
TLP 4 (3): 289–323, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S1471068403001868 Printed in the United Kingdom

289

A correct, precise and efficient integration of
set-sharing, freeness and linearity for the

analysis of finite and rational tree languages�

PATRICIA M. HILL

School of Computing, University of Leeds, Leeds, UK

(e-mail: hill@comp.leeds.ac.uk)

ENEA ZAFFANELLA, ROBERTO BAGNARA

Department of Mathematics, University of Parma, Parma, Italy

(e-mail: {zaffanella,bagnara}@cs.unipr.it)

Abstract

It is well known that freeness and linearity information positively interact with aliasing

information, allowing both the precision and the efficiency of the sharing analysis of logic

programs to be improved. In this paper, we present a novel combination of set-sharing with

freeness and linearity information, which is characterized by an improved abstract unification

operator. We provide a new abstraction function and prove the correctness of the analysis

for both the finite tree and the rational tree cases. Moreover, we show that the same notion

of redundant information as identified in Bagnara et al. (2000) and Zaffanella et al. (2002)

also applies to this abstract domain combination: this allows for the implementation of an

abstract unification operator running in polynomial time and achieving the same precision

on all the considered observable properties.

KEYWORDS: abstract interpretation, logic programming, abstract unification, rational trees,

set-sharing, freeness, linearity

1 Introduction

Even though the set-sharing domain is, in a sense, remarkably precise, more precision

is attainable by combining it with other domains. In particular, freeness and linearity

information has received much attention by the literature on sharing analysis (recall

that a variable is said to be free if it is not bound to a non-variable term; it is linear

if it is not bound to a term containing multiple occurrences of another variable).

� This work has been funded by MURST projects “Automatic Program Certification by Abstract
Interpretation”, “Abstract Interpretation, type systems and control-flow analysis”, and “Automatic
Aggregate- and Number-Reasoning for Computing: from Decision Algorithms to Constraint
Programming with Multisets, Sets, and Maps”; by the Integrated Action Italy-Spain “Advanced
Development Environments for Logic Programs”; by the University of Parma’s FIL scientific research
project (ex 60%) “Pure and applied mathematics”; and by the UK’s Engineering and Physical Sciences
Research Council (EPSRC) under grant M05645.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

290 P. M. Hill et al.

As argued informally by Søndergaard (1986), the mutual interaction between

linearity and aliasing information can improve the accuracy of a sharing analysis.

This observation has been formally applied in Codish et al. (1991) to the specification

of the abstract mgu operator for the domain ASub. In his PhD thesis, Langen (1990)

proposed a similar integration with linearity, but for the set-sharing domain. He has

also shown how the aliasing information allows to compute freeness with a good

degree of accuracy (however, freeness information was not exploited to improve

aliasing). King (1994) has also shown how a more refined tracking of linearity

allows for further precision improvements.

The synergy attainable from a bi-directional interaction between aliasing and

freeness information was initially pointed out by Muthukumar and Hermenegildo

(1991, 1992). Since then, several authors considered the integration of set-sharing

with freeness, sometimes also including additional explicit structural information

(Codish et al., 1993; Codish et al., 1996; Filé, 1994 King and Soper, 1994).

Building on the results obtained in Søndergaard (1986), Codish et al. (1991) and

Muthukumar and Hermenegildo (1991), but independently from Langen (1990),

Hans and Winkler (1992) proposed a combined integration of freeness and linearity

information with set-sharing. Similar combinations have been proposed (Bruynooghe

and Codish, 1993; Bruynooghe et al., 1994a, 1994b). From a more pragmatic point

of view, Codish et al. (1993, 1996) integrate the information captured by the domains

of Søndergaard (1986) and Muthukumar and Hermenegildo (1991) by performing

the analysis with both domains at the same time, exchanging information between

the two components at each step.

Most of the above proposals differ in the carrier of the underlying abstract domain.

Even when considering the simplest domain combinations where explicit structural

information is ignored, there is no general consensus on the specification of the

abstract unification procedure. From a theoretical point of view, once the abstract

domain has been related to the concrete one by means of a Galois connection, it

is always possible to specify the best correct approximation of each operator of

the concrete semantics. However, empirical observations suggest that sub-optimal

operators are likely to result in better complexity/precision trade-offs (Bagnara et al.,

2000). As a consequence, it is almost impossible to identify “the right combination”

of variable aliasing with freeness and linearity information, at least when practical

issues, such as the complexity of the abstract unification procedure, are taken into

account.

Given this state of affairs, we will now consider a domain combination whose

carrier is essentially the same as specified by Langen (1990) and Hans and Winkler

(1992). (The same domain combination was also considered by Bruynooghe et al.

(1994a, 1994b), but with the addition of compoundness and explicit structural

information.) The novelty of our proposal lies in the specification of an improved

abstract unification procedure, better exploiting the interaction between sharing and

linearity. As a matter of fact, we provide an example showing that all previous

approaches to the combination of set-sharing with freeness and linearity are not

uniformly more precise than the analysis based on the ASub domain (Codish et al.,

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 291

1991; King, 2000; Søndergaard, 1986), whereas such a property is enjoyed by our

proposal.

By extending the results of Hill et al. (2002) to this combination, we provide a

new abstraction function that can be applied to any logic language computing on

domains of syntactic structures, with or without the occurs-check; by using this

abstraction function, we also prove the correctness of the new abstract unification

procedure. Moreover, we show that the same notion of redundant information as

identified in Bagnara et al. (2002) and Zaffanella et al. (2002) also applies to this

abstract domain combination. As a consequence, it is possible to implement an

algorithm for abstract unification running in polynomial time and still obtain the

same precision on all the considered observables: groundness, independence, freeness

and linearity.

This paper is based on Zaffanella (2001, Chapter 6), the PhD thesis of the second

author. In section 2, we define some notation and recall the basic concepts used later

in the paper. In section 3, we present the domain SFL that integrates set-sharing,

freeness and linearity. In section 4, we show that SFL is uniformly more precise

than the domain ASub, whereas all the previous proposals for a domain integrating

set-sharing and linearity fail to satisfy such a property. In section 5, we show

that the domain SFL can be simplified by removing some redundant information. In

section 6, we provide an experimental evaluation using the China analyzer (Bagnara,

1997). In section 7, we discuss some related work. Section 8 concludes with some

final remarks.

The proofs of the results stated here are not included, but all of them are available

in an extended version of this paper (Hill et al., 2003).

2 Preliminaries

For a set S , ℘(S) is the powerset of S . The cardinality of S is denoted by #S and

the empty set is denoted by �. The notation ℘f (S) stands for the set of all the

finite subsets of S , while the notation S ⊆f T stands for S ∈ ℘f (T). The set of all

finite sequences of elements of S is denoted by S∗, the empty sequence by ε, and the

concatenation of s1, s2 ∈ S∗ is denoted by s1 . s2.

2.1 Terms and trees

Let Sig denote a possibly infinite set of function symbols, ranked over the set of

natural numbers. Let Vars denote a denumerable set of variables, disjoint from Sig .

Then Terms denotes the free algebra of all (possibly infinite) terms in the signature

Sig having variables in Vars . Thus a term can be seen as an ordered labeled tree,

possibly having some infinite paths and possibly containing variables: every inner

node is labeled with a function symbol in Sig with a rank matching the number of

the node’s immediate descendants, whereas every leaf is labeled by either a variable

in Vars or a function symbol in Sig having rank 0 (a constant). It is assumed that

Sig contains at least two distinct function symbols, with one of them having rank 0.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

292 P. M. Hill et al.

If t ∈ Terms then vars(t) and mvars(t) denote the set and the multiset of variables

occurring in t, respectively. We will also write vars(o) to denote the set of variables

occurring in an arbitrary syntactic object o.

Suppose s, t ∈ Terms: s and t are independent if vars(s)∩ vars(t) = �; we say that

variable y occurs linearly in t, more briefly written using the predication occ lin(y, t),

if y occurs exactly once in mvars(t); t is said to be ground if vars(t) = �; t is free

if t ∈ Vars; t is linear if, for all y ∈ vars(t), we have occ lin(y, t); finally, t is a finite

term (or Herbrand term) if it contains a finite number of occurrences of function

symbols. The sets of all ground, linear and finite terms are denoted by GTerms ,

LTerms and HTerms , respectively.

2.2 Substitutions

A substitution is a total function σ : Vars → HTerms that is the identity almost

everywhere; in other words, the domain of σ,

dom(σ)
def
= { x ∈ Vars | σ(x) �= x },

is finite. Given a substitution σ : Vars → HTerms , we overload the symbol ‘σ’ so as

to denote also the function σ : HTerms → HTerms defined as follows, for each term

t ∈ HTerms:

σ(t)
def
=



t, if t is a constant symbol;

σ(t), if t ∈ Vars;

f
(
σ(t1), . . . , σ(tn)

)
, if t = f(t1, . . . , tn).

If t ∈ HTerms , we write tσ to denote σ(t). Note that, for each substitution σ and

each finite term t ∈ HTerms , if tσ ∈ Vars , then t ∈ Vars .

If x ∈ Vars and t ∈ HTerms \ {x}, then x �→ t is called a binding. The set of all

bindings is denoted by Bind . Substitutions are denoted by the set of their bindings,

thus a substitution σ is identified with the (finite) set

{x �→ xσ | x ∈ dom(σ) }.

We denote by vars(σ) the set of variables occurring in the bindings of σ. We also

define range(σ)
def
=

⋃
{ vars(xσ) | x ∈ dom(σ) }.

A substitution is said to be circular if, for n > 1, it has the form

{x1 �→ x2, . . . , xn−1 �→ xn, xn �→ x1},

where x1, . . . , xn are distinct variables. A substitution is in rational solved form if it

has no circular subset. The set of all substitutions in rational solved form is denoted

by RSubst . A substitution σ is idempotent if, for all t ∈ Terms , we have tσσ = tσ.

Equivalently, σ is idempotent if and only if dom(σ) ∩ range(σ) = �. The set of all

idempotent substitutions is denoted by ISubst and ISubst ⊂ RSubst .

The composition of substitutions is defined in the usual way. Thus τ ◦ σ is the

substitution such that, for all terms t ∈ HTerms ,

t(τ ◦ σ) = tστ

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 293

and has the formulation

τ ◦ σ = { x �→ xστ | x ∈ dom(σ) ∪ dom(τ), x �= xστ }. (1)

As usual, σ0 denotes the identity function (i.e. the empty substitution) and, when

i > 0, σi denotes the substitution (σ ◦ σi−1).

For each σ ∈ RSubst and s ∈ HTerms , the sequence of finite terms

σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted σ∞(s) (Intrigila and Zilli, 1996; King,

2000). Therefore, the function rt : HTerms × RSubst → Terms such that

rt(s, σ)
def
= σ∞(s)

is well defined. Note that, in general, this function is not a substitution: while having

a finite domain, its “bindings” x �→ rt(x, σ) can map a domain variable x into a term

rt(x, σ) ∈ Terms \HTerms . However, as the name of the function suggests, the term

rt(x, σ) is granted to be rational, meaning that it can only have a finite number of

distinct subterms and hence, be finitely represented.

Example 1

Consider the substitutions

σ1 = {x �→ f(z), y �→ a} ∈ ISubst ,

σ2 = {x �→ f(y), y �→ a} ∈ RSubst \ ISubst ,

σ3 = {x �→ f(x)} ∈ RSubst \ ISubst ,

σ4 = {x �→ f(y), y �→ f(x)} ∈ RSubst \ ISubst ,

σ5 = {x �→ y, y �→ x} /∈ RSubst .

Note that there are substitutions, such as σ2, that are not idempotent and non-

etheless define finite trees only; namely, rt(x, σ2) = f(a). Similarly, there are other

substitutions, such as σ4, whose bindings are not explicitly cyclic and nonetheless

define rational trees that are infinite; namely, rt(x, σ4) = f(f(f(· · ·))). Finally note

that the ‘rt’ function is not defined on σ5 /∈ RSubst .

2.3 Equality theories

An equation is of the form s = t where s, t ∈ HTerms . Eqs denotes the set of all

equations. A substitution σ may be regarded as a finite set of equations, that is,

as the set { x = t | (x �→ t) ∈ σ }. We say that a set of equations e is in rational

solved form if { s �→ t | (s = t) ∈ e } ∈ RSubst . In the rest of the paper, we often

write a substitution σ ∈ RSubst to denote a set of equations in rational solved form

(and vice versa). As is common in research work involving equality, we overload the

symbol ‘=’ and use it to denote both equality and to represent syntactic identity.

The context makes it clear what is intended.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

294 P. M. Hill et al.

Let {r, s, t, s1, . . . , sn, t1, . . . , tn} ⊆ HTerms . We assume that any equality theory T

over Terms includes the congruence axioms denoted by the following schemata:

s = s, (2)

s = t↔ t = s, (3)

r = s ∧ s = t→ r = t, (4)

s1 = t1 ∧ · · · ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn). (5)

In logic programming and most implementations of Prolog it is usual to assume an

equality theory based on syntactic identity. This consists of the congruence axioms

together with the identity axioms denoted by the following schemata, where f and g

are distinct function symbols or n �= m:

f(s1, . . . , sn) = f(t1, . . . , tn)→ s1 = t1 ∧ · · · ∧ sn = tn, (6)

¬
(
f(s1, . . . , sn) = g(t1, . . . , tm)

)
. (7)

The axioms characterized by schemata (6) and (7) ensure the equality theory depends

only on the syntax. The equality theory for a non-syntactic domain replaces these

axioms by ones that depend instead on the semantics of the domain and, in

particular, on the interpretation given to functor symbols.

The equality theory of Clark (1978), denoted FT, on which pure logic program-

ming is based, usually called the Herbrand equality theory, is given by the congruence

axioms, the identity axioms, and the axiom schema

∀z ∈ Vars : ∀t ∈ (HTerms \ Vars) : z ∈ vars(t)→ ¬(z = t). (8)

Axioms characterized by the schema (8) are called the occurs-check axioms and are

an essential part of the standard unification procedure in SLD-resolution.

An alternative approach used in some implementations of logic programming

systems, such as Prolog II, SICStus and Oz, does not require the occurs-check

axioms. This approach is based on the theory of rational trees (Colmerauer, 1982,

1984), denoted RT. It assumes the congruence axioms and the identity axioms

together with a uniqueness axiom for each substitution in rational solved form.

Informally speaking these state that, after assigning a ground rational tree to each

variable which is not in the domain, the substitution uniquely defines a ground

rational tree for each of its domain variables. Note that being in rational solved

form is a very weak property. Indeed, unification algorithms returning a set of

equations in rational solved form are allowed to be much more “lazy” than one

would expect. We refer the interested reader elsewhere (Jaffar et al., 1987; Keisu,

1994; Maher, 1988) for details on the subject.

In the sequel we use the expression “equality theory” to denote any consistent,

decidable theory T satisfying the congruence axioms. We also use the expression

“syntactic equality theory” to denote any equality theory T also satisfying the

identity axioms.

We say that a substitution σ ∈ RSubst is satisfiable in an equality theory T if,

when interpreting σ as an equation system in rational solved form,

T � ∀
(
Vars \ dom(σ)

)
: ∃ dom(σ) . σ.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 295

Let e ∈ ℘f (Eqs) be a set of equations in an equality theory T . A substitution

σ ∈ RSubst is called a solution for e in T if σ is satisfiable in T and T � ∀(σ → e);

we say that e is satisfiable if it has a solution. If vars(σ) ⊆ vars(e), then σ is said to

be a relevant solution for e. In addition, σ is a most general solution for e in T if

T � ∀(σ ↔ e). In this paper, a most general solution is always a relevant solution

of e. When the theory T is clear from the context, the set of all the relevant most

general solutions for e in T is denoted by mgs(e).

Example 2

Let e = {g(x) = g(f(y)), f(x) = y, z = g(w)} and

σ = {x �→ f(y), y �→ f(x), z �→ g(w)}.

Then, for any syntactic equality theory T , we have T � ∀(σ ↔ e). Since σ ∈ RSubst ,

then σ and hence e is satisfiable in RT. Intuitively, whatever rational tree tw is

assigned to the parameter variable w, there exist rational trees tx, ty and tz that,

when assigned to the domain variables x, y and z, will turn σ into a set of trivial

identities; namely, let tx and ty be both equal to the infinite rational tree f(f(f(· · ·))),
which is usually denoted by fω , and let tz be the rational tree g(tw). Thus σ is a

relevant most general solution for e in RT. In contrast,

τ = {x �→ f(y), y �→ f(x), z �→ g(f(a))}

is just a relevant solution for e in RT. Also observe that, for any equality theory T ,

T � ∀
(
σ → {x = f(f(x))}

)
so that σ does not satisfy the occurs-check axioms. Therefore, neither σ nor e are

satisfiable in the Herbrand equality theory FT Intuitively, there is no finite tree tx
such that tx = f(f(tx)).

We have the following useful result regarding ‘rt’ and satisfiable substitutions that

are equivalent with respect to any given syntactic equality theory.

Proposition 3

Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose that

T � ∀(σ ↔ τ). Then

rt(y, σ) ∈ Vars ⇐⇒ rt(y, τ) ∈ Vars , (9)

rt(y, σ) ∈ GTerms ⇐⇒ rt(y, τ) ∈ GTerms , (10)

rt(y, σ) ∈ LTerms ⇐⇒ rt(y, τ) ∈ LTerms . (11)

2.4 Galois connections and upper closure operators

Given two complete lattices (C,�C) and (A,�A), a Galois connection is a pair of

monotonic functions α : C → A and γ : A→ C such that

∀c ∈ C : c �C γ
(
α(c)

)
, ∀a ∈ A : α

(
γ(a)

)
�A a.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

296 P. M. Hill et al.

The functions α and γ are said to be the abstraction and concretization functions,

respectively. A Galois insertion is a Galois connection where the concretization

function γ is injective.

An upper closure operator (uco) ρ : C → C on the complete lattice (C,�C) is a

monotonic, idempotent and extensive1 self-map. The set of all uco’s on C , denoted

by uco(C), is itself a complete lattice. For any ρ ∈ uco(C), the set ρ(C), i.e. the image

under ρ of the lattice carrier, is a complete lattice under the same partial order �C

defined on C . Given a Galois connection, the function ρ
def
= γ ◦ α is an element of

uco(C). The presentation of abstract interpretation in terms of Galois connections

can be rephrased by using uco’s. In particular, the partial order � defined on uco(C)

formalizes the intuition of an abstract domain being more precise than another one;

moreover, given two elements ρ1, ρ2 ∈ uco(C), their reduced product (Cousot and

Cousot 1979), denoted ρ1 � ρ2, is their glb on uco(C).

2.5 The set-sharing domain

The set-sharing domain of Jacobs and Langen (Jacobs and Langen 1989), encodes

both aliasing and groundness information. Let VI ⊆f Vars be a fixed and finite set

of variables of interest. An element of the set-sharing domain (a sharing set) is a

set of subsets of VI (the sharing groups). Note that the empty set is not a sharing

group.

Definition 4

(The set-sharing lattice) Let SG
def
= ℘(VI) \ {�} be the set of sharing groups. The

set-sharing lattice is defined as SH
def
= ℘(SG), ordered by subset inclusion.

The following operators on SH are needed for the specification of the abstract

semantics.

Definition 5

(Auxiliary operators on SH) For each sh , sh1, sh2 ∈ SH and each V ⊆ VI , we define

the following functions:

the star-union function (·)	 : SH → SH , is defined as

sh	 def
= { S ∈ SG | ∃n � 1 . ∃S1, . . . , Sn ∈ sh . S = S1 ∪ · · · ∪ Sn };

the extraction of the relevant component of sh with respect to V is encoded by

rel : ℘(VI)× SH → SH defined as

rel(V , sh)
def
= { S ∈ sh | S ∩ V �= � };

the irrelevant component of sh with respect to V is thus defined as

rel(V , sh)
def
= sh \ rel(V , sh);

1 Namely, c �C ρ(c) for each c ∈ C .

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 297

the binary union function bin: SH × SH → SH is defined as

bin(sh1, sh2)
def
= { S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 };

the self-bin-union operation on SH is defined as

sh2 def
= bin(sh , sh);

the abstract existential quantification function aexists : SH ×℘(VI)→ SH is defined

as

aexists(sh , V)
def
= { S \ V | S ∈ sh , S \ V �= � } ∪ { {x} | x ∈ V }.

In Bagnara et al. (1997, 2002), it was shown that the domain SH contains

many elements that are redundant for the computation of the actual observable

properties of the analysis, definite groundness and definite independence. The

following formalization of these observables is a rewording of the definitions provided

in Zaffanella et al. (1999, 2002).

Definition 6

(The observables of SH) The groundness and independence observables (on SH)

ρCon , ρPS ∈ uco(SH) are defined, for each sh ∈ SH , by

ρCon(sh)
def
= { S ∈ SG | S ⊆ vars(sh) },

ρPS (sh)
def
= { S ∈ SG | (P ⊆ S ∧ #P = 2) =⇒ (∃T ∈ sh . P ⊆ T) }.

Note that, as usual in sharing analysis domains, definite groundness and definite in-

dependence are both represented by encoding possible non-groundness and possible

pair-sharing information.

The abstract domain PSD (Bagnara et al., 2002; Zaffanella et al., 2002) is the

simplest abstraction of the domain SH that still preserves the same precision on

groundness and independence.

Definition 7

(The pair-sharing dependency lattice PSD) The operator ρPSD ∈ uco(SH) is defined,

for each sh ∈ SH , by

ρPSD(sh)
def
=

{
S ∈ SG

∣∣∣ ∀y ∈ S : S =
⋃
{U ∈ sh | y ∈ U ⊆ S }

}
.

The pair-sharing dependency lattice is PSD
def
= ρPSD(SH).

In the following example we provide an intuitive interpretation of the approxim-

ation induced by the three upper closure operators of Definitions 6 and 7.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

298 P. M. Hill et al.

Example 8

Let VI = {v, w, x, y, z} and consider2 sh = {vx, vy, xy, xyz}. Then

ρCon(sh) = {v, vx, vxy, vxyz, vxz, vy, vyz, vz, x, xy, xyz, xz, y, yz, z},
ρPS (sh) = {v, vx, vxy, vy, w, x, xy, xyz, xz, y, yz, z},
ρPSD(sh) = {vx, vxy, vy, xy, xyz}.

When observing ρCon(sh), the only information available is that variable w does not

occur in a sharing group; intuitively, this means that w is definitely ground. All the

other information encoded in sh is lost; for instance, in sh variables v and z never

occur in the same sharing group (i.e. they are definitely independent), while this

happens in ρCon(sh).

When observing ρPS (sh), it should be noted that two distinct variables occur in

the same sharing group if and only if they were also occurring together in a sharing

group of sh , so that the definite independence information is preserved (e.g. v and

z keep their independence). On the other hand, all the variables in VI occur as

singletons in ρPS (sh) whether or not they are known to be ground; for instance, {w}
occurs in ρPS (sh) although w does not occur in any sharing group in sh .

By noting that ρPSD(sh) ⊂ ρCon(sh) ∩ ρPS (sh), it follows that ρPSD(sh) preserves both

the definite groundness and the definite independence information of sh; moreover,

as the inclusion is strict, ρPSD(sh) encodes other information, such as variable covering

(the interested reader is referred to (Bagnara et al., 2002; Zaffanella et al., 2002) for

a more formal discussion).

2.6 Variable-idempotent substitutions

One of the key concepts used in Hill et al. (2003) for the proofs of the correctness

results stated in this paper is that of variable-idempotence. For the interested reader,

we provide here a brief introduction to variable-idempotent substitutions, although

these are not referred to elsewhere in the paper.

The definition of idempotence requires that repeated applications of a substitution

do not change the syntactic structure of a term and idempotent substitutions are

normally the preferred form of a solution to a set of equations. However, in the

domain of rational trees, a set of solvable equations does not necessarily have an

idempotent solution (for instance, in Example 2, the set of equations e has no

idempotent solution). On the other hand, several abstractions of terms, such as the

ones commonly used for sharing analysis, are only interested in the set of variables

occurring in a term and not in the concrete structure that contains them. Thus,

for applications such as sharing analysis, a useful way to relax the definition of

idempotence is to ignore the structure of terms and just require that the repeated

application of a substitution leaves the set of variables in a term invariant.

2 In this and all the following examples, we will adopt a simplified notation for a set-sharing element sh ,
omitting inner braces. For instance, we will write {xy, xz, yz} to denote {{x, y}, {x, z}, {y, z}}.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 299

Definition 9

(Variable-idempotence) A substitution σ ∈ RSubst is variable-idempotent3 if and only

if for all t ∈ HTerms we have

vars(tσσ) = vars(tσ).

The set of variable-idempotent substitutions is denoted VSubst .

As any idempotent substitution is also variable-idempotent, we have ISubst ⊂
VSubst ⊂ RSubst .

Example 10

Consider the following substitutions which are all in RSubst .

σ1 = {x �→ f(y)} ∈ ISubst ⊂ VSubst ,

σ2 = {x �→ f(x)} ∈ VSubst \ ISubst ,

σ3 = {x �→ f(y, z), y �→ f(z, y)} ∈ VSubst \ ISubst ,

σ4 = {x �→ y, y �→ f(x, y)} /∈ VSubst .

3 The domain SFL

The abstract domain SFL is made up of three components, providing different

kinds of sharing information regarding the set of variables of interest VI : the first

component is the set-sharing domain SH of Jacobs and Langen (1989); the other two

components provide freeness and linearity information, each represented by simply

recording those variables of interest that are known to enjoy the corresponding

property.

Definition 11

(The domain SFL) Let F
def
= ℘(VI) and L

def
= ℘(VI) be partially ordered by reverse

subset inclusion. The abstract domain SFL is defined as

SFL
def
= { 〈sh , f, l〉 | sh ∈ SH , f ∈ F, l ∈ L }

and is ordered by �S , the component-wise extension of the orderings defined on the

sub-domains. With this ordering, SFL is a complete lattice whose least upper bound

operation is denoted by alubS . The bottom element 〈�,VI ,VI 〉 will be denoted by

⊥S .

3.1 The abstraction function

When the concrete domain is based on the theory of finite trees, idempotent

substitutions provide a finitely computable strong normal form for domain elements,

3 This definition, which is the same as that originally provided in Hill et al. (1998), is slightly stronger
than the one adopted in Hill et al. (2002), which disregarded the domain variables of the substitution.
The adoption of this stronger definition allows for some simplifications in the correctness proofs for
freeness and linearity.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

300 P. M. Hill et al.

meaning that different substitutions describe different sets of finite trees.4 In

contrast, when working on a concrete domain based on the theory of rational

trees, substitutions in rational solved form, while being finitely computable, no

longer satisfy this property: there can be an infinite set of substitutions in rational

solved form all describing the same set of rational trees (i.e. the same element in the

“intended” semantics). For instance, the substitutions

σn = {x �→
n︷ ︸︸ ︷

f(· · · f(x) · · ·)},

for n = 1, 2, . . . , all map the variable x into the same infinite rational tree fω .

Ideally, a strong normal form for the set of rational trees described by a

substitution σ ∈ RSubst can be obtained by computing the limit σ∞. The problem

is that σ∞ can map domain variables to infinite rational terms and may not be in

RSubst .

This poses a non-trivial problem when trying to define “good” abstraction

functions, since it would be really desirable for this function to map any two

equivalent concrete elements to the same abstract element. As shown in Hill

et al. (2002), the classical abstraction function for set-sharing analysis (Cortesi

and Filé, 1999; Jacobs and Langen, 1989), which was defined only for substitutions

that are idempotent, does not enjoy this property when applied, as it is, to arbitrary

substitutions in rational solved form. In Hill et al. (1998, 2002), this problem is

solved by replacing the sharing group operator ‘sg’ of Jacobs and Langen (1989) by

an occurrence operator, ‘occ’, defined by means of a fixpoint computation. However,

to simplify the presentation, here we define ‘occ’ directly by exploiting the fact that

the number of iterations needed to reach the fixpoint is bounded by the number of

bindings in the substitution.

Definition 12

(Occurrence operator) For each σ ∈ RSubst and v ∈ Vars , the occurrence operator

occ: RSubst × Vars → ℘f (Vars) is defined as

occ(σ, v)
def
= { y ∈ Vars | n = #σ, v ∈ vars(yσn) \ dom(σ) }.

For each σ ∈ RSubst , the operator ssets : RSubst → SH is defined as

ssets(σ)
def
= {occ(σ, v) ∩ VI | v ∈ Vars } \ {�}.

The operator ‘ssets’ is introduced for notational convenience only.

Example 13

Let

σ = {x1 �→ f(x2), x2 �→ g(x3, x4), x3 �→ x1},
τ = {x1 �→ f(g(x3, x4)), x2 �→ g(x3, x4), x3 �→ f(g(x3, x4))}.

4 As usual, this is modulo the possible renaming of variables.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 301

Then dom(σ) = dom(τ) = {x1, x2, x3} so that occ(σ, xi) = occ(τ, xi) = �, for i = 1,

2, 3 and occ(σ, x4) = occ(τ, x4) = {x1, x2, x3, x4}. As a consequence, supposing that

VI = {x1, x2, x3, x4}, we obtain ssets(σ) = ssets(τ) = {VI }.

In a similar way, it is possible to define suitable operators for groundness, freeness

and linearity. As all ground trees are linear, a knowledge of the definite groundness

information can be useful for proving properties concerning the linearity abstraction.

Groundness is already encoded in the abstraction for set-sharing provided in

Definition 12; nonetheless, for both a simplified notation and a clearer intuitive

reading, we now explicitly define the set of variables that are associated to ground

trees by a substitution in RSubst .

Definition 14

(Groundness operator) The groundness operator gvars : RSubst → ℘f (Vars) is defined,

for each σ ∈ RSubst , by

gvars(σ)
def
= { y ∈ dom(σ) | ∀v ∈ Vars : y /∈ occ(σ, v) }.

Example 15

Consider σ ∈ RSubst where

σ = {x1 �→ x2, x2 �→ f(a), x3 �→ x4, x4 �→ f(x2, x4)}.

Then gvars(σ) = {x1, x2, x3, x4}. Observe that x1 ∈ gvars(σ) although x1σ ∈ Vars .

Also, x3 ∈ gvars(σ) although vars(x3σ
i) = {x2, x4} �= � for all i � 2.

As for possible sharing, the definite freeness information can be extracted from a

substitution in rational solved form by observing the result of a bounded number

of applications of the substitution.

Definition 16

(Freeness operator) The freeness operator fvars : RSubst → ℘(Vars) is defined, for

each σ ∈ RSubst , by

fvars(σ)
def
= { y ∈ Vars | n = #σ, yσn ∈ Vars }.

As σ ∈ RSubst has no circular subset, y ∈ fvars(σ) implies yσn ∈ Vars \ dom(σ).

Example 17

Let VI = {x1, x2, x3, x4, x5} and consider σ ∈ RSubst where

σ = {x1 �→ x2, x2 �→ f(x3), x3 �→ x4, x4 �→ x5}.

Then fvars(σ) ∩ VI = {x3, x4, x5}. Thus x1 /∈ fvars(σ) although x1σ ∈ Vars . Also,

x3 ∈ fvars(σ) although x3σ ∈ dom(σ).

As in previous cases, the definite linearity information can be extracted by

observing the result of a bounded number of applications of the considered

substitution.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

302 P. M. Hill et al.

Definition 18

(Linearity operator) The linearity operator lvars : RSubst → ℘(Vars) is defined, for

each σ ∈ RSubst , by

lvars(σ)
def
= { y ∈ Vars | n = #σ, ∀z ∈ vars(yσn) \ dom(σ) : occ lin(z, yσ2n) }.

In the next example we consider the extraction of linearity from two substitutions.

The substitution σ shows that, in contrast with the case of set-sharing and freeness,

for linearity we may need to compute up to 2n applications, where n = #σ; the

substitution τ shows that, when observing the term yτ2n, multiple occurrences of

domain variables have to be disregarded.

Example 19

Let VI = {x1, x2, x3, x4} and consider σ ∈ RSubst where

σ = {x1 �→ x2, x2 �→ x3, x3 �→ f(x1, x4)}.

Then lvars(σ) ∩ VI = {x4}. Observe that x1 /∈ lvars(σ). This is because x4 /∈
dom(σ), x1σ

3 = f(x1, x4) so that x4 ∈ vars(x1σ
3) and x1σ

6 = f
(
f(x1, x4), x4

)
so that

occ lin(x4, x1σ
6) does not hold. Note also that occ lin(x4, x1σ

i) holds for i = 3, 4, 5.

Consider now τ ∈ RSubst where

τ = {x1 �→ f(x2, x2), x2 �→ f(x2)}.

Then lvars(τ) ∩ VI = VI . Note that we have x1 ∈ lvars(τ) although, for all i > 0,

x2 ∈ dom(τ) occurs more than once in the term x1τ
i.

The occurrence, groundness, freeness and linearity operators are invariant with

respect to substitutions that are equivalent in the given syntactic equality theory.

Proposition 20

Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose that

T � ∀(σ ↔ τ). Then

ssets(σ) = ssets(τ), (12)

gvars(σ) = gvars(τ), (13)

fvars(σ) = fvars(τ), (14)

lvars(σ) = lvars(τ). (15)

Moreover, these operators precisely capture the intended properties over the

domain of rational trees.

Proposition 21

If σ ∈ RSubst and y, v ∈ Vars then

y ∈ occ(σ, v) ⇐⇒ v ∈ vars
(
rt(y, σ)

)
, (16)

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms , (17)

y ∈ fvars(σ) ⇐⇒ rt(y, σ) ∈ Vars , (18)

y ∈ lvars(σ) ⇐⇒ rt(y, σ) ∈ LTerms . (19)

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 303

It follows from (16) and (18) that any free variable necessarily shares (at least, with

itself). Also, as Vars ∪ GTerms ⊂ LTerms , it follows from (17), (18) and (19) that

any variable that is either ground or free is also necessarily linear. Thus we have the

following corollary.

Corollary 22

If σ ∈ RSubst , then

fvars(σ) ⊆ vars
(
ssets(σ)

)
,

fvars(σ) ∪ gvars(σ) ⊆ lvars(σ).

We are now in position to define the abstraction function mapping rational trees

to elements of the domain SFL.

Definition 23

(The abstraction function for SFL) For each substitution σ ∈ RSubst , the function

αS : RSubst → SFL is defined by

αS (σ)
def
= 〈ssets(σ), fvars(σ) ∩ VI , lvars(σ) ∩ VI 〉.

The concrete domain ℘(RSubst) is related to SFL by means of the abstraction

function αS : ℘(RSubst)→ SFL such that, for each Σ ∈ ℘(RSubst),

αS (Σ)
def
= alubS{ αS (σ) | σ ∈ Σ }.

Since the abstraction function αS is additive, the concretization function is given by

the adjoint (Cousot and Cousot 1977)

γS
(
〈sh , f, l〉

) def
= {σ ∈ RSubst | ssets(σ) ⊆ sh , fvars(σ) ⊇ f, lvars(σ) ⊇ l }.

With Definition 23 and Proposition 20, one of our objectives is fulfilled: substitu-

tions in RSubst that are equivalent have the same abstraction.

Corollary 24

Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose

T � ∀(σ ↔ τ). Then αS (σ) = αS (τ).

Observe that the Galois connection defined by the functions αS and γS is not a

Galois insertion since different abstract elements are mapped by γS to the same

set of concrete computation states. To see this it is sufficient to observe that, by

Corollary 22, any abstract element d = 〈sh , f, l〉 ∈ SFL such that f � vars(sh), as

is the case for the bottom element ⊥S , satisfies γS (d) = γS (⊥S) = �; thus, all such

d’s will represent the semantics of those program fragments that have no successful

computations. Similarly, by letting V =
(
VI \ vars(sh)

)
∪ f, it can be seen that, for

any l′ such that V ∪ l = V ∪ l′, we have, again by Corollary 22, γS (d) = γS
(
〈sh , f, l′〉

)
.

Of course, by taking the abstract domain as the subset of SFL that is the co-

domain of αS , we would have a Galois insertion. However, apart from the simple

cases shown above, it is somehow difficult to explicitly characterize such a set. For

instance, as observed in (Filé 1994), if

d = 〈{xy, xz, yz}, {x, y, z}, {x, y, z}〉 ∈ SFL

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

304 P. M. Hill et al.

we have γS (d) = γS (⊥S) = �. It is worth stressing that these “spurious” elements

do not compromise the correctness of the analysis and, although they can affect

the precision of the analysis, they rarely occur in practice (Bagnara et al., 2000;

Zaffanella, 2001).

3.2 The abstract operators

The specification of the abstract unification operator on the domain SFL is rather

complex, since it is based on a very detailed case analysis. To achieve some

modularity, that will be also useful when proving its correctness, in the next definition

we introduce several auxiliary abstract operators.

Definition 25

(Auxiliary operators in SFL) Let s, t ∈ HTerms be finite terms such that vars(s) ∪
vars(t) ⊆ VI . For each d = 〈sh , f, l〉 ∈ SFL we define the following predicates:

s and t are independent in d if and only if indd : HTerms2 → Bool holds for (s, t),

where

indd (s, t)
def
=

(
rel

(
vars(s), sh

)
∩ rel

(
vars(t), sh

)
= �

)
;

t is ground in d if and only if groundd : HTerms → Bool holds for t, where

groundd (t)
def
=

(
vars(t) ⊆ VI \ vars(sh)

)
;

y ∈ vars(t) occurs linearly (in t) in d if and only if occ lind : VI ×HTerms → Bool

holds for (y, t), where

occ lind (y, t)
def
= groundd (y) ∨

(
occ lin(y, t) ∧ (y ∈ l)

∧ ∀z ∈ vars(t) :
(
y �= z =⇒ indd (y, z)

))
;

t is free in d if and only if freed : HTerms → Bool holds for t, where

freed (t)
def
= (t ∈ f);

t is linear in d if and only if lind : HTerms → Bool holds for t, where

lind (t)
def
= ∀y ∈ vars(t) : occ lind (y, t).

The function share withd : HTerms → ℘(VI) yields the set of variables of interest

that may share with the given term. For each t ∈ HTerms ,

share withd (t)
def
= vars

(
rel

(
vars(t), sh

))
.

The function cyclictx : SH → SH strengthens the sharing set sh by forcing the

coupling of x with t. For each sh ∈ SH and each (x �→ t) ∈ Bind ,

cyclictx(sh)
def
= rel

(
{x} ∪ vars(t), sh

)
∪ rel

(
vars(t) \ {x}, sh

)
.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 305

As a first correctness result, we have that the auxiliary operators correctly

approximate the corresponding concrete properties.

Theorem 26

Let d ∈ SFL, σ ∈ γS (d) and y ∈ VI . Let also s, t ∈ HTerms be two finite terms such

that vars(s) ∪ vars(t) ⊆ VI . Then

indd (s, t) =⇒ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
= �; (20)

indd (y, t) ⇐⇒ y /∈ share withd (t); (21)

freed (t) =⇒ rt(t, σ) ∈ Vars; (22)

groundd (t) =⇒ rt(t, σ) ∈ GTerms; (23)

lind (t) =⇒ rt(t, σ) ∈ LTerms . (24)

Example 27

Let VI = {v, w, x, y, z} and consider the abstract element d = 〈sh , f, l〉 ∈ SFL, where

sh = {v, wz, xz, z}, f = {v}, l = {v, x, y, z}.

Then, by applying Definition 25, we obtain the following:

• groundd (x) does not hold whereas groundd

(
h(y)

)
holds.

• freed (v) holds but freed

(
h(v)

)
does not hold.

• Both indd (w, x) and indd

(
f(w, y), f(x, y)

)
hold whereas indd (x, z) does not

hold; note that, in the second case, the two arguments of the predicate do

share y, but this does not affect the independence of the corresponding terms,

because y is definitely ground in the abstract element d .

• Let t = f(w, x, x, y, y, z); then occ lind (w, t) does not hold because w /∈ l;

occ lind (x, t) does not hold because x occurs more than once in t; occ lind (y, t)

holds, even though y occurs twice in t, because y is definitely ground in d ;

occ lind (z, t) does not hold because both x and z occur in term t and, as

observed in the point above, indd (x, z) does not hold.

• For the reasons given in the point above, lind (t) does not hold; in contrast,

lind

(
f(y, y, z)

)
holds.

• share withd (w) = {w, z} and share withd (x) = {x, z}; thus, both w and x may

share one or more variables with z; since we observed that w and x are

definitely independent in d , this means that the set of variables that w shares

with z is disjoint from the set of variables that x shares with z.

• Let t = f(w, z); then

cyclictz(sh) = rel
(
{w, z}, sh

)
∪ rel

(
{w}, sh

)
= {v} ∪ {wz}
= sh \ {xz, z}.

An intuitive explanation of the usefulness of this operator is deferred until

after the introduction of the abstract mgu operator (see also Example 31).

We now introduce the abstract mgu operator, specifying how a single binding

affects each component of the domain SFL in the context of a syntactic equality

theory T .

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

306 P. M. Hill et al.

Definition 28

(amguS) The function amguS : SFL× Bind → SFL captures the effects of a binding

on an element of SFL. Let d = 〈sh , f, l〉 ∈ SFL and (x �→ t) ∈ Bind , where

{x} ∪ vars(t) ⊆ VI . Let also

sh ′
def
= cyclictx(sh− ∪ sh ′′),

where

shx
def
= rel

(
{x}, sh

)
, sh t

def
= rel

(
vars(t), sh

)
,

shxt
def
= shx ∩ sh t, sh−

def
= rel

(
{x} ∪ vars(t), sh

)
,

sh ′′
def
=




bin(shx, sh t), if freed (x) ∨ freed (t);

bin
(
shx ∪ bin(shx, sh

	
xt),

sh t ∪ bin(sh t, sh
	
xt)

)
, if lind (x) ∧ lind (t);

bin(sh	
x, sh t), if lind (x);

bin(shx, sh
	
t), if lind (t);

bin(sh	
x, sh

	
t), otherwise.

Letting Sx
def
= share withd (x) and St

def
= share withd (t), we also define

f′
def
=




f, if freed (x) ∧ freed (t);

f \ Sx, if freed (x);

f \ St, if freed (t);

f \ (Sx ∪ St), otherwise;

l′
def
=

(
VI \ vars(sh ′)

)
∪ f′ ∪ l′′,

where

l′′
def
=




l \ (Sx ∩ St), if lind (x) ∧ lind (t);

l \ Sx, if lind (x);

l \ St, if lind (t);

l \ (Sx ∪ St), otherwise.

Then

amguS

(
d , x �→ t

) def
=

{
⊥S , if d = ⊥S ∨

(
T =FT∧ x ∈ vars(t)

)
;

〈sh ′, f′, l′〉 otherwise.

The next result states that the abstract mgu operator is a correct approximation

of the concrete one.

Theorem 29

Let d ∈ SFL and (x �→ t) ∈ Bind , where {x} ∪ vars(t) ⊆ VI . Then, for all σ ∈ γS (d)

and τ ∈ mgs
(
σ∪{x = t}

)
in the syntactic equality theory T , we have τ ∈ γS

(
amguS (d ,

x �→ t)
)
.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 307

We now highlight the similarities and differences of the operator amguS with

respect to the corresponding ones defined in the “classical” proposals for the integ-

ration of set-sharing with freeness and linearity, such as Bruynooghe et al. (1994a,

1995), Hans and Winkler (1992) and Langen (1990). Note that, when comparing our

domain with the proposal in Bruynooghe et al. (1994a), we deliberately ignore all

those enhancements that depend on properties that cannot be represented in SFL

(i.e. compoundness and explicit structural information).

• In the computation of the set-sharing component, the main difference can

be observed in the second, third and fourth cases of the definition of sh ′′:

here we omit one of the star-unions even when the terms x and t possibly

share. In contrast, in Bruynooghe et al. (1994a, 1995), Hans and Winkler

(1992) and Langen (1990), the corresponding star-union is avoided only when

indd (x, t) holds. Note that when indd (x, t) holds in the second case of sh ′′,

then we have shxt = �; thus, the whole computation for this case reduces to

sh ′′ = bin(shx, sh t), as was the case in the previous proposals.

• Another improvement on the set-sharing component can be observed in the

definition of sh ′: the cyclictx operator allows the set-sharing description to

be further enhanced when dealing with explicitly cyclic bindings, i.e. when

x ∈ vars(t). This is the rewording of a similar enhancement proposed in

Bagnara (1997) for the domain Pos in the context of groundness analysis.

Its net effect is to recover some groundness and sharing dependencies that

would have been unnecessarily lost when using the standard operators. When

x /∈ vars(t), we have cyclictx(sh− ∪ sh ′′) = sh− ∪ sh ′′.

• The computation of the freeness component f′ is the same as specified in

Bruynooghe et al. (1994a) and Hans and Winkler (1992) and is more precise

than the one defined in Langen (1990).

• The computation of the linearity component l′ is the same as specified

in Bruynooghe et al. (1994a), and is more precise than those defined in Hans

and Winkler (1992) and Langen (1990).

In the following examples we show that the improvements in the abstract

computation of the sharing component allow, in particular cases, to derive better

information than that obtainable by using the classical abstract unification operators.

Example 30

Let VI = {x, x1, x2, y, y1, y2, z} and σ ∈ RSubst such that

σ
def
= {x �→ f(x1, x2, z), y �→ f(y1, z, y2)}.

By Definition 23, we have d
def
= αS

(
{σ}

)
= 〈sh , f, l〉, where

sh = {xx1, xx2, xyz, yy1, yy2}, f = VI \ {x, y}, l = VI .

Consider the binding (x �→ y) ∈ Bind . In the concrete domain, we compute (a

substitution equivalent to) τ ∈ mgs
(
σ ∪ {x = y}

)
, where

τ = {x �→ f(y1, y2, y2), y �→ f(y1, y2, y2), x1 �→ y1, x2 �→ y2, z �→ y2}.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

308 P. M. Hill et al.

Note that αS

(
{τ}

)
= 〈shτ, fτ, lτ〉, where shτ = {xx1yy1, xx2yy2z}, so that the pairs of

variables Px = {x1, x2} and Py = {y1, y2} keep their independence.

When evaluating the sharing component of amguS(d, x �→ y), using the notation

of Definition 28, we have

shx = {xx1, xx2, xyz}, sh t = {xyz, yy1, yy2},
shxt = {xyz}, sh− = �.

Since both lind (x) and lind (y) hold, we apply the second case of the definition of

sh ′′ so that

shx ∪ bin(shx, sh
	
xt) = {xx1, xx1yz, xx2, xx2yz, xyz},

sh t ∪ bin(sh t, sh
	
xt) = {xyy1z, xyy2z, xyz, yy1, yy2},

sh ′′ = bin
(
shx ∪ bin(shx, sh

	
xt), sh t ∪ bin(sh t, sh

	
xt)

)
= {xx1yy1, xx1yy1z, xx1yy2, xx1yy2z, xx1yz,

xx2yy1, xx2yy1z, xx2yy2, xx2yy2z, xx2yz,

xyy1z, xyy2z, xyz}.

Finally, as the binding is not cyclic, we obtain sh ′ = sh ′′. Thus amguS captures the

fact that pairs Px and Py keep their independence.

In contrast, since indd (x, y) does not hold, all of the classical definitions of

abstract unification would have required the star-closure of both shx and sh t,

resulting in an abstract element including, among the others, the sharing group

S = {x, x1, x2, y, y1, y2}. Since Px ∪ Py ⊂ S , this independence information would

have been unnecessarily lost.

Similar examples can be devised for the third and fourth cases of the definition

of sh ′′, where only one side of the binding is known to be linear. The next example

shows the precision improvements arising from the use of the cyclictx operator.

Example 31

Let VI = {x, x1, x2, y} and σ
def
= {x �→ f(x1, x2)}. By Definition 23, we have

d
def
= αS

(
{σ}

)
= 〈sh , f, l〉, where

sh = {xx1, xx2, y}, f = VI \ {x}, l = VI .

Let t = f(x, y) and consider the cyclic binding (x �→ t) ∈ Bind . In the concrete

domain, we compute (a substitution equivalent to) τ ∈ mgs
(
σ ∪ {x = t}

)
, where

τ = {x �→ f(x1, x2), x1 �→ f(x1, x2), y �→ x2, }.

Note that if we further instantiate τ by grounding y, then variables x, x1 and x2 would

become ground too. Formally we have αS

(
{τ}

)
= 〈shτ, fτ, lτ〉, where shτ = {xx1x2y}.

Thus, as observed above, y covers x, x1 and x2. When abstractly evaluating the

binding, we compute

shx = {xx1, xx2}, sh t = {xx1, xx2, y},
shxt = shx, sh− = �.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 309

Since both lind (x) and lind (t) hold, we apply the second case of the definition of sh ′′,

so that

shx ∪ bin(shx, sh
	
xt) = sh	

x = {xx1, xx1x2, xx2},
sh t ∪ bin(sh t, sh

	
xt) = {xx1, xx1x2, xx1x2y, xx1y, xx2, xx2y, y},

sh ′′ = bin
(
shx ∪ bin(shx, sh

	
xt), sh t ∪ bin(sh t, sh

	
xt)

)
= {xx1, xx1x2, xx1x2y, xx1y, xx2, xx2y}.

Thus, as x ∈ vars(t), we obtain

sh ′ = cyclictx(sh− ∪ sh ′′)

= rel
(
{x} ∪ vars(t), sh ′′

)
∪ rel

(
vars(t) \ {x}, sh ′′

)
= � ∪ rel

(
{y}, sh ′′

)
= {xx1x2y, xx1y, xx2y}.

Note that, in the element sh− ∪ sh ′′ = sh ′′ (which is the abstract element that would

have been computed when not exploiting the cyclictx operator) variable y covers

none of variables x, x1 and x2. Thus, by applying the cyclictx operator, this covering

information is restored.

The full abstract unification operator aunifyS , capturing the effect of a sequence of

bindings on an abstract element, can now be specified by a straightforward inductive

definition using the operator amguS .

Definition 32

(aunifyS) The operator aunifyS : SFL × Bind∗ → SFL is defined, for each d ∈ SFL

and each sequence of bindings bs ∈ Bind∗, by

aunifyS (d , bs)
def
=

{
d , if bs = ε;

aunifyS

(
amguS(d , x �→ t), bs ′

)
, if bs = (x �→ t) . bs ′.

Note that the second argument of aunifyS is a sequence of bindings (i.e. it is not

a substitution, which is a set of bindings), because amguS is neither commutative

nor idempotent, so that the multiplicity and the actual order of application of the

bindings can influence the overall result of the abstract computation. The correctness

of the aunifyS operator is simply inherited from the correctness of the underlying

amguS operator. In particular, any reordering of the bindings in the sequence bs still

results in a correct implementation of aunifyS .

The ‘merge-over-all-path’ operator on the domain SFL is provided by alubS and

is correct by definition. Finally, we define the abstract existential quantification

operator for the domain SFL, whose correctness does not pose any problem.

Definition 33

(aexistsS) The function aexistsS : SFL×℘f (VI)→ SFL provides the abstract existen-

tial quantification of an element with respect to a subset of the variables of interest.

For each d
def
= 〈sh , f, l〉 ∈ SFL and V ⊆ VI ,

aexistsS
(
〈sh , f, l〉, V

) def
= 〈aexists(sh , V), f ∪ V , l ∪ V 〉.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

310 P. M. Hill et al.

The intuition behind the definition of the abstract operator aexistsS is the following.

As explained in section 2, any substitution σ ∈ RSubst can be interpreted, under

the given equality theory T , as a first-order logical formula; thus, for each set of

variables V , it is possible to consider the (concrete) existential quantification ∃V . σ.

The goal of the abstract operator aexistsS is to provide a correct approximation of

such a quantification starting from any correct approximation for σ.

Example 34

Let VI = {x, y, z} and σ = {x �→ f(v1, v2), y �→ g(v2, v3), z �→ f(v1, v1)}, so that, by

Definition 23,

d = αS

(
{σ}

)
= 〈{xy, xz, y},�, {x, y}〉.

Let V = {y, z} and consider the concrete element corresponding to the logical

formula ∃V . σ. Note that T � ∀(τ ↔ ∃V . σ), where τ = {x �→ f(v1, v2)}. By

applying Definition 33, we obtain

aexistsS (d , V) = 〈{x, y, z}, {y, z}, {x, y, z}〉 = αS

(
{τ}

)
.

It is worth stressing that such an operator does not affect the set VI of the variables

of interest. In particular, the abstract element aexistsS (d , V) still has to provide

correct information about variables y and z. Intuitively, since all the occurrences

of y and z in ∃V . σ are bound by the existential quantifier, the two variables of

interest are un-aliased, free and linear.

Note that an abstract projection operator, i.e. an operator that actually modifies

the set of variables of interest, is easily specified by composing the operator aexistsS
with an operator that simply removes, from all the components of SFL and from

the set of variables of interest VI , those variables that have to be projected out.

4 A formal comparison between SFL and ASub

As we have already observed, Example 30 shows that the abstract domain SFL, when

equipped with the abstract mgu operator introduced in section 3.2, can yield results

that are strictly more precise than all the classical combinations of set-sharing with

freeness and linearity information. In this section we show that the same example

has another interesting, unexpected consequence, since it can be used to formally

prove that all the classical combinations of set-sharing with freeness and linearity,

including those presented in Bagnara et al. (2000), Bruynooghe et al. (1994a), Hans

and Winkler (1992) and Langen (1990), are not uniformly more precise than the

abstract domain ASub (Sondergaard, 1986), which is based on pair-sharing.

To formalize the above observation, we now introduce the ASub domain and

the corresponding abstract semantics operators as specified in Codish et al. (1991).

The elements of the abstract domain ASub have two components: the first one is

a set of variables that are known to be definitely ground; the second one encodes

both possible pair-sharing and possible non-linearity into a single relation defined

on the set of variables. Intuitively, when x �= y and (x, y) ∈ VI 2 occurs in the

second component, then x and y may share a variable; when (x, x) ∈ VI 2 occurs

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 311

in the second component, then x may be non-linear. The second component always

encodes a symmetric relation; thus, for notational convenience and without any loss

of generality (King, 2000), we will represent each pair (x, y) in such a relation as the

sharing group S = {x, y}, which will have cardinality 1 or 2, depending on whether

x = y or not, respectively.

Definition 35

(The domain ASub⊥) The abstract domain ASub⊥ is defined as ASub⊥
def
= {⊥ASub} ∪

ASub, where

ASub
def
=

{
〈G,R〉 ∈ ℘(VI)× SH

∣∣∣∣∣G ∩ vars(R) = �,

∀S ∈ R : 1 � #S � 2

}
.

For i ∈ {1, 2}, let κi = 〈Gi, Ri〉 ∈ ASub. Then

κ1 �ASub κ2
def⇐⇒ G1 ⊇ G2 ∧ R1 ⊆ R2.

The partial order �ASub is extended on ASub⊥ by letting ⊥ASub be the bottom element.

Let u, v ∈ VI and κ = 〈G,R〉 ∈ ASub. Then u
κ←→ v is a shorthand for the

condition {u, v} ∈ R, whereas u
κ⇐⇒ v is a shorthand for u = v ∨ {u, v} ∈ R.

It is well-known that the domain ASub⊥ can be obtained by a further abstraction

of any domain such as SFL that is based on set-sharing and enhanced with linearity

information. The following definition formalizes this abstraction.

Definition 36

(αASub : SFL→ ASub⊥) Let d = 〈sh , f, l〉 ∈ SFL. Then

αASub(d)
def
=

{
⊥ASub, if d = ⊥S ;

〈G,R〉, otherwise;

where

G
def
= {x ∈ VI | x /∈ vars(sh) },

R
def
= { {x} ⊆ VI | x ∈ vars(sh) ∧ x /∈ l }
∪ { {x, y} ⊆ VI | x �= y ∧ ∃S ∈ sh . {x, y} ⊆ S }.

The definition of abstract unification in Codish et al. (1991) is based on a few

auxiliary operators. The first of these introduces the concept of abstract multiplicity

for a term under a given abstract substitution, therefore modeling the notion of

definite groundness and definite linearity.

Definition 37

(Abstract multiplicity) Let κ = 〈G,R〉 ∈ ASub and let t ∈ HTerms be a term such

that vars(t) ⊆ VI . We say that y ∈ vars(t) occurs linearly (in t) in κ if and only if

occ linκ : VI ×HTerms → Bool holds for (y, t), where

occ linκ(y, t)
def
= y ∈ G ∨

(
occ lin(y, t) ∧ ∀z ∈ vars(t) : {y, z} /∈ R

)
.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

312 P. M. Hill et al.

We say that t has abstract multiplicity m in κ if and only if χκ(t) = m, where

χκ : HTerms → {0, 1, 2} is defined as follows:

χκ(t)
def
=




0, if vars(t) ⊆ G;

1, if ∀y ∈ vars(t) : occ linκ(y, t);

2, otherwise.

For any binding x �→ t, the function χκ : Bind → {0} ∪ {1, 2}2 is defined as follows

χκ(x �→ t)
def
=

{
0, if χκ(x) = 0 or χκ(t) = 0;(
χκ(x), χκ(t)

)
, otherwise.

It is worth noting that, modulo a few insignificant differences in notation, the

multiplicity operator χκ defined above corresponds to the abstract multiplicity

operator χA, which was introduced in Codish et al. (1991, Definition 3.4) and

provided with an executable specification in King (2000, Definition 4.3). Similarly,

the next definition corresponds to Codish et al. (1991, Definition 4.3).

Definition 38

(Sharing caused by an abstract equation) For each κ ∈ ASub and (x �→ t) ∈
Bind , where Vx = {x} and Vt = vars(t) are such that Vx ∪ Vt ⊆ VI , the function

soln: ASub× Bind → ASub is defined as follows

soln(κ, x �→ t)
def
=




〈Vx ∪ Vt,�〉, if χκ(x �→ t) = 0;

〈�, bin(Vx, Vt)〉, if χκ(x �→ t) = (1, 1);

〈�, bin(Vx, Vx ∪ Vt)〉, if χκ(x �→ t) = (1, 2);

〈�, bin(Vx ∪ Vt, Vt)〉, if χκ(x �→ t) = (2, 1);

〈�, bin(Vx ∪ Vt, Vx ∪ Vt)〉, if χκ(x �→ t) = (2, 2);

where the function bin: ℘(VI)2 → SH , for each V ,W ⊆ VI , is defined as follows

bin(V ,W)
def
= { {v, w} ⊆ VI | v ∈ V , w ∈W }.

The next definition corresponds to Codish et al. (1991, Definition 4.5).

Definition 39

(Abstract composition) Let κ, κ′ ∈ ASub, where κ = 〈G,R〉 and κ′ = 〈G′, R′〉. Then

κ ◦ κ′ def
= 〈G′′, R′′〉, where

G′′
def
= G ∪ G′,

R′′
def
=

{
{u, v} ∈ SH

∣∣∣∣∣ {u, v} ∩ G′′ = �,(
u

κ←→ v
)
∨

(
∃x, y . u

κ⇐⇒ x
κ′←→ y

κ⇐⇒ v
)

}
.

We are now ready to define the abstract mgu operator for the domain ASub⊥.

This operator can be viewed as a specialization of Codish et al. (1991, Definition 4.6)

for the case when we have to abstract a single binding.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 313

Definition 40

(Abstract mgu for ASub⊥) Let κ ∈ ASub⊥ and (x �→ t) ∈ Bind , where {x}∪vars(t) ⊆
VI . Then

amguASub(κ, x �→ t)
def
=

{
⊥ASub, if κ = ⊥ASub;

κ ◦ soln(κ, x �→ t), otherwise.

By repeating the abstract computation of Example 30 on the domain ASub, we

provide a formal proof that all the classical approaches based on set-sharing are not

uniformly more precise than the pair-sharing domain ASub.

Example 41

Consider the substitutions σ, τ ∈ RSubst and the abstract element d ∈ SFL as

introduced in Example 30.

By Definition 36, we obtain κ = αASub(d) = 〈�, R〉, where

R = {xx1, xx2, xy, xz, yy1, yy2, yz}.

When abstractly evaluating the binding x �→ y according to Definition 40, we

compute the following:

χκ(x �→ y) = (1, 1),

soln(κ, x �→ y) = 〈�, {xy}〉,
amguASub(κ, x �→ y) = κ ◦ soln(κ, x �→ y) = 〈�, R′′〉,

where

R′′ = R ∪ {x, xy1, xy2, x1y, x1y1, x1y2, x1z, x2y, x2y1, x2y2, x2z, y, y1z, y2z, z}.

Note that {x1, x2} /∈ R′′ and {y1, y2} /∈ R′′, so that these pairs of variables keep their

independence. In contrast, as observed in Example 30, the operators in Bagnara

et al. (2000), Bruynooghe et al. (1994a), Hans and Winkler (1992) and Langen

(1990) will fail to preserve the independence of these pairs.

We now show that the abstract domain SFL, when equipped with the operators

introduced in section 3.2, is uniformly more precise than the domain ASub.

In particular, the following theorem states that the abstract operator amguS of

Definition 28 is uniformly more precise than the abstract operator amguASub.

Theorem 42

Let d ∈ SFL and κ ∈ ASub⊥ be such that αASub(d) �ASub κ. Let also (x �→ t) ∈ Bind ,

where {x} ∪ vars(t) ⊆ VI . Then

αASub

(
amguS (d , x �→ t)

)
�ASub amguASub(κ, x �→ t).

Similar results can be stated for the other abstract operators, such as the abstract

existential quantification aexistsS and the merge-over-all-path operator alubS . It is

worth stressing that, when sequences of bindings come into play, the specification

provided in Codish et al. (1991, Definition 4.7) requires that the grounding bindings

(i.e. those bindings such that χκ(x �→ t) = 0) are evaluated before the non-grounding

ones. Clearly, if we want to lift the result of Theorem 42 so that it also applies to the

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

314 P. M. Hill et al.

operator aunifyS , the same evaluation strategy has to be adopted when computing

on the domain SFL; this improvement is well-known (Langen, 1990, pp. 66–67)

and already exploited in most implementations of sharing analysis (Bagnara et al.,

2000).

5 SFL2: Eliminating redundancies

As done in Bagnara et al. (2002) and Zaffanella et al. (2002) for the plain set-sharing

domain SH , even when considering the richer domain SFL it is natural to question

whether it contains redundancies with respect to the computation of the observable

properties.

It is worth stressing that the results presented in Bagnara et al. (2002) and

Zaffanella et al. (2002) cannot be simply inherited by the new domain. The concept

of “redundancy” depends on both the starting domain and the given observables:

in the SFL domain both of these have changed. First, as can be seen by looking at

the definition of amguS , freeness and linearity positively interact in the computation

of sharing information: a priori it is an open issue whether or not the “redundant”

sharing groups can play a role in such an interaction. Secondly, since freeness

and linearity information can be themselves usefully exploited in a number of

applications of static analysis (e.g. in the optimized implementation of concrete

unification or in occurs-check reduction), these properties have to be included in the

observables.

We will now show that the domain SFL can be simplified by applying the

same notion of redundancy as identified in Bagnara et al. (2002). Namely, in the

definition of SFL it is possible to replace the set-sharing component SH by PSD

without affecting the precision on groundness, independence, freeness and linearity.

In order to prove such a claim, we now formalize the new observable properties.

Definition 43

(The observables of SFL) The (overloaded) groundness and independence observables

ρCon , ρPS ∈ uco(SFL) are defined, for each 〈sh , f, l〉 ∈ SFL, by

ρCon

(
〈sh , f, l〉

) def
= 〈ρCon(sh),�,�〉,

ρPS

(
〈sh , f, l〉

) def
= 〈ρPS (sh),�,�〉;

the freeness and linearity observables ρF, ρL ∈ uco(SFL) are defined, for each

〈sh , f, l〉 ∈ SFL, by

ρF

(
〈sh , f, l〉

) def
= 〈SG , f,�〉,

ρL

(
〈sh , f, l〉

) def
= 〈SG ,�, l〉.

The overloading of ρPSD working on the domain SFL is the straightforward

extension of the corresponding operator on SH : in particular, the freeness and

linearity components are left untouched.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 315

Definition 44

(Non-redundant SFL) For each 〈sh , f, l〉 ∈ SFL, the operator ρPSD ∈ uco(SFL) is

defined by

ρPSD

(
〈sh , f, l〉

) def
= 〈ρPSD(sh), f, l〉.

This operator induces the lattice SFL2
def
= ρPSD(SFL).

As proved in Zaffanella et al. (2002), we have that ρPSD � (ρCon � ρPS); by the above

definitions, it is also clear that ρPSD � (ρF � ρL); thus, ρPSD is more precise than the

reduced product (ρCon � ρPS � ρF � ρL). Informally, this means that the domain SFL2

is able to represent all of our observable properties without precision losses.

The next theorem shows that ρPSD is a congruence with respect to the aunifyS ,

alubS and aexistsS operators. This means that the domain SFL2 is able to propagate

the information on the observables as precisely as SFL, therefore providing a

completeness result.

Theorem 45

Let d1, d2 ∈ SFL be such that ρPSD(d1) = ρPSD(d2). Then, for each sequence of bindings

bs ∈ Bind∗, for each d ′ ∈ SFL and V ∈ ℘(VI),

ρPSD

(
aunifyS (d1, bs)

)
= ρPSD

(
aunifyS (d2, bs)

)
,

ρPSD

(
alubS (d1, d

′)
)

= ρPSD

(
alubS (d2, d

′)
)
,

ρPSD

(
aexistsS (d1, V)

)
= ρPSD

(
aexistsS(d2, V)

)
.

Finally, by providing the minimality result, we show that the domain SFL2 is

indeed the generalized quotient (Cortesi et al., 1998; Giacobazzi et al., 1998) of SFL

with respect to the reduced product (ρCon � ρPS � ρF � ρL).

Theorem 46

For each i ∈ {1, 2}, let di = 〈sh i, fi, li〉 ∈ SFL be such that ρPSD(d1) �= ρPSD(d2).

Then there exist a sequence of bindings bs ∈ Bind∗ and an observable property

ρ ∈ {ρCon , ρPS , ρF , ρL} such that

ρ
(
aunifyS (d1, bs)

)
�= ρ

(
aunifyS (d2, bs)

)
.

As far as the implementation is concerned, the results proved in Bagnara et al.

(2002) for the domain PSD can also be applied to SFL2. In particular, in the

definition of amguS every occurrence of the star-union operator can be safely

replaced by the self-bin-union operator. As a consequence, it is possible to provide

an implementation where the time complexity of the amguS operator is bounded by

a polynomial in the number of sharing groups of the set-sharing component.

The following result provides another optimization that can be applied when both

terms x and t are definitely linear, but none of them is definitely free (i.e. when we

compute sh ′′ by the second case stated in Definition 28).

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

316 P. M. Hill et al.

Theorem 47

Let sh ∈ SH and (x �→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let sh−
def
= rel

(
{x} ∪

vars(t), sh
)
, shx

def
= rel

(
{x}, sh

)
, sh t

def
= rel

(
vars(t), sh

)
, shxt

def
= shx ∩ sh t, shW

def
=

rel(W, sh), where W = vars(t) \ {x}, and

sh�
def
= bin

(
shx ∪ bin(shx, sh

	
xt), sh t ∪ bin(sh t, sh

	
xt)

)
.

Then it holds

ρPSD

(
cyclictx(sh− ∪ sh�)

)
=

{
ρPSD

(
sh− ∪ bin(shx, sh t)

)
, if x /∈ vars(t);

ρPSD

(
sh− ∪ bin(sh2

x, shW)
)
, otherwise.

Therefore, even when terms x and t possibly share (i.e. when shxt �= �), by using

SFL2 we can avoid the expensive computation of at least one of the two inner binary

unions in the expression for sh�.

6 Experimental evaluation

Example 30 shows that an analysis based on the new abstract unification operator

can be strictly more precise than one based on the classical proposal. However,

that example is artificial and leaves open the question as to whether or not such

a phenomenon actually happens during the analysis of real programs and, if so,

how often. This was the motivation for the experimental evaluation we describe in

this section. We consider the abstract domain Pos × SFL2 (Bagnara et al., 2001),

where the non-redundant version SFL2 of the domain SFL is further combined,

as described in (Bagnara et al., 2001, Section 4), with the definite groundness

information computed by Pos and compare the results using the (classical) abstract

unification operator of Bagnara et al. (2002, Definition 4) with the (new) operator

amguS given in Definition 28. Taking this as a starting point, we experimentally

evaluate eight variants of the analysis arising from all possible combinations of the

following options:

1. the analysis can be goal independent or goal dependent;

2. the set-sharing component may or may not have widening enabled (Zaffanella

et al., 1999);

3. the abstract domain may or may not be upgraded with structural information

using the Pattern(·) operator (see Bagnara et al. (2000, 2001, Section 5)).

The experiments have been conducted using the China analyzer (Bagnara, 1997)

on a GNU/Linux PC system. China is a data-flow analyzer for (constraint) logic

programs performing bottom-up analysis and deriving information on both call-

patterns and success-patterns by means of program transformations and optimized

fixpoint computation techniques. An abstract description is computed for the call-

and success-patterns for each predicate defined in the program. The benchmark

suite, which is composed of 372 logic programs of various sizes and complexity, can

be considered representative.

The precision results for the goal independent comparisons are summarized in

Table 1. For each benchmark, precision is measured by counting the number of

independent pairs as well as the numbers of definitely ground, free and linear

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 317

Table 1. Classical Pos × SFL2 versus enhanced one: precision

Goal Without Widening With Widening

Independent w/o SI with SI w/o SI with SI

Prec. class I L I L I L I L

5 < p � 10 — 2 — 2 — 2 — 2

2 < p � 5 — — — — — — — 1

0 < p � 2 5 5 9 6 6 6 12 8

same precision 357 355 337 338 366 364 360 361

unknown 10 10 26 26 — — — —

variables detected. For each variant of the analysis, these numbers are then

compared by computing the relative precision improvements and expressing them

using percentages. The benchmark suite is then partitioned into several precision

equivalence classes and the cardinalities of these classes are shown in Table 1.

For example, when considering a goal independent analysis without structural

information and without widenings, the value 5 found at the intersection of the

row labeled ‘0 < p � 2’ with the column labeled ‘I’ should be read: “for five

benchmarks there has been a (positive) increase in the number of independent pairs

of variables which is less than or equal to two percent.” Note that we only report on

independence and linearity (in the columns labeled ‘I’ and ‘L’, respectively), because

no differences have been observed for groundness and freeness. The precision class

labeled ‘unknown’ identifies those benchmarks for which the analyses timed-out (the

time-out threshold was fixed at 600 seconds). Hence, for goal independent analyses,

a precision improvement affects from 1.6% to 3% of the benchmarks, depending on

the considered variant.

When considering the goal dependent analyses, we obtain a single, small improve-

ment, so that no comparison tables are included here: the improvement, affecting

linearity information, can be observed when the abstract domain includes structural

information.

With respect to differences in the efficiency, the introduction of the new abstract

unification operator has no significant effect on the computation time: small differ-

ences (usually improvements) are observed on as many as 6% of the benchmarks for

the goal independent analysis without structural information and without widenings;

other combinations register even less differences.

We note that it is not surprising that the precision and efficiency improvements

occur very rarely since the abstract unification operators behave the same except

under very specific conditions: the two terms being unified must not only be definitely

linear, but also possibly non-free and share a variable.

7 Related work

Sharing information has been shown to be important for finite-tree analysis (Bagnara

et al., 2001). This aims at identifying those program variables that, at a particular

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

318 P. M. Hill et al.

program point, cannot be bound to an infinite rational tree (in other words, they are

necessarily bound to acyclic terms). This novel analysis is irrelevant for those logic

languages computing over a domain of finite trees, while having several applications

for those (constraint) logic languages that are explicitly designed to compute over a

domain including rational trees, such as Prolog II and its successors (Colmerauer,

1982, 1990), SICStus Prolog (Swedish Institute of Computer Science, Programming

Systems Group, 1995), and Oz (Smolka and Treinen, 1994). The analysis specified

in Bagnara et al. (2001) is based on a parametric abstract domain H × P , where

the H component (the Herbrand component) is a set of variables that are known

to be bound to finite terms, while the parametric component P can be any domain

capturing aliasing, groundness, freeness and linearity information that is useful to

compute finite-tree information. An obvious choice for such a parameter is the

domain combination SFL. It is worth noting that, in Bagnara et al. (2001), the

correctness of the finite-tree analysis is proved by assuming the correctness of the

underlying analysis on the parameter P . Thus, thanks to the results shown in this

paper, the proof for the domain H × SFL can now be considered complete.

Codish et al. (2001) describe an algebraic approach to the sharing analysis of logic

programs that is based on set logic programs. A set logic program is a logic program

in which the terms are sets of variables and standard unification is replaced by a

suitable unification for sets, called ACI1-unification (unification in the presence of

an associative, commutative, and idempotent equality theory with a unit element).

The authors show that the domain of set-substitutions, with a few modifications,

can be used as an abstract domain for sharing analysis. They also provide an

isomorphism between this domain and the set-sharing domain SH of Jacobs and

Langen. The approach using set logic programs is also generalized to include linearity

information, by suitably annotating the set-substitutions, and the authors formally

state the optimality of the corresponding abstract unification operator lin-mguACI1

(Lemma A.10 in the Appendix of Codish et al. (2000)). However, this operator is

very similar to the classical combinations of set-sharing with linearity (Bruynooghe

et al., 1994a; Hans and Winkler, 1992; Langen, 1990): in particular, the precision

improvements arising from this enhancement are only exploited when the two terms

being unified are definitely independent. As we have seen in this paper, such a

choice results in a sub-optimal abstract unification operator, so that the optimality

result cannot hold. By looking at the proof of Lemma A.10 in Codish et al. (2000),

it can be seen that the case when the two terms possibly share a variable is dealt

with by referring to an example:5 this one is supposed to show that all the possible

sharing groups can be generated. However, even our improved operator correctly

characterizes the given example, so that the proof is wrong. It should be stressed

that the amguS operator presented in this paper, though remarkably precise, is

not meant to subsume all of the proposals for an improved sharing analysis that

appeared in the recent literature (for a thorough experimental evaluation of many

of these proposals, the reader is referred elsewhere (Bagnara et al., 2000; Zaffanella,

5 The proof refers to Example 8, which however has nothing to do with the possibility that the two
terms share; we believe that Example 2 was intended.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 319

2001)). In particular, it is not difficult to show that our operator is not the optimal

approximation of concrete unification.

In a very recent paper, Howe and King (2003) consider the domain SFL and

propose three optimizations to improve both the precision and the efficiency of

the (classical) abstract unification operator. The first optimization is based on the

same observation we have made in this paper, namely that the independence check

between the two terms being unified is not necessary for ensuring the correctness

of the analysis. However, the proposed enhancement does not fully exploit this

observation, so that the resulting operator is strictly less precise than our amguS

operator (even when the operator cyclictx does not come into play). In fact, the

first optimization of Howe and King (2003) is not uniformly more precise than the

classical proposals. The following example illustrates this point.

Example 48

Let VI = {x, y, z1, z2, z3}, (x �→ y) ∈ Bind and d
def
= 〈sh ,�,VI 〉, where sh =

{xz1, xz2, xz3, yz1, yz2, yz3}.
Since x and y are linear and independent, amguS as well as all the classical abstract

unification operators will compute d1 = 〈sh1,�, {x, y}〉, where

sh1
def
= bin(shx, shy) = {xyz1, xyz1z2, xyz1z3, xyz2, xyz2z3, xyz3}.

In contrast, a computation based on (Howe and King,, 2003, Definition 3.2), results

in the less precise abstract element d2 = 〈sh2,�, {x, y}〉, where

sh2
def
= bin(sh	

x, shy) ∩ bin(shx, sh
	
y) = sh1 ∪ {xyz1z2z3}.

The second optimization shown in Howe and King (2003) is based on the enhanced

combination of set-sharing and freeness information, which was originally proposed

in Filé (1994). In particular, the authors propose a slightly different precision

enhancement, less powerful as far as precision is concerned, which however seems

to be amenable for an efficient implementation. The third optimization in Howe

and King (2003) exploits the combination of the domain SFL with the groundness

domain Pos .

8 Conclusion

In this paper we have introduced the abstract domain SFL, combining the set-sharing

domain SH with freeness and linearity information. While the carrier of SFL can be

considered standard, we have provided the specification of a new abstract unification

operator, showing examples where this operator achieves more precision than the

classical proposals. The main contributions of this paper are the following:

• we have defined a precise abstraction function, mapping arbitrary substitutions

in rational solved form into their most precise approximation on SFL;

• using this abstraction function, we have provided the mandatory proof of

correctness for the new abstract unification operator, for both finite-tree and

rational-tree languages;

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

320 P. M. Hill et al.

• we have formally shown that the domain SFL is uniformly more precise than

the domain ASub; we have also provided an example showing that all the

classical approaches to the combinations of set-sharing with freeness and

linearity fail to satisfy this property;

• we have shown that, in the definition of SFL, we can replace the set-sharing

domain SH by its non-redundant version PSD . As a consequence, it is possible

to implement an algorithm for abstract unification running in polynomial time

and still obtain the same precision on all the considered observables, that is

groundness, independence, freeness and linearity.

Acknowledgements

We recognize the hard work required to review technical papers such as this one

and would like to express our real gratitude to the Journal referees for their critical

reading and constructive suggestions for preparing this improved version.

References

Bagnara, R. 1997. Data-flow analysis for constraint logic-based languages. PhD thesis,

Dipartimento di Informatica, Università di Pisa, Pisa, Italy. Report TD-1/97.

Bagnara, R., Gori, R., Hill, P. M. and Zaffanella, E. 2001. Finite-tree analysis for constraint

logic-based languages. In: P. Cousot, Ed. Static Analysis: 8th International Symposium, SAS

2001, Lecture Notes in Computer Science 2126, pp. 165–184. Springer-Verlag.

Bagnara, R., Hill, P. M. and Zaffanella, E. 1997. Set-sharing is redundant for pair-sharing.

In: P. Van Hentenryck, Ed. Static Analysis: Proceedings of the 4th International Symposium,

Lecture Notes in Computer Science 1302, pp. 53–67. Springer-Verlag.

Bagnara, R., Hill, P. M. and Zaffanella, E. 2000. Efficient structural information analysis

for real CLP languages. In: M. Parigot and A. Voronkov, Eds. Proceedings of the

7th International Conference on Logic for Programming and Automated Reasoning (LPAR

2000), Lecture Notes in Artificial Intelligence 1955, pp. 189–206. Springer-Verlag.

Bagnara, R., Hill, P. M. and Zaffanella, E. 2002. Set-sharing is redundant for pair-sharing.

Theoretical Computer Science 277, 1–2, 3–46.

Bagnara, R., Zaffanella, E., Gori, R. and Hill, P. M. 2001. Boolean functions for finite-

tree dependencies. In: R. Nieuwenhuis and A. Voronkov, Eds. Proceedings of the 8th

International Conference on Logic for Programming, Artificial Intelligence and Reasoning

(LPAR 2001), Lecture Notes in Artificial Intelligence 2250, pp. 579–594. Springer-Verlag.

Bagnara, R., Zaffanella, E. and Hill, P. M. 2000. Enhanced sharing analysis techniques:

A comprehensive evaluation. In: M. Gabbrielli and F. Pfenning, Eds. Proceedings of the

2nd International ACM SIGPLAN Conference on Principles and Practice of Declarative

Programming, pp. 103–114. Association for Computing Machinery, Montreal, Canada.

Bagnara, R., Zaffanella, E. and Hill, P. M. 2001. Enhanced sharing analysis

techniques: A comprehensive evaluation. Submitted for publication. (Available at http://

www.cs.unipr.it/~bagnara/.)

Bruynooghe, M. and Codish, M. 1993. Freeness, sharing, linearity and correctness – All at

once. In: P. Cousot, M. Falaschi, G. Filé and A. Rauzy, Eds. Static Analysis, Proceedings

of the Third International Workshop, Lecture Notes in Computer Science 724, pp. 153–164.

Springer-Verlag. (An extended version is available as Technical Report CW 179, Department

of Computer Science, K.U. Leuven, September 1993.)

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 321

Bruynooghe, M., Codish, M. and Mulkers, A. 1994a. Abstract unification for a composite

domain deriving sharing and freeness properties of program variables. In: F. S. de Boer and

M. Gabbrielli, Eds. Verification and Analysis of Logic Languages, Proceedings of the W2

Post-Conference Workshop, International Conference on Logic Programming, pp. 213–230.

Santa Margherita Ligure, Italy.

Bruynooghe, M., Codish, M. and Mulkers, A. 1994b. A composite domain for freeness,

sharing, and compoundness analysis of logic programs. Technical Report CW 196,

Department of Computer Science, K.U. Leuven, Belgium.

Bruynooghe, M., Codish, M. and Mulkers, A. 1995. Abstracting unification: A key step

in the design of logic program analyses. In: J. van Leeuwen, Ed. Computer Science Today:

Recent Trends and Developments, Lecture Notes in Computer Science 1000, pp. 406–425.

Springer-Verlag, Berlin.

Clark, K. L. 1978. Negation as failure. In: H. Gallaire and J. Minker, Eds. Logic and

Databases, pp. 293–322. Plenum Press, France.

Codish, M., Dams, D., Filé, G. and Bruynooghe, M. 1993. Freeness analysis for logic

programs – and correctness? In: D. S. Warren, Ed. Logic Programming: Proceedings of

the Tenth International Conference on Logic Programming, pp. 116–131. MIT Press Series

in Logic Programming. MIT Press. (An extended version is available as Technical Report

CW 161, Department of Computer Science, K.U. Leuven, December 1992.)

Codish, M., Dams, D., Filé, G. and Bruynooghe, M. 1996. On the design of a

correct freeness analysis for logic programs. Journal of Logic Programming 28, 3, 181–

206.

Codish, M., Dams, D. and Yardeni, E. 1991. Derivation and safety of an abstract

unification algorithm for groundness and aliasing analysis. International Conference on

Logic Programming, pp. 79–93.

Codish, M., Lagoon, V. and Bueno, F. 2000. An algebraic approach to sharing analysis of

logic programs. Journal of Logic Programming 42, 2, 111–149.

Codish, M., Mulkers, A., Bruynooghe, M., Garcı̀a de la Banda, M. and Hermenegildo,

M. 1993. Improving abstract interpretations by combining domains. In: Proceedings

of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program

Manipulation, pp. 194–205. ACM Press. (Also available as Technical Report CW 162,

Department of Computer Science, K.U. Leuven, December 1992.)

Codish, M., Mulkers, A., Bruynooghe, M., Garcı̀a de la Banda, M. and Hermenegildo,

M. 1995. Improving abstract interpretations by combining domains. ACM Transactions on

Programming Languages and Systems 17, 1, 28–44.

Colmerauer, A. 1982. Prolog and infinite trees. In: K. L. Clark and S. Å. Tärnlund, Eds.

Logic Programming, APIC Studies in Data Processing, Vol. 16, pp. 231–251. Academic Press.

Colmerauer, A. 1984. Equations and inequations on finite and infinite trees. Proceedings of

the International Conference on Fifth Generation Computer Systems (FGCS’84), pp. 85–99.

Tokyo, Japan.

Colmerauer, A. 1990. An introduction to Prolog-III. Communications of the ACM 33, 7,

69–90.

Cortesi, A. and Filé, G. 1999. Sharing is optimal. Journal of Logic Programming 38, 3,

371–386.

Cortesi, A., Filé, G. and Winsborough, W. 1998. The quotient of an abstract interpretation

for comparing static analyses. Theoretical Computer Science 202, 1&2, 163–192.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. Proceedings of the

Fourth Annual ACM Symposium on Principles of Programming Languages, pp. 238–252.

ACM Press.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

322 P. M. Hill et al.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks.

Proceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages,

pp. 269–282. ACM Press, New York.

Filé, G. 1994. Share × Free: Simple and correct. Technical Report 15, Dipartimento di

Matematica, Università di Padova.

Furukawa, K., Ed. 1991. Logic Programming: Proceedings of the Eighth International

Conference on Logic Programming. MIT Press Series in Logic Programming. MIT Press.

Giacobazzi, R., Ranzato, F. and Scozzari, F. 1998. Complete abstract interpretations

made constructive. In: J. Gruska and J. Zlatuska, Eds. Proceedings of 23rd International

Symposium on Mathematical Foundations of Computer Science (MFCS’98), Lecture Notes in

Computer Science 1450, pp. 366–377. Springer-Verlag.

Hans, W. and Winkler, S. 1992. Aliasing and groundness analysis of logic programs through

abstract interpretation and its safety. Technical Report 92-27, Technical University of

Aachen (RWTH Aachen).

Hill, P. M., Bagnara, R. and Zaffanella, E. 1998. The correctness of set-sharing. In:

G. Levi, Ed. Static Analysis: Proceedings of the 5th International Symposium, Lecture Notes

in Computer Science 1503, pp. 99–114. Springer-Verlag.

Hill, P. M., Bagnara, R. and Zaffanella, E. 2002. Soundness, idempotence and

commutativity of set-sharing. Theory and Practice of Logic Programming 2, 2, 155–201.

Hill, P. M., Bagnara, R. and Zaffanella, E. 2003. On the analysis of set-sharing,

freeness and linearity for finite and rational tree languages. Technical Report 2003.08,

School of Computing, University of Leeds. (Available at http://www.comp.leeds.ac.uk/

research/pubs/reports.shtml.)

Howe, J. M. and King, A. 2003. Three optimisations for sharing. Theory and Practice of

Logic Programming 3, 2, 243–257.

Intrigila, B. and Venturini Zilli, M. 1996. A remark on infinite matching vs infinite

unification. Journal of Symbolic Computation 21, 3, 2289–2292.

Jacobs, D. and Langen, A. 1989. Accurate and efficient approximation of variable aliasing in

logic programs. In: E. L. Lusk and R. A. Overbeek, Eds. Logic Programming: Proceedings

of the North American Conference, pp. 154–16. MIT Press Series in Logic Programming.

MIT Press.

Jaffar, J., Lassez, J.-L. and Maher, M. J. 1987. Prolog-II as an instance of the logic

programming scheme. In: M. Wirsing, Ed. Formal Descriptions of Programming Concepts

III, pp. 275–299. North-Holland.

Keisu, T. 1994. Tree constraints. PhD thesis, The Royal Institute of Technology, Stockholm,

Sweden. (Also available in the SICS Dissertation Series: SICS/D-16-SE.)

King, A. 1994. A synergistic analysis for sharing and groundness which traces linearity. In:

D. Sannella, Ed. Proceedings of the Fifth European Symposium on Programming, Lecture

Notes in Computer Science 788, pp. 363–378. Springer-Verlag.

King, A. 2000. Pair-sharing over rational trees. Journal of Logic Programming 46, 1–2, 139–

155.

King, A. and Soper, P. 1994. Depth-k sharing and freeness. In: P. Van Hentenryck, Ed. Logic

Programming: Proceedings of the Eleventh International Conference on Logic Programming,

pp. 553–568. MIT Press Series in Logic Programming. MIT Press.

Langen, A. 1990. Advanced techniques for approximating variable aliasing in logic programs.

PhD thesis, Computer Science Department, University of Southern California.

Maher, M. J. 1988. Complete axiomatizations of the algebras of finite, rational and infinite

trees. Proceedings, Third Annual Symposium on Logic in Computer Science, pp. 348–357.

IEEE Press.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

Correct and efficient integration of set-sharing, freeness and linearity 323

Muthukumar, K. and Hermenegildo, M. 1991. Combined determination of sharing and

freeness of program variables through abstract interpretation. International Conference on

Logic Programming, pp. 49–63.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time derivation of variable

dependency using abstract interpretation. Journal of Logic Programming 13, 2&3, 315–

347.

Smolka, G. and Treinen, R. 1994. Records for logic programming. Journal of Logic

Programming 18, 3, 229–258.

Søndergaard, H. 1986. An application of abstract interpretation of logic programs: Occur

check reduction. In: B. Robinet and R. Wilhelm, Eds. Proceedings of the 1986 European

Symposium on Programming, Lecture Notes in Computer Science 213, pp. 327–338. Springer-

Verlag.

Swedish Institute of Computer Science, Programming Systems Group 1995. SICStus Prolog

User’s Manual , release 3 #0 ed. Swedish Institute of Computer Science, Programming

Systems Group.

Zaffanella, E. 2001. Correctness, precision and efficiency in the sharing analysis of real logic

languages. PhD thesis, School of Computing, University of Leeds, Leeds, U.K. (Available

at http://www.cs.unipr.it/~zaffanella/.)

Zaffanella, E., Bagnara, R. and Hill, P. M. 1999. Widening Sharing. In: G. Nadathur,

Ed. Principles and Practice of Declarative Programming, Lecture Notes in Computer Science

1702, pp. 414–431. Springer-Verlag.

Zaffanella, E., Hill, P. M. and Bagnara, R. 1999. Decomposing non-redundant sharing

by complementation. In: A. Cortesi and G. Filé, Eds. Static Analysis: Proceedings of the

6th International Symposium, Lecture Notes in Computer Science 1694, pp. 69–84. Springer-

Verlag.

Zaffanella, E., Hill, P. M. and Bagnara, R. 2002. Decomposing non-redundant sharing by

complementation. Theory and Practice of Logic Programming 2, 2, 233–261.

https://doi.org/10.1017/S1471068403001868 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001868

