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Abstract. We present an embedding of the Lambek–Grishin calculus into an extension of the
nonassociative Lambek calculus with negation. The embedding is based on the De Morgan interpre-
tation of the dual Grishin connectives.

§1. Introduction. In [6] Grishin introduced the extension LG of the nonassociative
Lambek calculus NL [8] with dual connectives. The Lambek and Grishin connectives do
not depend on each other, but the latter are defined by the rules of inference whose form is
dual to the rules of NL. Thus, the relationship between Grishin’s connectives and Lambek’s
original connectives naturally resembles De Morgan’s duality in classical logic. However,
the former cannot be defined in such a way, because negation ¬ is not a part of the calculus.
This naturally leads to the problem of extending NL with negation such that LG can be
embedded into the extension.1

In this article we define the extension, NL¬, of NL with intuitionistic negation and some
additional proper classical negation axioms and interpret the Grishin connectives in that
extension by means of De Morgan like laws. Namely, for the dual connective �∗ of a
Lambek connective ∗ ∈ {/, \, · }, the formula F �∗ G is (recursively) translated to ¬(¬F ∗
¬G). We show that our interpretation is strong, i.e., it preserves the consequence relation
when passing from LG to NL¬ and vice versa. In other words, a formula is provable (from
assumptions) in LG if and only if its interpretation image is provable in NL¬ from the
interpretation images of the assumptions.

While the proof that the above translation preserves provability in LG is a routine
inspection of the LG rules of inference, the proof of the converse direction is more involved.
For that proof we introduce the sequent calculus SNL¬ for NL¬. We show that SNL¬
extended with the rules of inference corresponding to the additional classical negation
axioms and translations of proper LG axioms (assumptions) admits a restricted version of
cut elimination. This will allow us to pass from the extension of NL¬ to LG.

The article is organized as follows. The next section deals with extensions of NL to
LG and to NL¬. It contains the statement of the interpretation theorem and the proof of
its “only if” part. In §3 we present the sequent calculus SNL¬ for NL¬ with additional
classical negation axioms and translations of proper LG axioms. Then, in §4, we interpret
LG in SNL¬, obtaining in such a way an interpretation of LG in NL¬. Finally, we end
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the article with concluding remarks concerning LG and various extensions of NL with
negation.

§2. The Lambek–Grishin calculus and its De Morgan interpretation. The lan-
guage L of the (nonassociative) Lambek calculus NL [8] consists of propositional variables
(atomic formulas) and the Lambek connectives · ,/, and \. Expressions of the form F → G,
where F and G are L-formulas, are called L-sequents.

The axioms of NL are L-sequents of the form

F → F (1)

and the rules of inference are as follows.

(a)
F· G → H

F → H/G
(b)

F → H/G

F· G → H
(2)

(a)
F· G → H

G → F\H
(b)

G → F\H

F· G → H
(3)

and
F → G G → H

F → H
(4)

The language L◦ of the (nonassociative) Lambek–Grishin calculus LG [6] is obtained
from L by adding to it the dual Grishin connectives �, �, and �, and LG is obtained from
NL by adding to it the dual rules of inference

(a)
H → F � G

H � G → F
(b)

H � G → F

H → F � G
(5)

and

(a)
H → F � G

F � H → G
(b)

F � H → G

H → F � G
(6)

Expressions of the form F → G, where F and G are L◦-formulas, are called L◦-
sequents.

Let L¬ denote L augmented with negation ¬. Like in the case of L and L◦, expressions
of the form A → B, where A and B are L¬-formulas,2 are called L¬-sequents.

Now, following [3, equation (17)], we define the interpretation of LG-formulas in L¬
recursively as follows. The interpretation image, or just the image, of an LG-formula F is
denoted by F∼.

• If F is an atomic formula, then F∼ is F itself.
• For ∗ ∈ {· , /, \},

— (F ∗ G)∼ is F∼ ∗ G∼ and
— (F � G)∼ is ¬(¬F∼ ∗ ¬G∼).

Images F∼ ∗ G∼ and ¬(¬F∼ ∗ ¬G∼) will be referred to as ∗-images and �∗ -images,
respectively.

2 In what follows, L¬-formulas are denoted by A, B, and C, whereas L and L◦-formulas are
denoted by F, G, and H.
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Next, for a set of L◦-sequents �, we denote by �∼ the set of L¬-sequents

�∼ = {F∼ → G∼ : F → G ∈ �}.
Finally, L¬-sequents of the form F∼ → G∼ will be refereed to as interpretations of

LG-sequents.

DEFINITION 2.1. L¬-formulas whose negations are images are called prenegated images.

REMARK 2.2. It follows from the definitions that the negations of prenegated images
are �∗ -images and that subformulas of images are images or (pre-) negated images.3

EXAMPLE 2.3. Let ∗ ∈ {· , /, \}.
• If A and B are images, then A ∗ B is also an image and vice versa; and
• if A and B are negated images, then A ∗ B is a prenegated image and vice versa.

Finally, the extension NL¬ of NL with negation ¬ is as follows. The language of NL¬ is
L¬, the axioms of NL¬ are axioms (1) of NL (over the extended language) added with

A → ¬¬A (7)

and the set of all L¬-sequents of the form

¬¬A → A (8)

where A is an atomic formula, a ∗-image, or a prenegated image,4 and the rules of inference
of NL¬ are those of NL added with

A → B

¬B → ¬A
(9)

cf. axioms (DN) and rule (TR) from [1].

REMARK 2.4. The �∗ -image counterpart of (8) is

¬¬¬A → ¬A (10)

that is derivable from (7) by (9).

THEOREM 2.5. Let � be a set of L◦-sequents. Then, � 
LG F → G if and only if �∼ 
NL¬
F∼ → G∼.

Proof of the “only if” part of Theorem 2.5. The proof is by an induction on the
derivation length of F → G from � in LG.

The basis is trivial, because the interpretations of the LG axioms are axioms of NL¬ and
the interpretations of the elements of � belong to �∼.

For the induction step we consider the last step in the formula derivation. The cases of (2)
and (3) immediately follow from the definition of interpretation of the Lambek connectives.
The case of (4) is also immediate, because (4) is a rule of NL¬.

Assume that the last step is by (5)(a). Then

3 That is, prenegated or negated images.
4 Because of this constraint on A, the NL¬ negation is not classical.
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1. H∼ → ¬(¬F∼ · ¬G∼) induction hypothesis
2. ¬¬(¬F∼ · ¬G∼) → ¬H∼ follows from 1 by (9)
3. ¬F∼ · ¬G∼ → ¬¬(¬F∼ · ¬G∼) axiom (7)
4. ¬F∼ · ¬G∼ → ¬H∼ follows from 3 and 2 by (4)
5. ¬F∼ → ¬H∼/¬G∼ follows from 4 by (2)(a)
6. ¬(¬H∼/¬G∼) → ¬¬F∼ follows from 5 by (9)
7. ¬¬F∼ → F∼ (10), if F∼ is an �∗ -image,

or axiom (8), otherwise
8. ¬(¬H∼/¬G∼) → F∼ follows from 6 and 7 by (4)

and, by definition, ¬(¬H∼/¬G∼) → F∼ is (H � G → F)∼.
Assume now that the last step is by (5)(b). Then
1. ¬(¬H∼/¬G∼) → F∼ induction hypothesis
2. ¬F∼ → ¬¬(¬H∼/¬G∼) follows from 1 by (9)
3. ¬¬(¬H∼/¬G∼) → ¬H∼/¬G∼ axiom (8)
4. ¬F∼ → ¬H∼/¬G∼ follows from 2 and 3 by (4)
5. ¬F∼ · ¬G∼ → ¬H∼ follows from 4 by (2)(b)
6. ¬¬H∼ → ¬(¬F∼ · ¬G∼) follows from 5 by (9)
7. H∼ → ¬¬H∼ axiom (7)
8. H∼ → ¬(¬F∼ · ¬G∼) follows from 6 and 7 by (4)

and, by definition, H∼ → ¬(¬F∼ · ¬G∼) is (H → F � G)∼.
The case of (6) is similar. �
The rest of this article deals with the proof of the “if” part of Theorem 2.5. Namely,

in the next sections, we introduce the sequent calculus SNL¬ for NL¬ and prove the cut
elimination theorem. Then, in §4, we embed LG into SNL¬.

§3. A sequent calculus for NL¬. In this section we present a sequent calculus for
(an extension of) NL¬ that will be used for the proof of the “if” part of Theorem 2.5.
For the definition of this calculus we need the notion of a formula tree (in this section, an
L¬-formula tree) that is as follows.

A formula tree is an ordered binary tree whose leaves are labeled with formulas. Such
trees are denoted by �, possibly indexed, and for formula trees �1 and �2 we denote by
(�1, �2) the formula tree obtained by joining �1 and �2 at a new root.

By �[�1] we denote a formula tree � with a designated formula subtree �1 and, in
this context, we denote by �[�2] the replacement of �1 with �2 in � for that particular
occurrence of �1.

We also identify degenerate one-node formula trees with their labels.5

Sequents are expressions of the form � → C or of the form �1; �2 →, where �, �1,
and �2 are formula trees and C is an L¬-formula.6

Note. Pairs �1; �2 are unordered.
Let � be a set of L◦-sequents. The axioms of the sequent calculus SNL¬,� are sequents

of the form P → P, where P is an atomic formula and the rules of inference are as
follows.

5 That is, a one-node formula tree is just a formula.
6 Even though, sequents with empty succeedent are disallowed in NL, they are natural for NL¬,

because of negation, see the corresponding introduction rules below.
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(· →) (a)
�[(A, B)] → C
�[A · B] → C (b)

�1[(A, B)]; �2 →
�1[A · B]; �2 → (→ · ) �1 → A �2 → B

(�1, �2) → A · B

(/ →) (a)
�1[B] → C � → A
�1[(B/A, �)] → C (b)

�1[B]; �2 → � → A
�1[(B/A, �)]; �2 → (→ /)

(�, A) → B
� → B/A

(\ →) (a)
�1[B] → C � → A
�1[(�, A\B)] → C (b)

�1[B]; �2 → � → A
�1[(�, A\B)]; �2 → (→ \) (A, �) → B

� → A\B

(¬ →) � → A
�; ¬A → (→ ¬) �; A →

� → ¬A

There are also two “ordinary” cut rules

(a)
�1 → A �2[A] → C

�2[�1] → C
(b)

�1 → A �2[A]; � →
�2[�1]; � → (11)

two resolution rules

(a)
�1; ¬A → �2[A] → C

�2[�1] → C
(b)

�1; ¬A → �2[A]; � →
�2[�1]; � → (12)

where A is an atomic formula, a ∗-image or, a prenegated image,
and two �-cut rules

(a)
�1 → A �2[B] → C

�2[�1] → C
(b)

�1 → A �2[B]; � →
�2[�1]; � → (13)

where A → B is a sequent from �∼, cf. [2].

EXAMPLE 3.1. Rule (9) is derivable in SNL¬,�:

A → B
A; ¬B →
¬B → ¬A

(¬ →)

(→ ¬)

REMARK 3.2. A straightforward induction on the formula complexity shows that for all
formulas A, 
SNL¬ A → A.

EXAMPLE 3.3. Axioms (7) are derivable in SNL¬,�:

A → A
A; ¬A →
A → ¬¬A

(¬ →)

(→ ¬)

EXAMPLE 3.4. Axioms (8) are derivable in SNL¬,�:

¬A → ¬A
¬¬A; ¬A → (¬ →)

A → A
¬¬A → A

resolution(a)

EXAMPLE 3.5. All sequents from �∼ are derivable in SNL¬,�. Let A → B ∈ �∼. Then

A → A B → B

A → B
�-cut(a)

with �1 being A and �2[B] being B.
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PROPOSITION 3.6 (Inversion lemma).

(i) If 
SNL¬,� � → B/A, then 
SNL¬,� (�, A) → B.

(ii) If 
SNL¬,� � → A\B, then 
SNL¬,� (A, �) → B.

For the proof of (i) see the proof of [7, Prop. 46(ii)] and the proof of (ii) is symmetric
to that of (i).

COROLLARY 3.7. If �∼ 
NL¬ A → B, then 
SNL¬,� A → B.7

Proof. The proof is by a straightforward induction on the length of an NL¬-derivation
of A → B from �. The basis is Remark 3.2 and Examples 3.3–3.5 and the induction step
follows from (11)(a), Example 3.1, and Proposition 3.6. �

THEOREM 3.8. If a sequent is derivable in SNL¬,�, then it is derivable without cuts (11).8

Proof. The proof is a straightforward combination of the proofs in [8, Sec. 9] and [9,
Sec. 4.1]. Namely, by the outer induction on the derivation length up to the first cut and
the inner induction on the complexity of the cut formula, we eliminate the first cut in the
derivation.

All cases of the outer induction, including resolutions (12) and �-cuts (13), are standard
switchings of the order of applications of the rules of inference and, in view of [8], for the
inner induction it suffices to consider the case of the principal connective ¬. In this case
we replace the derivation

�1; A →
�1 → ¬A

(→ ¬)
�2 → A

�2; ¬A →
�1; �2 →

(¬ →)

cut(b)

with
�2 → A �1; A →

�1; �2 → cut(b)

�
The following corollary to Theorem 3.8 is similar to [2, Lemma 1].

COROLLARY 3.9 (Cf. [2], Lemma 1). If a sequent S is derivable in SNL¬,�, then there
exists a derivation of S in SNL¬,� such that all formulas appearing in it are subformulas of
formulas occurring in S, or subformulas of formulas occurring in the sequents from �∼,
or subformulas of “the resolution formulas” from (12).

Proof. By Theorem 3.8, there is a derivation of S without cuts (11). In such a derivation,
all formulas are like in the statement of the corollary.9 �

7 The converse of the corollary is also true, but is not required for the proof of the “if” part of
Theorem 2.5.

8 Of course, resolutions (12) and �-cuts (13) cannot be eliminated in general.
9 Actually, here we need a trivial induction on the derivation length that we leave to the

reader.
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COROLLARY 3.10. Let S be a sequent derivable in SNL¬,� such that all formulas
occurring in S are images or (pre) negated images. Then there exists a derivation of S
in SNL¬,� such that all formulas appearing in it are images or (pre) negated images.10

Proof. The proof follows from Corollary 3.9, because all subformulas of the antecedents
or the succeedents of the sequents from �∼ or “the resolution formulas” are images or (pre)
negated images, see Remark 2.2. �

§4. Proof of the “if” part of Theorem 2.5. By Corollary 3.7, for the proof of the “if”
part of Theorem 2.5 it suffices to show that 
SNL¬,� F∼ → G∼ implies � 
LG F → G. For
this we shall need the following notations, definitions, and auxiliary results.

For an image A, we denote by A◦ the LG-formula F whose image is A. That is, (F∼)◦ is
F and (A◦)∼ is A.

For a pre (respectively, negated) image A, we denote by A◦ the LG-formula F such that
F∼ is ¬A (respectively, A is ¬F∼).

EXAMPLE 4.1. If A and B are negated images and ∗ ∈ {· , /, \}, then (A ∗ B)◦ is
A◦ � B◦.11

Formula trees whose all leaves are labelled with images are called positive and formula
trees whose all leaves are labelled with (pre) negated images are called negative.

Next, for a formula tree � whose leaves are labelled with images or (pre) negated images
we denote by �◦ the L◦-formula tree obtained from � by replacing each leaf label A with
A◦.

Finally, let � be an L◦-formula tree. The L◦-formulas �· and �� are defined by the
following recursion.

• If � is a single node tree F, then both �· and �� are F itself,
• (�1, �2)

· is �·1 · �·2, and (�1, �2)
� is ��

1 � ��
2 .

EXAMPLE 4.2. If � is a negative formula tree, then (�[(A, B)])◦� is (�◦[(A◦ � B◦)])�.

EXAMPLE 4.3. If �1 and �2 are negative formula trees, then (�1, �2)
◦� is �◦

1
���◦

2
�.

The “if” part of Theorem 2.5 follows from Theorem 4.4(i)(a) with � and C being F∼
and G∼, respectively.

THEOREM 4.4. Let � be a set of LG-sequents and let S be a sequent appearing in a
cut-free SNL¬,�-derivation of the interpretation of an LG-sequent.

(i) If S is of the form � → C, then either

(a) � is positive, C is an image, and

� 
LG �◦· → C◦

or
(b) � is negative, C is a (pre) negated image, and

� 
LG C◦ → �◦�

10 Since resolutions and �-cuts are not eliminable in SNL¬, some formulas appearing in a derivation
might not occur in S.

11 Note that A ∗ B is a prenegated image.
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(ii) If S is of the form �1; �2 →, then one of �1, �2 is positive and the other is negative,
say, �1 is positive and �2 is negative, and

� 
LG �◦
1
· → �◦

2
�.

For the proof of Theorem 4.4 we need the derivable rules of inference of LG given by
Proposition 4.5 below.

PROPOSITION 4.5. The following rules of inference are deraivable in LG.

F → G (�[G])· → H

(�[F])· → H
(14)

F → G F′ → G′

F · F′ → G · G′ (15)

(�[G])· → H F′ → F

(�[G/F , F′])· → H
(16)

(�[G])· → H F′ → F

(�[F′, F\G])· → H
(17)

F → (�[G])� G → H

F → (�[H])�
(18)

F → G F′ → G′

F � F′ → G � G′ (19)

H → (�[G])� F → F′

H → (�[G � F, F′])�
(20)

and
H → (�[G])� F → F′

H → (�[F′, F � G])�
(21)

The proof of (14)–(17) is a verbatim of the corresponding proof in [8, Sec. 9] and the
proof of (18)–(21) is dual to the above. We omit the proofs.

Proof of Theorem 4.4. The proof is by induction on the length of a cut-free derivation
(Theorem 3.8) of the corresponding sequent. The basis (i.e., the derivation is of length
one) is immediate, because in this case the sequent is of the form P → P, where P is an
atomic formula. The induction step cases are similar each to other. We consider only some
of them. Namely, for each rule of inference, but �-cut (13), we consider either the positive
or the negative case of the formula tree, only, and we consider only case (a) of �-cut.

Before moving to the induction step cases, we observe that, by the induction hypothesis,
formula trees occurring in the premise(s) of the last rule of inference in the derivation are
either positive or negative.
• Assume that the last rule of inference in the derivation is

�[(A, B)] → C

�[A · B] → C
(· →)(a)

and assume that �[(A, B)] is positive. By the induction hypothesis for (i)(a), C is an image
and

� 
LG (�[A, B])◦· → C◦ .
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By definition, (�[A, B])◦· is (�[A · B])◦·. Obviously, �[A · B] is positive.
• Assume that the last rule of inference in the derivation is

�1[(A, B)]; �2 →
�1[A · B]; �2 → (· →)(b)

and assume that �1[(A, B)] is negative. Then A · B is a prenegated image, implying that
both A and B are negated images. By the induction hypothesis for (ii),

� 
LG �◦
2
· → (�1[A, B])◦�.

By definition, (�1[A, B])◦� is (�◦
1[A◦ � B◦])� and, by Example 4.1, A◦ � B◦ is (A · B)◦.

Obviously, �1[A · B] is negative and �2 remains positive.
• Assume that the last rule of inference in the derivation is

�1 → A �2 → B

(�1, �2) → A · B
(→ · )

and assume that �1 is positive. Then, by the induction hypothesis for (i)(a), A is an image
and,

� 
LG �◦
1
· → A◦. (22)

By Corollary 3.10, A · B is either an image or a prenegated image. Thus, since A is an
image, B must be an image as well. Therefore, by the induction hypothesis for (i)(a), �2 is
positive and,

� 
LG �◦
2
· → B◦. (23)

It follows from (22) and (23), by (15), that

� 
LG �◦
1
· · �◦

2
· → A◦ · B◦.

By definition, �◦
1
· · �◦

2
· is (�1, �2)

◦· and A◦ · B◦ is (A · B)◦. Since both �1 and �2 are
positive, (�1, �2) is positive and, since both A and B are images, A · B is also an image.
• Assume that the last rule of inference in the derivation is

�1[B] → C � → A

�1[(B/A, �)] → C
(/ →)(a)

and assume that �1[B] is negative. By the induction hypothesis for (i)(b),

� 
LG C◦ → (
�◦

1[B◦]
)�

. (24)

Also, since �1[B] is negative, B is a (pre) negated image and, since B/A is either an image
or a (pre) negated image, by Corollary 3.10, both A and B must be negated images. Thus,
by the induction hypothesis for (i)(b), � is negative and

� 
LG A◦ → �◦�. (25)

It follows from (24) and (25), by (20), that

� 
LG C◦ → (
�◦

1[B◦/A◦, �◦�]
)�

and, by definition,
(
�◦

1[B◦/A◦, �◦�]
)� is (�1[B/A, �])◦�. Finally, since A and B are negated

images and �1 and � are negative, �1[(B/A, �)] is negative.
• Assume that the last rule of inference in the derivation is

�1[B]; �2 → � → A

�1[(B/A, �)]; �2 → (/ →)(b)
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and assume that �1[B] is positive. By the induction hypothesis for (ii),

� 
LG

(
�◦

1[B◦]
)· → �◦

2
�. (26)

Since �1[B] is positive, B is an image and, since, by Corollary 3.10, B/A is either an image
or a negated image, A must be an image. Thus, by the induction hypothesis for (i)(a), � is
positive and

� 
LG �◦· → A◦. (27)

It follows from (26) and (27), by (16), that

� 
LG

(
�◦

1[B◦/A◦, �◦]
)· → �◦

2
�

and, by definition,
(
�◦

1[B◦/A◦, �◦]
)· is (�1[B/A, �])◦·. Since A and B are images, B/A is

an image. Therefore, �1[(B/A, �)] is positive, because both �1 and � are positive,
• Assume that the last rule of inference in the derivation is

(�, A) → B

� → B/A
(→ /)

and assume that (�, A) is positive. By the induction hypothesis for (i)(a), B is an image
and

� 
LG (�, A)◦· → B◦. (28)

Since (�, A) is positive, � is positive and A is an image. Thus, B/A is also an image. Since,
by definition, (�, A)◦· is �◦· · A◦ and (B/A)◦ is B◦/A◦,

� 
LG �◦· → (B/A)◦

follows from (28) by (2)(a).
• Assume that the last rule of inference in the derivation is

� → C

�; ¬C → (¬ →)

and assume that � is negative. By the induction hypothesis for (i)(b), C is a (pre) negated
image and

� 
LG C◦ → �◦�.

• Assume that the last rule of inference in the derivation is

�1; ¬A → �2[A] → C

�2[�1] → C
resolution(a)

and assume that �1 is positive. By the induction hypothesis for (ii), A is an image and

� 
LG �◦
1
· → A◦. (29)

Since A is an image, �2[A]) is also positive and, by the induction hypothesis for (i)(a),

� 
LG (�2[A])◦· → C◦. (30)

Since, by definition, (�2[A])◦· is
(
�◦

2[A◦]
)· and (�2[�1])◦· is

(
�◦

2[�◦
1
·])·,

� 
LG (�2[�1])◦· → C◦

follows from (29) and (30), by (14). Since both �1 and �2[A] are positive, �2[�1] is also
positive.
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• Assume that the last rule of inference in the derivation is

�1 → A �2[B] → C

�2[�1] → C
�-cut(a).

Then both A and B are images.
Since A is an image, by the induction hypothesis for (i)(a), �1 is positive and,

� 
LG �◦
1
· → A◦. (31)

Similarly, since B is an image, by the induction hypothesis for (i)(a), �2[B]) is also
positive and,

� 
LG (�2[B])◦· → C◦. (32)

Since, by definition, (�2[B])◦· is
(
�◦

2[B◦]
)· and (�2[�1])◦· is

(
�◦

2[�◦
1
·])·,

� 
LG (�2[�1])◦· → C◦

follows from (31), A◦ → B◦ ∈ �, and (32), by two applications of (14). Since both �1 and
�2 are positive, �2[�1] is also positive. �

§5. Concluding remarks. So, in this article, we (strongly) embedded LG into NL¬.
The latter calculus is the weakest extension of the intuitionistic counterpart of Boolean
negation from [1] that suits our purpose. Actually, NL¬ is merely an ad hoc technical tool.
In particular, the restriction on the formula A in the axioms (8) implies that NL¬ is not
closed under substitution. It is closed under substitution of images only.

It seems to be of interest to find a stronger negation that allows the De Morgan embed-
ding. We do not know whether LG embeds into NL extended with full Boolean negation
([1]), i.e., the calculus obtained by allowing A in (8) to be any L¬-formula. Obviously,
classical nonassociative Lambek calculus CNL from [5] is too strong, because the sequents
¬A/B → A\¬B and A\¬B → ¬A/B are derivable in this calculus.
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