
RENEWAL THEORY WITH
EXPONENTIAL AND HYPERBOLIC

DISCOUNTING

J. A. M. VAN DER WEIDE

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

NL-2600 GA Delft, The Netherlands
E-mail: j.m.vanderweide@tudelft.nl

SUYONO

Jurusan Matematika FMIPA Universitas Negeri Jakarta
Jakarta Timur 13200, Indonesia

E-mail: synjkt@yahoo.com

J. M. VAN NOORTWIJK

HKV Consultants
NL-8203 AC Lelystad, The Netherlands

and
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
NL-2600 GA Delft, The Netherlands
E-mail: j.m.van.noortwijk@hkv.nl

To determine optimal investment and maintenance decisions, the total costs should
be minimized over the whole life of a system or structure. In minimizing life-cycle
costs, it is important to account for the time value of money by discounting and to
consider the uncertainties involved. This article presents new results in renewal
theory with costs that can be discounted according to any discount function that is
nonincreasing and monotonic over time (such as exponential, hyperbolic,
generalized hyperbolic, and no discounting). The main results include expressions
for the first and second moment of the discounted costs over a bounded and
unbounded time horizon as well as asymptotic expansions for nondiscounted costs.
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1. INTRODUCTION

In determining optimal investment and maintenance decisions, the total costs should
ideally be computed over the whole life of a system or structure. In optimizing life-
cycle costs, it is important to account for the time value of money and to consider
the uncertainties involved. Examples of life-cycle costing are balancing the initial
cost of investment against the future cost of maintenance and balancing the cost of
preventive maintenance against the cost of corrective maintenance.

Investment and maintenance optimization can be computationally expensive. To
reduce the computational effort, renewal theory can be used (Tijms [20, Chaps. 2 and
8]). Maintenance can be modeled as a renewal process if we can identify independent
renewals that bring a system or structure back into its original condition or “good as
new state.” Although renewal theory attracted a huge amount of applications in the
fields of mechanical and electrical engineering, it penetrated the field of structural
engineering just very recently.

In finding an optimal balance between the initial cost of investment and the future
cost of maintenance, it is essential to take the time value of money into account by
applying a discount function (van Noortwijk [21]). Although there is a huge
amount of literature on renewal theory, the bulk of this literature does not consider
cost discounting. Mathematical derivations of analytic life-cycle models on the
basis of continuous-time and discrete-time renewal processes with discounting can
be found in Rackwitz [13,14] and van Noortwijk [21], respectively. As a discount
function, they used discounting with a constant discount rate (exponential
discounting).

This article was inspired by the work of van Noortwijk [21] on discrete-time
renewal processes with exponential discounting. Van Noortwijk’s work presented
analytic expressions for the expected value and the variance of the discounted cost
over a bounded and unbounded time horizons. This article extends van Noortwijk’s
model in several aspects. First, other types of discounting are considered, such as
hyperbolic and generalized hyperbolic discounting. Second, expressions are derived
for the first and second moments of the discounted cost over a bounded and
unbounded horizon for any discount function that is nonincreasing and monotonic
over time. Third, following the steps of the proofs in Tijms [20, Chap. 8], asymptotic
expansions are derived for the first and second moments of nondiscounted cost for a
time horizon tending to infinity.

The new findings in this article contain the following formerly derived results as
special cases. Feller [5] and Smith [17,18] derived asymptotic expansions for the first
and second moments of the number of renewals for discrete-time and continuous-time
renewal processes, respectively (see also Tijms [20, Chap. 8]). Dall’Aglio [3] studied
renewal processes with exponential discounting and unit cost. Léveillé and Garrido
[8] considered compound renewal processes with exponential discounting and inde-
pendence of renewal interoccurrence time and associated cost. Washburn [23]
regarded a similar renewal model, but with possible dependence between the
renewal interoccurrence time and cost. Wolff [26, Chap. 2] presented a central limit
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theorem for the renewal-reward process with corresponding asymptotic mean and
variance (resulting in the first term of the corresponding asymptotic expansions).
For discrete-time renewal processes, van Noortwijk [21] derived expressions for
the first and second moments of the discounted cost over an unbounded time
horizon for renewal cost being a function of the renewal interoccurrence time. For
continuous-time renewal processes, Rackwitz [13,14] obtained the expected
discounted costs over an unbounded time horizon.

The outline of this article is as follows. A brief overview on discount functions is
given in Section 2. The mathematical model and notation can be found in Section 3.
Only assuming the monotonicity of the discount function, explicit formulas for the
first two moments of the discounted costs over both bounded and unbounded time
horizons are presented in Section 4. The following types of discounting are
studied: exponential discounting in Section 5, hyperbolic discounting in Section 6,
and no discounting in Section 7. Finally, conclusions are formulated in Section 8.

2. DISCOUNT FUNCTIONS

Investment and maintenance decisions involve trade-offs among costs occurring at
different times. In economic models, discount functions describe the weights
placed on costs that occur at different points in time. In the psychological and eco-
nomic literature, several mathematical functions that give more weight to present
cost than to future cost have been proposed (for an extensive literature review on
time discounting, see Frederick, Loewenstein, and O’Donoghue [6]). The most well-
known discount function is the discounted-utility model proposed by Samuelson [16]
in 1937. According to this model, the discount factor at time t is given by

D(t) ¼ e�rt, r . 0, (1)

where r is the discount rate (rate of time preference; in finance, usually defined as the
nominal interest rate adjusted for the inflation). This type of discounting is called
exponential discounting. In economic analyses of intertemporal choice, exponential
discounting is currently regarded as a normative standard for comparing public pol-
icies using costs–benefit analyses. However, in the last two decades, experimental
psychology showed that intertemporal preference often cannot be characterized by
a single constant discount rate. Weitzman [24] showed that the “lowest possible” dis-
count rate should be used for discounting far-distant future costs and benefits.

As an alternative to exponential discounting, several hyperbolic functional forms
for the discount function have been proposed: Herrnstein [7] and Mazur [10]
suggested the function

D(t) ¼ (1þ bt)�1, b . 0, (2)

and Loewenstein and Prelec [9] generalized this form to

D(t) ¼ (1þ at)�b=a, a, b . 0: (3)
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Equations (2) and (3) are called hyperbolic discounting and generalized hyperbolic
discounting, respectively. For hyperbolic discounting, future cost is attached more
weight than for exponential discounting, and a person’s discount rate is declining
over time rather than being a constant. A hyperbolic discount function often fits
empirical data better than the exponential discount function. Exponential discounting
and hyperbolic discounting are special cases of generalized hyperbolic discounting:
(3) converges to exponential discounting with rate b as a! 0 and (3) simplifies to
hyperbolic discounting for a ¼ b. When decisions about a nuclear waste facility
must be made, Atherton and French [1] claimed that hyperbolic discounting is
more reasonable and justifiable than exponential discounting. Other environmental
decision problems to which hyperbolic discounting might better be applied concern
global climate change, loss of biodiversity, thinning of stratospheric ozone, ground-
water pollution, minerals depletion, and many others (Weitzman [24]).

In financial mathematics, a discount function can be expressed in terms of a time-
dependent discount rate as follows. Let B(t) be the value at time t of an investment of
one currency unit at time 0 [i.e., B(0) ¼ 1]. The value is accrued continuously at the
risk-free rate function r:

dB(t) ¼ r(t)B(t) dt, B(0) ¼ 1:

It follows that

B(t) ¼ exp
ðt

0
r(s) ds

� �
:

The discount factor D(t), t � 0, is defined as the amount of money that we have to
deposit in the bank at time 0 such that the value at time t is equal to 1. It follows that

D(t) ¼ 1=B(t) ¼ exp �
ðt

0
r(s) ds

� �
:

In economic applications, B(t) is called the future value of money and D(t) is
called the present value. The rate functions for the exponential, hyperbolic, and
generalized hyperbolic discounting are as follows. For exponential discounting, the
rate is constant, r(t) ; r. For generalized hyperbolic discounting, the rate function
is dependent on time and is given by r(t) ¼ b/(1 þ at), with hyperbolic discounting
r(t) ¼ b/(1 þ bt) as a special case. To assure socioeconomically sustainable civil
engineering infrastructures, Rackwitz, Lentz, and Faber [15] proposed using the dis-
count rate function r(t) ¼ re2at þ d, where r, a, d . 0.

In this article, we focus on discount functions that are decreasing in time. For
example, we study the generalized hyperbolic discount function and its special
cases: exponential and hyperbolic discounting. We thus study discount functions
D(t) for which D(0) ¼ 1. An example of a discount function that is not unity at
time 0 was proposed by Phelps and Pollak [12]. This function is known as the
quasi-hyperbolic discount function and it is for rate r . 0 defined as D(t) ¼ a , 1
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for t ¼ 0 and D(t) ¼ ae2rt for t . 0. Fortunately, the results in this article can be
easily extended to quasi-hyperbolic discounting as well.

3. MODEL AND NOTATION

Let T, Tj, C and Cj, j � 1, be random variables defined on some probability space
(V, F, P) such that the random variables T and Tj are positive and such that the
sequence f(T, C ), (Tj, Cj), j � 1g is an independent and identically distributed
(i.i.d.) sequence of random vectors with cumulative distribution function H:

H(x, y) ¼ P(T � x, C � y), x, y [ Rþ:

It follows that the sequence fTj, j � 1g is also i.i.d., with cumulative distribution
function F(x) ¼ H(x, þ1) and F(0) ¼ 0. Let N ¼ fN(t) : t � 0g be the renewal
process associated with the sequence of partial sums (Sj)j�1:

N(t) ¼ max{j j Sj � t} ¼
X1
k¼1

1{Sk�t}, t � 0,

where Sj ¼ T1 þ � � � þ Tj, j � 1, and where 1A denotes the indicator function of the
set A. The random variables Sj, j � 1, can be interpreted as the times at which main-
tenance actions take place and Cj is the cost of the maintenance action at time Sj.

The expected number of renewals M(t) in the time interval [0, t] can be written as

M(t) ¼ E[N(t)] ¼
X1
k¼1

Fk(t) ¼
X1
k¼0

F � f k� (t), t � 0,

where Fk is the cumulative distribution function of Sk, * denotes the convolution
product, and f k* is the k-fold convolution of f with itself. We will assume that the dis-
tribution function F is absolutely continuous with probability density function f, such
that the renewal process N has a renewal density m; that is,

M(t) ¼
ðt

0
m(u) du:

For more information about renewal processes, see Tijms [20, Chaps. 2 and 8]. For
our purposes, it is more convenient to use a slightly different definition for the
renewal measure as the measure associated with the increasing function

U(t) ¼
X1
k¼0

Fk(t), t � 0:

Here, F0 denotes the distribution function of S0 ; 0. So U(t) ¼ M(t) þ 1 and

dU (x) ¼ d(dx)þ m(x) dx,
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where d is the Dirac measure in zero. In particular, for any nonnegative Borel function g,ðt

0
g(x) dU (x) ¼ g(0)þ

ðt

0
g(x)m(x) dx ¼

X1
k¼0

E[g(Sk)]:

The present value of cost C at time t is given by D(t)C, where D(t) is a discount
factor. For example, if we discount with constant rate r . 0, the discount factor is
given by D(t) ¼ e2rt.

The total discounted cost over the bounded time horizon [0, t] is then given by

K(t, D) ¼
X1
j¼1

D(Sj)Cj1{Sj�t}: (4)

In the case that the interoccurrence times Tj and the cost Cj are independent, the
process fK(t, D), t � 0g is known as a compound renewal process; see Morey [11].
In the special case with discount rate r ; 0, the process fK(t, D), t � 0g is also
known as a renewal-reward process; see Tijms [20, Chap. 2]. For applications
in maintenance engineering, the special case Cj ¼ c(Tj) is important, where
c : R 7! Rþ is a given (nonrandom) Borel function; see van Noortwijk [21].

4. FIRST AND SECOND MOMENTS OF DISCOUNTED COST

Let D be a given discount function; that is, D is a continuous, nonnegative, non-
increasing function with D(0) ¼ 1. The next theorem gives a formula for the mean
value of the total discounted cost K(t, D) over the finite time interval [0, t].

THEOREM 4.1: For any discount function D,

E[K(t, D)] ¼
ðt

0
E[D(xþ T)C1{xþT�t}] dU (x):

PROOF: The expected value of the term with j ¼ 1 in the right-hand side of (4) can be
written as

E[D(S1)C11{S1�t}] ¼ E
�
D(T)C1{T�t}

�
¼
ðt

0
E
�
D(xþ T)C1{xþT�t}

�
dF0(x),

and, for j . 1,

E[D(Sj)Cj1{Sj�t}] ¼ E
�
D(Sj�1 þ Tj)Cj1{Sj�1þTj�t}

�
¼
ðt

0
E
�
D(xþ T)C1{xþT�t}

�
dFj�1(x),

J. A. M. van der Weide, Suyono, and J. M. van Noortwijk58

https://doi.org/10.1017/S0269964808000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000041


since (Tj, Cj) and Sj21 are independent and (T, C ) has the same distribution as (Tj, Cj).
The Theorem follows now by summation over j. B

In the special case that T and C are independent, we get the simpler equation

E[K(t, D)] ¼ E[C]
ðt

0
D(x)m(x) dx: (5)

Note that the integral in (5) can be interpreted as the expected total discounted cost up
to time t for the case with constant unit cost, Cj ; 1,

E
X1
j¼1

D(Sj)1{Sj�t}

" #
¼
ðt

0
D(x)m(x) dx:

We continue with the behavior of E[K(t,D)] as t!1.

THEOREM 4.2: Let E[C ] , 1. Then for any discount function D with

ð1

0
D(x)m(x) dx , 1,

the expected discounted cost over an unbounded horizon is finite:

lim
t!1

E[K(t, D)] ¼
ð1

0
E[D(xþ T)C] dU (x): (6)

PROOF: Since

D(xþ T)C1{xþT�t}m(x) � D(x)Cm(x),

we get the result by dominated convergence. B

Now we consider the case that

ð1

0
D(x)m(x) dx ¼ þ1:

Equation (5), for the case that T and C are independent, shows that we get a nontrivial
limit if we normalize by dividing through the factor

Ð t
0 D(x)m(x) dx. The next theorem

shows that under some technical condition on the density of the interoccurrence times
of the renewal process, the same normalization can be used if T and C are dependent.
We need convergence of the renewal density m(x) as x!1. The next lemma con-
tains a sufficient condition, which covers all cases of practical interest.
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LEMMA 4.3: Let f be the density of the interoccurrence times. If limt!1 f (x) ¼ 0 and if
f [ L1þd, that is, ð1

0
j f (x)j1þd dx < 1

for some d . 0, then

lim
x!1

m(x) ¼ 1=E[T]: (7)

For a proof, we refer to Smith [18]. The necessary and sufficient conditions for
(7) are also known; see Smith [19]. From now, we will always, without explicitly
mentioning, assume that the conditions in Lemma 4.3 are satisfied.

THEOREM 4.4: Let E[C ] , 1. Then for any discount function D withð1

0
D(x)m(x) dx ¼ þ1,

the long-term expected cost per renewal is given by

lim
t!1

E[K(t, D)]Ð t
0 D(x)m(x) dx

¼ E[C]:

PROOF: As in the proof of Theorem 4.2,Ð t
0 D(xþ T)C1{xþT�t}m(x) dxÐ t

0 D(x)m(x) dx
� C:

Since, by l’Hôpital’s rule and (7),

lim
t!1

Ð t
0 D(xþ T)C1{xþT�t}m(x) dxÐ t

0 D(x)m(x) dx

¼ lim
t!1

Ð t�T
0 D(xþ T)Cm(x) dxÐ t

0 D(x)m(x) dx

¼ C lim
t!1

m(t � T)
m(t)

¼ C,

we get, by dominated convergence,

lim
t!1

E[K(t, D)]Ð t
0 D(x)m(x) dx

¼ lim
t!1

E

Ð t
0 D(xþ T)C1{xþT�t}m(x) dxÐ t

0 D(x)m(x) dx

" #

¼ E[C]: B
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Theorem 4.4 determines the long-term expected cost per renewal. For the
purpose of reserving budget for performing future maintenance actions, it is important
to determine how much money these actions cost per unit time while taking the dis-
counting into account. In finance, this cost is known as the equivalent average cost per
unit time (see, e.g., Wagner [22, Chap. 11] and Brealey and Myers [2, Chap. 6]). The
expected equivalent average cost (EEAC) per unit time computed over a bounded
time horizon of length t is defined as

EEAC ¼ E[K(t, D)]Ð t
0 D(x) dx

: (8)

Washburn [23] denoted the EEAC with the equivalent rate of spending. For a
bounded horizon and an unbounded horizon with

Ð
0
1D(x) dx , 1, the equivalent

average cost per unit time can also be interpreted as a stream of fixed identical
costs per unit time sufficient to recover all the necessary discounted costs. In
this situation, the present values of the expected equivalent average cost per unit
time summed over a bounded time horizon is equal to the total expected dis-
counted costs over the whole time horizon. Under the same assumptions as
Theorem 4.4, the long-term expected equivalent average cost per unit time can
be written as follows.

COROLLARY 4.5: If
Ð

0
1D(x) dx ¼ þ1, then the long-term expected equivalent

average cost per unit time is

lim
t!1

E[K(t, D)]Ð t
0 D(x) dx

¼ E[C]
E[T]

:

PROOF: It is sufficient to remark that

lim
t!1

Ð t
0 D(x)m(x) dxÐ t

0 D(x) dx
¼ lim

t!1
m(t) ¼ 1

E[T]
,

so

ð1

0
D(x) dx ¼ þ1 if and only if

ð1

0
D(x)m(x) dx ¼ þ1: B

We continue with the second moment of the discounted cost over a bounded time
horizon of length t.

RENEWAL THEORY WITH DISCOUNTING 61

https://doi.org/10.1017/S0269964808000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000041


THEOREM 4.6: Let (T0, C0) and (T,C) be i.i.d. For any discount function D,

E[K2(t, D)] ¼
ðt

0
E
�
D2(xþ T)C21{xþT�t}

�
dU (x)

þ 2
ðt

0

ðt

0
E
�
D(xþ T)CD(xþ T þ yþ T 0)

�C01{xþTþyþT 0�t}
�

dU (x) dU (y):

PROOF: We can write

K2(t, D) ¼
X1
i¼1

X1
j¼1

D(Si)Ci1{Si�t}D(Sj)Cj1{Sj�t}

¼
X1
i¼1

D2(Si)C
2
i 1{Si�t} þ 2

X1
i¼1

X1
j¼iþ1

D(Si)CiD(Sj)Cj1{Sj�t}:

We now calculate the terms

E D(Si)CiD(Sj)Cj1{Sj�t}
� �

, i � j:

For the case i ¼ j,

E D2(Si)C
2
i 1{Si�t}

� �
¼ E D2(Si�1 þ Ti)C

2
i 1{Si�1þTi�t}

� �
¼
ðt

0
E D2(xþ T)C21{xþT�t}
� �

dFi�1(x),

and it follows that

X1
i¼1

E D2(Si)C
2
i 1{Si�t}

� �
¼
ðt

0
E D2(xþ T)C21{xþT�t}
� �

dU (x):

For the case i , j, define

S(m,n) ¼
Pn
j¼m

Tj if m � n

S0 if m ¼ nþ 1:

8<
:

Then

E[D(Si)CiD(Sj)Cj1{Sj�t}]

¼ E
�
D(Si�1 þ Ti)CiD(Si�1 þ Ti þ S(iþ 1, j� 1)þ Tj)

� Cj1{Si�1þTiþS(iþ1, j�1)þTj�t}
�

¼
ðt

0

ðt

0
E[D(xþ T)CD(xþ T þ yþ T 0)C01{xþTþyþT 0�t}]

� dFi�1(x) dFj�i�1( y):
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It follows that

X1
i¼1

X1
j¼iþ1

E[D(Si)CiD(Sj)Cj1{Sj�t}]

¼
ðt

0

ðt

0
E[D(xþ T)CD(xþ T þ yþ T 0)� C01{xþTþyþT 0�t}] dU (x) dU (y):

The theorem follows now. B

In the special case that T and C are independent, we obtain the equation

E[K2(t, D)] ¼ E[C2]
ðt

0
D2(x)m(x) dx

þ 2(E[C])2
ð ð

xþy�t
D(x)D(xþ y)m(x)m( y) dx dy:

Now, we consider limt!1E[K2(t, D)] in Theorem 4.6.

THEOREM 4.7: Let E[C2] , 1. For any discount function D withð1

0
D2(x)m(x) dx , 1,

we have

lim
t!1

E[K2(t, D)] ¼
ð1

0
E[D2(xþ T)C2] dU (x)

þ 2
ð1

0

ð1

0
E
�
D(xþ T)CD(xþ T þ yþ T 0)C0

�
dU (x) dU ( y):

5. EXPONENTIAL DISCOUNTING

For exponential discounting with constant rate r . 0 as in (1),ð1

0
D(x) dx ¼ 1

r
,

and we will denote the discounted cost over [0,t] by K(t,r). Sinceð1

0
e�rx dU (x) ¼

X1
k¼0

ð1

0
e�rx dFk�(x) ¼

X1
k¼0

E e�rT
� �� �k

,

it follows from (6) that

lim
t!1

E[K(t, r)] ¼ E e�rTC½ �
1� E e�rT½ �
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and, hence, the limit value of the EEAC [see (8) for the definition] is

lim
t!1

E[K(t, r)]Ð t
0 D(x) dx

¼ lim
t!1

E[K(t, r)]
(1� e�rt)=r

¼ rE e�rTC½ �
1� E e�rT½ � :

If E[C2] , 1, it follows from Theorem 4.7 that

lim
t!1

E[K2(t, r)] ¼ E C2e�2rT½ � 1� E e�rT½ �ð Þ þ 2E Ce�rT½ �E Ce�2rT½ �
1� E e�rT½ �ð Þ 1� E e�2rT½ �ð Þ :

Consider the case that the interoccurrence times are exponentially distributed with
parameter m . 0. The renewal measure is then equal to dU (x) ¼ d(dx) þ mdx. By
Theorem 4.1, for the expected discounted cost over the finite time interval [0, t],
we obtain

E[K(t, r)] ¼ E e�rT C1{T�t}
� �

þ
ðt

0
E e�r(xþT)C1{xþT�t}
� �

m dx

¼ mþ r

r
E e�rT C1{T�t}
� �

� m

r
e�rtE C1{T�t}½ �:

The difference between the asymptotic discounted cost and the expected discounted
cost over the finite time interval [0, t] is given by

mþ r

r
E e�rT C1{T . t}
� �

þ m

r
e�rtE[C1{T�t}]:

It follows that for exponential interoccurrence times, the asymptotic expression is a
very accurate upper bound for the total expected cost over a bounded time interval
[0, t], the error being less than (m þ r)e2rtE[C ]/r. For exponential discounting,
D(s þ t) ¼ D(s)D(t), s, t � 0. Therefore, it is possible to derive simple expressions
for the Laplace transform of the first and second moments of the total cost K(t, r)
over the bounded time horizon [0, t]. Using numerical methods developed by den
Iseger [4], we can get numerical approximations for the mean and variance of the
total cost over a finite time interval. The formula for the Laplace transform of the
expected value E[K(t, r)] of the total discounted cost over [0, t] in the next proposition
holds also for r ¼ 0, being the case of no discounting.

PROPOSITION 5.1: For any r � 0,

ð1

0
E[K(t, r)]e�st dt ¼ E Ce�(sþr)T½ �

s 1� E e�(sþr)T½ �ð Þ : (9)
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PROOF: It follows from Theorem 4.1 thatð1

0
E[K(t, r)]e�st dt ¼ E

ð1

0

ðt

0
e�r(xþT)C1{xþT�t} dU (x)e�st dt

� 	

¼ E
1
s

e�(sþr)T C

ð1

0
e�(sþr)x dU (x)

� 	

¼ E Ce�(sþr)T½ �
s 1� E e�(sþr)T½ �ð Þ : B

In the same way, using Theorem 4.6, we find the Laplace transform of the second
moment:

PROPOSITION 5.2: For any r � 0,ð1

0
E[K2(t, r)]e�st dt

¼ E[C2e�(sþ2r)T ](1� E[e�(sþr)T ])þ 2E[Ce�(sþr)T ]E[Ce�(sþ2r)T ]
s(1� E[e�(sþr)T ])(1� E[e�(sþ2r)T ])

: (10)

It is interesting to note that the equivalent average cost per unit time and the
average cost per unit time are related as follows (see van Noortwijk [21]). As
r tends to zero from above, the EEAC approaches the expected average cost per
unit time; that is,

lim
r#0

E[K(t, r)]Ð t
0 e�rx dx

¼ E[K(t, 0)]
t

:

6. HYPERBOLIC DISCOUNTING

Consider hyperbolic discounting, where the discount factor is given by

DH(t) ¼ 1
1þ bt

,

with b . 0 a constant (Herrnstein [7] and Mazur [10]). In this case,ðt

0
DH(x) dx ¼ 1

b
ln (1þ bt)! 1 as t ! 1:

It follows that

lim
t!1

E[K(t, DH)]Ð t
0 DH(x) dx

¼ lim
t!1

bE[K(t, DH)]
ln(1þ bt)

¼ E[C]
E[T]

:

RENEWAL THEORY WITH DISCOUNTING 65

https://doi.org/10.1017/S0269964808000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000041


In the special case that the interoccurrence times are exponentially
distributed with parameter m . 0, we get a constant renewal density m, and if we
also assume that the cost are independent of the interoccurrence times, we get from
(5) that

E[K(t, DH)] ¼ E[C]
ðt

0

1
1þ bx

m dx ¼ E[C]
m

b
ln(1þ bt):

According to Loewenstein and Prelec [9], hyperbolic discounting can be generalized
as follows. The generalized hyperbolic discount factor is given by

DGH(t) ¼ (1þ at)�b=a, a,b . 0:

If a ¼ b, we get the hyperbolic discount function DH. The limit, as a! 0, is expo-
nential discounting. The generalized hyperbolic discount factor has a kind of
Bayesian interpretation as the expected value of an exponential discount factor
with uncertain rate r. If the uncertainty in r is modeled by a gamma distributed
random variable R with mean b and variance ab, we get

E e�Rt
� �

¼
ð1

0
e�rt (r=a)b=a�1

aG(b=a)
e�r=a dr ¼ (1þ at)�b=a;

see Weitzman [25]. In this case, the asymptotic behavior of the expected value of the
discounted sum depends on the parameter values a and b. Note that

ð1

0
DGH(x) dx ¼ 1=(b� a) if a , b

þ1 if a � b:




So, for a . b, it follows from Corollary 4.5 that

lim
t!1

E[K(t, DGH)]Ð t
0 DGH(x) dx

¼ lim
t!1

(a� b)E[K(t, DGH)]

(1þ at)�(b=a)þ1 � 1
¼ E[C]

E[T]
:

If a ¼ b, we have hyperbolic discounting. Finally, consider the case a , b, where we
have to apply (6). Assume that T has an exponential distribution with parameter m.
The renewal density m(x) ; m is constant in this case, and we get

lim
t!1

E[K(t, DGH)] ¼ E C(1þ aT)�b=a
h i

þ E
mC

b� a
(1þ aT)�(b=a)þ1

� 	

¼ E C
1

b� a

b� aþ m(1þ aT)

(1þ aT)b=a

� 	
:
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If the distribution of T is exponential with parameter m, the conclusions for the three
cases a , b, a ¼ b, and a . b respectively are

lim
t!1

E[K(t, DGH)]Ð t
0 DGH(x) dx

¼

lim
t!1

(a� b)E[K(t, DGH)]

(1þ at)�(b=a)þ1 � 1
¼ E C

b� aþ m(1þ aT)

(1þ aT)b=a

� 	
,

lim
t!1

bE[K(t, DGH)]
ln(1þ bt)

¼ E[C]
E[T]

,

lim
t!1

(a� b)E[K(t, DGH)]

(1þ at)�(b=a)þ1 � 1
¼ E[C]

E[T]
:

8>>>>>>><
>>>>>>>:

For a , b and a . b, we have the same normalization, but in the first case, the nor-
malization factor tends to 1/(b 2 a) as t!1, and in the second case, it tends to þ1.

7. NO DISCOUNTING

Consider the case without discounting where D(t) ; 1. For this discount function, we
use the notation K(t, 0) for the total cost up to time t. No discounting is sometimes also
referred to as zero discounting (i.e., exponential discounting with rate r ¼ 0).
Theorem 4.1 implies that the expected total cost over [0, t] can be represented as

E[K(t, 0)] ¼ E[CU(t � T)]: (11)

Different from r . 0, we have for r ¼ 0 thatð1

0
D(x) dx ¼ þ1:

It follows from Corollary 4.5 that the expected average cost per unit time is

lim
t!1

E[K(t, 0)]Ð t
0 D(x) dx

¼ lim
t!1

E[K(t, 0)]
t

¼ E[C]
E[T]

:

This follows also directly from (11) and an application of the Elementary Renewal
Theorem. This result is also known as the Renewal-Reward Theorem; see Tijms
[20, Chap. 2].

The second moment can be expressed as

E[K2(t, 0)] ¼ E[C2U(t � T)]þ 2E[U �U(t � T � T 0)CC0],

where U * U denotes the convolution of the renewal measure U with itself. Consider
the renewal measure dU (x) ¼ d(dx) þ mdx; then

E[K(t, 0)] ¼ E C1{T�t}½ � þ mE C(t � T)1{T�t}½ �:

We continue with a derivation of the asymptotic expansion of the first and the
second moments of the total cost K(t, 0) as t!1. These expansions are well
known for renewal processes; see Tijms [20, Chap. 8]. We need a (straightforward)
generalization of these results to delayed renewal processes. Let Ñ be a delayed
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renewal process associated with the sequence of independent nonnegative random
variables fT̃n : n � 1g, where T̃1 has cumulative distribution function G and T̃k,
k � 2, have identical cumulative distribution functions F. We assume that the distri-
bution functions F and G are absolutely continuous and we will denote the corre-
sponding probability densities by f and g, respectively. Denote the k th moment of
the distributions F and G with mk and nk, respectively; k ¼ 1, 2. Let fS̃k : k � 1g
be the sequence of partial sums of the sequence fT̃ng. It follows that

E
h

~N(t)
i
¼
X1
k¼1

E 1{~Sk�t}

h i
¼
X1
k¼0

G � f k�(t):

In the same way as for renewal processes, we can apply the key renewal theorem to get

lim
t!1

X1
k¼0

G � f k�(t)� t

m1

( )
¼ m2

2m2
1

� n1

m1
(12)

and

lim
t!1

ðt

0

X1
k¼0

G � f k�(x)� x

m1
þ m2

2m2
1

� n1

m1

� 	( )
dx

¼ m2
2

4m3
1

� m3 þ 3n1m2

6m2
1

þ n2

2m1
:

Let us now return to the first moment of the total cost K(t, 0) and define M1(t) ¼
E[K(t, 0)].

PROPOSITION 7.1:

lim
t!1

M1(t)� mC

mT
t


 �
¼ mCmT2

2m2
T

� mCT

mT
:

PROOF: Since the sequence f(T, C ), (Tj, Cj), j � 1g is an i.i.d. sequence of random
vectors, we get, for k . 1,

E Ck1{Sk�t}½ � ¼ E Ck1{Tk�t�Sk�1}½ �

¼
ðt

0
E Ck1{Tk�t�u}½ � f (k�1)�(u) du

¼ G � f (k�1)�(t),

where

G(t) ¼ E C1{T�t}½ �:

J. A. M. van der Weide, Suyono, and J. M. van Noortwijk68

https://doi.org/10.1017/S0269964808000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000041


It follows that the expectation M(t) of the total cost K(t, 0) is given by

M1(t) ¼ E[K(t, 0)] ¼
X1
k¼1

E Ck1{Sk�t}½ � ¼
X1
k¼0

G � f k�(t): (13)

Note that (1/mC )G is a cumulative distribution function with first moment given by

n1 ¼
ð1

0
1� 1

mC

� �
G(t)

� �
dt ¼ mCT

mC
:

So (12) implies the result. B

In the special case C ; 1, Proposition 7.1 can be simplified to

lim
t!1

E(K(t, 0))� t

mT


 �
¼ mT2

2m2
T

� 1: (14)

This result was proved by Smith [17]. For T exponentially distributed, the right-hand
side of (14) equals zero and the asymptotic expansion is exact.

Let M2(t) ¼ E[K2(t, 0)] be the second moment of the total cost.

PROPOSITION 7.2:

lim
t!1

M2(t)� mC

mT

� �2

t2 þ 2m2
CmT2

m3
T

þ mC2mT � 4mCmCT

m2
T

� �
t

" #( )

¼
3m2

Cm
2
T2

2m4
T

� 2m2
CmT3 þ 12mCmCTmT2

3m3
T

þ 4mCmCT2 þ 4m2
CT þ mC2mT2

2m2
T

� mC2T

mT
:

PROOF: Since the sequence f(T, C ), (Tj, Cj), j � 1g is an i.i.d. sequence of random
vectors, we get

M2(t) ¼ E C11{S1�t} þ
X1
k¼2

Ck1{Sk�t}

 !2
2
4

3
5

¼ H(t)þ 2E C1

X1
k¼2

Ck1{Sk�t}

" #
þ E

X1
k¼2

Ck1{Sk�t}

 !2
2
4

3
5, (15)

where

H(t) ¼ E[C21{T�t}]:
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The third term on the right-hand side of (15) can be rewritten as

E
X1
k¼2

Ck1{Sk�t}

 !2
2
4

3
5 ¼ E

X1
k¼2

Ck1{S(2,k)�t�T1}

 !2
2
4

3
5

¼
ðt

0
M2(t � x)f (x) dx:

Defining

N(t) ¼ E C1C21{S2�t}½ �,

we can rewrite the second term on the right-hand side of (15) as

E C1

X1
k¼2

Ck1{Sk�t}

" #
¼
X1
k¼2

E C1Ck1{Sk�t}½ �

¼ N(t)þ
X1
k¼3

E C1Ck1{T1þS(2,k�1)þTk�t}½ �

¼ N(t)þ
X1
k¼3

ðt

0
N(t � x)f (k�2)�(x) dx

¼
X1
k¼0

N � f k�(t):

Note that (1/mC
2 )N is a cumulative distribution function with first moment

n1 ¼
ð1

0
1� 1

m2
C

� �
N(t)

� �
dt

¼ 1

m2
C

ð1

0
E C1C21{S2.t}½ � dt

¼ 2mCT

mC

and second moment

n2 ¼ 2
ð1

0
t 1� 1

m2
C

� �
N(t)

� �
dt

¼ 2
m2

C

E C1C2

ð1

0
t1{S2.t} dt

� 	

¼ 2mCmCT2 þ 2m2
CT

m2
C

:
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It follows that

M2(t) ¼ H(t)þ 2
X1
k¼0

N � f k�(t)þ
ðt

0
M2(t � x)f (x) dx: (16)

Using the notation Lf for the Laplace transform of a real function f, that is,

Lf(s) ¼
ð1

0
e�stf(t) dt, s � 0,

we get, as s! 0,

LM2 (s) ¼
E C2e�sT½ � 1� Lf (s)

� �
þ 2 E Ce�sT½ �ð Þ2

s 1� Lf (s)
� �2

¼ 2g
s3
þ h

s2
þ � � � ,

where

g ¼ mC

mT

� �2

, h ¼ 2m2
CmT2

m3
T

� 4mCmCT

m2
T

þ mC2

mT
:

Formal inversion of this suggests that as t!1,

M2(t) ¼ gt2 þ ht þ � � � :

Define

Z0(t) ¼ M2(t)� (gt2 þ ht):

Using (16), it follows that Z0 satisfies the following renewal equation:

Z0(t) ¼ a(t)þ
ðt

0
Z0(t � x)f (x) dx,

where, by partial integration,

a(t) ¼ �(gt2 þ ht)þ H(t)þ 2
X1
k¼0

N � f k�(t)

þ g

ðt

0
(t � x)2f (x) dxþ h

ðt

0
(t � x)f (x) dx

¼ H(t)� mC2 þ 2
X1
k¼0

N � f k�(t)� m2
C

mT
t þ mT2m2

C � 2mCmTmCT

2m2
T

� 	( )

þ 2g
ð1

t
(t � x)(1� F(x)) dxþ h

ð1

t
(1� F(x)) dx:
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The function a is directly Riemann integrable, and since

ð1

0
H(t)� mC2ð Þ dt ¼ �E

ð1

0
C21{T.t} dt

� 	
¼ �mC2T ,

and, by (13),

2
ð1

0

X1
k¼0

N � f k�(t)� m2
C

mT
t þ mT2m2

C � 2mCmTmCT

2m2
T

� 	( )
dt

¼
m2

Cm
2
T2

2m3
T

� m2
CmT3 þ 6mCmCTmT2

3m2
T

þ 2mCmCT2 þ 2m2
CT

mT
,

ð1

0

ð1

t
(t � x)(1� F(x)) dx dt ¼ � 1

2

ð1

0
x2(1� F(x)) dx

¼ � 1
6
mT3 ,

and

ð1

0

ð1

t
(1� F(x)) dx dt ¼ 1

2
mT2 ,

we get

ð1

0
a(t) dt ¼

3m2
Cm

2
T2

2m3
T

� 2m2
CmT3 þ 12mCmCTmT2

3m2
T

þ 4mCmCT2 þ 4m2
CT þ mC2mT2

2mT
� mC2T :

The proposition follows from an application of the key renewal theorem. B

COROLLARY 7.3: If in Proposition 7.1 the convergence is sufficiently fast, that is,

M1(t)� mC

mT
t ¼ mCmT2

2m2
T

� mCT

mT
þ o

1
t

� �
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as t!1, we get from Propositions 7.1 and 7.2 that

lim
t!1

Var(K(t, 0))� m2
CmT2 � 2mCmTmCT þ mC2m2

T

m3
T

t


 �

¼
5m2

Cm
2
T2

4m4
T

� 2m2
CmT3 þ 9mCmCTmT2

3m3
T

þ 4mCmCT2 þ 2m2
CT þ mC2mT2

2m2
T

� mC2T

mT
:

In the special case C ; 1, Corollary 7.3 can be simplified to

lim
t!1

Var(K(t, 0))� mT2 � m2
T

m3
T

t


 �
¼

5m2
T2

4m4
T

� 2mT3

3m3
T

� mT2

2m2
T

: (17)

This result was proved by Smith [18]. For T exponentially distributed, the right-hand
side of (17) equals zero and the asymptotic expansion is exact.

8. CONCLUSIONS

Using renewal theory, mathematical expressions for the first and second moments of
the discounted costs over a bounded or unbounded time horizon are derived for
general forms of discounting. As special cases, the following types of discounting
are considered: exponential discounting, (generalized) hyperbolic discounting, and
no discounting. For exponential discounting, analytic expressions are derived for
the first and second moments of the discounted costs over an unbounded time
horizon. For generalized hyperbolic discounting, a striking new result arises for the
equivalent average costs per unit time. When the integral of the generalized hyper-
bolic discount function over an unbounded time horizon is infinite, the expected
equivalent average costs per unit time tends to the expected average costs per unit
time as the time horizon approaches infinity. For no discounting, asymptotic expan-
sions are derived for the first and second moments of the expected costs over a
bounded time horizon for possibly dependent renewal costs and renewal interoccur-
rence times.
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