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REVISITING THE OPTIMAL
STATIONARY PUBLIC INVESTMENT
POLICY IN ENDOGENOUS
GROWTH ECONOMIES
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One part of the literature on endogenous growth concerns models where public
infrastructure affects the private production process. An unsolved puzzle in this literature
concerns observed public investment-to-output ratios for developed economies, which
tend to fall short of theoretical model-based optimal ratios. We reexamine the optimal
choice of public investment in a more general framework. This setting allows for
long-lasting capital stocks, a lower depreciation rate for public capital than for private
capital, an elasticity of intertemporal substitution that differs from unity, and the need to
finance a nontrivial share of public services in output. Given other fundamentals in the
economy, we show that the optimal public investment-to-output ratio is smaller for
low-growth economies, for economies populated by consumers with low preferences for
substituting consumption intertemporally, and when public capital is durable. For a
calibrated economy, we show that a combination of these factors solves the public
investment puzzle.
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1. INTRODUCTION

We characterize optimal public investment in a calibrated, general equilibrium
endogenous growth model. Optimality is understood in this exercise in a policy-
constrained Ramsey sense. Current public investment sizes around 3 to 4%, as seen
in most OECD countries, tend to fall short of theoretically based optimal ratios in
the previous literature. This apparent puzzle motivates this paper. We reexamine
the optimal choice of public investment in a more general framework and find
that the observed public investment ratios are about right. The main differences
between our setup and previous literature are (i) a more realistic calibration of the
depreciation rate for public and private capital,1 (ii) the requirement to finance
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a positive share of public services in output every period,2 and (iii) a movement
away from logarithmic preferences.3

Early empirical work by Aschauer (1989) and Munnell (1990) identified the
significant impact that public infrastructure has on economic growth. One strand of
the literature on endogenous growth relating to models in which public investment
affects the private production process has been motivated in part by this empirical
finding. Barro (1990) represents an important breakthrough in characterizing the
influence of public infrastructure on growth and welfare in an endogenous growth
setting. Subsequent works by Futagami et al. (1993), Glomm and Ravikumar
(1994), Cassou and Lansing (1998, 1999), Turnovsky (1997), Aschauer (2000),
and Marrero and Novales (2005, 2007) are variations of Barro’s research. In
these studies, public revenues are raised from proportional income taxes and the
government decides on a constant ratio of public investment to output.

The public sector has gradually lost influence in the productive activity of most
developed economies since 1960. Although total public outlays have represented
meaningful shares of GDP during the last four decades, public investment-to-
output ratios have generally declined over the same period.4 Nevertheless, this
ratio has remained relatively stable since the 1990s. By 2000, public investment
represented 3.7% of total real GDP in the OECD and 3.1% in the U.S. These
figures fall well below the optimal public investment-to-output ratios predicted
by most recent studies under a standard calibration. In fact, the significant dif-
ference between observed and theoretically based public investment ratios has
been blamed for the productivity slowdown of the 1970s and 1980s.5 The goal of
the paper is not to discuss the productivity slowdown, on which there is already
an extensive literature, but to revisit the optimal choice of public investment in
a more general and plausible framework than those mentioned above. This adds
to research by Cassou and Lansing (1998, 1999) and Marrero (2005), who use
a stylized one-sector growth model carefully calibrated for the postwar U.S. and
other OECD economies to find that reduced public investment over the 1970s and
1980s accounted for only a small proportion of the productivity slowdown.

Our economy allows for a gradual transition between different steady states,
which Futagami et al. (1993) found to be an important factor in determining
optimal public investment policy in a Barro-type framework. Futagami et al. (1993)
did not derive an expression for the optimal stationary public investment policy.
In this paper, we obtain an implicit expression for the optimal stationary public
investment-to-output ratio in a more general endogenous growth framework, and
we contribute to filling this gap.6

A careful examination of the implicit policy expression provides an important
insight into the size and determinants of the optimal stationary public investment-
to-output ratio. We show that the optimal ratio is lower than the growth-maximizing
ratio. Whereas the public capital elasticity and the subjective discount rate pos-
itively affect optimal public investment policy, as is well known,7 the factors
mentioned above have a negative effect on the optimal ratio, as we show. The
endogenous growth rate is an indirect channel through which the fundamentals of
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the economy may additionally affect optimal policy. When new features (i)–(iii)
are simultaneously incorporated into an otherwise standard, carefully calibrated
economy, the optimal public investment ratio obtained under our benchmark pa-
rameterization approximates the values observed in actual economies.

The rest of the paper is organized as follows. In Section 2, we show the public
investment puzzle within the context of existing studies. In Section 3, we describe
the economic model. In Section 4, we define the balanced growth competitive
equilibrium and show its existence. Section 5 shows the optimal stationary public
investment and tax policy. In Section 6, we carry out a numerical illustration.
Section 7 concludes.

2. THE PUBLIC INVESTMENT PUZZLE

In this section, we summarize the optimal stationary public investment policy
predicted by existing studies. For standard model-based calibrations, we identify
a significant difference between these theoretical optimal ratios and the empirically
observed ratios in developed economies at the end of the 90s. We then point out a
puzzle in this literature.

The pioneering work of Barro (1990) treats the flow of public infrastructure as
an input into private production. The development of public infrastructure induces
higher future returns to private investment, but also distorts private incentives to
consume and save through higher taxes. Optimal policy equalizes the post-tax
return of private capital and the return on public infrastructure. Barro obtained the
well-known result that the optimal share of output devoted to public investment
equals the elasticity of public capital in the production function, θ . Aschauer
(2000) obtains the same result in a similar framework. Moreover, this optimal
policy corresponds to the public investment ratio that maximizes growth.

In a similar dynamic framework, Glomm and Ravikumar (1994) assume that the
stock of public infrastructure is input into private production. Since public capital
is productive in subsequent periods, the optimal public investment-to-output ratio
is βθ , where β, which is between zero and unity, is the subjective discount rate of
the representative household.8 In addition, if the government is limited to financing
a constant share of output devoted to public services, ψ ∈ (0, 1), in each period,
the optimal public investment-to-output ratio is βθ(1 − ψ), as in Marrero and
Novales (2005). The negative effect of a positive ψ on the net return to public
capital makes the optimal ratio lower than those described above.

Public investment-to-output ratios for developed countries have generally de-
clined since 1960, although they have been reasonably stable during the last
decade. By 2000, this ratio was about 3.7% for OECD countries and about 3.1%
for the U.S. economy.

For a standard calibration, Table 1 shows the optimal public investment-to-
output ratios implied by the above works. We assume that β = 0.97 and ψ = 0.18
[as in Cassou and Lansing (1998)]. Given the debate about the calibration of the
public capital elasticity, we consider a range of values for this parameter. For
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TABLE 1. Optimal stationary public investment-to-output ratio in selected
earlier literature

Public Barro (1990), Glomm and Marrero and Cassou and
capital Aschauer Ravikumar Novales Lansing

elasticity (2000) (1994) (2005) (1998, 1999)

0.05 0.050 0.049 0.040 0.038
0.10 0.100 0.097 0.080 0.076
0.15 0.150 0.146 0.119 0.115
0.20 0.200 0.194 0.159 0.153
0.25 0.250 0.243 0.199 0.191
0.30 0.300 0.291 0.239 0.229

Note: We use standard parameter values: a discount factor of 097, a capital depreciation rate of 0.1, and a
share of output devoted to public consumption of 0.18. The public investment-to-output ratio is 0.037 for
the OECD and 0.031 for the United States by 2000. Since there is not a general concent about the level of
the public capital elasticity in the production function, we consider arrange of this parameter (first column).

small values of θ , that is, below 0.05, the model-based optimal ratios are close
to current public investment ratios for the OECD and the U.S.. Although some
empirical papers9 obtain estimates of θ that are close to zero, a recent consensus
suggests that this elasticity is between 0.1 and 0.2.10 Hence, either current public
investment policies are suboptimal or existing models omit relevant factors and
hence offer misleading policy prescriptions.

Related studies assume that public and private capital fully depreciate in one
period, and the models reduce to the special case of an AK economy. Thus, they
lack transitional dynamics. Moreover, to obtain analytical solutions, they assume
a logarithmic utility function (i.e., that the elasticity of intertemporal substitution
is unity).

Futagami et al. (1993) point out the importance of accounting for transitional
dynamics in optimal policy design. Turnovsky (2004) emphasizes this issue in a
nonscale economy that exhibits exogenous growth. In an economy with transitional
dynamics, there is a trade-off between consumption during the transition and long-
run growth, which causes the optimal public investment-to-output ratio to be lower
than the growth-maximizing ratio. Indeed, assuming a log-linear accumulation rule
for public capital and a logarithmic utility function, Cassou and Lansing (1998) find
the optimal stationary public investment-to-output ratio to be βθδg/[1−β(1−δg)],
where δg is the depreciation rate of public capital, which is between zero and unity.
If public capital fully depreciates in one period, the economy lacks transitional
dynamics and the optimal policy is as stated by Glomm and Ravikumar (1994).
However, the lower the depreciation rate, the slower are the transition dynamics
and the more important is the welfare trade-off referred to above. Effectively, for
δg < 1, the optimal ratio is always lower than βθ . Nevertheless, for standard
parameter values (δg = 0.1), the optimal ratio remains well above 4% when the
public capital elasticity exceeds 0.05 (see Table 1).
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In subsequent sections, we revisit the optimal choice of public investment
under a more general and plausible framework. Finally, we reconsider the public
investment puzzle based on a calibrated economy within our new setting.

3. THE ECONOMY

We consider a general one-sector economy incorporating a large but fixed number
of identical infinitely lived households. Each household is the owner of a unique
firm that produces the single, nonstorable consumption good in the economy, y.
There is a benevolent government that solves an optimal fiscal policy problem in a
constrained Ramsey sense. The model is similar to those of Ai and Cassou (1995),
Cassou and Lansing (1998, 1999), Marrero (2005) and Glomm and Ravikumar
(1999), which incorporate durable capital and productive public expenditure. We
assume that public capital might depreciate at a slower rate than private capital
(Ai and Cassou, 1995), that the government is limited to financing a constant
share of output devoted to public consumption in each period,11 and that the
elasticity of intertemporal substitution may differ from unity (as suggested by
Prescott and others). Population growth rate is assumed to be zero, population size
is normalized to one, labor is supplied inelastically, and all variables are defined
in per capita terms.12 We restrict attention to Cobb–Douglas technology and CES
utility, because these functional forms are needed for existence of a balanced
steady-state equilibrium.

3.1. Firms

Each firm produces y according to a Cobb–Douglas technology,

f (kt , lt · zt , gt ) = A0k
α
t (lt zt )

φ gθ
t ,

(1)
α, θ, φ ∈ (0, 1) , A0 > 0,

where k is private capital stock, g is public capital, l is labor, z is an index of
knowledge available to each firm that augments the productive capacity of labor,
and l · z is effective labor; A0 is a technological scale factor, and α, θ , and φ are
the elasticities of output with respect to k, g, and l · z, respectively. The function
f (·) is increasing, strictly concave, and twice continuously differentiable, and all
factors are essential in the production process and satisfies Inada conditions. We
assume that f (·) is homogeneous of degree one, which implies α + θ + φ = 1.13

This condition is required for the existence of a balanced growth equilibrium, as
commented on in Section 4.

The average capital stock across firms is taken as a proxy for z (Romer, 1986).
Although firms decide on private factors, public capital and the knowledge index
are outside of their control and are taken as exogenous. Because firms are iden-
tical, the average capital stock is equal to k, and per capita output is produced
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according to

yt = F(kt , lt , gt ) = f (kt , lt · kt , gt ) = A0k
α+φ
t gθ

t . (2)

We note that F(kt , lt , gt ) = f (kt , lt · kt , gt ) and ∂f (·)/∂g = ∂F (·)/∂g = θyt/gt

for a particular allocation. However, because each firm neglects its own contribu-
tion on the aggregate capital stock, ∂F (·)/∂k and ∂f (·)/∂k are not equal. More
precisely, ∂f (·)/∂k = αyt/kt and ∂F (·)/∂k = (α + φ)yt/kt .

The firm’s problem [P1]. Because investment decisions are made by house-
holds, the firm’s problem is static. Firms demand k and l, whereas g and z are
taken as exogenous variables. Each firm pays the competitively determined wage
w on the labor it hires and the rate r on the capital it rents. Taking g and z as given
optimally leads to the usual marginal productivity conditions and the resultant
firm profits, �, every period:

rt = ∂f (·)/∂k = α
yt

kt

, (3)

wt = ∂f (·)/∂(l · z) = φ
yt

lt
, (4)

�t = (1 − α − φ)yt = θyt . (5)

Because the production function is homogeneous of degree one, from (3)–(5), we
have that yt = wt lt + kt rt + �t , for all periods t .

3.2. Households

There exist a large number of identical infinitely lived households, which allocate
their resources between consumption, c, and investment in physical capital, i.
Households are the owners of physical capital and firms, and they receive firms’
profits as exogenous income.14 The single commodity good is valued by the
household according to a CES utility,

∞∑
t=0

βtu(ct ),

(6)

u(ct ) = c
1−1/σ
t

1 − 1/σ
, σ > 0, β ∈ (0, 1),

where β is the discount factor and σ is the elasticity of intertemporal substitution.
The function u(·) is increasing, strictly concave, and twice continuously differen-
tiable and satisfies Inada conditions. Each household is endowed with one unit of
time.

Private capital accumulates over time according to

kt+1 = (1 − δ)kt + it , t = 0, 1, . . . , (7)
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where δ is a linear depreciation rate of private capital, between zero and one.
Because δ < 1, this specification allows for long-lived private capital, which is a
relevant and realistic element in the model.15

ct + kt+1 ≤ ltwt (1 − τt ) + kt [1 − δ + rt (1 − τt )] + �t(1 − τt ), (8)

every period, where τt is a tax rate applied to total household income, which is
determined outside of its control.

The household’s problem [P2]. A representative household maximizes (6)
subject to (8), ct ≥ 0, and kt+1 ≥ 0 and the transversality condition

lim
t→∞ βtkt+1∂u(ct )/∂ct = 0, (9)

which places a limit on the accumulation of private capital. The standard optimal
consumption–saving decision is given by(

ct+1

ct

)1/σ

= β[1 − δ + rt+1(1 − τt+1)], t = 0, 1, . . . . (10)

Because u(ct ) is strictly increasing for all ct ≥ 0, (8) holds with equality at
equilibrium. Finally, because the household does not value leisure, the unit of
labor is supplied inelastically every period.

3.3. Government

The government claims a constant proportion, ψ , of output to fund public con-
sumption, cg , every period,

cgt = ψyt , (11)

which is taken as given. This assumption ensures that public expenditure continues
to represent a significant and realistic share of economic output as the economy
grows.16 Public consumption does not contribute to either production or consumer
welfare.

Infrastructure evolves according to

gt+1 = igt + (1 − δg)gt , t = 0, 1, . . . , (12)

where ig is public investment and δg ∈ [0, 1] is the linear depreciation rate of
public capital, which might be lower than that of private capital.17

We assume that issuing debt is not allowed and a proportional tax on aggregate
private income is the only way to finance total public expenses,

cgt + igt = τtyt , t = 0, 1, . . . . (13)

Combining (11) with (13), the public investment-to-output ratio would be given by
τt −ψ , which is denoted by xt henceforth. A feasible policy is a trio of nonnegative

https://doi.org/10.1017/S1365100507060452 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060452


PUBLIC INVESTMENT POLICY IN GROWTH MODELS 179

sequences, π = {τt , gt+1, cgt }∞t=0, with τt ∈ [0, 1], cgt ≥ 0, and gt+1 > 0 and
satisfying (12) and (13) for any period t .

4. COMPETITIVE EQUILIBRIUM AND BALANCED GROWTH PATH

DEFINITION 1. Given a feasible policy π and initial conditions k0, g0 > 0,
a π -competitive equilibrium under a balanced budget is a vector of sequences
{ct , cgt , kt+1, lt , gt+1, it , igt , yt }∞t=0 together with a price system {rt , wt }∞t=0 such
that (i) {kt+1, lt }∞t=0 solve the profit maximizing problem of the firms [P1]; (ii)
{ct , kt+1, lt }∞t=0 solve the household’s problem [P2]; (iii) the technology constraints
(2), (7), (12) hold; and (iv) markets clear every period,

yt = ct + cgt + it + igt , (14)

lt = 1. (15)

Because our goal is to examine the long-run implications of fiscal policy, the
rest of the section lays down the properties of a balanced steady-state equilibrium
and the conditions for its existence. This analysis is based on King et al. (1988),
Jones and Manuelli (1990, 1997), and Caballé and Santos (1993), among others.18

DEFINITION 2. A balanced growth path, BGP (or steady-state equilibrium) is
a competitive equilibrium allocation such that yt , ct , kt , and gt grow at constant
rates and the output/capital ratio is constant.

Since the output/capital ratio is constant in steady state and the production
function is homogeneous of degree one (i.e., α + θ + φ = 1), yt , kt , and gt

grows at the same constant rate in a balanced equilibrium, which is denoted by
γ .19 Dividing (14) by kt , we see that ct grows at the same rate γ in a BGP.
Combining (10) and (3), it is easy to show that the following standard conditions
are necessary for the existence of a constant private consumption growth rate
in a balanced growth equilibrium: (i) the production function shows constant
elasticities of productive factors to output, that is, α, θ, and φ are constant; (ii) the
utility function exhibits a constant elasticity of intertemporal substitution, that is,
σ is constant; (iii) fiscal policy is stationary, that is, τt = τ and xt = x.

Condition (i) implies a constant real interest rate at the BGP [condition (3)].
Condition (ii) is equivalent to saying that preferences exhibit constant marginal
rates of substitution between current and future consumption; that is, the left-hand
side in (10) is constant. We note that the Cobb–Douglas technology and the CES
utility are the only functional forms satisfying these properties.20 From (10), it is
clear that, given (ii) and (iii), condition (i) must be satisfied for the existence of a
constant consumption growth rate.

We write BGP conditions in terms of stationary ratios: k̂ = k/g, ẑ = z/g,
ŷ = y/g, ĉ = c/g, and ĉg = cg/g. Because these ratios are constant at a BGP,
we omit the time subscript if the economy is at this equilibrium. We customize
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competitive equilibrium conditions to be along a BGP, and we get the system of
nonlinear equations

ĉ + (γ + δ) k̂ = (1 − τ)A0k̂
αẑφ, (16)

1 + γ = βσ
[
1 − δ + (1 − τ) αA0k̂

α−1ẑφ
]σ

, (17)

γ = xA0k̂
αẑφ − δg, (18)

ĉg = ψA0k̂
αẑφ, (19)

where (16) and (17) are the balanced growth versions of the resource constraint
of the economy and of the Euler equation of the representative household, respec-
tively, and (18) and (19) follow directly from the public investment and public
consumption rules respectively.

The following proposition refers to necessary and sufficient conditions for the
existence of an interior balanced equilibrium in our economic setting: 21

PROPOSITION 3. Given a CES utility, a Cobb–Douglas technology, and a
stationary fiscal policy, the following conditions are necessary and sufficient for
the existence of a unique interior balanced path with positive growth rate:

(C1) r >
1 − β(1 − δ)

(1 − τ)β
,

(C2) 1 + γ < βσ/(1−σ).

From (17), condition C1 guarantees that γ is positive. This condition is equiv-
alent to condition [G] in Jones and Manuelli (1990). Condition C2 says that γ

cannot be so large that it allows households to follow a chain-letter action; that
is, the transversality condition (9) must hold along the BGP.22 This condition
guarantees

∑∞
t=0 βtu(ct ) to be bounded above on the set of feasible allocations in

a balanced growth competitive equilibrium, a necessary condition for its existence.
In terms of γ , conditions C1 and C2 can be seen as

1 < 1 + γ < βσ/(1−σ). (20)

Thus, given a feasible policy π , the combination of (17) and (18) leads to

(k̂, ẑ) = βσ [α(1 − τ)A0k̂
α−1ẑφ + 1 − δ]σ − xA0k̂

αẑφ + 1 − δg = 0, (21)

and positive roots of (k̂, ẑ) are potential candidates to be steady-state values of
k̂. The solution takes the form of k̂ = κ(ẑ). But ẑ = k̂ at equilibrium. Hence, there
must exist some fixed point, k̂∗ > 0, of κ(k̂) solving (21): κ(k̂∗) = k̂∗, such that
(κ(k̂∗), k̂∗) = (k̂∗, k̂∗) = 0.23 Given σ > 0, θ ∈ (0, 1), τ ∈ [0, 1], and, k̂ > 0,
and setting ẑ = k̂ into (21), it is easy to show that (k̂, k̂) is continuous and strictly
decreasing in k̂, with limk̂→0+ (k̂, k̂) = +∞ and limk̂→+∞ (k̂, k̂) = −∞.
Hence, there exists a single k̂∗ > 0 such that (k̂∗, k̂∗) = 0, which defines the
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steady state of the economy and proves existence and uniqueness of an interior
balanced path with positive growth. Given k̂∗, the other endogenous variables are
easily recovered from (16)–(19).

5. OPTIMAL PUBLIC INVESTMENT POLICY ON THE BGP

There are many competitive equilibria implied by different government policies.
The Ramsey problem chooses the π -competitive equilibrium allocation that max-
imizes consumer welfare. In this section, we follow Chapter 12 in Ljungqvist and
Sargent (2000) to define and solve the Ramsey problem. In the Appendix (part 1),
we show that the assumptions of Theorem 2 in Le Van and Saglam (2004) are
fulfilled for our Ramsey problem; hence Lagrangian multiplier techniques can be
used to solve it.24

The Ramsey problem is

max
{ct ,kt+1,gt+1,τt }∞0

∞∑
t=0

βt c
1−1/σ
t

1 − 1/σ
, subject to

c
−1/σ
t = βc

−1/σ

t+1

[
1 − δ + αA0k

−θ
t+1g

θ
t+1 (1 − τt+1)

]
,

gt+1 = (τt − ψ) A0k
1−θ
t gθ

t − (1 − δg)gt ,

(1 − τt )A0k
1−θ
t gθ

t = ct + kt+1 − (1 − δ)kt ,

with ct , gt+1, kt+1 ≥ 0 and τt ∈ [0, 1] for all t , and satisfying the transversality
condition (9). The first constraint corresponds to the household’s Euler equation,
the second represents the accumulation of public capital, and the third is the
global resource constraint of the economy. The household’s budget constraint is
not explicitly included, because it is redundant when the resource constraint holds
and the government’s budget constraint is satisfied.

Optimal (interior) conditions for this problem are shown in the Appendix (part 2)
[condition (A.15)–(A.21)].25 We then focus on the optimal stationary policy
in a balanced growth competitive equilibrium [condition (A.22)–(A.28) in the
Appendix (part 2)]. For the Cobb–Douglas technology, combining (A.22) and
(A.25), this policy must satisfy the following condition:

β
[
1 + (1 − ψ)θA0k̂

1−θ − δg

] = (1 + γ )1/σ . (22)

On the left-hand side of the equation is the marginal rate of transformation between
current output and available public capital—net of depreciation and discounted
by the factor β—which must be set equal to the rate at which the household
wishes to substitute current and future consumption (the right-hand side of the
equation).26 A high level of the right-hand side—that is, a low level of σ—means
that the household places little value on future consumption relative to current
consumption. Thus, given other economic fundamentals and the proportion ψ of
total resources used by the government to fund public services, optimal public
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investment policy should hardly crowd out current consumption, in which case
the public investment-to-output ratio should be low. The productivity of public
capital is high in this case and the left-hand side of (22) equals the right-hand side.
Similar arguments apply to economies with high levels of σ .

In addition, from the equation for public capital accumulation (A.27), we have

A0k̂
1−θ = δg + γ

x
. (23)

Substituting (23) into (22) reveals that the optimal stationary public policy, x+

and τ+, satisfies

x+ = βθ(1 − ψ)
γ + δg

(1 + γ )1/σ − β(1 − δg)
, (24)

τ+ = x+ + ψ. (25)

Nevertheless an explicit expression for the optimal stationary policy cannot be
obtained, because γ depends on fundamentals and policy parameters in a nontrivial
manner.27 The unique environment in which an explicit expression for the optimal
public investment ratio can be determined is whenever u(c) = log c (i.e., σ = 1)
and δg = 1, where the optimal public investment-to-output ratio is the standard
βθ (1 − ψ) (Marrero and Novales, 2005).

Although, in general, we cannot obtain an explicit expression for x+, several
important results arise from a careful examination of (24). As a point of reference,
we take the standard optimal ratio, βθ (1 − ψ). From (24), it is easy to show that
x+ < (>)βθ (1 − ψ) whenever the following condition holds:

1 + γ < (>)(1 + γ )1/σ + (1 − δg)(1 − β). (26)

Because (1 + γ )1/σ > 1 and β, δg < 1, it is worth noting that the right-hand side
term in (20) is greater than the right-hand side expression in (26) for any parameter
values. Thus, in theory, x+ might be above or below the threshold βθ (1 − ψ).
The following proposition states this result in accordance with the relationship
among key parameters σ and δg .

PROPOSITION 4. Under a CES utility, a Cobb–Douglas technology, a sta-
tionary fiscal policy, and conditions C1 and C2: (i) if σ < 1 the optimal public
investment-to-output ratio, x+, is lower than βθ(1 − ψ) for any level of δg; (ii) if
σ = 1 and δg < 1, x+ is also below βθ(1 − ψ); (iii) if σ = 1 and δg = 1, x+ is
equal to βθ(1 − ψ); (iv) if σ > 1 and δg = 1, x+ is higher than βθ(1 − ψ); (v)
finally, if σ > 1 and δg < 1, condition (26) must be checked to determine whether
x+ is greater than or less than βθ(1 − ψ).

Although the optimal stationary public investment-to-output ratio may exceed
βθ (1 − ψ), it cannot do so by much. Indeed, the next proposition shows that the
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ratio cannot exceed θ (1 − ψ), which is the ratio that maximizes the steady-state
growth rate.28

PROPOSITION 5. Under a CES utility, a Cobb–Douglas technology, a sta-
tionary fiscal policy, and conditions C1 and C2, the optimal public investment-to-
output ratio along a BGP equilibrium is less than θ(1 − ψ).

Proof. Rewrite condition (24) as x+ = θ(1 − ψ)
γ̄ + δg

1/βūc − (1 − δg)
. From con-

ditions C1 and C2, γ̄ + δg

1/βūc − (1 − δg)
is less than unity; hence x+ is lesser than

θ(1 − g).

In an economy in which consumers place little value on current consumption
in terms of future consumption, a benevolent government sets a high level of x+,
generally above βθ(1−ψ) and close to the level that maximizes growth, θ(1−ψ).
Consequently, the resulting difference between economic growth and the marginal
rate of substitution between future and current consumption would be large. How-
ever, the optimal public investment-to-output ratio does not exceed the ratio that
maximizes growth, because under this policy there would be less consumption and
growth on the BGP. On the other hand, the optimal public investment-to-output
ratio would be well below βθ(1 − ψ) and the resulting difference between γ

and (1 + γ )1/σ —that is the marginal rate of substitution between next-period and
current consumption—would be small. In short, the optimal public investment-
to-output ratio would be smaller for low-growth economies, economies populated
by consumers with low preferences for substituting consumption intertemporally,
and economics with long-lasting public infrastructures.

From (24), it is clear that the following fundamentals of the economy directly
affect optimal public investment policy: β, θ, ψ , δg , and σ . Although the effects on
x+ of β, θ , δg , and σ are positive, that of ψ on x+ is negative. The intuition behind
these relationships is straightforward. A lower discount factor, β, and a smaller
marginal rate of substitution between present and future consumption means that
households have a higher preference for current consumption relative to future
consumption. On the other hand, a lower depreciation rate implies slower transition
dynamics. Because β < 1, the future (i.e., the long run) is less important than the
short run for aggregate welfare under these circumstances. Last, θ is positively
related to the rate of return on public capital, whereas a higher ψ implies that a
higher proportion of output must be financed by distortionary taxes, which reduces
the return to private investment.

In addition, changes in these fundamentals might have indirect effects on the
optimal policy through their effects on the endogenous growth rate. Indeed, the
private capital depreciation rate can only affect the optimal policy through this
channel. The total effect of all the other factors on the optimal policy is the sum of
the direct and indirect effects. For a calibrated economy, we evaluate these effects
in the next section. We show that the strength of the indirect effects depends largely
on the depreciation rate of public capital and on household preferences between
present and future consumption. For instance, if the elasticity of intertemporal
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substitution is unity and public capital fully depreciates in one period, the optimal
public investment ratio is βθ (1 − ψ), and there is no indirect effect.

6. A NUMERICAL ILLUSTRATION

In order to illustrate the relationship between the optimal stationary policy and the
fundamentals of the economy, we examine numerical solutions for a calibrated
economy that resembles steady-state characteristics of the U.S. postwar economy.
Given parameter values, the solution of (21) gives the steady-state value of k̂. We
then obtain γ and x+ from (23) and (24), respectively.

6.1. Values of the Parameters

The parametrization of the baseline economy is standard. The time unit is the
natural year. Based on King et al. (1988) and others, we choose φ = 0.58, the
labor elasticity in the Cobb–Douglas technology. We use σ = 0.5, as considered
by Prescott and others. For depreciation rates, we take those levels estimated by Ai
and Cassou (1995): δ = 0.094 and δg = 0.038. The value ψ = 0.18 implies that
the government spending on nonproductive goods and services is 18% of output,
which is consistent with its postwar average. The elasticity of public capital is the
most controversial parameter to assign. Consequently, we use a range of values for
this parameter.29 For the benchmark economy, however, θ is chosen together with
A0 and β to match a steady-state per capita growth rate of 2.9% and to reproduce a
public-to-private capital ratio of 0.55 with x = 0.052 and an after-tax interest rate
of 6.9%,30 which are consistent with their levels in the 60s for the U.S. economy.
Finally, recall that θ , φ, and α are not independent, because α + θ + φ = 1.

For our model economy, the baseline calibration sets the private investment-to-
output ratio to be a little under 18%, the share of output that is devoted to private
consumption to be about 60%, and total public receipts as a percentage of output
to be a little under 25%. These ratios are common for the postwar U.S. and other
developed economies.

We report the values of the parameters for the baseline economy in Table 2.
Notice that θ = 0.093, similar to that estimated by Shioji (2001), and the resultant
value of α is 0.327, similar to the capital share used in the literature.

TABLE 2. The benchmark calibration

Parameters
β σ ψ x A0 α φ θ δ δg

0.965 0.500 0.180 0.052 0.779 0.327 0.580 0.093 0.094 0.038

Main steady-state and model-based ratios for the baseline economy
γ c/y ik/y ig/y cg/y g/k k/y

0.029 0.603 0.167 0.052 0.18 0.55 1.36
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6.2. Simulation Results

We first show the quantitative properties of the baseline economy. Then we conduct
a sensitivity analysis with respect to the following important parameters: the
elasticity of public capital, θ ; the elasticity of intertemporal substitution, σ ; the
share of output devoted to public services, ψ ; and the public and private capital
depreciation rates, δg and δ. The sensitivity analysis facilitates understanding of
the determinants of the optimal stationary policy and of the level of the optimal
public investment-to-output ratio. In general, the numerical exercise helps solve
the public investment puzzle described in Section 2. For each parameterization, we
solve the optimal stationary public investment policy numerically, as stated above.
We limit the sensitivity analysis to parameterizations satisfying condition (20).31

Table 3 reports the optimal stationary public investment-to-output ratio un-
der alternative parameterizations. The table is divided into blocks, one for each

TABLE 3. Optimal stationary public investment-to-output ratio. Sensitivity
analysis

Elasticity of public capital
0.097(2) 0.02 0.05 0.10 0.15 0.20 0.25 0.30

x+ (%)(1) 3.94 0.84 2.12 4.24 6.36 8.48 10.56 12.60
3.94 0.84 2.12 4.24 6.36 8.48 10.62 12.74

Elasticity of intertemporal substitution
0.500(2) 0.10 0.25 0.75 1.00 1.25 1.50 1.625(3)

x+ (%)(1) 3.94 2.56 3.08 4.80 5.62 6.44 7.24 7.62
3.94 1.26 2.66 4.68 5.16 5.48 5.72 5.82

Public Consumption-to-output ratio
0.180(2) 0.00 0.05 0.10 0.15 0.25 0.30 0.35

x+ (%)(1) 3.94 4.70 4.50 4.28 4.08 3.66 3.44 3.02
3.94 4.82 4.58 4.34 4.10 3.62 3.36 2.88

Public capital depreciation rate
0.038(2) 0.00 0.10 0.15 0.25 0.50 0.75 1.00

x+ (%)(1) 3.94 2.50 5.22 5.80 6.42 7.02 7.22 7.34
3.94 2.40 5.14 5.66 6.24 6.82 7.06 7.20

Private capital depreciation rate
0.094(2) 0.000 0.025 0.051 0.100 0.125 0.150 0.165(4)

x+ (%)(1) 3.94 3.78 3.82 3.86 3.96 4.03 4.13 4.56
3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94

Notes: (1) The optimal ratio keeping the growth rate unchanged. Its difference with respect to the value in the
above column measures the indirect effect caused by the parameter change throughout the endogenous growth rate.
(2) Benchmark calibration and optimal policy under the baseline economy. (3) The policy satisfying the optimal
interior condition breaks the NPG condition for σ > 1.625. (4) The policy satisfying the optimal interior condition
breaks that γ > 0 for δ > 0.165.
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parameter. The first row of each block shows the optimal policy for the associated
parameterization. The second row reports the public investment ratio that is con-
sistent with a constant growth rate. They may differ from each other because of
the indirect effect commented above.

The first column in the table reports the optimal stationary policy for the baseline
economy. Thus, public investment must be 3.94% of real output. It is worth noting
that the optimal ratio is between 3% and 4% for minor changes in all important
parameters. For the baseline economy, the optimal ratio is much less than the
standard βθ(1−ψ) = 7.4%. The associated growth rate is 2.8% and the marginal
rate of substitution between future and current consumption is 1.057. All these
results are consistent with Proposition 3.

Other important macro ratios under the optimal policy are c/y = 61.1%,
ik/y = 17%, and g/k = 43%. With respect to the baseline economy, the public
sector turns out to be less important for private production, and the public-to-private
capital ratio falls from 55% to 43%. On the other hand, private consumption and
private investment represent a greater share of output. These features are consistent
with the macroeconomic trends in developed economies during recent decades.

For the baseline economy, it is worth noting that the optimal public investment-
to-output ratio is very similar to the average ratio in OECD countries and slightly
above the ratio for the United States, based on data for 2000 (recall from Section 2).
Hence, economic elements may explain the public investment puzzle described in
Section 2. Moreover, our results indicate that all elements combine to generate an
optimal public investment-to-output ratio of between 3% and 4% under a realistic
calibration.

The effect of β and θ on the optimal policy is clearly positive from (24), as in
existing studies. Thus, we focus on the new effects of δg , σ , ψ , and δ. The optimal
ratio rises with the public capital depreciation rate. Moreover, x+ approaches
βθ(1 − ψ) and θ(1 − ψ) if public capital fully depreciates in one period. In
principle, a sufficiently low δg is needed to achieve a level of x+ below 4% for a
reasonable calibration of the economy. However, this condition is not sufficient.
In addition, the elasticity of intertemporal substitution must be less than unity.
Indeed, using the benchmark level of δg , the optimal ratio is 5.62 and just below
θ(1 − ψ) for σ = 1 and σ = 1.625, respectively. In addition, ψ must be higher
than about 0.15 for the optimal ratio to be less than 4%. For instance, if ψ = 0,
and all other parameters are unchanged, the optimal ratio is about 5%.

If, in Table 3, we compare the first and second column of each block, we
can discuss the importance of the indirect effect relative to the direct effect each
parameter has on the optimal public investment ratio. In doing so, we conclude
that the overall effects of δg and ψ on the optimal policy are mainly direct effects,
similarly to the effect of public capital elasticity. On the other hand, the indirect
effect predominates in the overall effect of a change in σ , especially when σ differs
greatly from unity. The effect of δ is completely indirect.

In short, in our economic model, a public consumption-to-output ratio of above
about 0.15, an elasticity of intertemporal substitution of less than unity, a public

https://doi.org/10.1017/S1365100507060452 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060452


PUBLIC INVESTMENT POLICY IN GROWTH MODELS 187

capital elasticity of below about 0.15, and a depreciation rate of capital of less
than 0.125 are necessary for the optimal public investment-to-output ratio to be
less than 4%. Parameter values in these ranges are commonly used in studies of
economic growth in developed economies.

7. FINAL REMARKS

An unsolved puzzle in the growth literature concerned observed public investment-
to-output ratios of about 3% or 4% for developed economies, which tended to fall
short of theoretical model-based optimal ratios. We have reexamined the optimal
choice of public investment in a more general and plausible framework than those
considered by earlier papers in this literature. We have combined the following
elements in a standard dynamic setting that incorporates public capital: (i) public
and private capital are durable, (ii) public capital depreciates at a lower rate than
private capital, (iii) the elasticity of intertemporal substitution is less than unity,
and (iv) a significant proportion of output is devoted to public consumption. We
have used a calibrated economy to estimate the optimal public investment-to-
output ratio and have shown that features (i)–(iv) must be simultaneously assumed
to produce optimal public investment-to-output ratios of less than 4%.

We have derived a general condition characterizing optimal public investment
policy in this framework. The condition involves the rate of endogenous growth.
Even though we cannot obtain an explicit expression for the optimal public invest-
ment ratio, careful examination of the implicit condition reveals important findings.
The optimal public investment-to-output ratio is below the growth-maximizing ra-
tio. The optimal public investment ratio is lower for low-growth economies, as well
as for economies populated by consumers with a low preference for substituting
consumption intertemporally. In general, given the fundamentals of the economy,
a developed country with an initially high growth rate tends to stabilize its growth
rate. Inflation and interest rates tend to fall and the financial sector becomes more
competitive and efficient. Low interest rates and the development of flexible finan-
cial and credit markets tend to reduce the marginal rate of intertemporal substitu-
tion of consumption. Our findings suggest that this trend should be accompanied by
an optimal strategy that reduces the share of output devoted to public investment.
This pattern is consistent with recent trends in most developed economies.

The public capital elasticity and the discount factor in the utility function are
two important determinants of the optimal policy, as earlier papers have already
shown. The negative effect of the share of output devoted to public consumption
is worth noting. Finally, the elasticity of intertemporal substitution and the public
capital depreciation rate have positive and important effects on the optimal public
investment-to-output ratio. In addition to influencing the optimal public investment
ratio directly, these parameters may also affect optimal policy indirectly, through
their effect on the endogenous rate of growth. This indirect channel is particularly
important in the case of the elasticity of intertemporal substitution and of the
private capital depreciation rate, whereas, for other parameters, the direct effect
on optimal policy dominates.
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NOTES

1. Ai and Cassou (1995); Cassou and Lansing (1998).
2. Cassou and Lansing (1998); Marrero and Novales (2005, 2007).
3. Mehra and Prescott (1985); King et al. (1988).
4. See Cassou and Lansing (1999) and Marrero (2005) for a description of public investment

downsizing in the OECD and the United States, respectively. See also Kamps (2005).
5. Aschauer (1989) and Munnell (1990), among others.
6. The condition we deduce is similar to that derived by Turnovsky (2004) in a continuous-time

nonscale growing economy with public and private capital. Nevertheless, fiscal policy does not affect
growth in Turnovsky’s framework.

7. See, e.g., Barro (1990) and Glomm and Ravikumar (1994).
8. Glomm and Ravikumar (1994) consider the case in which private capital has a harmful effect

on public capital under congestion (see also Barro and Sala-i-Martı́n, 1992). Thus, the optimal income
tax rate and the optimal public investment-to-output ratio would be higher than βθ as a result.

9. See, e.g., Holtz-Eakin (1994), Hulten and Schwab (1991), and Tatom (1991).
10. See, e.g., Ai and Cassou (1995), Cassou and Lansing (1998, 1999), and Shioji (2001).
11. Cassou and Lansing (1998); Marrero and Novales (2005, 2007).
12. Specifying the public capital stock in per capita terms ensures that there are no scale effects

associated with the number of firms (Barro and Sala-i-Martı́n, 1992; Cassou and Lansing, 1998).
13. For a similar technology, Aschauer (1989), Munnell (1990), and Ai and Cassou (1995) found

support that α + θ + φ = 1 for the post-war U.S. economy.
14. For simplicity, we assume that the number of firms is identical to the number of households.

This assumption implies that all households receive equal amounts of total profits (Cassou and Lansing,
1998).

15. Many papers have assumed that public and private capital fully depreciates in one period [Barro
(1990); Glomm and Ravikumar (1994); Turnovsky (2000); Marrero and Novales (2005), among many
others]. We show that this assumption is in general very important for an optimal stationary public
investment policy. Assuming δ < 1, Cassou and Lansing (1998) use a log-linear capital accumulation
rule, kt+1 = A1k

1−δ
t iδt , which is less standard but allows them to obtain, together with additional

restrictive assumptions on utility and production functions, a closed-form solution for the dynamics of
the model. Instead, we consider a more standard linear rule for public and private capital accumulation
[Ai and Cassou (1995); Glomm and Ravikumar (1999); Marrero 2005].

16. Cassou and Lansing (1998); Turnovsky (2004); Marrero and Novales (2005, 2007), among
others.

17. Auerbach and Hines (1987) estimated a depreciation rate in the United States of 0.137 for
equipment and 0.033 for structures. Since private capital includes a larger share of equipment than
public capital, the estimated depreciation rate for private capital is expected to be larger. Ai and Cassou
(1995) found support for this in the form of an estimated δg of just over half that of δ.

18. See also Solow (1988), Barro (1990), Lucas (1988), and Rebelo (1991).
19. With α+θ +φ = 1, we are in the AK economy. If α+θ +φ < 1, we would be in a neoclassical

growth environment, where limk→∞ ∂f (·)/∂k = 0 and no endogenous growth is possible. Finally, if
α + θ + φ > 1, the growth rate of consumption would be explosive. See Jones and Manuelli (1997)
for more details about this point.

20. “. . . whether the resulting consumption series is “trend-stationary” (i.e., constant growth rates)
or “difference stationary” (i.e., the difference ct+1 − ct is stationary) is determined by the properties
of the utility function” [Jones and Manuelli (1997, p. 83)]. For instance, under an exponential utility
function, that is, u(c) = −e−λc , λ > 0, there is no guarantee that the economy could even display
positive asymptotic growth. The consumption growth rate converges to zero as c → ∞, and it is just
the difference ct+1 − ct that converges to a constant value. Another function exhibiting nonconstant
elasticity of substitution is u(ct − c∗) = (ct − c∗)1 − 1/σ − 1

1 − 1/σ
, for σ �= 1, and ln(ct − c∗), for σ = 1,

where c∗ would denote a subsistent level of consumption [Chatterjee (1994); Álvarez-Pelaez and Dı́az
(2005), among others]. If c∗ is constant, it is easy to show that there exists sustained and positive
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growth if β[1 − δ + (1 − τ)rt+1] > 1 for all t . However, the rate of growth is constant just in the limit,
when k, c → ∞. Thus, although a quasi-BGP might exist, a necessary condition for the existence of
a BGP is not satisfied.

21. The author gratefully acknowledges the comments of an anonymous referee at this point.
22. All aggregate variables grow at the rate γ along the BGP. Hence, Ct = C0(1 + γ )t and

kt+1 = k0(1 + γ )t+1. For the CES utility function and BGP, condition (9) becomes k0

c
1/σ
0

(1 + γ )

limt→∞(β(1 + γ )1−1/σ )t = 0. Hence 1 + γ < βσ/(1−σ) for this condition to be satisfied.
23. Le Van et al. (2002) shows detailed and rigorous proofs of existence of optimal solutions

and competitive equilibrium in a discrete-time version of the Romer (1986) model. Gourdel et al.
(2004) shows existence and uniqueness in a discrete-time Lucas (1988) model. They use the idea
that fixed points are equilibria. Durán and Le Van (2003) prove existence of equilibrium in a simple
one-sector growth model. Glomm and Ravikumar (1994, 1999) show existence and uniqueness of a
π -competitive equilibrium in a dynamic setting similar to that in this paper, with public and private
capital in the production function but without spillover externalities. In this sense, our analysis is
somewhat limited because we have focused on the existence of BGP equilibrium, in which we need
to assume a Cobb–Douglas technology and a CES utility. The elaboration of detailed proofs for the
existence and uniqueness of generic competitive equilibrium and optimal solutions in our dynamic
setting is a hard task; it goes beyond the scope of this paper and is left for a future research.

24. The author gratefully acknowledges the comments of an anonymous referee at this point.
25. This Ramsey problem has the noteworthy feature that its solution could be time-inconsistent.

Nevertheless, since we will restrict fiscal policy to be stationary, we can ignore the time-inconsistency
problem. See chapter 12 in Ljungqvist and Sargent (2000) for more details about this point.

26. For the CES function and BGP, uc(ct )/uc(ct+1) = (1 + γ )1/σ .
27. Futagami et al. (1993) pointed out that the optimal stationary public investment policy might

differ substantially in an economy with transition dynamics, but they did not specify the condition for
this. Condition (24) contributes in this respect.

28. From (17) and (18), and using ẑ = k̂, it is easy to show that γ is maximized by setting this
level of x, which was also found in Marrero and Novales (2005).

29. For instance, Aschauer (1989) and Munnell (1990) estimate very high values of θ , equal
to 0.39 and 0.34 respectively. Lynde and Richmond (1992) and Ai and Cassou (1995) account for
nonstationarity in the data their and estimate are smaller but still significant: the former estimates
θ = 0.2 using time series techniques, whereas the latter estimates ϕ between 0.15 and 0.2, using a
GMM estimation process. In a more recent paper, Shioji (2001) uses dynamic panel techniques and
estimates the elasticity of output with respect to infrastructure to be somewhere around 0.1 and 0.15.
On the other hand, papers by Holtz-Eakin (1994), Hulten and Schwab (1991), and Tatom (1991),
among others, put that estimate very close to zero. Sturm et al. (1997) offer a selective review of these
empirical studies.

30. See Cooley and Prescott (1995). When privately issued real bonds are introduced into the
consumer budget constraint, the optimally condition for bonds leads to 1 + r∗ = exp(γ − ln β). We
calibrate β by setting r∗ = 0.069 and γ = 0029 in this expression.

31. For example, given other parameters unchanged from the benchmark parametrization, θ < 0.01
does not satisfy γ > 0, σ > 1.625 does not satisfy the transversality condition, δ > 0.165 does not
satisfy γ > 0, etc. Notice that if the benchmark level of δ would be initially higher that 0.098, the
calibrated level of A0 would be also higher than 0.779 (to ensure a growth rate of 2.9%) and the value
of δ breaking γ > 0 would be above 0.165.
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APPENDIX

1. THE RAMSEY PROBLEM AND THE LAGRANGIAN REPRESENTATION

In the first part of the Appendix, we show that Lagrangian multipliers techniques
can be used to solve our infinite-dimensional constrained optimization Ramsey prob-
lem. We show that conditions ensuring Theorem 2 in Le Van and Saglam (2004)—
LVS in what follows—are satisfied. Given k0, g0 > 0, we define c = (c0, c1, c2, . . .),
k = (k0, k1, k2, . . .), g = (g0, g1, g2, . . .), and τ = (τ0, τ1, τ2, . . .) as feasible sequences
of c, k, g, and τ , respectively, in the sense that is defined in LVS. Following LVS, the
Ramsey problem can be expressed as

min H(X), s.t

�(X) ≤ 0,

X ∈ l∞xl∞xl∞x[0, 1]∞,

https://doi.org/10.1017/S1365100507060452 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060452


192 GUSTAVO A. MARRERO

where X = (c, k, g,τ ), H(X) = −∑∞
t=0 βt c

1−1/σ
t

1−1/σ
, H : l∞xl∞xl∞x[0, 1]∞ → R ∪ {+∞},

and �t(X) = [�1t (X),�2t (X), . . . , �8t (X)], with

�1t (X) =
(

ct+1

ct

)1/σ

− β
[
1 − δ + A0αk−θ

t+1g
θ
t+1(1 − τt+1)

]
, (A.1)

�2t (X) = gt+1 − (τt − ψ)A0k
1−θ
t gθ

t − (1 − δg)gt , (A.2)

�3t (X) = ct + kt+1 − (1 − δ)kt − (1 − τt )A0k
1−θ
t gθ

t , (A.3)

�4t (X) = −ct , (A.4)

�5t (X) = −kt , (A.5)

�6t (X) = −gt , (A.6)

�7(X) = −τt , (A.7)

�8(X) = τt − 1, (A.8)

for any time period t = 0, 1, 2, . . . . We define the domains of H(·) and �(·), respectively,
as

C = dom(H) = {
X ∈ l∞+ xl∞xl∞x[0, 1]∞ such that H(X) < +∞}

,

� = dom(�) = {
X ∈ l∞xl∞+ xl∞+ x[0, 1]∞ such that �t(X) < +∞, ∀t

} = dom(�t ) ∀t,

and
C ∩� = l∞+ xl∞+ xl∞+ x[0, 1]∞.

Given two alternative feasible sequences, X and X̃, and any time period, T ∈ N, we will
make use of the following function:

XT
t (X, X̃) =

{
Xt, if t ≤ T

X̃t , if t > T .

We first check that the Slater condition holds. Because the Inada conditions are satisfied,
limk→0 Fk(t) = limk→0 fk(t) = limg→0 Fg(t) = +∞. Hence, for any k0, g0 > 0, there exist
some feasible k̃,g̃ such that

0 < k̃ + ε1 < (1 − ε2) A0k
1−θ
0 gθ

0 + (1 − δ) k0, (A.9)

0 < k̃ + ε1 < (1 − ε2) A0k̃
1−θ g̃θ + (1 − δ) k̃, (A.10)

0 < g̃ < (ε2 − ψ)A0k
1−θ
0 gθ

0 + (1 − δg)g0, (A.11)

0 < g̃ < (ε2 − ψ)A0k̃
1−θ g̃θ + (1 − δg)g̃, (A.12)

1 < β[1 − δ + A0αk̃−θ g̃θ (1 − ε2)], (A.13)

for some positive and small enough levels of ε1 and ε2. Let c∗ = (ε1, ε1, ε1, . . .),
k∗ = (k0, k̃, k̃, . . .), g∗ = (g0, g̃, g̃, . . .), τ ∗ = (ε2, ε2, ε2, . . .) and X∗ = (c∗, k∗, g∗,τ ∗).
Given (A.9)–(A.13), note that, for any time period t = 0, 1, 2, . . . , �1t (c∗,τ ∗) < 0,
�2t (c∗,τ ∗) < 0, �3t (c∗,τ ∗) < 0, �4t (c∗,τ ∗) = −ε1 < 0, �5t (c∗,τ ∗) = −k0 for t = 0, and
�5t (c∗,τ ∗) = −k̃ for t > 0; �6t (c∗,τ ∗) = −g0 < 0 for t = 0; and �6t (c∗,τ ∗) = −g̃ < 0
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for t > 0, �7t (c∗,τ ∗) = −ε2 < 0, and �8t (c∗,τ ∗) = ε2 − 1 < 0. Thus, the Slater condition
is verified.

LVS point out another sufficient conditions (Assumptions 1 and 2, p. 397). We now
check Assumption 1. For any X̄ ∈ C, X̃ ∈ l∞xl∞xl∞x[0, 1]∞ such that for any T ∈ N,
XT (X̄, X̃) ∈ C, we have

H [XT (X̄, X̃)] = −
T∑

t=0

βt c̄
1−1/σ
t

1 − 1/σ
−

∞∑
t=T +1

βt c̃
1−1/σ
t

1 − 1/σ
.

As X̃ ∈ l∞xl∞xl∞x[0, 1]∞, the consumption sequence (c̃0, c̃1, c̃2, . . .) must be bounded
from above. Thus, if γ is the long-run growth rate of the economy, there exists some a > 0
such that c̃t ≤ a(1+γ )t , for t > T , as T → +∞. The transversality condition implies that
(1 + γ )1−1/σ β < 1; hence a1−1/σ

1−1/σ

∑∞
t=T +1[β(1 + γ )1−1/σ ]t → 0 as T → +∞ and therefore

limT →∞ H [XT (X̄, X̃)] = H(X̄), and Assumption 1 in LVS is satisfied.
Assumption 2 in LVS states that if X̄ ∈ �, X̃ ∈ �, and XT (X̄, X̃) ∈ �, for all T ∈ N:

(a) �t [XT (X̄, X̃)] → �t(X̄) as T → +∞; (b) there exists a constant M such that for all
T ∈ N, ‖�t [XT (X̄, X̃)]‖ ≤ M; (c) for all T ∈ N, limt→∞ |�t(XT (X̄, X̃)) − �t(X̃)| = 0.

Following the same steps as in LVS, conditions (a)–(c) are clearly satisfied.
Finally, it is obvious that, if X+ is a solution to the Ramsey problem, XT (X+, X∗)

belongs to l∞+ xl∞+ xl∞+ x[0, 1]∞, for all T ∈ N.

2. OPTIMAL CONDITIONS ALONG THE BGP

In part 1 of the Appendix, we show that if X+ = (c+, k+, g+,τ+) is a solution to the
Ramsey problem, there exists a Lagrangian representation associated with it. For any
period t , Lagrange multipliers associated with restrictions (A.1)–(A.8) are denoted by λ1t ,
λ2t , λ3t , λ4t , λ5t , λ6t , λ7t , λ8t , respectively. The Inada conditions imply that the solution
to the Lagrangian would be interior; hence λ4t = λ5t = λ6t = λ7t = λ8t = 0 for all
t . Moreover, restrictions hold with equality because utility and production functions are
strictly monotone. To simplify notation, we define the following ratios: λ̃3t = λ3t /c

−1/σ
t ,

λ̃2t = λ2t /c
−1/σ
t , λ̃1t = λ1t /kt+1, and ũc(t) = c

−1/σ
t /c

−1/σ

t+1 . We also use F(t) and f (t)

to denote F(kt , lt , gt ) and f (kt , lt zt , gt ), respectively, and fk(t), Fk(t), fkk(t), Fkk(t) to
denote first and second time derivatives of f (·) and F(·), respectively, with respect to k

and so on of the indicated object, evaluated at a particular allocation.
The Ramsey problem in its Lagrangian form is32

max
{ct ,kt+1,gt+1,τ}∞

0

∞∑
t=0

βt

⎧⎪⎨
⎪⎩

c
1−1/σ
t

1−1/σ
− λ1t

[
c

−1/σ
t − βc

−1/σ

t+1 (1 − δ + fk(t + 1)(1 − τt+1))
]

− λ2t [gt+1 − (τt − ψ)F(t) − (1 − δg)gt ]
− λ3t [ct + kt+1 − (1 − δ)kt − (1 − τt )F (t)]

⎫⎪⎬
⎪⎭.

(A.14)

Optimal conditions are33

τt : −αλ̃1t−1 + λ̃2t − λ̃3t = 0; (A.15)

ct : 1 + 1

σ

λ1t

ct

− λ̃3t − 1

σ

λ1t−1

ct

[1 − δ + fk(t)(1 − τt )] = 0; (A.16)
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kt+1 : βλ̃1t (1 − τt+1)kt+1
∂fk(t + 1)

∂k
ũ−1

c (t) − λ̃3t + (A.17)

: + βλ̃2t+1(τt+1 − ψ)Fk(t + 1)ũ−1
c (t)+

: + βũ−1
c (t)λ̃3t+1[1 − δ + (1 − τt+1)ũ

−1
c (t)Fk(t + 1)] = 0;

gt+1 : βλ̃1t ũ
−1
c (t)(1 − τt+1)kt+1

∂fk(t + 1)

∂g
− λ̃2t + (A.18)

: + βũ−1
c (t)λ̃2t+1[(τt+1 − ψ)Fg(t + 1) + 1 − δg] +

: + βũ−1
c (t)λ̃3t (1 − τt+1)Fg(t + 1) = 0;

λ1t : c
−1/σ
t − βc

−1/σ

t+1 (1 − δ + fk(t + 1)(1 − τt+1)) = 0; (A.19)

λ2t : gt+1 − (τt − ψ)F(t) − (1 − δg)gt = 0; (A.20)

λ3t : ct + kt+1 − (1 − δ)kt − (1 − τt )F (t) = 0. (A.21)

On the BGP, y, c, k, and g grow at the constant rate γ , while λ̃1, λ̃2, λ̃3, and ũc must
be constant. We omit subindex t along the BGP. Linear homogeneity of f (·) implies that
(∂fk(·)/∂g)k = αFg and (∂fk(·)/∂k)k = αFk − fk . On the BGP, conditions (A.5)–(A.25)
reduce to

τ : λ̃2 − λ̃3 = αλ̃1; (A.22)

c : 1 + 1

σ
λ̃1(1 + γ )k/c − λ̃3 − 1

σ
λ̃1k/c [1 − δ + fk (1 − τ)] = 0; (A.23)

k : βλ̃1ũ
−1
c (1 − τ) (αFk − fk) − λ̃3 + βλ̃2 (τ − ψ) ũ−1

c Fk+ (A.24)

: +βũ−1
c λ̃3

[
(1 − δ) + (1 − τ)ũ−1

c Fk

] = 0;

g : βλ̃1ũ
−1
c (1 − τ) αFg − λ̃2 + βũ−1

c λ̃2

[
(τ − ψ) Fg + 1 − δg

] + (A.25)

: +βũ−1
c λ̃3(1 − τ)Fg = 0;

λ1 : 1 − βũ−1
c [1 − δ + fk (1 − τ)] = 0; (A.26)

λ2 : γ + δg − (τ − ψ)Fg/θ = 0; (A.27)

λ3 :
c

k
+ γ + δ − (1 − τ)Fk/(1 − θ) = 0. (A.28)
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