of flow structures using isosurface of Q
criterion (Q = 20 000) obtained from the fundamental breakdown simulation CFUND 1.
Close-up view of the last downstream part of the cone. The isosurfaces are coloured by
the streamwise velocity magnitude.

4.5. Quantitative analysis
For quantitative global analyses, the time- and azimuthal-averaged streamwise velocity
and temperature profiles shown in figures 28 and 29 are inspected. The time interval
over which the relevant data were extracted and averaged is equal to four forcing
periods of the primary wave. Figure 28(a,b) shows isocontours of streamwise velocity
and temperature in the x–y plane, whereas figure 29(a,b) shows wall-normal profiles
extracted at different downstream positions (rescaled with the local boundary layer
thickness). The objective here is to show how these profiles develop during transition
and how they converge to a turbulent profile. It is clear from these plots that with
increasing downstream distance, the boundary layer thickness is increasing and the
mean streamwise velocity and temperature profiles are becoming ‘fuller’, which is a
consequence of the transition to turbulence.

The downstream development of the shape factor,

H12 = δ
∗

θ
, (4.14)

and the Reynolds number based on the momentum thickness,

Reθ = Ree θ (4.15)

are shown in figure 30. Note that the momentum thickness and the displacement
thickness considered in the above formulae are calculated from θ = ∫ ye

yw
(ρu)/(ρeue)(1−

u/ue)dy, and δ∗ = ∫ ye

yw
1 − (ρu)/(ρeue)dy, respectively. The shape factor development

in figure 30(a) shows similar features as the skin friction coefficient and Stanton
number. It first decreases from the laminar value and then rises towards the laminar
value before dropping again to a lower value as the boundary layer transitions to
turbulence. The shape factor curves from all three cases can be seen to feature
similar characteristics. The distribution of Reynolds number based on the momentum
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FIGURE 25. Contours of the instantaneous streamwise velocity in the x–ϕ plane for three
wall-normal positions from CFUND 1: (a) y∗= 0.35 mm; (b) y∗= 1.20 mm; and (c) y∗=
2.0 mm.

thickness (see figure 30b), however, does not exhibit the trend observed for the shape
factor (and also for skin friction and Stanton number). It initially follows the laminar
curve up to x∗ ∼ 0.42 m and then increases monotonically to its highest value of
Reθ ∼ 2500 close to the end of the computational domain.

More insight into how far transition has progressed can be gained from the time-
averaged streamwise velocity profiles plotted in wall coordinates. Here, the streamwise
velocity is rescaled with the friction velocity,

u+ = u
uτ

√
Re, uτ =

√
τw

ρw
, (4.16)

and the wall-normal coordinate is renormalized by

y+ = y
ρuτ
µ

√
Re. (4.17)
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FIGURE 26. Contours of the instantaneous spanwise vorticity in the x–y plane for five
azimuthal positions from CFUND 1. (a) ϕ = 0; (b) ϕ = 0.0078; (c) ϕ = 0.0157; (d) ϕ =
0.0235 and (e) ϕ = 0.0314 (from bottom to top). All plots have the same contour levels.
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FIGURE 27. Contours of the instantaneous wall normal density gradient in the x–y plane
for five azimuthal positions from CFUND 1. (a) ϕ = 0, (b) ϕ = 0.0078, (c) ϕ = 0.0157,
(d) ϕ= 0.0235 and (e) ϕ= 0.0314 (from bottom to top). All plots have the same contour
levels.
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FIGURE 28. Contours of (a) the mean (in time and azimuthal direction) streamwise
velocity and (b) the mean temperature from CFUND 1.
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FIGURE 29. (Colour online) Selected wall-normal mean (a) streamwise velocity and
(b) temperature profiles from CFUND 1.
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FIGURE 30. (Colour online) Downstream development of (a) the shape factor and (b) the
Reynolds number based on momentum thickness.

Furthermore, for compressible flow the velocity is typically transformed using the van
Driest transformation,

u+c =
∫ u+

0

√
Tw

T
du+. (4.18)

The transformed velocity profiles corresponding to several streamwise positions are
shown in figure 31. Note that the dotted lines represent the theoretical curves for the
linear sublayer and the logarithmic overlap region,

u+ = y+, u+ = 1
κ

ln
(
y+
)+C, (4.19)

where κ = 0.41 and C= 5.2. For a location upstream of the transition onset location
(x∗ ∼ 0.35 m), the velocity profile looks like a laminar profile. For locations close to
the peak in the skin friction (x∗= 0.54 m), the turbulent log-layer shape is approached.
This indicates that the flow is starting to become fully turbulent.
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FIGURE 31. (Colour online) van-Driest-transformed streamwise velocity profiles
normalized with the friction velocity for different streamwise positions obtained from the
fundamental breakdown simulation CFUND 1. For streamwise position close to the peak
in the skin friction (x∗ = 0.54 m), the van-Driest-transformed velocity approaches the
theoretical curves. The dotted lines indicate the linear sublayer and the law of the wall.

The state of the transition process can also be estimated using the energy spectra.
For a spatial simulation typically both the time-averaged azimuthal wavenumber
spectra and the azimuthal-averaged frequency spectra for different downstream
positions are employed (see figures 32 and 33),

E(kϕ, j)= 1
Nt

Nt∑
i=1

φ
2
(i, j, kϕ), and E(ω, j)= 1

Nϕ

Nϕ∑
k=1

φ
2
(ω, j, k), (4.20a,b)

where φ is the place holder for the velocity components. The indices j and k represent
a grid point in the wall-normal and azimuthal direction, whereas i is the index for
the time steps over which the average is performed; kϕ and ω denote the azimuthal
wavenumber and the frequency, respectively. Furthermore, Nt and Nϕ are the number
of time steps and points over which the average is performed. The wall-normal
position where the spectra are extracted is y∗= 1.0 mm. The rate of the energy decay
for the range of wavenumbers in which neither the large eddies nor the small eddies
have an influence on the spectrum (inertial subrange) can be predicted on theoretical
grounds as E∼ k−5/3

ϕ (Weizäcker 1948). This theoretical behaviour is indicated by the
red dashed lines in figure 32. Also indicated with blue dash-dotted lines is the decay
according to E ∼ k−7

ϕ at the high-wavenumber end of the spectrum as predicted by
Heisenberg (1948). In figure 32, the time-averaged energy spectra are plotted versus
the azimuthal wavenumber for streamwise velocity. For all three streamwise positions
considered, the spectra agree well with the theoretically predicted decay rates for the
inertial subrange and the high-wavenumber end of the spectra. As the flow transitions
from laminar to transitional to turbulent, energy is transported from the base flow to
large scales and then to smaller and smaller scales. This trend can be observed in
the energy spectra presented in figure 32. In figure 33, the azimuthal-averaged energy
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FIGURE 32. (Colour online) Energy spectra versus kϕ for streamwise velocity at (a) x∗=
0.52 m; (b) x∗ = 0.54 m and (c) x∗ = 0.56 m from CFUND 1. The red and blue lines
indicate the theoretical estimate for the decay of the energy spectrum: E∼ k−5/3

ϕ (red line)
and E∼ k−7

ϕ (blue line).

spectra are plotted versus the frequency. For all three streamwise positions, the
azimuthally averaged spectrum experience a decay as predicted by theory. Therefore,
based on these spectra, one can conclude that the boundary layer is close to fully
turbulent at the end of the computational domain.

5. Conclusion
Direct numerical simulations were performed to investigate transition in a sharp

cone boundary layer at Mach 6. In preceeding investigations we have explored
which nonlinear mechanisms for a hypersonic cone boundary layer are present in
a broad-band disturbance environment, or a ‘natural transition’ scenario, by using
wavepacket disturbances. These investigations have indicated that second-mode
fundamental resonance may be a relevant nonlinear mechanism for a sharp cone
boundary layer at Mach 6 for the conditions of the Purdue experiments. However,
a nonlinear mechanism is only relevant for the transition process if it can lead to
a complete breakdown to turbulence and to fully developed turbulent flow. Hence,
in order to answer this question, in this paper we explore the role of fundamental
resonance or (K-type) breakdown for a cone boundary layer Mach 6.
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FIGURE 33. (Colour online) Energy spectra versus ω for streamwise velocity at (a) x∗=
0.52 m; (b) x∗ = 0.54 m and (c) x∗ = 0.56 m from CFUND 1. The red and blue lines
indicate the theoretical estimate for the decay of the energy spectrum: E∼ω−5/3 (red line)
and E∼ω−7 (blue line).

First, a parameter study was performed to determine the most relevant cases
by performing several small- and medium-scale simulations. Subsequently, a set
of highly resolved ‘controlled’ fundamental (K-type) breakdown simulations was
performed, using the disturbance parameters that resulted in the strongest secondary
growth for fundamental resonance. In these simulations the skin friction coefficient
initially follows the laminar curve and then increases towards the theoretical turbulent
curve. However, farther downstream the skin friction drops down close to the laminar
values before rising steeply again and eventually overshooting the turbulent curve. A
closer look at the streamwise development of the disturbance waves revealed that
the initial rise in skin friction is caused by the large-amplitude primary wave (1, 0).
The first peak in the skin friction roughly corresponds to the streamwise location
where the primary wave (1, 0) attains ‘nonlinear saturation’. As the primary wave
starts to decay following the ‘nonlinear saturation’, due to mean flow deformation,
the skin friction decreases strongly. Then, finally, a steep rise in skin friction and a
skin friction overshoot over the theoretical skin friction for the turbulent boundary
layer occurs when all higher modes experience strong nonlinear amplification.

In the fundamental breakdown simulations presented in this paper, nonlinear
interactions lead to the generation of strong stationary streamwise vortex modes, which
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manifest themselves as streamwise ‘hot’ streaks in visualizations of the skin friction
and the wall-normal temperature gradient. Such streamwise streaks were also observed
for a flared cone at Mach 6 in the experiments at Purdue University. Therefore, it
is conjectured that second-mode fundamental breakdown could have played a role
in the ‘natural’ unforced transition experiments at Purdue University. Furthermore,
the controlled transition simulations presented in this paper have demonstrated that
fundamental breakdown can lead to a fully developed turbulent boundary layer and,
therefore, may be a viable path for transition to turbulence in hypersonic boundary
layers at Mach 6.
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