
Math. Struct. in Comp. Science (2009), vol. 19, pp. 1091–1124. c© Cambridge University Press 2009

doi:10.1017/S0960129509990132

Process discovery and Petri nets†

NADIA BUSI‡ and G. MICHELE PINNA§

‡Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
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The aim of the research domain known as process mining is to use process discovery to

construct a process model as an abstract representation of event logs. The goal is to build a

model (in terms of a Petri net) that can reproduce the logs under consideration, and does

not allow different behaviours compared with those shown in the logs. In particular, process

mining aims to verify the accuracy of the model design (represented as a Petri net), basically

checking whether the same net can be rediscovered. However, the main mining methods

proposed in the literature have some drawbacks: the classical α-algorithm is unable to

rediscover various nets, while the region-based approach, which can mine them correctly, is

too complex.

In this paper, we compare different approaches and propose some ideas to counter the

weaknesses of the region-based approach.

1. Introduction

Process mining is a relatively new and rather active research domain¶. The goal of process

mining is to extract information about processes from transaction logs. It assumes that it

is possible to record events in such a way that:

(i) each event refers to an activity (that is, a well-defined step in the process);

(ii) each event refers to a case (that is, a process instance);

(iii) each event can have a performer also referred to as the originator (the actor executing

or initiating the activity).

Table 1 shows an example of a log involving 19 events, 5 activities and 6 originators. The

information contained in process logs (transaction logs) is rarely complete, but, for the

purposes of this paper, we assume that we have complete information. Thus, in the set of

action sequences we will consider, all the possible sequences are represented somehow.

† This paper is based on a number of papers Nadia and I wrote together, and on various discussions we had.

To be precise, the papers are Busi and Pinna (2006b; 2006a; 1998) and van Dongen et al. (2007), the last of

these being coauthored with Boudewijn van Dongen and Wil M. P. van der Aalst.
¶ A complete overview of recent process mining research is beyond the scope of this paper: for an introduction

to this topic, consult the web pages at http://www.processmining.org for a complete overview and van

der Aalst et al. (2003) and van der Aalst and Weijters (2004), or the proceedings of the Business Process

Managment Conference.
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case id activity id originator case id activity id originator

case 1 activity A John case 5 activity A Sue

case 2 activity A John case 4 activity C Carol

case 3 activity A Sue case 1 activity D Pete

case 3 activity B Carol case 3 activity C Sue

case 1 activity B Mike case 3 activity D Pete

case 1 activity C John case 4 activity B Sue

case 2 activity C Mike case 5 activity E Clare

case 4 activity A Sue case 5 activity D Clare

case 2 activity B John case 4 activity D Pete

case 2 activity D Pete

Table 1. An event log (audit trail)

Fig. 1. The control flow structure of Table 1 expressed as a Petri net. The two transitions

‘AND-split’ and ‘AND-join’ are added for routing purposes and are originated using a top-down

development of the net. They are not considered in the logs in Table 1

Event logs, such as the one shown in Table 1, are used as the starting point for mining.

They can be looked at from different perspectives. We will focus on the so-called process

perspective (Wohed et al. 2007; van Dongen et al. 2007), which considers the control

flow (that is, the ordering of activities) shown in terms of a Petri net (cf. Reisig and

Rozenberg (1998)), as in Figure 1. The goal of mining from this perspective is to find

a good characterisation of all possible paths, for example, expressed in terms of a Petri

net or Event-driven Process Chain (EPC) (IDS Scheer 2002; Keller and Teufel 1998),

possibly exploiting the parallelism and choices that are flattened in the paths. Information

concerning things like originators is not considered from the process perspective. Hence,

we start from the logs in Figure 1, which were obtained from Table 1 (we indicate the

maximal traces): ABCD, ACBD, AED (as we will see later, prefixes of these traces are also

considered).

Mining a net from a suitable representation of its behaviour is not a new issue, and

several approaches have been developed to this end (some of them, which can be related to

process mining, will be reviewed briefly in Section 6). What is new here is the perspective

we adopt, and the suitable class of nets we consider, that is, the so-called workflow nets,

which we will also try to characterise through the nets we can mine from suitable logs.
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Fig. 2. The mined net of Figure 1. The transitions ‘AND-split’ and ‘AND-join’ are not found as

they are not registered in the logs

Our starting point has been the weaknesses of the classical mining method (the so-

called α-algorithm, which was developed within the business process community (van der

Aalst et al. 2003; van der Aalst et al. 2004)). To provide cures for these weaknesses, we

considered a region-based approach in Busi and Pinna (2006b). We began by associating a

suitable transition system to the logs. Though some other approaches to workflow mining,

which were based on regions over languages (the ones defined by the logs), have been

proposed since (we will review them briefly in Section 6), we still consider the intermediate

step (the construction of the transition system) quite useful because:

(i) It may help us understand why the desired result is not achieved in some cases (for

example, the case of loops of length one, reviewed in Section 6).

(ii) The construction of the transition system can lead to better results when we have

incomplete or noisy information, as it allows us to sort out problems locally, as

suggested in van der Aalst et al. (2008) from a business process perspective and in

Carmona et al. (2008) from a net perspective.

(iii) It is particularly suited to the incremental mining we will discuss in this paper.

Figure 2 shows the net we will be mining using virtually all the mining methods

(including the α-algorithm) discussed here.

The theory of regions (Ehrenfeucht and Rozenberg 1989; Badouel and Darondeau

1998) establishes a connection between Petri nets and representations of their behaviour,

like transition systems or languages, making the so-called net synthesis possible. The goal

of the theory of regions applied to nets is to find a Petri net that exhibits an isomorphic

behaviour to the one we are considering, possibly pointing out a characterisation of

such behaviour. When it is represented as a transition system, the idea is to find a net

whose marking graph is isomorphic or bisimilar to the given transition system; when it is

represented as a language, the search is for a net exhibiting the same traces.

The intuition behind the mining of a net from a transition system is that states of

a transition system, which should represent the markings of a net, embody enough

information about which places are actually marked at that state. Hence, the property

of a condition holding can be discovered simply by grouping all the states where this

condition holds in a suitable way. Such a set of states is called a region, and it displays

uniform behaviour with respect to the events of a transition system, that is, if an event e

originates from a state that is not in the region and then enters the region, then none of

the states where e can occur belong to that region, but all the states that are a result of
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Fig. 3. Two transition systems corresponding to the net in Figure 2

event e do belong to that region. Furthermore, if an event e originates from a state in a

region and leaves it, then all the states where e can occur belong to that region, but none

of the states that are a result of event e belong to that region. Thus a region represents a

condition that is the result of the events entering the region and that triggers those events

leaving the region. A region can be alternatively defined as a pair of mappings (from the

states and from the events of the transition system into � and �, respectively), the first

representing the number of tokens of the place corresponding to regions assigned to each

reachable marking (the states of the transition system), and the second characterising

the transitions consuming, producing or leaving the tokens intact. This different view of

regions can be lifted easily to words (and hence to the language generated by a Petri net),

as has been done in Darondeau (1998) and Lorenz et al. (2007) among others.

In order to find the proper net, that is, a net whose behaviour is described by the

transition system, the regions of the transition system should fulfill some properties. First,

there should be enough regions to guarantee that two different states of the transition

system can be distinguished by a region (representing a condition holding in one state

but not in the other), and second, if an event does not leave a state, then there is a reason

for this, and this reason can effectively be found by examining the regions. However, as

we will see when discussing the weaknesses of other mining approaches, the inspection

of the reasons hindering the fulfillment of these properties can be helpful in mining the

correct net.

To see how the region-based approach works, consider the transition system on the

left-hand side of Figure 3 and the associated net of Figure 2. States 2 and 4 can be

grouped to form a region, as can 3 and 5, 4 and 5, and 2 and 3. Finally, two other regions

can be obtained by considering states 1 and 6 individually. These regions satisfy the two

properties mentioned earlier, and the net obtained using these regions is the one shown

in Figure 2. If we consider the transition system on the right-hand side of Figure 3, the

separation properties do not hold, for instance states 5 and 7 cannot be separated, but

the net can still be mined correctly.

The notion of region can also be applied to other kinds of transition systems (for

example, Step Transition Systems (Mukund 1992)). Furthermore, it should be observed

that it is always possible to synthesise a net from a transition system using a set of regions.

However, the result is useful only if the synthesis is done using a complete description

of the net, that is, in terms of process mining, a transition system describing all possible

behaviours of a process.
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Process mining is useful for several reasons, and we will now briefly review those we

consider most relevant:

(i) It could be used as a tool for finding out how people and/or procedures really work.

Consider, for example, processes supported by an ERP system like SAP (such as, a

procurement process). In such a system, all the transactions appear in logs, but in

many cases they do not enforce a specific way of working. In such an environment,

process mining could be used to gain an insight into the actual process (van der Aalst

et al. 2004).

(ii) Process mining could be used to check the accuracy of the design by comparing the

actual process with some predefined process. In many situations there is a descriptive

(and sometimes prescriptive) process model specifying (and sometimes prescribing)

how people and organisations are assumed/expected to work. By comparing the

descriptive or prescriptive process model with the discovered model, discrepancies

between the two can be detected and used to improve the process.

(iii) Additional benefits of process mining are that information about the way people

and/or procedures really work and differences between actual processes and pre-

defined processes can be used to trigger Business Process Re-engineering (BPR)

efforts or to configure process-aware information systems (for example, workflow, ERP

and CRM systems).

With all this is in mind, the accuracy of the mining methods and their extendibility are

quite crucial issues, and region-based mining provides these advantages.

In this paper we mine nets out of transition systems obtained by the logs of workflow

nets. This intermediate step (translating the logs into a transition system) could be

avoided, as previously pointed out. However, we believe that more information can be

gained using transition systems. Consider, for instance, logs that are produced by a system

where the same activity is done in two different places. This information cannot be mined

using a language approach, whereas it can be mined if we look for a way that splits

the action into two (equally labelled) transition systems. Furthermore, inspecting the

counterexamples preventing the satisfaction of the separation properties can cast light on

how to solve them, thereby gaining insight into the processes to be discovered.

The paper is organised as follows. In the next Section, we will review the main notions

concerning transition systems and Petri nets. In Section 3, we will clarify what workflow

nets are and what the mining problem is formally. In Section 4, we will illustrate the

region-based approach to mining, which is then fully developed and applied in Section 5

to the case of workflow nets. The approach is compared with other mining methods

(including some based on regions) in Section 6, while in Section 7, an incremental method

for mining workflow nets is proposed. Finally, Section 8 provides conclusions and points

out some possible further developments of the results and ideas presented in this paper.

2. Background

In this section we recall the basic notions that we will use in the paper concerning

transition systems, (safe) Place/Transition Petri nets and languages.
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We use � to denote the set of natural numbers including 0. Given a finite set S , a

multiset over S is a function m : S → �. The set of all multisets over S is denoted by

M(S). The multiplicity of an element s in m is the natural number m(s). We write m ⊆ m′

if m(s) � m′(s) for all s ∈ S . The operator ⊕ denotes multiset union:

(m ⊕ m′)(s) = m(s) + m′(s) for all s ∈ S.

The operator \ denotes multiset difference:

(m \ m′)(s) = max{m(s) − m′(s), 0}.

We say that s ∈ m if m(s) > 0. If X ⊆ S , with an abuse of notation, we use X to denote

the multiset X(s) = 1 if s ∈ X and X(s) = 0 otherwise.

2.1. Transition systems

We assume that a finite set of actions Act is given. A (finite) labelled graph over an

alphabet Act is the triple G = (V ,Act,→) where V is a (finite) set of vertices and

→⊆ V × Act × V is a (finite) set of labelled edges. A rooted labelled graph is a labelled

graph with a distinguished initial state v0.

A path between two vertices v and v′ is a sequence of vertices v0, v1, . . . , vn such that

either v = v0 = v′ = vn or v = v0, v
′ = vn and (vi, ai, vi+1) ∈→ for each i � 0; if the graph

is rooted, we say that a vertex v is reachable if and only if there exists a path from the

initial vertex to v.

Definition 2.1. Let G = (V ,Act,→) and G′ = (V ′,Act, →′) be two graphs. A morphism f

from G to G′ is a mapping f : V → V ′ such that (v, a, v′) ∈→ and

f(v) �= f(v′) ⇒ (f(v), a, f(v′)) ∈→′ .

If the graphs are rooted, then f(v0) = v′
0.

Two graphs are isomorphic if and only if the morphism f is an isomorphism and

(v, a, v′) ∈→⇔ (f(v), a, f(v′)) ∈→′ .

We will consider labelled graphs that satisfy some additional constraints.

Definition 2.2. A transition system is the triple A = (St, E,→), where St is a set of states,

E is a non-empty set of events and →⊆ St × E × St is a transition relation such that:

— ∀(s, e, s′) ∈→, s �= s′

— ∀e ∈ E ∃(s, e, s′) ∈→.

A rooted transition system is a tuple A = (St, E,→, s0), where (St, E,→) is a transition

system and s0 ∈ St is a distinguished initial state. Moreover, each state is reachable from

the initial one, that is, for all s ∈ St there exists a path from s0 to s.

The first condition says that the transition system is self loop free and the second that

each event determines at least a change of state. We will omit the word rooted when it is

clear from the context.

The notion of graph morphisms can be specialised to transition systems as follows.
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Definition 2.3. Let A = (St, E,→, s0) and A′ = (St′, E,→′, s′
0) be two transition systems.

Then f : St → St′ is a G-morphism if and only if it is a pointed graph morphism, that

is, f(s0) = s′
0 and if (s, e, s′) ∈→ and (f(s), e, f(s′)) ∈→′, then (f(s1), e, f(s′

1)) ∈→′ for every

(s1, e, s
′
1) ∈→. If f is a bijection and (s, e, s′) ∈→ ⇔ (f(s), e, f(s′)) ∈→′, then A and A′ are

isomorphic (A ∼= A′).

A G-morphism represents the fact that A′ can partially simulate A, that is, whenever

A can evolve, A′ can also, provided the move is defined (and if it is not, then the two

states become indistinguishable). The third requirement is to ensure that the simulation

is uniform on an event.

We can now state the notion of bisimulation between transition systems.

Definition 2.4. A bisimulation R between two transition systems A = (St, E,→, s0) and

A′ = (St′, E,→′, s′
0) is a relation R ⊆ St × St′ such that:

— (s0, s
′
0) ∈ R;

— if (s, s′) ∈ R and (s, e, s1) ∈→, then (s′, e, s′
1) ∈→′ and (s1, s

′
1) ∈ R;

— if (s, s′) ∈ R and (s′, e, s′
1) ∈→′, then (s, e, s1) ∈→ and (s1, s

′
1) ∈ R.

A bisimulation R is said to be functional if and only if it is a function with respect to the

first argument.

Finally, we can point out a useful property of functional bisimulation.

Proposition 2.1. A functional bisimulation is a G-morphism.

2.2. Petri nets

We now recall some definitions and notation used with Petri nets.

Definition 2.5. A net is a tuple N = (S, T , F), where:

— S and T are the (finite) sets of places and transitions, such that S ∩ T = �; and

— F ⊆ (S × T ) ∪ (T × S) is the flow relation.

A multiset over the set S of places is called a marking. Given a marking m and a place

s, we say that the place s contains m(s) tokens. Let x ∈ S ∪ T . The preset of x is the set
•x = {y | F(y, x)}. The postset of x is the set x• = {y | F(x, y)}. The preset and postset

functions are generalised in the obvious way to a set of elements:

if X ⊆ S ∪ T then •X =
⊕
x∈X

•x and X• =
⊕
x∈X

x•.

A transition t is enabled at marking m if •t ⊆ m. The firing (execution) of a transition t

enabled at m produces the marking m′ = (m \• t) ⊕ t•. This is usually written as m[t〉m′.

Definition 2.6. A net system is a pair (N,m0), where N is a net and m0 is a marking of N,

called the initial marking.

With an abuse of notation, we use (S, T , F, m0) to denote the net system ((S, T , F), m0),

and, furthermore, we will often just refer to it using the underlying net N.
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The set of markings reachable from m, denoted by [m〉, is defined as the least set of

markings such that:

— m ∈ [m〉
— if m′ ∈ [m〉 and there exists a transition t such that m′[t〉m′′, then m′′ ∈ [m〉.
The set of firing sequences is defined inductively as follows:

— m0 is a firing sequence;

— if m0[t1〉m1 . . . [tn〉mn is a firing sequence and mn[tn+1〉mn+1, then

m0[t1〉m1 . . . [tn〉mn[tn+1〉mn+1

is a firing sequence.

Given a firing sequence m0[t1〉m1 . . . [tn〉mn, we say t1 . . . tn is a transition sequence. We use

ε to denote the empty transition sequence.

Definition 2.7. Let (N,m0) be a net system. We use TrSeq(N,m0) to denote the set of

transition sequences of a net system (N,m0).

We will omit the initial marking unless explicitly needed, so, for example, instead of writing

TrSeq(N,m0), we will just write TrSeq(N). We use σ to range over it. Let σ = t1 . . . tn; we

use m0[σ〉mn as an abbreviation for m0[t1〉m1 . . . [tn〉mn.

Definition 2.8. The marking graph of a net system N is

MG(N) = ([m0〉, T , {(m, t, m′) | m ∈ [m0〉 ∧ t ∈ T ∧ m[t〉m′}, m0).

It is obvious that a marking graph is a rooted transition system.

A net is pure if •t∩ t• = � for all transitions t ∈ T . A net is simple if for all x, y ∈ S ∪T ,

we have if •x = •y and x• = y•, then x = y. A net is acyclic if F+, the transitive closure of

the flow relation F , is an ordering relation. A net system is safe if each place contains at

most one token in any marking reachable from the initial marking, that is, m(s) � 1 for

all s ∈ S and for all m ∈ [m0〉. A net system is reduced if each transition can occur at least

once: for all t ∈ T there exists m ∈ [m0〉 such that m[t〉. Given a net N = (S, T , F), a place

s ∈ S is implicit if and only if the net N ′ = (S \ {s}, T , F ∩ ((S \ {s} × T ) ∪ (T × S \ {s})))
and N have isomorphic marking graphs. This means that any implicit place can be safely

omitted.

In this paper we will only consider safe net systems that are pure, simple, reduced and

without implicit places, unless we explicitly state otherwise.

A net N = (S, T , F, m0) is a state-machine if and only if ∀t ∈, |•t| = 1 = |t•|. Let N =

(S, T , F, m0) be net. N is decomposable if and only if there exist nets Ni = (Si, Ti, Fi, m0i),

i ∈ {1, . . . , m}, such that ∀i Ni is a state-machine net, S =
⋃
Si, T =

⋃
Ti, Fi is the

restriction of F to (Si × Ti) ∪ (Ti × Si) and m0i is the restriction of m to Si.

Finally, we introduce the notion of free-choice nets and illustrate some of their

properties. A net (S, T , F) is free choice if and only if ∀t, t′ ∈ T , either •t ∩ •t′ = �
or •t = •t′. This static requirement enforces the requirement that if two transitions t, t′ are

enabled at a marking m, then for all the markings m of the net, we have m[t〉 ⇔ m[t′〉.
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A well-known result states that a free-choice net can be decomposed into suitable state-

machines, called S-components. An S-component of a free-choice net (S, T , F) is a

state-machine net (S ′, T ′, F ′) such that

— S ′ ⊆ S , T ′ ⊆ T and F ′ = F ∩ ((S ′ × T ′) ∪ (T ′ × S ′)), and

— •s ∪ s• ⊆ T ′,

where •s and s• are defined with respect to F and not to F ′ (the restriction of F to S ′ and

T ′). Each S-component can be constructed as follows: start from a place s and add all

the transitions in •s ∪ s•, then, for each added transition t, add a place in t• guaranteeing

that the net remains a state-machine one. This procedure converges and generates all

the S-components. If the free-choice net has no implicit places, the decomposition into

S-components is unique. The interested reader may consult Desel and Esparza (1995) for

further details.

2.3. Languages

Let T be a finite alphabet. Then T ∗ is the set of all the words over T . We use ε to denote

the empty word, and, given a word σ, a prefix of σ is the word u ∈ T ∗ such that there

exists a v ∈ T ∗ and σ = u·v. Given L ⊆ T ∗, we say that L is prefix-closed if, given σ ∈ L,

all prefixes u of σ belong to L.

The following obvious proposition relates net systems and languages.

Proposition 2.2. Let N = ((S, T , F), m0) be a safe net system. Then TrSeq(N) is a prefix

closed language.

3. Workflow nets

In this paper we consider a class of Petri nets, the so-called workflow nets. The key concept

of workflow management is that of a task. As stated in van der Aalst (2004), ‘A task is a

piece of work to be done by one or more resources in a pre-determined time interval’. As

we have already said, the control flow of tasks is the dimension we are most interested

in, because the core of any workflow system is formed by the processes it supports.

Clearly, a Petri net can be used to specify the routing of cases. Tasks are modelled by

transitions and causal dependencies are modelled by places and arcs. In fact, a place

corresponds to a condition that can be used as a pre- and/or post-condition for tasks. A

Petri net that models the control-flow dimension of a workflow is called a workflow net

(WF-net).

The following definition captures the structural constraints that a workflow net has to

fulfill.

Definition 3.1. A Petri net N = (S, T , F) is a workflow net (WF-net) if and only if:

— there is one source place i ∈ S such that •i = �;

— there is one sink place o ∈ S such that o• = �;

— every node x ∈ S ∪ T is on a path from i to o;
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— it has no implicit places; and

— (N, {i}) is a safe net system.

A WF-net has one input place i and one output place o because any case handled by the

procedure represented by the WF-net is created when it enters the workflow management

system and it is deleted after its completion. The third requirement is added to ensure

that there are no dangling conditions or tasks. It is easy to verify these requirements

statically.

We do not need to explicitly specify the initial state of a workflow net, that is, its initial

marking, as only the place i is assumed to be marked. We will often indicate the initial

marking using the name of the source place i and the final marking using the name of

the sink place o. Markings will also be called states.

The dynamic of a WF-net N should obey the following constraints:

— for every marking m reachable from the initial marking i there is a firing sequence

starting at m and ending with o;

— there is at most one reachable marking with the place o marked; and

— the net system (N, i) is reduced.

If this is the case, we say that the WF-net N is sound, and here we will only consider

sound workflow nets (SWF).

From a firing sequence of such net, if we look at the transition sequence only, we get

an event trace. Let {w ∈ T ∗} be a finite set of words over an alphabet T – we call it a

workflow log (intuitively a workflow (event) log represents a set of possible observation of

the workflow management systems). We will assume that the workflow (event) log contains

enough information to understand the relations among the tasks. We will also assume

that we have a mining algorithm, that is, an algorithm that, starting from workflow logs

(or a suitable representation of them) is able to find the net that originated the log. We

can state the problem addressed by process mining as follows.

Definition 3.2. Let N = (S, T , F) be a sound WF-net and β be a mining algorithm that

maps workflow logs of N onto sound WF-nets. If for any complete workflow log W of

N the mining algorithm returns a net N ′ such that TrSeq(N ′) = TrSeq(N), then the β

algorithm is able to rediscover N.

The following more restrictive definition of process mining is given in van der Aalst

et al. (2003; 2004).

Definition 3.3. Let N = (S, T , F) be a sound WF-net and β be a mining algorithm that

maps workflow logs of N onto sound WF-nets. If for any complete workflow log W of

N the mining algorithm returns N (modulo renaming of places), then the β algorithm is

able to rediscover N.

When developing our approach, we will briefly discuss the conditions under which this

more restricted mining view may be obtained.
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4. Region-based synthesis of safe net systems

In this section we briefly recall the basic notions related to the theory of regions and the

synthesis of (safe) net systems†. We will adapt the separation properties to the specific

case of a safe net.

Given the marking graph G of a safe net system N, a region of G is basically a set

of markings corresponding to the states where a real or potential place of N is marked.

In other words, a region r groups together all the states of the graph in which a place r

contains a token. Let r be a region of MG(N). Consider a place s and a transition t such

that s ∈ •t. Let m ∈ r and assume that m[t〉: so s is marked in m, and after the firing of

t, as we consider pure nets, s is no longer marked. Thus, we have m
t→ m′ in the marking

graph, and m′(s) = 0, so m′ �∈ r. Moreover, if a state m is outside r, then t cannot happen

in m, and the place s in •t is empty, so we do not have t-labelled transitions exiting from

s. To summarise, if s ∈ •t, then each t-labelled transition of the graph starts inside r and

ends outside r. Analogously, if a transition t produces a token in s, that is, s ∈ t•, then

each t-labelled transition in the graph has source outside r and target inside r. Suppose

now that place s is unrelated to transition t, that is, s �∈ •t ∪ t•. If t fires in a state where s

is marked, then place s is also marked after the firing of t, that is, if a t-labelled transition

starts inside r, then it also ends inside r. Analogously, if t happens in a state where s is

empty, then s still remains empty after the firing of t, that is, t-labelled transitions that

start outside r also end outside r.

We can illustrate this notion with a small example. Consider the following transition

system:

The set of states {1, 2, 4} is such that each B-labelled transition exits it, whereas the set

of states {4, 5} is such that each A-labelled transition enters it, and, furthermore, each

B-labelled transition is either inside the set or outside it. Thus t-labelled transitions have

a uniform behaviour with respect to all the states in r: either all of them cross r exiting, or

all of them cross r entering, or none of them cross r. This is the content of the following

definition.

Definition 4.1. Let TS = (St, E,→) be a transition system. A set r ⊆ St is said to be a

region if and only if ∀s1
e→ s′

1, s2
e→ s′

2 the following conditions hold:

— If s1 ∈ r and s′
1 �∈ r, then s2 ∈ r and s′

2 �∈ r.

— If s1 �∈ r and s′
1 ∈ r, then s2 �∈ r and s′

2 ∈ r.

† For a more detailed account, see Badouel and Darondeau (1998), Desel and Reisig (1996) and Ehrenfeucht

and Rozenberg (1989).
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It is easy to see that both St and � are regions – they are called the trivial regions. We

will use Reg(TS) to denote the set of non-trivial regions of a transition system TS . The

complementary set of a region is itself a region.

We now define the analogues of presets and postsets for events and regions.

Definition 4.2. Let TS = (St, E,→) be a transition system and e ∈ E. The preregionset

and the postregionset of e are the sets of regions defined as follows:

◦e = {r ∈ Reg(TS) | ∀(s, e, s′) ∈→: s ∈ r ∧ s′ �∈ r}
e◦ = {r ∈ Reg(TS) | ∀(s, e, s′) ∈→: s �∈ r ∧ s′ ∈ r}.

Given a region r of TS , ◦r = {e ∈ E | r ∈ e◦} and r◦ = {e ∈ E | r ∈ ◦e}.

Definition 4.3. Let N = (S, T , F, m0) be a net system and let s ∈ S . We use rs to denote

the set of states of MG(N) where s is marked:

rs = {m ∈ [m0〉 | m(s) = 1}.

The following proposition explains the relation between the places of a net system and

the regions of its marking graph.

Proposition 4.1. Let N = (S, T , F, m0) be a net system and let s ∈ S . The set rs is a region

of MG(N). Furthermore, we have that •s = ◦rs and s• = rs◦.

A region does not always correspond to a place of the net, but may represent a potential

place. The addition of such a potential place to the net system has no influence on its

behaviour. In fact, consider a net system N = (S, T , F, m0), and let r be a region of MG(N)

such that

∀s ∈ S : ◦r �= •s or r◦ �= s•.

Let sr be a place such that sr �∈ S . The net system N+r = (S ′, T , F ′, m′
0) defined by

S ′ = S ∪ {sr}
F ′ = F ∪ {(sr, t) | r ∈ ◦ t} ∪ {(t, sr) | r ∈ t◦}

m′
0 =

{
m0 ⊕ {sr} if m0 ∈ r

m0 otherwise

is such that MG(N) is isomorphic to MG(N+r).

Thus, given a net sytem N, we can construct the saturated version of (the marking

graph of) N, which is obtained by using all the non-trivial regions of MG(N) as places.

Note that the set Reg(MG(N)) is finite, as the set of non-trivial regions of a transition

system is a subset of the powerset of the set of states of the transition system, and the set

of states of the marking graph of a safe Petri net is finite.

Definition 4.4. Let TS = (St, E,→, s0) be the marking graph of a net system. The net

system Sat(TS) = (S, T , F, m0) is defined as follows:

— S = Reg(TS), T = E and F = {(r, e) | r ∈ ◦e} ∪ {(e, r) | r ∈ e◦}
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— m0(r) =

{
1 if s0 ∈ r

0 otherwise.

The following proposition holds (Desel and Reisig 1996).

Proposition 4.2. Let N be a net system. The marking graph MG(N) is isomorphic to

MG(Sat(MG(N))).

Definition 4.4 produces the ‘largest’ net system whose marking graph is isomorphic to

a given transition system TS .

We now provide two conditions ensuring that the net system N constructed by taking

the subset R ⊂ Reg(TS) as set of places has a marking graph isomorphic to TS . The two

conditions also allow us to characterise the set of transition systems that are isomorphic

to the marking graph of a net system. The first condition ensures that two distinct states

of TS will not be identified in the marking graph of the net system.

Definition 4.5. Let TS = (St, E,→, s0) be a transition system and R ⊆ Reg(TS). We say

that R satisfies the state separation property (SSP) in TS if and only if

∀s, s′ ∈ St : s �= s′ ⇒ ∃r ∈ R : s ∈ r ⇔ s′ �∈ r.

We say that TS satisfies the state separation property if Reg(TS) satisfies the state

separation property in TS .

This property captures the intuition that for two markings to be different in a safe net,

there must exist a place that is marked with a token in one of the two markings and

empty in the other. Regions become the places of the synthesised nets, and if a state s

belongs to a region, then the place corresponding to such a region is marked in s. Hence,

if two states cannot be separated by any region, then they will be identified in the marking

graph of the synthesised net; in other words, the net cannot generate all the states of the

transition system.

The second condition ensures that if an event e cannot occur in a state s of TS , then

e also cannot occur in the corresponding state in the marking graph of the net system.

Suppose that the marking graph does not contain an e-labelled arc exiting from s. We

use Rs to denote the marking such that Rs(r) = 1 whenever s ∈ r. Then we need that e

is not enabled in the marking corresponding to s, Rs . For e not to be enabled at Rs, the

following must hold:

— •e �⊆ Rs,

which means that there exists a region r such that r ∈ •e and r �∈ Rs, or, equivalently,

r ∈ •e and s �∈ r.

Definition 4.6. Let TS = (St, E,→, s0) be a transition system and R ⊆ Reg(TS). We say

that R satisfies the safe event state separation property (S-ESSP) in TS if and only if

∀s ∈ St ∀e ∈ E : if s � e→ then ∃r ∈ R : r ∈ •e ∧ s �∈ r

We say that TS satisfies the safe event state separation property if Reg(TS) satisfies the

safe event state separation property in TS .
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As the places of the constructed net correspond to the regions in R, and s ∈ r means

that place r is marked in state s, the isomorphism from TS to MG(N) maps a state s

on the set Rs of regions containing s. Note that the S-ESSP is a slight adaptation of the

standard event state separation property for elementary net systems (see, for example,

Desel and Reisig (1996)) to the context of safe net systems: the other condition in the

original definition is related to the firing rule of elementary net systems, and is omitted

here.

If a transition system TS satisfies SSP and S-ESSP, then it is isomorphic to the marking

graph of the saturated net generated from TS (Badouel and Darondeau 1998).

Theorem 4.1. Let TS = (St, E,→, s0) be a transition system. If TS satisfies SSP and

S-ESSP, then TS is isomorphic to MG(Sat(TS)).

Regions are candidates for representing the places of the net we are synthesising.

However, it can happen that not all the regions are necessary for the construction of a

net with a given behaviour. For example, the trivial regions are useless. Now we show

how to construct a net from an arbitrary set of regions.

Definition 4.7. Let TS = (St, E,→, s0) be the marking graph of a net system and R ⊆
Reg(TS). The net system Gen(TS, R) = (S, T , F, m0) is defined as follows:

— S = R, T = E and F = {(r, e) | r ∈ ◦e} ∪ {(e, r) | r ∈ e◦}

— m0(r) =

{
1 if s0 ∈ r

0 otherwise.

As for the saturated version, we have the following result (see Badouel and Daron-

deau (1998), Bernardinello (1993) and Busi and Pinna (1997), among many others):

Theorem 4.2. Let TS be a transition system and R ⊆ Reg(TS). If R satisfies SSP and

S-ESSP in TS , then TS is isomorphic to MG(Gen(TS, R)).

The above definition allows us to construct all the safe and simple net systems whose

marking graph is isomorphic to a given transition system, by taking all the subsets of

regions that satisfy SSP and S-ESSP.

We now state a proposition connecting regions of transition systems that are related by

a morphism (see Bernardinello (1993) for a proof).

Proposition 4.3. Let TS = (St, E,→, s0) and TS ′ = (St′, E,→′, s′
0) be two transition

systems and f be a G-morphism between them. If r is a region of TS ′, then f−1(r) is a

region of TS .

4.1. Minimal regions

The choice of which set of regions of a given transition systems should be used is rather

crucial. We use Min(Reg(TS)) to denote the set of minimal regions with respect to set

inclusion, that is, the set {r | r ∈ Reg(TS) and ∀r′ ∈ Reg(TS), r �= r′ ⇒ r′ �⊆ r}. As

any other region can be obtained using these regions (Bernardinello 1993; Busi and
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Pinna 1997), we have that Min(Reg(TS)) satisfies SSP and S-ESSP in TS and it can be

used to synthesise a net.

4.2. Transition systems bisimilar to marking graphs

As we will see in the following, the transition system we will construct from logs is not a

marking graph. Hence, we need to find out when the separation conditions we have seen

so far are enough to guarantee the result.

Given a transition system A = (St, E,→, s0) and two states x and y, the two states are

bisimilar if and only if the subgraphs of A formed by the states that are reachable from

x and y, respectively (and rooted in x and y), are bisimilar. We use x ∼ y to denote this

fact.

Proposition 4.4. Given a transition system A = (St, E,→, s0), if x �∼ y and x, y are not

separated, then S-ESSP does not hold.

Proof. Assume x �∼ y, then there exist e1, . . . , en, en+1 such that

(a) x
e1→ x1 . . . xn−1

en→ xn
en+1→ xn+1; and

(b) y
e1→ y1 . . . yn−1

en→ yn �
en+1→ .

We show that S-ESSP does not hold. Suppose the S-ESSP property holds. Then, as yn �
en+1→ ,

there must be a region r such that r ∈ •en+1 and yn �∈ r. As xn
en+1→ xn+1, we have xn ∈ r.

We now show that xn−1 ∈ r also. Suppose xn−1 �∈ r. As xn−1
en→ xn, we have r ∈ en

•. As

yn−1
en→ yn, by the definition of a region, we have yn ∈ r. But as we are assuming that

yn �∈ r, it follows that xn−1 ∈ r. Since

(a) xn, xn−1 ∈ r,

(b) the arrow en does not cross r, and

(c) yn �∈ r,

we also have that yn−1 �∈ r. Proceeding in the same way for en−1, . . . , e1, we get that x ∈ r

and y �∈ r. Recalling that two states are separated if and only if there exists a region r̂

separating them, we have that this is in contradiction with the assumption that x and y

are not separated, so S-ESSP does not hold.

From this proposition it follows that if S-ESSP holds, each pair of non-separated states

are bisimilar.

Proposition 4.5. Let TS = (St, E,→, s0) be a rooted transition system. If S-ESSP holds,

the relation R = {(s, Rs) | s ∈ St} is a bisimulation from TS to MG(Sat(TS)).

Proof. Consider Sat(TS) = (Reg(TS), E, F, m0) where

F = {(r, e) | r ∈ ◦e} ∪ {(e, r) | r ∈ e◦}

m0(r) =

{
1 if s0 ∈ r

0 otherwise.

Let us check that R is a bisimulation. Clearly, (s0, Rs0 ) ∈ R. Now we consider s
e→ s′

and assume that (s, Rs) ∈ R. Rs is a marking and •e ⊆ Rs. So we have Rs[e〉m′ and
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Fig. 4. A transition system TS , the marking graph of Sat(TS ) and the net N = Sat(TS )

m′ = (Rs \• e) ⊕ e•, which is Rs′ and (s′, Rs′ ) ∈ R. The converse also holds, so R is a

bisimulation

Thus it is enough to verify the S-ESSP property on transition systems to guarantee that

the synthesised net has a marking graph bisimilar to the original one. We can illustrate

this result with a simple example. Consider the two transition systems in Figure 4. The

bisimulation is as follows: {(1′, 1), (2′, 2), (3′, 3), (4′, 4), (5′, 4)}, which is easy to see with

Sat(TS) being the net N in the figure.

5. Region-based workflow mining

We begin this section by presenting a possible construction that produces a safe net system

from a workflow log, and then show that such a technique works correctly on SWF nets.

The motivation, as we have already said, is twofold: on the one hand, we want to apply

the classical region-based approach to synthesise a net, adapting the technique to the case

of workflow net, and, on the other hand, we want to achieve a characterisation of the

nets that can be mined correctly.

5.1. Synthesising a net system from a workflow log

The first problem one has to face up to is related to the fact that the starting point for

net synthesis (namely a transition system) is different from the starting point for process

mining, which extracts a net system from a set of traces. As a first step, given a workflow

log, we construct a corresponding transition system by gluing the common prefixes of the

traces.

Given a workflow log W ⊆ T ∗, we use prefix(W ) to denote the set of prefixes of the

traces in W , that is, prefix(W ) = {σ | ∃τ : στ ∈ W }. The log graph of a workflow log W ,

denoted LG(W ), is obtained by gluing together the greatest common prefixes of the set

of traces in W .

Definition 5.1. Let W ⊆ T ∗ be a workflow log. The log graph of W is defined as follows:

LG(W ) = {prefix(W ), T ′, {(σ, σt) | σt ∈ prefix(W )}, ε}
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with

T ′ = {t ∈ T | ∃σ, τ : σtτ ∈ W }.

Clearly, in most cases the transition system LG(W ) will not be isomorphic to the marking

graph of the net exhibiting the set of logs W , as the transition systems generated by

Definition 5.1 are basically rooted trees. However, it is an unfolding of this marking graph,

where the paths are taken into account, and it is bisimilar to the marking graph.

Proposition 5.1. Let N = ((S, T , F), m0) be a safe net system and TrSeq(N) be the

associated log. Assume that each transition t ∈ T appears at least in a sequence σ ∈
LG(TrSeq(N)). Then LG(TrSeq(N)) and MG(N) are bisimilar.

Proof. Take any log σ ∈ LG(TrSeq(N)). Then m0[σ > m for some marking m ∈ [m0 >.

The relation {(ε, m0)} ∪ {(σ, m) | σ ∈ LG(TrSeq(N)) and m0[σ > m} is a bisimulation.

Furthermore, it is a functional bisimulation.

In any case, we are interested in constructing a net system whose transition sequences

‘correspond’ to the workflow log.

Definition 5.2. Let W ⊆ T ∗ be a workflow log and R ⊆ Reg(LG(W )). The net system

LN(W,R) = (S, T ′, F, m0) is defined as Gen(LG(W ), R).

As we are dealing with the unfolding of the marking graph of a net, we have to ignore

the SSP as, when we consider traces, two states (that is, trace) might be indistinguishable

with respect to regions. We first show that ignoring the SSP is not a limitation.

Proposition 5.2. Let N be a workflow net and TrSeq(N) be the associated set of logs.

Then the set of regions Reg(LG(TrSeq(N))) satisfies the S-ESSP in LG(TrSeq(N)).

Proof. By Proposition 5.1, we know that there is a G-morphism from LG(TrSeq(N)) to

MG(N). Let us call it f : LG(TrSeq(N)) → MG(N). We know that Reg(MG(N)) satisfies

the S-ESSP property. We prove now that f−1(Reg(MG(N))) satisfies the S-ESSP property

in LG(TrSeq(N)), which means we will be done since

f−1(Reg(MG(N))) ⊆ Reg(LG(TrSeq(N))).

Suppose there exists a state σ in LG(TrSeq(N)) and a transition t such that σt �∈
TrSeq(N). Hence σ � t→ , but there is no region r ∈ f−1(Reg(MG(N))) such that r ∈ •t and

σ ∈ r. Now consider the marking m in MG(N) that is reached firing σ. Clearly, m � t→ , and,

as Reg(MG(N)) satisfies the S-ESSP property, there exists a region r′ such that r′ ∈ •t and

m �∈ r′. But then we also have that f−1(r′), which is a region of LG(TrSeq(N)), is such

that f−1(r′) ∈ •t and σ ∈ f−1(r′), which contradicts the assumption.

Proposition 5.3. Let N be a workflow net and R ⊆ Reg(LG(TrSeq(N))) be a set of regions.

If R satisfies S-ESSP in LG(TrSeq(N)), then TrSeq(LN(TrSeq(N), R)) = TrSeq(N).

Proof. The proof is quite simple, since it is enough to observe that LG(TrSeq(N)) is

bisimilar to MG(N), hence also to MG(LN(TrSeq(N), R))). The consequence of this is

that the languages are the same.
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The fact that the mining based on minimal regions gives the proper result is stated in

the following theorem, which is easy to prove using the propositions above. Before stating

the first result of the paper, whose proof is an easy consequence of Proposition 5.3, we

formalise the notion of completeness for the logs of a net.

Definition 5.3. Let N = ((S, T , F), m0) be a safe net and W ⊆ TrSeq(N) be a set of logs.

We say that W is complete if and only if LG(W ) and MG(N) are bisimilar.

We are now ready to state the first result, which simply says that the region-based

construction works well in the process mining setting by just looking at the safe event

state separation property.

Theorem 5.1. Let N be a WF-net and W be a complete workflow log of N. Let R ⊆
Min(Reg(LG(W ))) be a set of minimal regions of LG(W ) satisfying the S-ESSP. Then

LN(W,R) is a net such that TrSeq(N) = TrSeq(LN(W,R)).

To see how our approach works, we will look again at the example in the introduction.

Consider the WF-net in Figure 1, which is a sound WF-net, and let W = {ABCD, ACBD,

AED} be a complete log. The log graph of W is

LG(W ) = {{ε, A, AB, AC, AE, ABC, ACB, AED, ABCD, ACBD},
{A, B, C, AE, D, E},
{(ε, A), (A, AB), (A, AC), (A, AE), (AB, ABC), (AC, ACB), (AE, AED), (ABC, ABCD),

(ACB, ACBD)},
ε}.

A set of minimal regions for this graph is

r•A = {ε}
r(A•,•B,•E) = {A, AC}
r(A•,•C,•E) = {A, AB}
r(B•,E•,•D) = {AE, AB, ACB, ABC}
r(C•,E•,•D) = {AE, AC, ABC, ACB}

rD• = {ABCD, ACBD, AED}

(the region indexes show which activity they are related to and how).

It is easy to check that the regions

{r•A, r(A•,•B,•E), r(A•,•C,•E), r(B•,E•,•D), r(B•,E•,•D), rD•}

satisfy the S-ESSP property. Take, for instance, the state AB. There is no arc labelled E

exiting it, but AB �∈ r(A•,•B,•E) and E ∈• r(A•,•B,•E). The net constructed according to Definition 4.7

is the one shown in Figure 2.

Let us now consider the more restrictive case of mining given by Definition 3.3. The

following proposition relates the regions of LG(TrSeq(N)) to those of the marking graph,

and hence to the places of the net.
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Proposition 5.4. Let N = (S, T , F, m0) be a WF-net, MG(N) be its marking graph and W

be a complete workflow log of N. Let LG(W ) be the transition system obtained by W ,

and h = {(ε, m0)} ∪ {(σ, m)| m0[σ > m} be a relation on LG(W ) and MG(N). Then h is a

bisimulation and it is a functional bisimulation. Furthermore, if r is a region of LG(W ),

then h(r) is a region of MG(N).

Proof. h is clearly a bisimulation, and, moreover, it is a functional bisimulation. Let

r be a region of LG(W ). We show that h(r) is a region of MG(N). Consider e ∈• r.

Then ∀s e→ s′ we have that s �∈ r and s′ ∈ r. Now consider h(r). Clearly, h(s) �∈ h(r) and

h(s′) ∈ h(r) otherwise h would not be a bisimulation. We can apply similar resoning for

e ∈ r• to complete the proof.

We can now state the following theorem, which establishes the adequateness of the

region-based mining approach according to the more restrictive Definition 3.3 for a

suitable class of WF-net.

Theorem 5.2. Let N be a sound and free-choice WF-net and W be a complete workflow

log of N. Let Min(Reg(LG(W ))) be the set of minimal regions of LG(W ). Then

Gen(LG(TrSeq(N)),Min(LG(TrSeq(N)))) = N modulo renaming of places.

Proof. First we note that soundness guarantees that the set of transitions of N and of

the synthesised net Gen(LG(TrSeq(N)),Min(LG(TrSeq(N)))) are the same.

Second, it is clear that to each place of the net N there corresponds a region

in MG(N), which is minimal (as the net N has no superfluous places). Due to the

functional bisimilarity of LG(TrSeq(N)) and MG(N), we have that each minimal region

of LG(TrSeq(N)) is also a minimal region of MG(N) and hence is a place of N. We now

assume that there is a set of regions smaller than the set of minimal regions. Clearly, there

must be a region, corresponding to a place, that is obtained by combining some minimal

regions. But as the net is safe and free choice, this would mean that the net has several

decompositions, which is not the case for free-choice nets.

Consider again the net in Figure 1, which is a free-choice net. Its minimal regions are

exactly those we are looking for to mine exactly the same net.

The main problem with this approach is knowing how to calculate regions, and, in

particular, minimal regions. However, if we can calculate all the minimal regions of a

transition system obtained as in Definition 5.1, we do not have to worry about the S-

ESSP property, as it holds, provided the logs are complete. It is easy to adapt symbolic

algorithms, like those presented in Cortadella et al. (1998) and Gorgônio et al. (2007), to

this setting.

We conclude this section by observing that it is always possible to mine the net according

to Definition 3.3.

Theorem 5.3. Let N = (S, T , F) be any sound WF-net and W be a complete workflow

log of N. Then it is possible to mine the net according to Definition 3.3, that is, there

exists R ⊆ Reg(LG(W )), a set of regions of LG(W ), that satisfy the S-ESSP property and

such that Gen(LG(W ), R) = N modulo renaming of places.

https://doi.org/10.1017/S0960129509990132 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990132


N. Busi and G. M. Pinna 1110

Proof. Soundness guarantees that each transition in N appears in W . It is then enough

to observe that there is the set of regions R corresponding to the places of N (by

Proposition 4.1, we know that to each place s ∈ S there is a corresponding region rs in the

marking graph, and that h : LG(W ) → MG(N) is a morphism. Hence h−1(rs) is a region

in LG(W )), which obviously satisfies the S-ESSP in LG(W ).

6. Comparison with other approaches

In this section we compare our approach with other approaches to process mining, and

briefly discuss the relative advantages.

We first review the classical mining method, the so-called α-algorithm.

6.1. α-algorithm

The α-algorithm is based on four relations that can be derived from the log. These are

>w , →W , #W and ‖W . Let W be a workflow log over T , that is, W ⊆ T ∗. Let a, b ∈ T .

We define the four relations as follows:

— a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n − 2} such that

σ ∈ W and ti = a and ti+1 = b.

— a →W b if and only if a >W b and b �>W a.

— a#Wb if and only if a �>W b and b �>W a.

— a‖Wb if and only if a >W b and b >W a.

As pointed out in van der Aalst et al. (2004), the relation →W suggests causality, and the

relations ‖W and #W are used to differentiate between parallelism and choice. Since all

relations can be derived from >W , it is assumed that the logs are complete with respect

to this relation (that is, if one task can follow another task directly, the log should have

registered this potential behaviour).

In order to define the α-algorithm, we need some more terminology. Let T be a set of

tasks. Let σ = a1a2 . . . an ∈ T ∗ be a sequence over T of length n. We define ∈, first and

last as follows: a ∈ σ if and only if a ∈ {a1, a2, . . . an}, if n � 1, then first(σ) = a1 and

last(σ) = an.

The α algorithm associates a WF-net to a workflow log through the following definition.

Definition 6.1. Let W be a workflow log over T . Then α(W ) = (SW , TW , FW ) is a WF-net

defined as follows:

— TW = {t ∈ T | ∃σ ∈ W. t ∈ σ}.
— S = SW ∪ {i, o} where SW is obtained as follows:

XW = {(A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a ∈ A ∀b ∈ B. a →W b ∧
∀a1, a2 ∈ A. a1#Wa2 ∧ ∀b1, b2 ∈ B. b1#Wb2}

SW = {(A,B) ∈ XW | ∀(A′, B′) ∈ XW . A ⊆ A′ ∧ B ⊆ B′ ⇒ (A,B) = (A′, B′)},

and i and o are the source and the sink place, respectively.
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— FW = {(a, (A,B)) | (A,B) ∈ SW ∧ a ∈ A} ∪ {((A,B), b) | (A,B) ∈ SW ∧b ∈ B}
∪{(i, t)|t ∈ TI} ∪ {(t, o)|t ∈ TO}, where TI and TO are the following subsets of TW :

TI = {t ∈ T | ∃σ ∈ W. t = first(σ)}
TO = {t ∈ T | ∃σ ∈ W. t = last(σ)}.

The α-algorithm will give a net where the transitions are the subset of T consisting of

names appearing in at least one workflow log, and the places are pairs of maximal subsets

of conflicting transitions such that all the transitions in the first component of the pair

causally precede all the conflicting transitions in the second components. The definition of

the flow relation is fairly obvious. Finally, initial and final transitions are identified using

the first and last functions, and these are connected to the source and the sink places,

respectively.

The main result proved in van der Aalst et al. (2004) shows that if a suitable class of

workflow nets is considered, namely the class of structured WF-net, the α-algorithm is

able to rediscover the net starting from a complete workflow log. A WF-net N = (S, T , F)

is called a structured workflow net (SWF-net) if and only if:

— for all s ∈ S and t ∈ T with (s, t) ∈ F , we have |s•| > 1 implies |•t| = 1;

— for all s ∈ S and t ∈ T with (s, t) ∈ F , we have |•t| > 1 implies |•s| = 1; and

— there are no implicit places, that is, places that can be deleted without changing the

firing sequences of the net.

Theorem 6.1. Let N = (S, T , F) be an SWF-net and W be a complete workflow log of N.

If for all a, b ∈ T , we have a• ∩•b = � or b• ∩•a = �, then α(W ) = N modulo renaming

of places.

The class of nets that can be discovered using the region-based mining approach does

not suffer the limitation imposed on mining by the above theorem. Furthermore, it can

mine nets that are not discovered by the α-algorithm.

In many cases the result of the region-based approach is the same as for the α-algorithm.

However, the region-based approach mines the dependencies among workflow activities in

a more precise way, so that with our approach we can mine nets that are not discovered

by the α-algorithm. Consider the log {IABCO, ICABO}. A simple inspection shows that

task A always precedes task B, but the α-algorithm simply fails to synthesise a WF-net,

whereas using the region-based approach we can obtain the net in Figure 5 (which also

has the trace IACBO).

In fact, the α-algorithm cannot capture dependencies that are immediately evident with

the region-based approach, since it just records dependencies that arise from the fact that

the two tasks follow each other. Furthermore, if we use the fully fledged theory of regions

with inhibiting arcs, we can mine the net in Figure 5 from the log graph of {IABCO,
ICABO}, with an inhibiting arc connecting the transition C and the place between A and

B, which means that the behaviour IACBO would no longer be available. This can be

achieved easily by inspecting the transition system obtained by the logs where bisimilar

states are glued.
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Fig. 5. A net synthesised with the regions but not with the α-algorithm

Fig. 6. A net generating the workflow log {A1BC1, A2BC2}

Though the region-based approach is more general, in some cases, the α-algorithm

is able to rediscover a net starting from a workflow log that is smaller than the log

required by the region-based approach. For example, consider the case of a sequential

process a1, . . . , an, where there exist two tasks, say ai and aj with i + 1 < j, composed of

k alternatives (that is, ai,1, . . . , ai,k and aj,1, . . . , aj,k). The α-algorithm only needs k traces

(for example, the log {a1 . . . ai,1 . . . aj,1 . . . an, a1 . . . ai,2 . . . aj,2 . . . an, a1 . . . ai,k . . . aj,k . . . an}) to

reconstruct the process. To reconstruct the same process using regions, we need all the

possible traces (which is the usual requirement for completeness). As an instance of the

example discussed above, consider the net N1 in Figure 6; the log {A1BC1, A2BC2} is

complete and hence sufficient to rediscover the net, which is not a WF-net as it is not

simple. On the other hand, if we apply the region-based construction to the above log,

we obtain the net N2 in Figure 7 (more precisely, this is a net obtained from a set of

regions that satisfies S-ESSP). The two additional places s1 and s2 in system N2 highlight

two causal dependencies: one between actions A1 and C1 and another between actions A2

and C2. This difference is due to the fact that regions also capture causal dependencies

between events that cannot appear immediately after each other in an event log (because

Fig. 7. A net synthesised with the regions from the workflow log {A1BC1, A2BC2}
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Fig. 8. A net with a one-self loop (N) and the net mined by the α-algorithm (N′)

of the existence of other causal dependencies), whereas the α-algorithm does not capture

dependencies like these. In fact, if we look at the workflow log {A1BC1, A2BC2}, we could

deduce that action C1 (respectively, C2) occurs only if action A1 (respectively, A2) has

already occurred.

De Medeiros et al. (2003) presented a set of limitations of the α-algorithm, along with a

sketch of some approaches to overcome the problems. The following subsections analyse

problematic cases for the α-algorithm like these that could benefit from the adoption of

a region-based technique.

6.1.1. Length-one loops. A length-one loop allows the repeated execution of a task for

an unbounded number of times. This is not a simple net, so the region-based approach

also fails.

The α-algorithm cannot reconstruct length-one loops, as shown by the example in

Figure 8 (Net N5 of Figure 7 in de Medeiros et al. (2003)). Similarly, the classical region-

based synthesis cannot deal with length-one loops either – even if the exact transition

system is provided. The problem is that if we consider the marking graph of, for example,

the net N in Figure 8, there exists no region such that event A enters such a region. Hence,

in the synthesised net system, there exists no place in the preset of A, so A is enabled in

any reachable marking.

A solution to this problem can be obtained by adopting the technique used in Badouel

and Darondeau (1995) for the synthesis of nets with read arcs, that is, arcs permitting

a test to check that a place is marked in order for a transition to fire, but leaving the

contents of the place unchanged after firing the transition. A place of the synthesised

net, corresponding to a region r, is connected with a read arc to an event e if, for all

s, s′ such that s
e→ s′, both s and s′ belong to r. As read arcs and length-one loops are

indistinguishable in an interleaving semantics, we can simply replace each read arc (r, e)

by the pair of flow arcs (r, e), (e, r) to reconstruct the length-one loops. When moving to

net synthesis from a workflow log, the problem becomes more difficult, because the set

of transition sequences is infinite. Hence, in order to provide a solution to the problem,

we need to characterise a finite subset of the transition sequences that allows us to

reconstruct the net system. However, the technique sketched above seems promising,

provided the workflow log contains enough information. For example, a workflow log

Wn = {XY, XAY, XAAY, . . . , XAnY}, with n > 1, allows us to reconstruct the correct net for

the example in Figure 8. A similar result also holds for net N1 of Figure 4 in de Medeiros

et al. (2003), which is shown here in Figure 9.
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Fig. 9. A net with two one-self loops

Fig. 10. A net with a length-two loop

6.1.2. Length-two loops. The α-algorithm infers that the two tasks involved in the loop

are in parallel, and no place is created between them. Consider the log W = {XAY,
XABAY, XABABAY}. The tasks A and B are in a two-length loop (this is net N3 of Figure 4

in de Medeiros et al. (2003), which is shown here in Figure 10).

If we apply the α-algorithm, A and B are in parallel, whereas the regions {X, XAB,

XABAB} and {XA, XABA} are the places connecting these tasks, in particular {X, XAB,

XABAB} is the place where X and B put a token, consumed by A, and {XA, XAY, XABA,

XABAY} is the place where A puts a token, consumed either by B or by Y. Hence the

region-based approach can solve the problem easily.

However, when we consider the synthesis of a net from a workflow log, we have to

face up to the fact that the set of transition sequences is infinite. If the exact transition

system is provided, the classical region-based synthesis infers the correct net system, but

obtaining an exact and finite transition system from an infinite set of transition sequences

may not be straightforward. In any case, the net synthesis applied to nets N3 and N4 of

Figure 4 in de Medeiros et al. (2003) – which are problematic for the α-algorithm – gives

the correct nets, assuming a constraint on the workflow log similar to the one for the

example of length-one loops.

6.1.3. Implicit places. A place is implicit if its presence or absence does not affect the

possible log traces of a workflow. As implicit places do not influence the causal relations

between tasks, they cannot be captured by the α-algorithm. Hence, the α-algorithm

produces a ‘smaller’ version of the net, which is obtained by removing the useless implicit

places. The region-based synthesis technique allows us to produce all the nets whose

marking graph is isomorphic to a given transition system, and from these we can choose

the net that best represents the situation we intend to model. Thus, when we are interested

in mining exactly the same net, the region-based approach can be used fruitfully.
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6.1.4. Non-free-choice. Non-free-choice nets are not always correctly mined by the α-

algoritm, as witnessed by net N2 of Figure 8 in de Medeiros et al. (2003) (the same

problem arises with the net in Figure 7). The problem is due to the fact that some of the

causal relations between events are not inferred. If the transiton system is provided, the

region-based technique also works correctly for non-free-choice nets.

As an example, consider the net N2 in Figure 7. As we discussed earlier in this section,

the α-algorithm cannot rediscover the net N2: either starting from the workflow log

{A1BC1, A2BC2}, or from the larger workflow log {A1BC1, A1BC2, A2BC1, A2BC2}. In fact,

the net N2 is non-free-choice. The unique place in the postset of B belongs to both the

preset of C1 and the preset of C2, but, for example, the place s1 only belongs to the preset

of C1. The net discovered by the α-algorithm is N1 in Figure 6. The problem arising

in non-free-choice nets is connected with the existence of causal dependencies between

two events that cannot be executed one immediately after the other. For example, place

s1 of net N2 represents a causal dependency between A1 and C1, but no trace like . . .

A1C1 . . . can be generated. Thus, causal dependencies like these are not captured by the

α-algorithm.

6.2. Language-based mining

In the region-based approach of Darondeau, given a non-empty and prefix-closed language

L over an alphabet T , a region is a pair of maps (β, η), with β : L → � and η : T → �, such

that w = vu implies β(w) = β(v)+η(u) for all w ∈ L, by letting η be the unique morphism on

T ∗ that extends the map η : T → � (hence η : T ∗ → � such that η(uv) = η(u)+η(v), with

u, v ∈ T ∗). We use R(L) to denote the set of regions. Given a prefix-closed language L over

T , and the set of regions R(L), the synthesised net system is N(L) = (R(L), T , F, m0) where

for all (β, η) ∈ R(L), for all t ∈ T , F(t, (β, η)−F((β, η), t) = η(t), and for all (β, η) ∈ R(L), we

have m0((β, η)) = β(ε). As observed in Darondeau (1998), the inclusion L ⊆ TrSeq(N(L))

is always valid, whereas the equality can be characterised as ∀w ∈ L, ∀t ∈ T , wt �∈ L

implies η(t) < 0 and β(ε)+η(w)+η(e) < 0. This characterisation only holds for nets with a

possibly infinite set of places. When the net is unbounded, regions can be substituted with

abstract regions, which are based on the observation that, given a prefix-closed language

L over T and η : T → �, the set {η(w) |w ∈ L} has a minimum, denoted μη , which is

necessarily non-positive as η(ε) = 0. A fixed map η gives rise to a collection of regions

(β, η), each of them such that β(ε) = J − μη for some J � 0. The most significant of

these regions is the one where J = 0 (as also observed in Bernardinello et al. (1996)),

as it is the one that is most likely to produce a negative value when wt �∈ L, and

thus

β(wt) = β(w) + η(t) = β(ε) + η(w) + η(t) = (η(w) − μη) + (J + η(t)).

So regions can be identified with abstract regions, which are characterised by η alone, for

all η where the set {η(w) |w ∈ L} has a minimum.

Thus a net can be obtained without first constructing a transition system. In this case,

the following theorem can be proved.
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Theorem 6.2. Let N be a sound WF-net and let TrSeq(N) be its log. Then there exists a

set of abstract regions R(TrSeq(N)) such that

TrSeq(R(TrSeq(N)), T , F, m0) = TrSeq(N).

We can even state the stronger version of mining in this setting: there exists a set of

abstract regions R(TrSeq(N)) such that R(TrSeq(N)), T , F, m0) = N modulo renaming

of places.

A slightly different approach, which can be led back to the one using abstract regions,

was surveyed in Lorenz et al. (2007) and Lorenz and Juhás (2007).

However, these approaches have a drawback: the logs to be considered for mining

the correct net must be the whole language generated by the net (as words that do not

belong to the languages are used to synthesise the net), whereas our approach can mine

the correct net using finite subsets of infinite logs of sound workflow nets.

Though the method has some limitations, it does have the advantage of being much

simpler to implement – for instance, see the results in Giua and Seatzu (2005), Cabasino

et al. (2006b) and Cabasino et al. (2006a).

7. Incremental mining

The region-based approach to workflow mining that we have illustrated so far can be

criticised in two respects. The first criticism is that there is already an approach based on

languages that does not construct any transition system. As we hinted earlier, constructing

a transition system allows us to mine nets in a more natural way, if the logs are enough,

but are not the whole language generated by the net. Furthermore, the construction of the

transition systems can help in guessing how the logs can be completed to mine a workflow

net, as suggested in van der Aalst et al. (2008).

The second criticism concerns the complexity of the actual mining methods. To

overcome this criticism, we will now present a way to construct the regions corresponding

to a workflow log in an incremental way: we start by constructing the set of regions

corresponding to each single trace, then we define a way to pairwise combine the set of

regions of two transition systems.

We start by defining how to construct the transition system corresponding to a workflow

log. We obtain such a transition system simply as the union of the transition systems

corresponding to the single traces belonging to the log.

We will begin with some preliminary definitions.

Definition 7.1. Let TS = (St, E,→) be a transition system. We use States(TS) to denote

the set of states of the transition system (that is, States(TS) = St), and Events(TS) to

denote the set of events of the transition system (that is, Events(TS) = E).

We can now define the union of two transition systems.

Definition 7.2. Let TS1 = (St1, E1,→1) and TS2 = (St2, E2,→2) be two transition systems.

The union of TS1 and TS2 is defined as TS1 ∪ TS2 = (St1 ∪ St2, E1 ∪ E2,→1 ∪ →2).
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Let TSi = (Sti, Ei,→i), i ∈ I , be a set of transition systems. The binary union operation

is lifted to the n-ary union operation by

⋃
i∈I

TSi =

(
n⋃

i=1

Sti,

n⋃
i=1

Ei,

n⋃
i=1

→i

)
.

We now show how to construct LG(W ) incrementally. Given a log σ (that is, a word

over T ∗), the transition system associated to it, denoted LG(σ), is defined as follows.

Definition 7.3. Let σ ∈ T ∗ be a trace. The transition system corresponding to σ is

LG(σ) = {prefix(σ), E, {(ρ, t, ρt) | ρt ∈ prefix(σ)}, with E = {t ∈ T | ∃ρτ : σ = ρtτ}.

Starting from the transition systems corresponding to each log, we can construct a

transition system as follows.

Definition 7.4. Let W ⊆ T ∗ be a workflow log. The transition system corresponding to

W is TS(W ) =
⋃

σ∈W LG(σ).

Clearly, in most cases the transition system TS(W ) will not be isomorphic to the

marking graph of the net exhibiting the set of logs W , as the transition systems generated

by Definition 7.4 are basically disconnected graphs composed of a set of chains. However,

such chains are essentially paths in the marking graph of the net. In any case, we are

interested in constructing a net system whose transition sequences ‘correspond’ to the

workflow log.

The following proposition relates the construction of Definition 7.4 to that of Defini-

tion 5.1.

Proposition 7.1. Let W ⊆ T ∗ be a workflow log, and TS(W ) and LG(W ) be the associated

transition systems. Then there exists a morphism h : TS(W ) → LG(W ).

We are now ready to prove the results that allow us to construct the set of regions of a

transition system TS (that is, the union of two transition systems TS1 and TS2), starting

from the sets of regions of TS1 and of TS2. To this end, we need to define a notion of

compatibility between regions.

Two regions of two different transition systems are said to be compatible if they can

be unified to construct a region of the union of the two transition systems. The basic idea

is that each event either crosses the two regions in the same way, or it does not belong to

one of the two transition systems. The crucial point is that if a common state of the two

transition systems belongs to one region, then it must also belong to the other one.

Definition 7.5. Let TS1 = (St1, E1,→1) and TS2 = (St2, E2,→2) be two disjoint transition

systems. Let r1 ∈ Reg(TS1) and r2 ∈ Reg(TS2). We say that r1 is compatible with r2 if and

only if:

— ∀e ∈ ◦r1 : e ∈ ◦r2 ∨ e �∈ Events(TS2);

— ∀e ∈ r1◦ : e ∈ r2◦ ∨ e �∈ Events(TS2);

— ∀e ∈ ◦r2 : e ∈ ◦r1 ∨ e �∈ Events(TS1);

— ∀e ∈ r2◦ : e ∈ r1◦ ∨ e �∈ Events(TS1);

— ∀s ∈ States(TS1) ∩ States(TS2) : s ∈ r1 if and only if s ∈ r2.
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We are now ready to prove our main result: the set of regions of the union of two

transition systems TS1 and TS2 can be constructed by taking the union of the pairs of

compatible regions of TS1 and TS2, respectively.

Proposition 7.2. Let TS1, TS2 be two transition systems. Let r1 ∈ Reg(TS1) and r2 ∈
Reg(TS2). If r1 is compatible with region r2, then r1 ∪ r2 ∈ Reg(TS1 ∪ TS2).

Proof. Suppose r1 is compatible with r2. We show that r1 ∪ r2 ∈ Reg(TS1 ∪ TS2).

To show that r1 ∪ r2 is a region, we need to prove that ∀e ∀s1
e→ s′

1, s2
e→ s′

2:

— if s1 ∈ r1 ∪ r2 and s′
1 �∈ r1 ∪ r2, then s2 ∈ r1 ∪ r2 and s′

2 �∈ r1 ∪ r2;

— if s1 ∈ r1 ∪ r2 and s′
1 �∈ r1 ∪ r2, then s2 ∈ r1 ∪ r2 and s′

2 �∈ r1 ∪ r2.

We will only show the first case, as the other is similar. Suppose there exist s1
e→ s′

1 and

s2
e→ s′

2 such that s1 ∈ r1 ∪ r2 and s′
1 �∈ r1 ∪ r2. We show that s2 ∈ r1 ∪ r2 and s′

2 �∈ r1 ∪ r2.

First let us assume that s1, s2, s
′
1, s

′
2 �∈ States(TS1) ∩ States(TS2). From s1

e→ s′
1 and

s2
e→ s′

2, we deduce that the following cases may happen:

— s2, s
′
2 ∈ States(TS1)

— s2, s
′
2 ∈ States(TS2)

(the other cases are not interesting as r1 and r2 are regions in TS1 and TS2, respectively;

furthermore, by the construction of TS1 ∪ TS2, we cannot have that s
e→ s′ and s ∈

States(TS1) and s′ ∈ States(TS2) or s ∈ States(TS2) and s′ ∈ States(TS1) unless s, s′ ∈
States(TS1) ∩ States(TS2)).

Without loss of generality, we can suppose that s2, s
′
2 ∈ States(TS1). Again, two cases

may happen:

(i) s1, s
′
1 ∈ States(TS1).

As s1, s2, s
′
1, s

′
2 �∈ States(TS1) ∩ States(TS2) and r2 is a region of TS2, and since

s1 ∈ States(TS1) and s1 ∈ r1 ∪ r2, we deduce s1 ∈ r1. Since s′
1 �∈ r1 ∪ r2, we deduce

s′
1 �∈ r1. Hence, we have that s1

e→ s′
1, s1 ∈ r1 and s′

1 �∈ r1. As r1 is a region, from the

above, and since s2
e→ s′

2, we deduce that s2 ∈ r1 and s′
2 �∈ r1. Since s2 ∈ r1, we have

s2 ∈ r1 ∪ r2. Now, we have assumed that s1, s2, s
′
1, s

′
2 �∈ States(TS1) ∩ States(TS2), and

since s2 ∈ States(TS1), we get s2 �∈ States(TS2), and as r2 is a region of TS2, we get

s2 �∈ r2. Hence, s2 �∈ r1 ∪ r2.

Summing up, we have s2 ∈ r1 ∪ r2 and s2 �∈ r1 ∪ r2.

(ii) s1, s
′
1 ∈ States(TS2).

As s1, s2, s
′
1, s

′
2 �∈ States(TS1) ∩ States(TS2) and r1 is a region of TS1, and since

s1 ∈ States(TS2) and s1 ∈ r1 ∪ r2, we deduce s1 ∈ r2. Since s′
1 �∈ r1 ∪ r2, we deduce

s′
1 �∈ r2. As r2 is a region, and since s1

e→ s′
1, s1 ∈ r2 and s′

1 �∈ r2, we get e ∈ r2◦. By the

definition of compatibility, two cases may happen: either e ∈ r1◦ or e �∈ Events(TS2).

As s1 ∈ States(TS2) and s1
e→ s2, we have that e ∈ Events(TS2). Hence, we know

that e ∈ r1◦. As we assumed that s2, s
′
2 ∈ States(TS1), we have from s2

e→ s′
2 and

e ∈ r1◦ that s2 ∈ r1 and s′
2 �∈ r1. From s2 ∈ r1, we deduce s2 ∈ r1 ∪ r2. Now,

s1, s2, s
′
1, s

′
2 �∈ States(TS1) ∩ States(TS2), s

′
2 ∈ States(TS1) and r2 is a region of TS2, so

we get that s′
2 �∈ r2, and since s′

2 �∈ r1, we deduce s′
2 �∈ r1 ∪ r2.
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Summing up, we have s2 ∈ r1 ∪ r2 and s2 �∈ r1 ∪ r2.

Assume now that some of the states s1, s2, s
′
1 and s′

2 are in States(TS1) ∩ States(TS2). If

all of them are in the intersection, we are done.

Assume first that only s1 ∈ States(TS1) ∩ States(TS2). As s1 ∈ r1 ∪ r2 by the definition

of compatibility s1 ∈ r1 and s1 ∈ r2. Take s′
1 ∈ r1 ∪ r2. Clearly, s′

1 ∈ r1 or s′
1 ∈ r2, but not

in both. Assume s′
1 ∈ r1 (the other case being similar). Now consider s2

e→ s′
2. The only

possibility is that s2 ∈ r2. But as s′
2 �∈ r2 would mean that e ∈ r2◦, which would mean that

e ∈ r1◦, we have that s′
2 ∈ r2 and thus r1 ∪ r2 is a region.

Assume now that s1, s2 are in States(TS1) ∩ States(TS2) and at least one of s′
1 and s′

2

are not. Then s1, s2 ∈ r1 and s1, s2 ∈ r2. If s′
1 ∈ r1, then s′

2 ∈ r1 also, since otherwise r1
would not be a region.

As no other cases apply, we have that r1 ∪ r2 is a region of TS1 ∪ TS2.

Proposition 7.3. Let TS1, TS2 be two transition systems. Let r1 ∈ Reg(TS1) and r2 ∈
Reg(TS2). If r1 ∪ r2 ∈ Reg(TS1 ∪ TS2), then r1 is compatible with region r2.

Proof. Suppose r1 ∪ r2 is a region of TS1 ∪ TS2.

First we observe that hi : TSi → TS1 ∪ TS2 are morphisms, and ri = h−1
i (r1 ∪ r2).

Clearly, it should be the case that ∀s ∈ States(TS1) ∩ States(TS2) we have s ∈ h−1
1 (r) if

and only if s ∈ h−1
2 (r), as hi are morphisms.

So we have to show that the other 4 conditions also hold. We will only consider the

first condition in the definition of compatibility since the other three conditions can be

verified in the same way.

Let e ∈ ◦r1. We show that either e ∈ ◦r2 or e �∈ Events(TS2). Suppose e ∈ Events(TS2).

We will show that e ∈ ◦r2. As e ∈ ◦r1, there exists s1, s
′
1 ∈ States(TS1) such that s1

e→ s′
1,

with s1 �∈ r1 and s′
1 ∈ r1. Since s1 ∈ States(TS1) and r2 is a region of TS2, we have

s1 �∈ r2. Thus, s1 �∈ r1 ∪ r2. Since s′
1 ∈ r1, we have s′

1 ∈ r1 ∪ r2. Since s1
e→ s′

1, and since

s1 �∈ r1 ∪r2 and s′
1 ∈ r1 ∪r2, we have e ∈ ◦ (r1 ∪ r2). As we know that e ∈ Events(TS2), there

exist s2, s
′
2 ∈ States(TS2) such that s2

e→ s′
2. Since e ∈ ◦ (r1 ∪ r2) and s2

e→ s′
2, we have that

s2 �∈ r1 ∪ r2 and s′
2 ∈ r1 ∪ r2. From s2 �∈ r1 ∪ r2, we deduce s2 �∈ r2. Now, s′

2 ∈ States(TS2)

and r1 is a region of TS1, so s′
2 ∈ r1 ∪ r2 gives s′

2 ∈ r2.

Hence, we have s2
e→ s′

2, s2 �∈ r2 and s′
2 ∈ r2. As r2 is a region, we get e ∈ ◦r2.

Proposition 7.4. Let TS1, TS2 be two transition systems. Let r ∈ Reg(TS1 ∪ TS2). Then

there exists two compatible regions r1 ∈ Reg(TS1) and r2 ∈ Reg(TS2) such that r = r1 ∪ r2

Proof. Consider r ∈ Reg(TS1 ∪ TS2). Take r1 = r ∩ St1 and r2 = r ∩ St2. Clearly, these

are two regions belonging to Reg(TS1) and Reg(TS2), respectively.

We now show that they are compatible. The only interesting case is when e ∈ ◦r ∪ r◦
is such that e ∈ E1 ∩ E2. Assume that e ∈ ◦r and e ∈ ◦r1. But then e ∈ ◦r2, otherwise r

would not be a region.

The other conditions for compatibility can be checked in the same way, and since the

last condition is satisfied too, we are done.
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We can now state the main result of this section – the proof is obvious using

Proposition 7.4.

Theorem 7.1. Let TS1, TS2 be two transition systems and Reg(TS1), Reg(TS2) be their

sets of regions. Then Reg(TS1 ∪ TS2) = {r | ∃ r1 ∈ Reg(TS1) and ∃ r2 ∈ Reg(TS2) such

that r = r1 ∪ r2 and r1 is compatible with r2}.

Applying this method to the example in the introduction, we have three traces (AED,

ABCD, ACBD), and the transition systems obtained by each trace have obvious minimal

regions. It is easy to see that the regions with the state corresponding to A are all

compatible, as are the ones with D. The regions with B and C are again compatible, so the

construction gives the desired result.

Using the previous result, we can state and prove the following theorem.

Theorem 7.2. Let N be a WF-net and W be a complete workflow log of N. For

each σ ∈ W , let LG(σ) be the associated transition system. Then R, the set of min-

imal regions of
⋃

σ∈W LG(σ), satisfies the S-ESSP property. Furthermore, TrSeq(N) =

TrSeq(Gen(
⋃

σ∈W LG(σ), R)).

Proof. By Theorem 7.1, we have that all the regions are obtained as combinations of

compatible regions in LG(σ), with σ ∈ W .

Now consider the mapping h :
⋃

σ∈W LG(σ) → LG(W ) defined as h(σ′)) = σ′, with σ′

a prefix of σ ∈ W . This is a well-defined transition system morphism, which is also a

functional bisimulation.

Consider the set R of minimal regions of
⋃

σ∈W LG(σ). For each r ∈ R, we have that

h(r) is a minimal region of LG(W ). Furthermore, for each minimal region r′ of LG(W ),

the associated h−1(r′) is minimal since otherwise the minimal region r̂ ⊆ h−1(r′) would

be such that h(r̂) ⊂ r′, which contradicts the minimality of r′. So h(R) is the set of

minimal regions of LG(W ). Clearly, R satisfies the S-ESSP property (as h(R) does) and

TrSeq(N) = TrSeq(Gen(
⋃

σ∈W LG(σ), R)).

The construction we have developed has a drawback: incrementally considering only

minimal regions does not always give a correct answer. This means that we can still

construct the proper set of regions by considering the compatible ones, but we cannot

simply always use the minimal regions of the components of the transition system. Take

the net in Figure 11, and consider first the traces AB, CD and the associated transition

systems TS{AB} and TS{CD}. When composing these transition systems, it is easy to see that

the minimal regions of each are compatible with the empty region of the other, hence the

minimal regions of the compound transition system are simply the union of the two sets

of minimal regions. Now consider the traces AD or CB. When checking for compatibility

of the regions of the compound transition system TS{AB,CD} and of TS{AD}, we find that we

can no longer just consider minimal regions, but also have to consider compound regions

(in this case the region where A and C enter and B and D exit, as the net with these four

traces is the one in Figure 11).
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Fig. 11. A net where using minimal regions on the transition systems associated to traces fails

8. Conclusions and future work

In this paper we have collected some ideas on the discovery of processes (business process

oriented) and Petri nets. The main results can be summarised as follows:

— Region-based mining of workflow nets is much more effective than other approaches.

The approach based on languages can be easily implemented, but from the point of

view of the re-engineering of workflow nets, which is the main application of process

mining, we believe that the approach we have presented is much more useful.

— The incremental approach can be applied fruitfully. In fact, van Dongen et al. (2007)

has reported an implementation of an incremental approach as a plug-in of the ProM

framework (van Dongen et al. 2005), which is a flexible environment for process

mining developed at the Eindhoven University of Technology. This approach can be

refined, for example, by adding transition systems in suitable orders.

Though some steps have been already taken, there are still many open issues, which we

have planned to work on. Here is a list, in no particular order, of some of the ongoing

ideas we have had on this subject:

(i) Workflow nets are usually obtained via a top-down design, which makes them rather

regular. We have pointed out that by looking at the situation hindering the separation

properties, we can identify or split states of the transition system: in the first case

making two states equivalent, while in the second we discover that a state holds more

information, which can only be made available by splitting it (thus making the model

more concrete). A clear classification of nets with respect to the property they violate

can be helpful in understanding and characterising these subclasses.

(ii) The incremental methods do not always work if we just consider minimal regions

(which is desirable). It may be useful to find a method for constructing the minimal

set of regions of TS1 ∪ TS2 from the minimal regions of TS1 and TS2.

(iii) Along the same line as the previous item, it would be interesting to define a property

on a set R of regions allowing the construction without using all the regions, but just

a proper subset.

(iv) Workflow nets are a suitable subclass of Bruni and Montanari’s Zero-Safe nets (Bruni

and Montanari 2001). Recently, Darondeau has investigated the synthesis of Zero-

Safe nets (Darondeau 2008), and, with others, the synthesis of nets from step-firing

policies (Darondeau et al. 2008). It would be interesting to investigate the impact

of these recent developments on the mining of workflow nets, bearing in mind that

the synthesis from the workflow log, as we have considered in this paper, is rather
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meager, and the logs have a much richer structure, which can be used to obtain the

correct net.
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