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In this work we introduce a Lagrangian stochastic model for particle motion and
evaporation to be used in large-eddy simulations (LES) of turbulent liquid sprays. Effects
of small-scale intermittency, usually under-resolved in LES, are explicitly included via
modelling of the energy dissipation rate seen by a droplet along its trajectory. Namely,
the dissipation rate is linked to the norm of the droplet sub-filtered acceleration which is
included in the droplet motion equation. This norm, along with the direction of the droplet
sub-filtered acceleration, is simulated as a stochastic process. With increasing Reynolds
number, the distribution of the sub-filtered acceleration develops longer tails, with a slower
decay in auto-correlation functions of the norm and direction of this acceleration. The
stochastic models are specified for particles larger and smaller the Kolmogorov length
scale. The assumption of the droplet evaporation model is similar, i.e. the evaporation rate
is strongly enhanced when a droplet is subjected to very localized zones of intense velocity
gradients. Thereby, the overall evaporation process is assumed to be a succession of two
steady-state sub-processes with equal intensities, i.e. evaporation and vapour mixing. Then
the stochastic properties of the overall evaporation rate are also controlled by fluctuations
of the energy dissipation rate along the droplet path, and with increasing Reynolds
number, the intensity of fluctuations of this rate is also increasing. The assessment of
the presented stochastic models in LES of high-speed non-evaporating and evaporating
sprays show the accurate prediction of experimental data on relatively coarser grids along
with a remarkably weaker sensitivity to the grid spacing. The joint statistics and Voronoi
tessellations exhibit strong intermittency of evaporation rate. The intensity of turbulence
along the droplet pathway substantially promotes the vaporization rate.
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1. Introduction

In many problems of fluid dynamics, the Reynolds number is large and the flow structure
is highly irregular – the localized velocity gradients may attain extreme values. This
is a manifestation of strongly stretched and long-lived structures generated in narrow
regions of the flow (Hunt, Wray & Moin 1988; Moisy & Jiménez 2004; Goto 2008;
Elsinga & Marusic 2010). The interaction of such structures leads to intense fluctuations
of the energy dissipation rate, to violent accelerations of fluid particles and to long-range
time auto-correlations (Mordant et al. 2002). Recent direct numerical simulations (DNS)
of homogeneous and isotropic turbulence (HIT), generated in a periodic box (the
highest Taylor micro-scale Reynolds number Reλ = 1300), performed by Yeung, Zhai &
Sreenivasan (2015), Iyer, Sreenivasan & Yeung (2020) and Donzis, Yeung & Sreenivasan
(2008) revealed that the velocity increments across the smallest turbulent length scales can
be of the same order as that of the largest turbulent velocities in the flow. Such extreme
velocity gradients imply also that molecular viscosity, or the local Reynolds number, plays
a central role in the local structure of turbulence. So, the experimental measurements of
Lagrangian statistics (Mordant, Crawford & Bodenschatz 2004) showed that the increased
Reynolds number induces stronger effects of intermittency.

In many natural phenomena and practical applications, we come across highly turbulent
flow laden with evaporating droplets. Some examples of such flows include spray
combustion in chemical propulsion systems, turbulent flows in stratocumulus clouds and
spraying of pathogen-bearing droplets by violent exhalations. These two-phase flows are
usually characterized by high Reynolds numbers. Therefore, it might be expected that the
intermittent generation of intense fluid accelerations, mentioned above, may significantly
affect the statistics of the droplet dynamics and evaporation. The problem is that the direct
resolution of such accelerations is prohibitively costly. On the other hand, in large-eddy
simulations (LES), the filter width is much larger than the smallest turbulent length scale
and the contribution of subgrid scales (SGS) to a droplet’s motion and evaporation needs
to be modelled. In the vast majority of SGS models, the local structure of turbulence is
assumed to be homogeneous, i.e. the gradients of the fluid flow variables in the vicinity
of the droplet are estimated from filtered fields and not from their increments in the
smallest turbulent motions on residual scales (Leboissetier, Okong’o & Bellan 2005;
Pera et al. 2006; Okong’o, Leboissetier & Bellan 2008; Apte, Mahesh & Moin 2009;
Senoner et al. 2009; Irannejad & Jaberi 2014; Tsang, Trujillo & Rutland 2014). This raises
questions on how to account for SGS gradients in the fluid on the dynamics of evaporating
droplets.

Among others, there are two approaches which address the intermittency effects on a
heavy particle motion beyond the resolution domain of the LES. The first is based on
the stochastic simulation of the fluid velocity gradients on residual scales, or of the fluid
acceleration. The fluid velocity induced by that acceleration determines a Stokes drag
of a heavy particle. In the second approach, while the LES formulation with standard
closure models is retained, the main focus is put on the particle motion equation, in
which the impact of the small-scale motions is taken into account as stochastic model.
The LES–SSAM (stochastic subgrid acceleration model) pertains to the first approach.
This model was first proposed by Sabel’nikov, Chtab & Gorokhovski (2007, 2011) and
was adapted for the wall-bounded flows by Zamansky, Vinkovic & Gorokhovski (2013).
Recently, LES–SSAM is revisited in Sabelnikov, Barge & Gorokhovski (2019). In Barge &
Gorokhovski (2020), LES–SSAM is further developed for shear flows. In LES-SSAM, the
filtered Navier–Stokes equations are locally driven by the stochastic force. In difference
with other techniques for forcing the turbulence in physical space (see, for example,
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Stochastic models for evaporating droplets in LES

Palmore & Desjardins 2018, and references therein), the forcing in LES–SSAM is thought
of as the local subgrid fluid acceleration with explicitly embedded statistical properties
known from the measurements and DNS. Namely, the stochastic model of the subgrid
fluid acceleration: (i) develops stretched tails with increasing the local Reynolds number,
(ii) the decay of the time auto-correlation of the magnitude of acceleration is much slower
than that of the components – consequently, the norm and the direction of acceleration
are simulated in time by two statistically independent Ornstein–Uhlenbeck processes.
The drawback of LES–SSAM is that the Langevin stochastic equations evolve locally
in time, and not in space i.e. it is assumed that the two-point spatial correlation of the
acceleration is determined by the filter width. The argument used to justify this suggestion
is that in the theory of locally isotropic turbulence (Monin & Yaglom 2013), the two-point
auto-correlation of the fluid particle acceleration is short ranged. This notwithstanding,
the two-point auto-correlation of the norm of acceleration may decay on much longer
distances. For example, in Johnson & Meneveau (2018) the LES velocity is complemented
by its subgrid-scale component along the stochastic trajectories of a fluid particle. These
trajectories are issued from the Lagrangian stochastic model for the velocity gradient
tensor. Thus, the spatial correlations of sub-filter scale acceleration are introduced in
Johnson & Meneveau (2018). However, in this approach, the fields from the filtered
Navier–Stokes equations are not modified by the modelled sub-filtered velocity gradients.
Concerning the second approach, the Lagrangian simulation of stochastic trajectories in
the flow laden by heavy particles, is addressed in Bini & Jones (2008). In this study,
the instantaneous acceleration of a heavy particle is decomposed into two parts. The
first part represents the acceleration resulting from response of the heavy particle to the
filtered fluid velocity. The second part issues from the particle interaction with unresolved
motions in the flow. This part is formulated as a delta-correlated Langevin force with the
noise strength given by the local subgrid kinetic energy, i.e. mostly by resolved velocities.
The model of Bini & Jones (2008) is discussed in § 3. A major concern with this model
is that the effects of small-scale intermittency are disregarded in the particle dynamics.
In LES–SDM (stochastic drag model) by Gorokhovski & Zamansky (2014, 2018), these
effects were explicitly included as sub-filtered acceleration of the particle, via modelling
the energy dissipation rate ‘seen’ by the particle along its trajectory. Thereby, two models,
for particles above and below the Kolmogorov length, were proposed in Gorokhovski &
Zamansky (2014, 2018). Recently, this idea was extended to bubbles dispersion in Zhang,
Legendre & Zamansky (2019). Our concern with LES–SDM, as it stands, is twofold.
First, LES–SDM was applied in the framework of one-way coupling. Its application
with two-way coupling gives an additional advantage to generate the fluid sub-filtered
acceleration, providing the spatial auto-correlation in the flow along the particle trajectory.
Second, in order to avoid any negative or increasing with time auto-correlation functions,
a more robust algorithm is needed for the particle acceleration direction. In the context of
these comments, it is interesting to modify the droplet dispersion model from Gorokhovski
& Zamansky (2014, 2018) , and to assess it in the simulation of high Reynolds number flow
on a relatively coarse mesh. The corresponding description of the model and its analysis
is given in § 3 of this study.

Our second objective is to propose and assess a new stochastic SGS evaporation model
for a droplet surrounded by the intermittent flow structures. The body of literature on
numerical and experimental studies of turbulent evaporation is very large. The DNS
for flows at a moderate Reynolds number with evaporating droplets, viewed as material
inertial points were performed in different academic configurations (HIT by Mashayek
(1998a), Reveillon & Demoulin (2007) and Weiss, Meyer & Jenny (2018); homogeneous
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shear turbulence (HST) by Mashayek (1998b) and Weiss et al. (2020); mixing layers
between two adiabatic slip walls by Miller & Bellan (1999) and Okong’o & Bellan (2004)).
These simulations provided valuable insights into the role of the gas phase turbulence on
the evaporation process. It is generally recognized that the turbulent transport of scalars
supports evaporation, and due to the turbulence, the evaporation increases the total range
of droplet sizes. In HIT, the evolution of the probability density function (p.d.f.) of the
vapour mass fraction is controlled by the ratio between characteristic times of turbulent
mixing and evaporation. In HST, the persisting orientation of inclined longitudinal vortex
structures induces anisotropy in the fluctuations of the vapour mass fraction across all
spectra of turbulent length scales, down to very small length scales. A considerable
attention in DNS is also paid to effects of droplet clustering on the evaporation rate. The
clusters of droplets is the result of interaction between droplet inertia and fluid acceleration
seen by the droplets in turbulent structures (see, e.g. Toschi & Bodenschatz 2009). In the
case of evaporating droplets, clusters are characterized by elevated vapour mass fractions.
Therefore, the evaporation rate in clusters is low and it can be even prematurely halted
if the vapour concentration reaches the saturation level. Recently, DNS was performed
by Dalla Barba & Picano (2018) for turbulent air–acetone vapour jet (Reλ = 77) which
carries small evaporating acetone droplets (initially, of 6 μm). This DNS emphasized the
significant role of dry air entrainment on the overall evaporation process. The turbulent
vaporization was also the subject of recent experimental studies. These studies have
significantly improved our understanding of the process. So, in Méès et al. (2020), the
digital holography of tracking a single ∼100 μm droplet, moving and evaporating in HIT,
showed that the intense fluctuations of the evaporation rate are connected to ‘jumps’ of the
relative velocity between droplet and fluid. Thus the intermittency in the fluid is manifested
along the droplet trajectory. Measurements in a poly-dispersed spray of evaporating water
droplets carried by air jet flow (Sahu, Hardalupas & Taylor 2016) support a similar
conclusion: the evaporation rate is strongly controlled by instantaneous fluctuations of
the relative velocity. Two modes of turbulent evaporation were observed: the internal
group slow evaporation in a droplet cluster, typically near the spray centre, and the single
droplet intense evaporation, typically near the spray boundary. These experimental studies,
along with the experimental study of Verwey & Birouk (2017), also support the earlier
conclusion from experiments in Wu, Liu & Sheen (2001), Hiromitsu & Kawaguchi (1995)
and Birouk & Gökalp (2006) that increasing the turbulence intensity promotes evaporation
of droplets. In De Rivas & Villermaux (2016) and Villermaux et al. (2017), the evaporation
rate in layers of liquid droplets at very small Stokes number is described through analogy
with scalar mixing (Villermaux 2019). Those layers are referred to as spray lamellae.
The evaporation process is considered as the mutual action of two sub-processes. The
first is the continuous stretching of a spray lamella by shear stresses. The second is the
diffusion of the saturated vapour to the dry ambience due to evaporation of outer droplets
in lamellae. A net transport of mass resulting from this diffusion (in terms of Stefan’s
flow on the lamella border) and the stretching effect reduce the lamella thickness. The
time when this thickness shrinks to zero is defined as the time scale of evaporation.
The important conclusion, supported by experimental observations in this study, is that
the evaporation time scale decreases in proportion to the amount of stretching. Steeper
scalar gradients on the lamella border enhance the vaporization rate of outer droplets in
lamella. This promotes the dilution of saturated vapour with air around the inner droplets.
These latter vaporize. In addition to above mentioned experiments, the measurements from
Sommerfeld & Qiu (1998) and the measurements from an engine combustion network
(Idicheria & Pickett 2007; Payri et al. 2016) provided abundant experimental data for
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high-speed injection of evaporating droplets in high turbulent Reynolds number conditions
in the gas. These experiments are well controlled and, due to their simple geometry, they
are good test cases for modelling.

In our work, we proposed and assessed two new stochastic models, one for droplet
dispersion and the other for droplet evaporation in unresolved turbulent motions. The
models comprise the intermittency effects in the local structure of the flow, and this is the
novelty of proposed models. The structure of the paper is as follows. The LES equations
are formulated in § 2. In § 3 the new stochastic models for the droplet motion are described
and illustrated. Section 4 is devoted to the new stochastic model for droplet turbulent
evaporation. In § 5, the proposed models are assessed and characterized in comparison
with other stochastic models and with experimental observations of the turbulent spray
evaporation. Also, further discussions are provided in this section. Section 6 concludes
the current study.

2. Governing equations for fluid phase – LES

In LES, any flow variable ψ(x, t), defined in a domain Ω , is decomposed as ψ = ψ̄ + ψ ′
where ψ̄ is a filtered in space (resolved) variable, ψ̄(x, t) = ∫

Ω
ψ(x′, t)ΨΔ(x − x′) dx′,

ΨΔ(x) is a filter function (weight function) and Δ is the filter width (usually a measure
of the grid spacing). In variable density flows, the Favre, or density weighted, filtering
is often introduced by ρ̄ψ̃(x, t) = ρψ = ∫

Ω
ρψ(x′, t)ΨΔ(x − x′) dx′. In the context of

Euler–Lagrangian modelling of turbulent sprays, an individual liquid droplet is usually
considered as a point source, assuming that the droplet size is much smaller than the
resolved turbulent length scales in the fluid. Therefore, the local contributions from
droplets are presented formally by local source terms in the Navier–Stokes equations.
In LES, each droplet is interacting with the filtered velocity field, which, compared
with the original field, contains fewer high frequencies. In order to evaluate the singular
contribution from a droplet at its position x = x′, the delta function is replaced by δ(x −
x′)|x=x′ ∼ 1/Δ3. Therefore, the source terms in the filtered Navier–Stokes equations
represent the volume average of individual contributions from droplets which visited a
considered volume Δ3 at a given time instance. Applying the filtering operation to the
Navier–Stokes equations, and using the Smagorinsky eddy-viscosity model, leads to the
following transport equation for the filtered momentum ρ̄ũi:

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũj

∂xj
= ∂

∂xj

(
2ρ̄(ν + νsgs)

[
S̃ij − 1

3
S̃kk

])
− ∂ p̃
∂xi

+ S̃mom,i, (2.1)

where νsgs, p̃, ρ̄ and ν are the eddy viscosity, filtered pressure, filtered total fluid density
and viscosity respectively,

S̃ij = 1
2

[
∂ ũi

∂xj
+ ∂ ũj

∂xi

]
(2.2)

is the rate of filtered strain tensor, δij is the Kronecker delta and S̃mom,i represents the ith
component of the source term from the volume-average momentum of droplets located in
the considered computational cell. Assuming the gaseous phase to be a perfect gas with
multiple species, the filtered mass fraction of any given species m (i.e. Ỹm) is given by
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following expression:

∂ρ̄Ỹm

∂t
+ ∂ρ̄Ỹmũj

∂xj
= ∂

∂xj

(
ρ̄

[
D + νsgs

ScT

]
∂Ỹm

∂xj

)
+ S̃vapδm1. (2.3)

Here, D is a single diffusion coefficient, ScT is the subgrid Schmidt number, the first
species (with index m = 1 in the Dirac delta function of the last term) represents the liquid
vapour generated by evaporating spray droplets and S̃vap is the volume-average source of
the vapour mass issued from all droplets located in the considered computational cell. For
the filtered total fluid density

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= S̃vap. (2.4)

For the filtered total energy ρ̄ẽ

∂ρ̄ẽ
∂t

+ ∂ρ̄ẽũj

∂xj
= ∂

∂xj

([
K
ρ̄cp

+ νsgs

PrT

]
∂ ẽ
∂xj

)
− ∂ p̄ũj

∂xj
+ ∂τ̃ijũj

∂xj
+ S̃energy, (2.5)

where K is the thermal conductivity, PrT is the subgrid Prandtl number, τij = 2ρ̄(ν +
νsgs)[S̃ij − S̃kk/3] is the filtered viscous stress and S̃energy is the collective energy
exchange with all droplets located in a considered computational cell. The temperature
of the gaseous flow is then computed from the energy using the equation of state
relations for perfect gas. The SGS turbulent viscosity is modelled using the one-equation
eddy-viscosity model (Yoshizawa & Horiuti 1985), in which the eddy viscosity is given
from the integration of additional transport equation for the subgrid turbulent kinetic
energy (TKE) Ksgs for single-phase flows. Then Sp,sgs is added to this transport equation in
order to represent the rate at which the fluctuating components of the gas velocity are doing
work in dispersing the spray droplets as shown in (2.6). The values for the model constants
are same as in the earlier studies of Tsang et al. (2014) i.e. Cl = 1.048 and Ck = 0.094

∂ρ̄Ksgs

∂t
+ ∂ρ̄Ksgsũj

∂xj
= ∂

∂xj

(
2ρ̄(ν + νsgs)

∂Ksgs

∂xj

)
+ τ̃ijS̃ij − Clρ̄

K3/2
sgs

Δ
+ Sp,sgs, (2.6)

νsgs = CkΔK1/2
sgs . (2.7)

In this work, in equations (2.1)–(2.6), the filtered source terms due to droplets are replaced
by stochastic source terms simulated as stochastic processes along the droplets trajectory

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũj

∂xj
= ∂

∂xj

(
2ρ̄(ν + νsgs)

[
S̃ij − 1

3
S̃kk

])
− ∂ p̃
∂xi

+ Sstoch
mom,i, (2.8)

∂ρ̄Ỹm

∂t
+ ∂ρ̄Ỹmũj

∂xj
= ∂

∂xj

(
ρ̄

[
D + νsgs

ScT

]
∂Ỹm

∂xj

)
+ Sstoch

vap δm1, (2.9)

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= Sstoch

vap , (2.10)
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∂ρ̄ẽ
∂t

+ ∂ρ̄ẽũj

∂xj
= ∂

∂xj

([
K + ρ̄cpνsgs

PrT

]
∂T̃
∂xj

)
− ∂ p̄ũj

∂xj
+ ∂τ̃ijũj

∂xj
+ Sstoch

energy, (2.11)

∂ρ̄Ksgs

∂t
+ ∂ρ̄Ksgsũj

∂xj
= ∂

∂xj

(
2ρ̄(ν + νsgs)

∂Ksgs

∂xj

)
+ τ̃ijS̃ij − Clρ̄

K3/2
sgs

Δ
+ Sstoch

p,sgs. (2.12)

The expressions for these source terms and the appropriate stochastic models are presented
in the next section.

3. Stochastic models for droplet dispersion

3.1. Stochastic drag models of Wang & Squires and Bini & Jones
In the simulation of flows laden with small droplets or particles, it is common to associate
the particle acceleration with a Stokes drag. Accordingly, in LES, the particle acceleration
is usually expressed by its response time τp = ρpd2

p/18ρν to the filtered flow velocity
‘seen’ at the position of the particle

dup,i

dt
= ũi − up,i

τp
, (3.1)

where up is the particle velocity vector. As outlined in the review of Pozorski & Apte
(2009), several stochastic models have been formulated over time for accounting in (3.1)
for the subgrid fluctuations of the fluid velocity. Among these approaches, the model of
Wang & Squires (1996) is the most simple and widely used. By analogy with Amsden,
O’Rourke & Butler (1989) for turbulent dispersion of sprays in Reynolds-averaged
Navier–Stokes (RANS) simulations, Wang & Squires (1996) supplemented the filtered
fluid velocity (i.e. ũ) by a residual scale velocity u′, which is sampled once over a turbulent
time scale τt (given by (3.2)), from a Gaussian distribution with a variance defined by the
magnitude of local Ksgs

τt = min

[
Ksgs

εΔ
, 0.162 · K3/2

sgs

εΔ|ũ − up|

]
. (3.2)

Here, εΔ = Cl(K
3/2
sgs /Δ) represents the locally resolved dissipation rate. When the

small-scale properties of turbulence are influenced by events of extreme fluctuations, the
acceleration of a heavy particle may be additionally governed by the force which would
act in the fluid in the absence of the particle, i.e. by the fluid acceleration at the particle
position. The contribution of the latter is simulated in Bini & Jones (2009) by Langevin
stochastic force

dup,i

dt
= ũi − up,i

τp
+ bδij dWj. (3.3)

Here, δij dWj, ( j = 1, 2, 3) represents the three-dimensional isotropic Wiener process, and
the coefficient b = (Ksgs/τt)

1/2 is linked to a typical time τt required for a droplet to
traverse through a notional ‘unresolved eddy’. Two alternative expressions are considered
in Bini & Jones (2009): τt = Δ/(up,iup,i)

1/2 and τt = Δ/(Ksgs)
1/2. Our motivation for

further development of the stochastic motion equation for the particle is as follows. If the
filter widthΔ is taken to be in the inertial interval of turbulence, L � Δ � η, then in LES
approach the subgrid fluctuations of the velocity are assumed to be much smaller than
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the resolved velocities (in contrast to the velocity gradient, which is stronger on residual
scales than one on the resolved scales). This underestimates the role of residual scales
on the particle dispersion. Therefore, it would be preferable to characterize the norm
of the Langevin force in (3.3) by a variable based on the subgrid velocity gradient (or
subgrid acceleration), rather than on the turbulent velocity itself from Ksgs. This allows
us to introduce another desirable statistical feature for this stochastic term, that is the
Reynolds number dependency. Compared with the estimate in (3.3) of the resolved flow
acceleration aΔ (given by variables such as Ksgs, εΔ, τt), the unresolved flow acceleration
increases with increasing the local Reynolds number (ReΔ), implying a stronger action
of the fluid on a single particle. Indeed, the estimate of the resolved acceleration norm is
aΔ ∼ ε

2/3
Δ /Δ1/3, whereas an estimate of the acceleration norm on the unresolved scales

is, a′ ∼ ε
2/3
Δ /η1/3, and then a′/aΔ ∼ (Δ/η)1/3 ∼ Re1/4

Δ . In this work we introduce the
particle subgrid acceleration a′

p,i

dup,i

dt
= ũi − up,i

τp
+ a′

p,i, (3.4)

which is characterized by: (i) the statistics of a′
p,i is controlled by the above mentioned

stochastic properties of the fluid particle acceleration; (ii) in contrast to the Langevin force
in (3.3), the acceleration a′

p,i is simulated as the stochastic Ornstein–Uhlenbeck process in
which the auto-correlation time represents the physical time scale, and not the time step
Δt as in case of the Wiener process. The stochastic model of a′

p,i is presented in the next
section.

3.2. Stochastic drag models accounting for intermittency effects on unresolved scales

3.2.1. Particles smaller than Kolmogorov length scale
To begin with the description of stochastic model for a′

p,i, we consider a heavy particle
motion in a statistically stationary HIT, so that the mean viscous dissipation 〈ε〉 is constant
(for this case, 〈ε〉 remains the same both in Lagrangian and Eulerian variables). The angled
brackets 〈〉 hereafter denote the time averaging. For a particle driven by Stokes force in
HIT, the expression for its statistically stationary mean velocity relative to the fluid is
given by (Kuznetsov & Sabelnikov 1990)

〈|u − up|2〉1/2 ≈ √〈ε〉τp, (3.5)

where u denotes the instantaneous fluid velocity. Following this analytical expression, and
dividing it by τp, we suggest that the instantaneous SGS part of the particle acceleration
norm is also governed by instantaneous viscous dissipation, ε, seen by the particle in
smallest motions i.e. a′

p ∼ √
ε/τp. The latter is linked to an estimate of the fluid particle

acceleration norm a′, as
√
ε/τp = a′√τη/τp. As suggested by Pope (1990) for a high

Reynolds number turbulence, the fluid particle acceleration may be presented as the
product of two independent stochastic processes, one for its norm (characterized by large
time scale of the auto-correlation function) and the other for its direction unit vector (which
is correlated on short times). Correspondingly, for a particle below the Kolmogorov size
(dp < η � Δ), the subgrid component of its acceleration can be expressed as

a′
p,i =

√
ε

τp
ep,i, (3.6)
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Stochastic models for evaporating droplets in LES

where ε is the dissipation rate along the particle trajectory, and ep,i is the component of
the stochastic orientation vector of the particle acceleration. Both of these parameters are
simulated in the framework of Ornstein–Uhlenbeck process. In terms of refined similarity
hypotheses, the Oboukhov-1962 conjecture states that, in a considered volume, the
instantaneous dissipation rate, averaged over a small sphere, is log–normally distributed. In
Pope & Chen (1990), the stochastic process incorporates formally this log–normality along
the fluid particle path. Hereafter in our model, the log–normal process for dissipation rate
is formally designed along the droplet path. The corresponding stochastic equation has the
following form:

dε
ε

= −
[

ln
ε

〈ε〉 − σ 2
χ

2

]
T−1
χ dt +

√
2σ 2
χT−1

χ dW(t), (3.7)

where dW(t) is the increment of standard Brownian process, i.e. 〈dW(t)〉 = 0, 〈dW(t)2〉 =
dt, and the coefficients to be specified are the variance σ 2

χ of the Gaussian variable
χ(t) = ln(ε(t)/〈ε〉) and its auto-correlation time scale Tχ . For the mean values
we have 〈εln(ε/〈ε〉)〉 = (1/2)〈ε〉σ 2

χ , and then 〈dε〉 = 0. Additionally, 〈ε2ln(ε/〈ε〉)〉 =
(3/2)〈ε2〉σ 2

χ , and then 〈dε2〉 = −2σ 2
χ 〈ε2〉(dt/Tχ). Using the Ito transformation, one gets

the equation for the stochastic variable f = ε1/2

df = −f ln
f
f∗

T−1
χ dt + 1

2
f
√

2σ 2
χT−1

χ dW(t), (3.8)

where f∗ = 〈ε〉1/2. Additionally one can show that,

〈df 〉 =
〈

f ln
f
f∗

〉
= 0, (3.9)

〈df 2〉 = −2
〈

f 2ln
f
f∗

〉
dt
Tχ

= −1
2
σ 2
χ 〈 f 2〉 dt

Tχ
. (3.10)

Equations ((3.6)–(3.8)) were first used in Gorokhovski & Zamansky (2018). However,
since the algorithm for the stochastic direction components (i.e. ep,i) in Gorokhovski
& Zamansky (2018) may lead to negative or increasing with time auto-correlation
functions, the definition of the particle acceleration direction, its stochastic equation and
the algorithm of integration are changed in the present work. The direction of a heavy
particle acceleration is introduced as a unit vector of the relative motion between the
particle and the fluid

ep = (u − up)/|u − up|. (3.11)

Its governing stochastic equation is represented by the Ornstein–Uhlenbeck stochastic
relaxation process on a unit sphere, in which the relaxation time parameter is given by
the Kolmogorov time scale τη as suggested by experimental results of (Mordant et al.
2004)

dep,i = −2τ−1
η ep,i dt + (δij − ep,iep,j)

√
2τ−1
η dWj; 〈dWi dWj〉 = δij dt, (3.12)

where, again, Wj, (j = 1, 2, 3) represent independent components of Wiener vector
process. As it was shown in Sabelnikov et al. (2019), in the framework of the Stratonovich
calculus this equation is linear. With requirement of the norm of the direction vector to be
conserved, dep,i dep,i = 0, the linear form of the (3.12) provides a substantial advantage
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for its numerical integration. In Stratonovich sense, the differential dep,i in (3.12) admits
the following equivalent form:

dep,i =
√

2τ−1
η εijk dWj ◦ ep,k, (3.13)

where εijk is the Levi-Civita symbol, and the symbol ◦ denotes Stratonovich calculus. The
midpoint scheme is applied for integration of (3.13). The details of the algorithm are given
in Sabelnikov et al. (2019).

In the Obukhov log–normality conjecture (Monin & Yaglom 2013), the variance σ 2
χ is

presumed to be a function of Reynolds number, σ 2
χ ≈ ln(L/η). With this expression for

the variance, we illustrate hereafter the properties of the stochastic process ((3.6)–(3.13)).
Three parameters are presumed: the mean viscous dissipation 〈ε〉, the laminar viscosity
ν and the turbulent Reynolds number Returb. In terms of the Kolmogorov scaling, the
other parameters in ((3.6)–(3.13)) are given by, σ 2

χ = ln(Returb)
3/4, τη = (ν/〈ε〉)1/2, Tχ =

τηRe1/2
turb. The distributions of the particle acceleration norm, f (t) = ε1/2, are presented

in figure 1(a) at Returb = 10, 100, 1000 and 〈ε〉 = 100 m2 s−3 (distributions are averaged
over all time of the process). As the Reynolds number is increased, these distributions
display a long tail, representing the particle response to strong events of the velocity
gradient or velocity difference in the fluid. The corresponding auto-correlation function
of f (t) = ε1/2 is presented in figure 1(b), where the time scale Tχ at Returb = 1000
is used to non-dimensionalize the correlation time. The auto-correlation function is
given by R( f (τ )) = 〈 f (t + τ)f (t)〉/〈 f (t)f (t)〉. It is seen that decreasing the Reynolds
number leads to a narrower auto-correlation function. The distributions of the stochastic
acceleration a′

p,y = √
ε/τpep,y, (3.6), are shown in figure 1(c). As the Reynolds number

is increased, these distributions become narrower and exhibit stretched tails. With higher
Reynolds number, the turbulent regions of high gradients of the velocity, become narrower
in comparison with the vast zones of ambient non-turbulent fluid where a particle is
accelerated weakly. Here also the stretched tails in the particle acceleration correspond
to the extreme fluid solicitations. It is seen that the distributions in figures 1(a) to 1(c)
reproduce the expected effects of intermittency on the particle dynamics.

3.2.2. Particles larger than Kolmogorov length scale
For particles larger than the Kolmogorov length scale, the idea behind the stochastic
model of a′

p,i follows refined similarity hypotheses (Kolmogorov 1962). Namely, one may
introduce a local value of the instantaneous turbulent dissipation εdp averaged over a
sphere of the particle diameter dp, and to assume that around that particle, the statistics of
turbulent velocity increments (at the distance dp) conditional on εdp are universal and are
determined only by εdp . At very high Reynolds numbers with L � dp � η, the particle
response time τp may be large enough compared with typical turbulent times. It is then
natural to assume that across turbulent length scales, the statistics of the momentum flux,
transferred by the fluid to the particle, is controlled by the statistical properties of εdp .
Following refined similarity hypotheses, this implies that along the particle path, we have

〈|up − u|2 | εdp = ε〉 ≈ (εdp)
2/3; L � dp � η, (3.14)

where ε is the sample-space variable governed by the log–normal stochastic process. Then
Newton’s law for a spherical particle with the mass mp may be approximated by

mpa′
p,i ≈ 1

2
ρε2/3d2/3

p
πd2

p

4
ep,i, (3.15)
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Figure 1. (a) Probability distribution function (p.d.f.) of f = ε1/3 for different Returb = 10, 100, 1000.
(b) Auto-correlation function R( f ) for different Returb = 10, 100, 1000 and (c) p.d.f. of y-component of
stochastic particle acceleration i.e. a′

p,y for different values of Returb.

where the drag coefficient, being assumed to be a slowly varying multiplier, is omitted.
Therefore, we represent (3.15) in the following form:

a′
p,i = 3

4
ρ

ρp
ε1/3d−1/3

p ep,i. (3.16)

It is worthwhile to note that experimental studies in Qureshi et al. (2007, 2008) have shown
that the root-mean square of the acceleration variance of a finite size particle with dp > η

in a high Reynolds number turbulence scales indeed with d−1/3
p , as in (3.16). Also note

that the particle acceleration norm in (3.16) is linked to an estimate of the fluid particle
acceleration norm a′ as a′

p ∼ a′(ρ/ρp)(η/dp)
1/3. Using the Ito transformation yields the

equation for the stochastic variable f = ε2/3

df = −f
(

ln
f
f∗

− 1
9
σ 2
χ

)
T−1
χ dt + 2

3
f
√

2σ 2
χT−1

χ dW(t), (3.17)

where f∗ = 〈ε〉2/3. Additionally, one can show that,〈
f ln

f
f∗

〉
= 1

9
〈 f 〉σ 2

χ ;
〈

f 2ln
f
f∗

〉
= 5

9
〈 f 2〉σ 2

χ , (3.18)
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and consequently,

〈df 〉 = 0; 〈df 2〉 = −8
9
σ 2
χ 〈 f 2〉 dt

Tχ
. (3.19)

Similar to the model for a particle smaller than the Kolmogorov length scale i.e.
(3.6)–(3.13), the parameters in the model for a particle bigger than the Kolmogorov length
scale as given by (3.13), (3.16)–(3.17) are the same; these are the mean viscous dissipation
〈ε〉, laminar viscosity ν and the turbulent Reynolds number Retur. In figure 2(a), the
distribution of f = ε2/3 is shown for different Reynolds number: Retur = 50, 100, 1000
and 〈ε〉 = 100 m2 s−3, τη = 10−3 s. These distributions represent an averaged shape over
the whole stochastic process. It is seen that with increasing the Reynolds number, the
distributions become narrower and expose a long tail as the result of the particle response
to events of the velocity ‘jumps’ in the fluid. Meanwhile the auto-correlation function of
f = ε2/3 become more extended with increasing the Reynolds number. This is shown in
figure 2(b). In agreement with experimental observations, mentioned in introduction, the
acceleration has much narrower auto-correlation function than that for the acceleration
norm. A heavy particle, interacting with energetic intertwined helical motion, preserves
the magnitude of the acceleration longer than its direction. This is illustrated in figure 2(c),
where the auto-correlation of a′

p,i=2 = (3/4)(ρ/ρp)ε
1/3d−1/3

p ep,i=2 is seen to be much
narrower than in figure 2(b). By comparing this auto-correlation function at different
Kolmogorov times τη = 0.001, 0.003, 0.0045, with the same Reynolds number taken as
Returb = 100, i.e. preserving the turbulence intensity, but changing the mean dissipation
rate 〈ε〉, it is seen that the auto-correlation function of the particle acceleration becomes
narrower as the mean dissipation rate 〈ε〉 is increased. The reproduced intermittency
effects are seen as well in figure 2(d), where the p.d.f.s of a′

p,i=2 at different Reynolds
number Returb = 50, 100, 1000 are shown. These effects are manifested in the form of
extended tails of distribution, as the Reynolds number is increased.

3.3. Implementation of presented models in framework of LES
With expressions (3.4), (3.6) and (3.16), the motion equation of a particle depending on its
size is given as follows. For droplets with dp < η < Δ, the droplet acceleration is given by

dup,i

dt
= ũi − up,i

τp
+
√
ε

τp
ep,i. (3.20)

The subgrid droplets larger than the Kolmogorov scale have more inertia, and
consequently, the spectral broadening associated with large-scale advection of structures
on dissipative scales relative to these droplets is significant. Then for spray droplets with
η < dp < Δ (mainly in near-field spray), the second term in (3.4) may be stronger than the
Stokes drag term. For such droplets, we assumed therefore zero-mean accelerations

dup,i

dt
= 3

4
ρ

ρp
ε1/3d−1/3

p ep,i. (3.21)

Along the particle path, the instantaneous viscous dissipation ε is simulated as log–normal
stochastic process according to

dε
ε

= −
[

ln
ε

εΔ
− σ 2

χ

2

]
T−1
χ dt +

√
2σ 2
χT−1

χ dW(t) (3.22)
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Figure 2. (a) The p.d.f. of f = ε2/3 for different Returb = 10, 100, 1000. (b) Auto-correlation function R( f )
for different Returb = 10, 100, 1000. (c) Auto-correlation function of y-component of stochastic particle
acceleration i.e. R(ap,y) for Returb = 100 but for different Kolmogorov time scales (tη). (d) The p.d.f. of the
y-component of stochastic particle acceleration i.e. a′

p,y for different values of Returb.

with the following parameters:

εΔ = Cl
K3/2

sgs

Δ
; Tχ = ν + νsgs

Δ2 ; σ 2
χ = ln

(
Δ

η

)
; η =

(
ν3

εΔ

)1/4

. (3.23a–d)

The expression for the variance in (3.23c) represents the influence of the local Reynolds
number. This variance is calculated by typical size of the finite-difference cell, visited
by a droplet at a given moment, and the local Kolmogorov length scale. The evolution
of components of the direction ep,i, are simulated as diffusion process on a unit sphere
according to (3.13) with τη = √

ν/εΔ as the correlation time scale. The random source
due to aerodynamic drag in (2.8) is represented by the sum over all droplets in the given
computational cell

Sstoch
mom,i = − 1

Δ3

∑
n

d
dt
(mpup,i)n, (3.24)

where mp = ρp(πd3/6) is the mass of the nth droplet. The spray source term in (2.12) is
usually expressed by summing the interactions between the sub-filtered fluid velocity u′

i
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and the individual droplet

Sstoch
p,sgs = − 1

Δ3

∑
n

(
mp

dup,i

dt
u′

i

)
n
, (3.25)

where a model is needed for u′
i. The latter is obtained in Bharadwaj, Rutland & Chang

(2009), Tsang et al. (2014) and Tsang et al. (2019) by representing the unfiltered velocity
in the form of an approximated deconvoluted velocity (Stolz, Adams & Kleiser 2001)

Sstoch
p,sgs = − 1

Δ3

∑
n

[
mp

dup,i

dt
(2ũi − 3 ˜̃ui + ˜̃̃ui)

]
n
, (3.26)

where tildes denote a repeated filtering procedure. The approximate deconvolution
recovers flow scales of the order of the LES filter size. Therefore, the extension of this

model is to complement u′
i = 2ũi − 3 ˜̃ui + ˜̃̃ui by the stochastic relative velocity seen by an

individual droplet on SGS. Following § 3.2, for smaller droplets i.e. dp < η � Δ one can
write

Sstoch
p,sgs = − 1

Δ3

∑
n

[
mp

dup,i

dt

(
2ũi − 3 ˜̃ui + ˜̃̃ui + ε1/2τ 1/2

p

)]
n
, (3.27)

while for larger droplets, i.e. η < dp < Δ, assuming that the droplet response time includes
most of turbulent times, the stochastic part can be expressed as

Sstoch
p,sgs = − 1

Δ3

∑
n

[
mp

dup,i

dt

(
2ũi − 3 ˜̃ui + ˜̃̃ui + ε1/3d1/3

p

)]
n
. (3.28)

Here, ε is given by the stochastic process (3.22) along the droplet trajectory.

4. Stochastic mixing controlled evaporation model (SMICE)

Due to the non-stationary character of the flow, the droplet is never totally entrained by
the gas; the surrounding conditions for this droplet are fluctuating, and consequently, its
vaporization rate is also fluctuating. Another effect of turbulence is that the vaporization
rate can be also altered by the presence of neighbouring droplets. The positions of these
latter are controlled by turbulent structures in the flow. In this work we consider the
quasi-stationary vaporization, i.e. the time of initial heating of the droplet and the time
required to induce the radial motion in the gas at the droplet surface once the droplet
recedes due to evaporation – both are negligible in comparison with turbulent times along
the droplet path. The instantaneous vapour mass flux issued at the droplet surface is

Fvs = −ρDs
(∇Yv)s
1 − Yvs

, (4.1)

where Yv is the vapour mass fraction, Yvs is its value at the droplets surface and
Ds is the vapour diffusivity in air. In the framework of classical assumptions of the
droplet quasi-steady evaporation (see review of Jenny, Roekaerts & Beishuizen (2012),
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Stochastic models for evaporating droplets in LES

for example), the gradient of the vapour mass fraction at the droplet surface is given by

(∇Yv)s = Y∗
v − Yvs

dp
Pep

2
ePep − 1

, (4.2)

where Y∗
v , is the vapour mass fraction at a distance significantly larger that the droplet

diameter dp and Pep is the Péclet number of the evaporating droplet

Pep = − ρp

ρDs

d
dt

[
d2

p

8

]
= ln(1 + BY). (4.3)

Here, BY = (Yvs − Y∗
v )/(1 − Yvs) is the mass transfer number. Frossling’s correlation

(Faeth 1977), introduced usually into the expression (4.2), leads to

(∇Yv)s = Y∗
v − Yvs

dp
Shp, (4.4)

where Shp is the Sherwood number. In our work, the Sherwood number is expressed in
terms of the filtered flow variables, and is denoted as S̃hp

S̃hp =
(

2.0 + 0.6R̃e1/2
p Sc1/3

p

) ln(1 + BY)

BY
. (4.5)

Here, R̃ep = |ũ − up|dp/ν is the filtered droplet Reynolds number and Scp = ν/D is
the Schmidt number; if BY � 1, ln(1 + BY) ≈ BY . The vapour mass fraction Y∗

v in
surrounding of a point-wise droplet on residual scales is not completely known. Usually,
it is attributed to the locally resolved filtered vapour mass fraction for the ensemble of
all droplets which are located in a given computational cell. This implies that, inside the
resolved eddies, the vapour leaving the droplet surface is immediately well stirred over the
computational cell. Consequently, the source term in (2.4) and (2.5) is evaluated in LES
solely in terms of filtered variables

S̃vap = 1
Δ3

∑
n

[
πd2

p

4
F̃vs

]
n

, (4.6)

where

F̃vs = ρ̄Ds
Yvs − Ỹv

dp

1
1 − Yvs

S̃hp. (4.7)

The expression in brackets in (4.6) represents the vapour produced by the nth evaporating
droplet per unit time. The source term in the energy equation i.e. (2.5), has the following
form:

S̃energy = 1
Δ3

∑
n

[
πd2

p

4
F̃vs

(
Ip + Lvap + 1

2
up,iup,i

)
+ Qp + mpup,i

dup,i

dt

]
n

, (4.8)

where Qp is the rate of heat conduction to the droplet surface per unit area, Ip is the
drop internal energy and Lvap is the latent heat of vaporization; their sum is related to
the vapour enthalpy (hvap) and the equilibrium vapour pressure (pvap), both calculated at
the droplet temperature Tp, i.e. Ip + Lvap = hvap(Tp)− pvap(Tp)/ρp. More specific details
on the governing equations of flow vaporizing sprays are given in many manuals (see for
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example Amsden et al. 1989). In LES, the gradients of the vapour mass fraction and of the
temperature in Qp on the droplet surface are determined by resolved fields.

In order to account for effects of sub-filter fluctuations on the vaporization rate, Bini &
Jones (2009) proposed to complete the resolved Sherwood number in (4.7) by its stochastic
part, as the random walk with the variance around the local magnitude of K1/2

sgs . The
approach we propose hereafter is different from Bini & Jones (2009) model: it is based
on the stochastic simulation of the gradient of the vapour mass fraction on the droplet
surface, in which via the stochastic process, the physical time scale of the auto-correlation
is introduced, and the main focus is put on effects of small-scale intermittency in the
evaporation of droplets. Namely, along the droplet trajectory, we simulate the random
function Ystoch

v which is varying within the interval between the vapour mass fraction
Ỹv , resolved on the coarse LES mesh, and its value at the droplet surface Yvs, i.e.
Ystoch
v ∈ [Ỹv, Yvs], and correspondingly

(∇Yv)stoch
s = Ystoch

v − Yvs

dp
S̃hp. (4.9)

Thereby, the stochastic source terms in (2.9)–(2.11) have the following form:

Sstoch
vap = 1

Δ3

∑
n

[
πd2

p

4
Fstoch
vs

]
n

, (4.10)

where

Fstoch
vs = ρ̄Ds

Yvs − Ystoch
v

dp

1
1 − Yvs

S̃hp, (4.11)

Sstoch
energy = 1

Δ3

∑
n

[
πd2

p

4
Fstoch
vs

(
Ip + Lvap + 1

2
up,iup,i

)
+ Qp + mpup,i

dup,i

dt

]
n

. (4.12)

It is seen that, different from the standard evaporation model, i.e. d2-law, the expression
(4.11) contains the random multiplier (Yvs − Ystoch

v )/(Yvs − Ỹv) ∈ [0, 1]. The idea behind
the stochastic model for Ystoch

v follows the partially stirred reactor model, which was
proposed to account for the turbulence–chemistry interaction (Vulis 1961; Chomiak
& Karlsson 1996; Sabelnikov & Fureby 2013). In the Vulis model, the chemical
reaction and turbulent mixing are considered as the succession of two steady-state
sub-processes, and thereby the chemical reaction rate, evaluated at a certain intermediate
concentration, and the intensity of turbulent mixing, conditioned on that concentration,
represent two mutually controlling factors. By same analogy, we assume that the
global evaporation process consists of the succession of two steady-state sub-processes,
evaporation and mixing. The latter is due essentially to the intermittent regions of turbulent
fine structures which occupy a small fraction of the flow within the considered volume.
The main suggestion is that the evaporation rate is strongly enhanced once the droplet
is visiting these regions, and their volume fraction is to be proportional to the time scale
fraction τmix/(τmix + τvap), where τmix is the mixing time scale and τvap is the vaporization
time scale. The smaller the mixing time (τmix), the thinner are the fine turbulent structures
and the thinner are the stretched zones of effective evaporation and, thereby, a more
intensive mixing process is induced. If this fraction tends to zero, τmix/(τmix + τvap) ≈ 0,
i.e. τmix � τevap, the mixing is intensive, and the global evaporation process corresponds
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to well-stirred conditions Ystoch
v ≈ Ỹv . In contrast, if the ambient around a droplet is

non-turbulent, τmix � τevap and τvap/(τmix + τvap) ≈ 0 (as in a cluster of droplets, for
example), the dilution of the droplet environment by surrounding air, which is of a
diffusive nature, is much less effective. In the limit of zero gradient of the vapour mass
fraction on the droplet surface, Ystoch

v ≈ Yvs, there is no evaporation. To satisfy these
conditions, we state the following expression:

Ystoch
v = Ỹv

τvap

τvap + τmix
+ Yvs

τmix

τvap + τmix
, (4.13)

equivalently to the equality of both intensities, of evaporation and of mixing

Yvs − Ystoch
v

Ystoch
v − Ỹv

= τvap

τmix
. (4.14)

With (4.13), the expression (4.9) can be rewritten as

(∇Yv)stoch
s = b

b + 1
Ỹv − Yvs

dp
S̃hp, (4.15)

where b = τvap/τmix, represents the vaporization Damkhöler number. Here, τmix may be
taken as the instantaneous Kolmogorov time i.e. τmix = √

ν/ε, where ε is governed along
the droplet trajectory by the stochastic log–normal process. In this way the intermittency
effects are introduced in the droplet evaporation model. Along with the log–normal
process (3.7), presuming 〈ε〉, ν, Returb, the stochastic properties of the coefficient b

b+1 are
shown in figure 3. With the same turbulent Reynolds number, Returb = 100, and varying
〈ε〉, figure 3(a) illustrates the influence of the intensity of fine structures (τη = √

ν/(〈ε〉))
on the mean value 〈b/(b + 1)〉 in (4.15). It is seen that, with higher 〈ε〉, the mean
estimate of the vapour mass fraction gradient on the droplet surface in (4.15) is increased.
Figure 3(b) shows the effect of the turbulent Reynolds number, Returb, on the root-mean
square of b/(b + 1), for the same 〈ε〉 = 100 m2 s−3. It is seen that the higher the Reynolds
number is the higher is the variance of b/(b + 1) in (4.15), i.e. there is more fluctuation in
the vaporization rate in response to the irregular local flow structure. There are different
possible definitions of the vaporization time scale τvap. In this work, using the Frössling
correlation, we adapted the expression of the vapour mass flow leaving the droplet surface
per unit time and per unit mass of the gaseous mixture in the considered computational
cell

−dmp

dt
1
Δ3ρ̄

= Yvs − Ỹv
τvap

; τ−1
vap = πDsdp

1
1 − Yv,s

S̃hp
1
Δ3 . (4.16a,b)

At the end of this section, note also that the Frössling correlation in the Sherwood
number (4.5) was established for 10 < Rep < 1800 (see Faeth (1977), and references
therein for higher Reynolds numbers). Since the vaporizing subgrid droplets larger than
the Kolmogorov scale may be surrounded by turbulent shear layers, the application of
the Frössling correlation, based on the instantaneous relative velocity of the droplet, is
an open question (see discussions in Birouk & Gökalp (2002). In our simulations, the
expression (4.5) was retained in terms of filtered parameters S̃hp for droplets smaller and
larger than the Kolmogorov length scale. The local filtered Reynolds number is usually
R̃ep < 1000. The assumption behind expression (4.9) is that the contribution of the subgrid
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Figure 3. (a) Mean of b/(b + 1) for different values of dissipation rate 〈ε〉 for same Returb = 100.
(b) Variance of b/(b + 1) corresponding to different values of variance for same 〈ε〉 = 100 m2 s−3.

turbulence comes from (Ystoch
v − Yvs)/dp, while S̃hp is slowly varying. On the other hand,

it is clear that the presence of boundary layers in the vicinity of droplets with dp > η

does not contradict the main assumption (4.14): the intensity of the vapour release from
a droplet is equal to the intensity of its turbulent mixing, and the latter is controlled by
inhomogeneous structures on SGS. The above described stochastic evaporation model, is
applied and assessed in the following sections.

5. Model assessment and further discussion

Two different experimental set-ups are used in this study to characterize the performance
of the new stochastic models for droplet dispersion and evaporation given by (3.20)–(3.28)
with (4.10)–(4.13). The first set of experiments from an engine combustion network (ECN),
provide quantitative measurements of fuel–air mixing characteristics in high-pressure
liquid spray injection with conditions reflective of diesel engines. In these experiments,
the liquid fuel is injected into the gas chamber at super-critical conditions. This may raise
questions about the existence of droplets (Bellan 2000; Selle & Ribert 2008), which is the
intrinsic assumption of the models in §§ 3 and 4. To the best of our current knowledge, the
recent experimental observations confirm the physical validity of such an assumption –
the liquid/gas interface in the mixture persists at super-critical conditions of the chamber,
and gives rise to a spray-like dynamics and evaporation (Jofre & Urzay 2021). The clear
evidence from the highly resolved optical imaging in Crua, Manin & Pickett (2017) is
that the surface tension and droplet production are significant in the conditions of ECN
sprays. Although these conditions are above the critical point of the n-dodecane, the initial
temperature of the fuel is sub-critical, and finite time is needed for the heat transfer to
bring the fuel to its super-critical value. The measurements in Crua et al. (2017) show
that the evaporation of n-dodecane droplets in ECN sprays is faster than the time required
to reach the super-critical conditions. In the same operating conditions, the existence of a
liquid/gas interface, albeit weakening because cellular structures appear, is also recognized
from the ballistic imaging in Falgout et al. (2016). On top of this, even if super-critical
conditions have been attained in the chamber for both fuel and air, the recent analysis
of the thermodynamics and transport processes in the multi-component systems in Jofre
& Urzay (2021) suggest that liquid-like and gas-like streams, being brought into contact,
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Experiment NEV-A1 NEV-A2

Injection Pressure (MPa) 150 50
Injection Temperature (K) 363 363
Injection velocity (m s−1) 540 320
Ambient Pressure (MPa) 2 2
Ambient Temperature (K) 440 440

Table 1. Experimental conditions of non-evaporating ECN Spray-A test cases

will tend to be separated by persisting interfaces subject to surface-tension forces. The
second experiment concerns turbulent spray evaporation in a simplified co-axially flowing
gas combustor configuration. Also a relative comparison of the different flow statistics
for the aforementioned test cases with two other state-of-the-art models i.e. the Wang &
Squires (1996) dispersion model with classical d2-law evaporation model and the more
recently proposed stochastic models of Bini & Jones (2008, 2009) described in § 3.1, is
also presented. This is followed by a short discussion on the numerical simulations.

5.1. Non-reacting and non-evaporating diesel-like sprays
The open-source database of ECN spray experiments (Idicheria & Pickett 2007; Pickett
et al. 2010, 2011; Payri et al. 2016; Kastengren et al. 2017) provides detailed measurements
of different quantities like temporal evolution of the liquid spray-tip and vapour penetration
lengths, spatial distribution of gas-phase velocities and fuel–air mixture fraction. The
typical experimental set-up referred to as Spray-A consists of a liquid n-dodecane jet
issued from a nozzle with a diameter of 90 μm into a pre-heated constant volume
gas chamber. The temperature and pressure of the chamber are varied accordingly in
order to always maintain the ambient gas density at a constant value of 22.8 kg m−3.
In order to evaluate the effect of the droplet dispersion models on spray structure, two
different low-temperature spray experiments with injection pressures of 150 and 50 MPa
are considered. For these experiments the ambient gas temperature and pressure are
maintained at 440 K and 2 MPa respectively. The evaporation rates for these test cases
are considered to be negligibly small. The ambient gas for these test cases is composed of
pure N2 gas. The liquid velocity and the Reynolds number based on the jet exit conditions
for the two test cases are of the order of 300–600 m s−1 and 1 × 104–105, respectively.
The specifics of the different non-evaporating experimental conditions are provided in
table 1. The constant volume spray chamber is represented by a cylindrical domain of
length 100 mm with a diameter of 50 mm in the computations. The computational domain
is discretized into hexahedral cells with a uniform grid size of 0.25 mm in both axial
and radial directions. This mesh resolution is referred to as the coarse grid or C-Grid.
Another finer mesh referred to as the F-Grid with a cell size linearly varying from
0.125 to 0.25 mm both in axial and radial directions is used to study the effects of grid
resolution. In the framework of the LES approach, in which filtering is equivalent to
spatially weighted averaging, the parcels are formed from a distribution of drop sizes,
velocities and temperatures within the volume of filtering, and then the evolution of
these parcels is simulated by a discrete-particle technique. This study is based on the
classical ‘blob’ approach of Amsden et al. (1989), wherein the initial size of all the
parcels injected is assumed to be the same as the nozzle diameter. The fragmentation
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Figure 4. Comparison of temporal evolution of spray-tip penetration length predicted with (red) and without
(blue) the spray source/sink term in the subgrid TKE equation by Wang & Squires (1996) (green), Bini & Jones
(2008) (blue), stochastic drag (SD) (red) models with the NEV-A1 experiment (black) for the grid resolution
of Δ = 0.25 mm.

of droplets is then modelled using the well-known breakup model of Beale & Reitz
(1999), wherein the breakup is characterized by relaxation to typical size estimates of
the fastest growing instabilities on the droplet surface. While the Kelvin–Helmholtz (KH)
instability is applied for representing the continuous stripping of the mass from initial
‘blobs’ in the near-nozzle region, the Rayleigh–Taylor (RT) instability mechanism is used
as a model for the secondary breakup of droplets. This approach is usually referred to as
the KH–RT model and is implemented in the majority of spray combustion solvers. The
model constants for the KH–RT breakup model used in this study are same as those found
in Wehrfritz et al. (2013). The droplet collisions and coalescence are not considered in this
study. OpenFOAM, which is widely used in simulations of turbulent multi-phase flows, is
applied also in this work. The Eulerian gaseous flow is solved using a low Mach number
variable density flow solver based on the pressure-implicit with splitting of operators
(PISO) algorithm. For discretization of spatial gradients second-order numerical schemes
are used, an implicit first-order Euler scheme is used for the time integration. Liquid spray
penetration length is an important parameter characterizing the overall spray dispersion. At
any given instance of time, it is defined as the axial distance where the accumulated liquid
droplet mass reaches 95 % of the total liquid mass injected. First, in order to evaluate
the significance of the spray source/sink term in the TKE equation, a comparison of
the evolution of spray-tip penetration lengths predicted by different dispersion models
on the coarse grid resolution of Δ = 0.25 mm is shown in figure 4. From the relative
comparisons, it can be seen that in the considered case of the high-speed ECN sprays,
the rate at which turbulent subgrid eddies are doing work in dispersing the spray droplets
makes very little contribution to the spray-tip evolution. Probably this is a reason why, in
a number of ECN spray simulations (see for example, Kaario et al. 2013; Senecal et al.
2014), this term is neglected. Next, the distributions of time-averaged SGS kinetic energy
and the mean gas-phase velocities along the spray centreline predicted by the different
models are shown in figures 5 and 6 to qualitatively illustrate the contribution of the spray
source term in the subgrid TKE equation. The time averaging is performed over a period
of 1.0 ms (i.e. from 0.5 to 1.5 ms). From the results, it can be seen that the average gas
velocity and SGS kinetic energy predicted by the stochastic drag model is almost half
of the values predicted using the Wang & Squires (1996) and Bini & Jones (2008). The
results also show that the relative influence of the source term on both the gas velocity
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Figure 5. Comparison of time-averaged SGS kinetic energy predicted with (Red) and without (Blue)
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Figure 6. Comparison of time-averaged gas-phase velocity predicted with (Red) and without (Blue)
spray-induced turbulence source term by Wang & Squires (1996), Bini & Jones (2008), SD (Red) models
for the grid resolution of Δ = 0.25 mm.

and SGS kinetic energy is minor for all the dispersion models. Therefore, for further
comparisons, the results corresponding to ECN spray simulations without the spray source
term in the subgrid TKE equation are presented. In order to evaluate the grid sensitivity
of the dispersion models, a comparison of the spray-tip evolution for two different grid
resolutions with the experimental data for the high-pressure injection case of NEV-A1
is shown in figure 7. In comparison with the experiment, the faster spray-tip penetration
predicted by both Wang & Squires (1996) and Bini & Jones (2008) models even on finer
grid resolution of Δ = 0.125 mm, reflects underestimation of the droplet dispersion by
these models. On the other hand, the stochastic drag (SD) model is seen to be more
efficient in predicting the spray evolution even on coarse grid resolution ofΔ = 0.25 mm.
In the case of the SD model, it can also be seen that the penetration length evolution is less
sensitive to the grid resolution compared with the standard dispersion models. Applying
the same KH–RT breakup model, it is interesting to study the influence of the dispersion
model on the resulting droplet sizes from spray breakup. To this end, a comparison of
the spatial evolution of the Sauter mean diameter (SMD) of droplets along the spray axis
as predicted by different models with the experiment at a time t = 1.5 ms after start of
injection (ASOI) on a grid resolution of Δ = 0.125 mm is shown in figure 8. The results
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Figure 7. Comparison of temporal evolution of spray-tip penetration length predicted by Wang & Squires
(1996) (Green), Bini & Jones (2008) (blue), SD (Red) models with the NEV-A1 experiment (black) for two
grid resolutions of Δ = 0.25 mm (a) and Δ = 0.125 mm (b).
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Figure 8. Comparison of SMD of droplets predicted by Wang & Squires (1996) (Green), Bini & Jones (2008)
(blue) and SD (Red) model along the spray centreline at time = 1.5 ms after start of ignition (ASOI) for two
grid resolutions of Δ = 0.25 mm (a) and Δ = 0.125 mm (b).

indicate that both the Wang & Squires (1996) and Bini & Jones (2008) dispersion models
give a slower breakup rate with larger SMD values compared with the experiment, even
at the finer grid resolution of Δ = 0.125 mm. Also with these two models, the droplet
sizes resulting from spray breakup (indicated by SMD values far away from the nozzle
exit i.e. ≈5 μm) are much larger than the experimental values. On the other hand, the
use of SD model induces relatively faster breakup rate with resulting droplet sizes much
closer to the measured SMD values (≈1 μm). Again, it can be observed that the droplet
size statistics resulting from the SD model are less sensitive to grid resolution, while the
other two models produce relatively faster breakup of droplets with smaller sizes on finer
grid resolution.

In order to qualitatively illustrate the mentioned differences in the spray configuration
predicted by different dispersion models, a comparison of the instantaneous images with
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Figure 9. Comparison of instantaneous spray structures at times t = 1.0 ms and 1.5 ms ASOI predicted by
Wang & Squires (1996), Bini & Jones (2008) and SD models on a grid resolution of Δ = 0.25 mm with the
experimental Schlierien images.

the experiment for time instances of 1.0 ms and 1.5 ms after start of injection (ASOI)
is provided in figure 9. The computations correspond to the grid resolution of Δ =
0.25 mm. While the spray structure predicted by the SD model remains similar to the
Schlieren images of the experiment, the other two models predict a spray structure with an
excessively penetrative liquid core. Moreover in case of Wang & Squires (1996), the spray
core is surrounded by large number of very small droplets radially dispersed.

At lower injection pressures, as in the case of NEV-A2, the experiments have shown that
spray breakup ends within the first few millimetres of injection and the spray structure is
controlled only by turbulent dispersion. So, next a comparison of the temporal evolution of
liquid spray-tip penetration predicted by different models for two different grid resolution
for the NEV-A2 test case are shown in figure 10. From the results, it can again be seen
that, while the SD model accurately predicts the spray evolution even on a coarser grid
resolution, the standard dispersion models tend to over-predict the penetration lengths
even on the finer grid resolution. In general, the simulation in high-pressure ECN spray
conditions lends substantial support to properties of the SD model, introduced in § 3.
Being designed to characterize the interaction solely with strong turbulent motions on
smallest unresolved scales, and providing the long spatial correlation for the particle
stochastic acceleration, the SD model shows a weak sensitivity to the grid resolution, and
the predictions by this model are quite closely to experimental observations. At the same
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Figure 10. Comparison of temporal evolution of spray-tip penetration length predicted by Wang & Squires
(1996) (Green), Bini & Jones (2008) (blue), SD (Red) models with the NEV-A2 experiment (black) for two
grid resolutions of Δ = 0.25 mm (a) and Δ = 0.125 mm (b).

time, the droplet dispersion models, based on the stochastic estimate of the sub-filter fluid
velocity, over-predict the spray penetration lengths and display an acute sensitivity to the
grid resolutions.

5.2. Non-reacting and evaporating diesel-like sprays
In order to characterize the influence of stochastic SGS evaporation models, two different
evaporating spray experiments from the ECN database were considered in this study.
The first test case is the Spray-A experiment. Here, n-dodecane is injected at a pressure
of 150 MPa into a pre-heated gas with an ambient temperature of 900 K and density of
22.8 kg m−3. The Spray-A experiment provides statistics of gas-phase velocity and vapour
mass fraction. In addition to the quantitative comparisons of different statistics provided by
Spray-A, the Spray-H test case is used to qualitatively compare the instantaneous spray jet
structure at different time instances. In case of Spray-H, a liquid jet of n-heptane is issued
from a nozzle diameter of 100 μm with an injection pressure of 150 MPa into an ambient
gas at a temperature of 1000 K and a density of 14.2 kg m−3. The specific details of the
experimental conditions are presented in table 2. Unlike isothermal sprays, in the case
of evaporating sprays the liquid spray-tip penetration length attains a steady-state value,
where the total evaporation rate is equal to the fuel injection rate, thereby quantifying
the overall evaporation rate. On the other hand, the vapour penetration length progresses
with time, quantifying the overall dispersion and fuel–air mixing rate. In figures 11 and 12
the numerical positions of both tips predicted by the different modelling approaches are
compared with the measurements of Spray-A. The numerical values of both the liquid
and vapour tip penetration are compared for two different grid sizes, Δ = 0.25 mm and
Δ = 0.125 mm. It is clearly seen that, on a given mesh, the new stochastic models for
vaporizing droplets predict better both the global dispersion and vaporization parameters
compared with the stochastic models of Bini & Jones (2008, 2009) and the standard
approach (the Wang & Squires (1996) model for dispersion with the classical d2-law
evaporation model). As in the case of isothermal sprays, the new stochastic SGS model
of vaporizing droplets exhibit much less sensitivity to the mesh spacing than in the
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Experiment ECN-A ECN-H

Fuel C12H26 C7H16
Injection Pressure (MPa) 150 150
Injection Temperature (K) 363 363
Nozzle diameter (μm) 90 100
Ambient Pressure (MPa) 6 4
Ambient Temperature (K) 900 1000

Table 2. Experimental conditions of evaporating ECN Spray-A and Spray-H test cases
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Figure 11. Comparison of liquid spray-tip evolution predicted by standard SGS (Green) i.e. Wang & Squires
(1996) dispersion model with classical d2-law evaporation model, stochastic models of Bini & Jones (2008,
2009) (blue), stochastic SGS: SD model and SMICE model (red), with the ECN-A experiment (black) for two
grid resolutions of Δ = 0.25 mm (a) and Δ = 0.125 mm (b).
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Figure 12. Comparison of vapour penetration length evolution predicted by standard SGS (Green) i.e. Wang
& Squires (1996) dispersion model with classical d2-law evaporation model, stochastic models of Bini & Jones
(2008, 2009) (blue), stochastic SGS: SD model and SMICE model (red), with the ECN-A experiment (black)
for two grid resolutions of Δ = 0.25 mm (a) and Δ = 0.125 mm (b).
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Figure 13. Multiple realizations of gas-phase velocities along the spray centreline generated using the random
seeding approach. (a) the Wang & Squires (1996) model with d2 law (standard SGS); (b) stochastic models of
Bini & Jones (2008, 2009); (c) SD with SMICE (stochastic SGS) for the grid resolution of Δ = 0.125 mm.

case of the other two modelling approaches. Since each repetition of the experiment
represents a single realization of the spray, 30–40 realizations of the same experiment are
performed to obtain ensemble-averaged statistics for the local gas-phase flow parameters
like the velocity and vapour mass fraction. In order to emulate the same numerically,
random seeding procedure (Senecal et al. 2014; Hu et al. 2015; Pei et al. 2015; Ameen,
Pei & Som 2016) is adopted in this study. The random seeding approach generates a
different sequence of random numbers used for modelling different spray sub-processes
like injection, dispersion and evaporation, thereby producing different realizations of both
Lagrangian and Eulerian flow statistics for the same initial and boundary conditions.
For each modelling approach, 10 different realizations of LES are simulated in order to
obtain the ensemble-average statistics. Figure 13 provides a comparison of 5 different
realizations of vapour mass fraction profiles generated along the spray centreline for the
three different modelling approaches. The mean and variance of local gas flow velocity
and vapour mass fraction fields are obtained by averaging over ten different realizations
for each modelling approach. First, a quantitative comparison of the mean gas-phase
velocities and vapour mass fraction evolution along the spray centreline are given for time
t = 1.5 ms ASOI for two different grid resolutions (Δ = 0.25 mm, 0.125 mm) in figures 14
and 15. Next, a comparison of the spatial distributions of the mean and variance of local
vapour mass fraction and gas-phase velocities at three different longitudinal positions
(20 mm, 30 mm, 40 mm) for time t = 1.5 ms ASOI on a grid resolution ofΔ = 0.125 mm
are shown in figures 16 and 17. While the spatial distribution of vapour mass fraction
quantifies the local vaporization rate, the velocity distributions quantify the momentum
transfer from the liquid droplets and the air entrainment process. It is seen that, different
from other models, the application of SD and SMICE models leads to a reasonably
accurate prediction of both the first- and second-order statistics of both the vapour mass
fraction and gas velocity even at coarser grid resolutions. The spatial distribution of the
variance of both the vapour mass fraction and gas-phase velocities for the stochastic
models still do not exactly match with the experimental distributions as the number of
realizations used for averaging is still significantly lower than that used in the experiments.
Finally a comparison of the instantaneous spray structure predicted by a single realization
of different modelling approaches at four different time instances of spray evolution for the
Spray-H test case are shown in figure 18. While the new stochastic models for vaporizing
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Figure 14. Mean gas-phase velocity along spray axis at a location 0.64 mm offset from the centreline at time
t = 1.5 ms ASOI. Comparison for two different grid resolutions of Δ = 0.25 mm (red), Δ = 0.125 mm (blue)
with ECN-A data (black circles). (a) the Wang & Squires (1996) model with d2 law (standard SGS); (b)
stochastic models of Bini & Jones (2008, 2009); (c) SD with SMICE (stochastic SGS).
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Figure 15. Mean vapour mass fraction along spray axis at a location 0.64 mm offset from centreline at
time t = 1.5 ms ASOI. Comparison for two different grid resolutions of Δ = 0.25 mm (red), Δ = 0.125 mm
(blue) with ECN-A data (black circles). (a) the Wang & Squires (1996) model with d2 law (standard SGS);
(b) stochastic models of Bini & Jones (2008, 2009); (c) SD with SMICE (stochastic SGS).

droplets give an accurate description of both the vapour penetration and also the spatial
distribution of vapour mass fraction, the other two modelling approaches show much faster
penetration of vapour with a lower intensity of the vapour mass fraction.

5.3. Turbulent spray evaporation in a co-flowing gas combustor
The third test case used for the assessment of the stochastic models for vaporizing
droplets is the co-axial spray combustor experiment from Sommerfeld & Qiu (1998).
A schematic of the experimental set-up shown in figure 19 is reproduced in the simulation.
An iso-propyl alcohol spray is injected from a hollow cone spray atomizer with a diameter
of 20 mm into a pre-heated turbulent co-flow of air issuing from an annular injection tube
with an inner diameter of 40 mm and an outer diameter of 64 mm. The mass flow rates of
the air and of the liquid spray are 28.3 and 0.44 g s−1 respectively. The hot air is issued
at 18 m s−1 and at a temperature of 373 K while the liquid is injected at a temperature of
313 K. Taking the annular radius of the co-flow as a reference length scale, the bulk flow
Reynolds number for the flow can be approximated to be around 2 × 104. The detailed
measurements are provided close to the nozzle exit as a set of initial conditions for the
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Figure 16. Radial distributions of mean and variance of vapour mass fraction at axial locations of 20 mm, 30
and 40 mm; at time t = 1.5 ms ASOI and Δ = 0.125 mm; experiment: ECN-A data; standard SGS (Green):
the Wang & Squires (1996) model with d2-law; Bini & Jones (2008, 2009) stochastic models (Blue); stochastic
SGS (Red): SD with SMICE.
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Figure 17. Radial distributions of mean and variance of axial gas-phase velocities at axial locations of 20 mm,
30 and 40 mm; at time t = 1.5 ms ASOI andΔ = 0.125 mm; experiment: ECN-A data; standard SGS (Green):
the Wang & Squires (1996) model with d2-law; Bini & Jones (2008, 2009) stochastic models (Blue); stochastic
SGS (Red): SD with SMICE.

droplet size distribution, as well as for the correlations between size, location and velocity
of the droplet. So, in the simulation there is no need to simulate the breakup of droplets.

In order to reduce the computational effort, the turbulent fluctuations at the exit of the
annular pipe are generated from a priori periodic flow simulation. The inflow data are
generated and stored over five flow through times, for every few computational time steps
of the channel flow simulation. The velocity profiles are then mapped onto the gas flow
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Figure 18. Comparison of spray images for a grid resolution of Δ = 0.125 mm at times 0.49 ms, 0.68 ms,
0.9 ms and 1.1 ms ASOI with snapshots from experiment: ECN-H data; stochastic SGS: SD with SMICE;
standard SGS: the Wang & Squires (1996) model with d2-law; Bini & Jones (2008) stochastic models.
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Figure 19. Schematic representation of co-axial flow combustor experiment (a) and the corresponding
computational geometry used for simulations (b).

inlet located 50 mm above the atomizer. The velocity profiles are linearly interpolated for
time steps between any two consecutive time intervals of mapping. Since only a finite
sized domain is used instead of simulating the entire test section, a convective boundary
condition is applied at the outlet in order to ensure conservation of mass flow leaving the
domain. No-slip and adiabatic boundary conditions are used for velocity and temperature
at the walls. The O-grid technique is used to generate a structured hexahedral mesh with
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Figure 20. Comparison of droplet mean and root-mean square (r.m.s.) axial velocity averaged over all droplet
sizes at different axial locations; experiment (coloured circles) – Sommerfeld & Qiu (1998); stochastic SGS
(black line) – SD with SMICE.

increasing grid density in the spray injection and annular gas flow regions. The grid size
is varying from 0.25 mm in the regions closer to the spray atomizer to 2.5 mm in the outer
wall regions both in the axial and radial directions. The droplets are injected from a plane
3 mm downstream of the atomizer where the measurements of the spray size and velocity
correlations are available. The position of each droplet is randomly sampled over a radial
distance of 10 mm around the centre. The droplet size distributions are experimentally
measured over 10 discrete radial zones each with a size of 1 mm. Depending on the droplet
position, the droplet diameter is sampled from the size distribution corresponding to the
radial zone containing the droplet. Then the velocity of the droplet is calculated based on
the measured velocity–size correlations. The axial and radial velocity components of the
droplet determine the angle at which it is injected into the considered domain.

Also depending on the time step value, the number of droplets injected is approximated
to match the liquid mass flow rate. Figure 20 shows the radial profiles of the mean and
r.m.s. of axial velocity fields for droplets at different longitudinal cross-sections from 25
to 400 mm. These profiles are obtained by ensemble averaging over all droplet sizes and for
250 samples of discrete time intervals spread over two flow through times. It is seen that
except for the profile of r.m.s. fluctuations at 50 mm, the statistical distributions of the axial
velocity of droplets are predicted relatively well. The injected droplets are entrained by the
high-speed co-flow, reproducing the velocity profiles similar to the jet flow; droplets then
move downstream and spread radially outwards. Thereby negative velocities of droplets are
a result of the generated re-circulation zones in the gas flow. Next, an assessment of the
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Figure 21. Comparison of droplet mean and root-mean square (r.m.s.) of droplet diameter averaged over all
droplet at different axial locations; experiment (coloured circles) – Sommerfeld & Qiu (1998); stochastic SGS
(black line) – SD with SMICE.

mean and r.m.s. of the droplet diameter at different axial locations is shown in figure 21.
In the continuous hollow cone spray, the smaller droplets are dragged into the core by the
entrained air, whereas larger droplets travel to the outer periphery of the spray. The larger
droplets are then subjected to the more intensive evaporation compared with the smaller
droplets in the spray core. Consequently, profiles of the mean droplet size are flattened in
the downstream direction. It is seen that while the mean and r.m.s. profiles of the droplet
diameter are well predicted at near-field locations 25 and 50 mm, the profiles of the mean
diameter in the far field are predicted less satisfactory, being at the same time not far
from measurements: at 300 and 400 mm, the computed diameter is around 20 μm against
measured 30 μm.

5.4. Further discussion
A satisfactory estimation of droplet and gas flow statistics on a relatively coarser grid
resolution and evidence of the relatively weak sensitivity of those parameters to the
grid resolution motivate further discussion on possible mechanisms characterizing the
evaporation of the high-speed liquid injection into the still hot environment of the
gas. Since the evaporating ECN-Spray experiments used in this study are at very high
temperatures where most of the spray is evaporated in the first few millimetres of injection,
we considered a hypothetical condition of spray injection for Spray-A injector with an
injection velocity of 100 m s−1 and a lower ambient temperature of 600 K, so that the
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Figure 22. Iso-surface of Q at time t = 1.5 ms ASOI with iso-value of Q = 1 × 108 s−2 coloured by intensity
of vorticity. The spatial dimensions are in (m).

evaporation rates are much lower and the liquid spray tip penetration length is prolonged up
to a distance of approximately 45 mm. All the statistics presented in this section correspond
to a quasi-steady-state spray obtained at end of simulation i.e. t = 1.5 ms ASOI. In the case
of direct injection fuel sprays, the momentum of the liquid generates a turbulent jet flow
in the gas with intensive vortical structures, as illustrated in figure 22 by iso-contours of
the second invariant of the velocity gradient (Q) at t = 1.5 ms ASOI coloured by the level
of vorticity. The invariant Q is defined by Q = (1/2)(|Ω̃|2 − |S̃|2), where S̃ is the filtered
rate of strain and Ω̃ is the filtered vorticity. The spray formation and the drag experienced
by the produced droplets are the global result of the flow reaction to the momentum of
injected liquid. The produced droplets interact with vortical structures, induced mainly by
the entrainment process, and disperse. The droplets with significant inertia interact with
stronger structures, travel away from the centre and attain the low acceleration regions of
the outer hot periphery. These droplets or groups of these droplets evaporate intensively.
On the other hand, droplets with lower inertia are clustered in the spray core, mostly in the
low vorticity zones.

In the turbulent flow, the positions of clustered inertial droplets correlate with zero
acceleration points, and the evaporation rate in the formed clusters is lowered. Then,
to gather the statistics of the locations of vaporizing droplets at the given time, one
can expect that the strongest fluctuations of the vaporization rate are associated with
droplets at locations of low fluid acceleration: the vaporization rate is highest in the
hot outer periphery and it is lowest in clusters of droplets formed in the spray core.
This can be seen in Figures 23 and 24, which show plots of droplets, scaled by their
vaporization intensity ((1/mp)(dmp/dt)) and mapped on the resolved snapshot of Eulerian
flow variables – the acceleration (figure 23) and the vorticity (figure 24). These plots are
given for two transverse cross-sections at 30 and 40 mm downstream of the nozzle. This
is also illustrated by heavy tails in the joint p.d.f.s of the droplet vaporization intensity
and Eulerian gas flow field variables interpolated to the droplet’s position, as shown in
figure 25. Here, in figure 25(a) the joint-p.d.f. is coloured by the number of particles
having a certain vaporization rate and being in a control volume at a certain resolved
Eulerian acceleration. The statistics for this figure are obtained over all the droplets in
the domain at t = 1.5 ms ASOI. It is also seen that the vast majority of droplets (dark
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Figure 23. Cross-sectional view of spray structure at z = 30 mm (a) and z = 40 mm (b). Droplets coloured
by intensity of vaporization and their size is scaled by their diameters; the Eulerian fields are coloured by the
resolved gas flow acceleration.
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Figure 24. Cross-sectional view of spray structure at z = 30 mm (a) and z = 40 mm (b). Droplets coloured by
intensity of vaporization and their size is scaled by their diameters; the Eulerian fields coloured by the resolved
gas flow vorticity.

purple colour) are characterized by the low vaporization rate and locations at strongly
variable accelerations in the fluid (colours are presented in logarithmic scale). Also, at
t = 1.5 ms ASOI, the joint-p.d.f. of the intensity of droplet evaporation and the vorticity
at the droplet location in the fluid is shown in figure 25(b). Here again, the vast majority of
droplets with the low vaporization rate are attributed to control volumes at very different
vorticity in the fluid, and only the droplets at locations with low vorticity have the high
vaporization rate. The droplets at low vorticity may be found in clusters of the spray core
and in the hot periphery fluid. Providing the Voronoi tessellation conditionally on the
droplet evaporation rate in figure 26(a), in which the smaller the volume of tessellated cells
the higher is the local concentration of particles and the lower is the vaporization rate, the
evidence is that intensively evaporating droplets at low vorticity in the fluid are located in
the hot periphery zone with the diluted droplet population. To find the droplets with the
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Figure 25. Joint-p.d.f. of droplet vaporization intensity and Eulerian gas flow field variables: vorticity (b) and
acceleration (a) along the droplet trajectory. The statistics are obtained over all the droplets in the domain at
t = 1.5 ms ASOI.
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Figure 26. (a) The p.d.f. of normalized Voronoi cell volume conditioned on the intensity of droplet
vaporization (a). A reference value of 100 is chosen for the vaporization intensity to get sufficient statistics
for the two classes. Voronoi tessellation of droplets at a cross-section z = 40 mm plotted on the Q-factor field,
(b) joint-p.d.f. of droplet vaporization intensity and mixing time scale along the droplet path. The statistics are
obtained over all the droplets in the domain at t = 1.5 ms after start of injection.

highest evaporation rates at low acceleration in the hot periphery fluid is not surprising.
The droplets arriving at stagnation points of the fluctuating velocity field are characterized
by a highly turbulent time history along their pathway. This promotes the evaporation.
Figure 26(b) represents the joint p.d.f. of the turbulent mixing time and the intensity of
evaporation, both simulated along the droplet trajectory. It is seen that droplets subjected to
stronger turbulence (smaller mixing time) have an unambiguously higher evaporation rate,
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while for droplets in a weak turbulence, as in the case of droplet clusters, the evaporation
rate is lowered.

6. Concluding remarks

The turbulent flow structure in high Reynolds number flows is characterized by
intermittent events of very large velocity differences across the smallest turbulent length
scales. The tails in the underlying statistical distributions become stronger as the Reynolds
number is increased. In this study, our motivation was to account for such events of
intense velocity gradients in the motion and vaporization rate of droplets when the flow
simulation is provided by LES. To this end, in the droplet equation of motion, we simulate
the sub-filtered acceleration of a droplet as a response to mentioned above turbulent
motions on smallest turbulent scales. The stochastic properties of this acceleration are
linked to the stochastic properties of the fluid particle acceleration along the droplet path,
and is deemed to represent the properties observed in DNS and experimental studies of
highly intermittent flows. As in our previous work, two cases of droplets are considered –
droplets larger and smaller than the Kolmogorov scale. In both these cases, it is suggested
that the momentum flux transferred to a particle on the unresolved scales is determined
by the instantaneous dissipation rate ‘seen’ along the particle path. This dissipation
rate is considered as a sample-space variable within the log–normal stochastic process.
Additionally, the direction of this transfer is modelled as a diffusion process on a unit
sphere with short correlation on the Kolmogorov time. The fact that the key variable of
the stochastic model is directly linked to the fluid velocity gradient makes this approach, in
principle, different from the stochastic models designed for the sub-filtered fluid velocity
itself. The stochastic properties of the presented model are illustrated presuming two
parameters, the mean viscous dissipation rate and the turbulent Reynolds number. It was
shown that as the Reynolds number is increased, the distributions of the heavy particle
acceleration, as well as of its norm, develop longer tails, and thereby, the underlying
auto-correlation function becomes much more extended. These are the properties which
we aimed to introduce in the SGS model of heavy particle motion. In the framework of
two-way coupling, the new stochastic model of the droplet dispersion was assessed in LES
of flows generated by high-speed non-evaporating spray injection. Using a coarse mesh,
the comparisons with measurements (ECN experiment), and with simulations based on
others stochastic models of the particle motion, show clearly the efficiency of proposed
model in accurately predicting temporal evolution of spray-tip penetration length,
droplet size statistics and the overall spray configuration. The model has the practical
advantage of being much less sensitive to the grid spacing than in the case of others
stochastic models for the droplet motion. The long spatial correlations introduced in the
Ornstein–Uhlenbeck processes on SGS for the force acting on a heavy particle provide this
advantage.

Another stochastic model in this study accounts for the intermittency effects in the
droplet evaporation rate. To this end, we suggested that, similar to the mass transfer in
the concentration boundary layer, the evaporation is strongly enhanced when a droplet is
interacting with tiny intense turbulent structures which occupy a fraction of the considered
volume. This fraction is linked in the model to the stochastic viscous dissipation rate
along the droplet path; stronger fluctuations of this rate correspond to smaller fractions
and higher intensity of the vapour mixing around the droplet. Then the overall evaporation
process is assumed to be a succession of two steady-state sub-processes with the equal
intensity, the evaporation on the droplet surface and the vapour mixing across the residual
scales. In locations with weak turbulence (in a cluster of droplets, for example), the
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vapour issued from the droplet remains unmixed, and then the gradient of the vapour mass
fraction on the droplet surface is lower. Consequently, the model leads to negligible overall
evaporation rate. Otherwise, the strong turbulent stretching near the droplet provides an
enhanced rate of the overall evaporation. The model also provides the following property:
with increasing Reynolds numbers, the highly irregular local flow structure induces
stronger fluctuations of the vaporization rate. Another property of this model is that, for
the same Reynolds number, increasing the mean dissipation rate increases the vaporization
rate. The proposed evaporation model was incorporated in LES of highly turbulent flows
with evaporating droplets. For the high-speed spray injection into hot gas environment
(the ECN experiment), the results of the simulation show quite good predictions of the
measured evolution of the liquid and vapour penetration length, as well as of the different
statistics of velocity and the vapour mass fraction distributions in the gas. Here again, the
efficiency and the weak sensitivity to the mesh spacing were demonstrated in comparison
with predictions from other stochastic models of vaporizing droplets. In comparison with
the co-axial gaseous flow combustor experiment from Sommerfeld & Qiu (1998), the
droplets size and velocity statistics are predicted quite correctly in the near injector field
but less satisfactory are the droplet size statistics in the far field.

Additionally, for the ensemble of all evaporating droplets at the given time, the joint
statistics of evaporation rate and flow characteristics, as well as Voronoi tessellations,
are provided. These statistics show a strong non-Gaussianity in the vaporization rate
distribution. This is essentially attributed to droplets located at positions with low fluid
acceleration at a given time instance. In the spray core, such droplets are clustered and
thereby they have low vaporization rate. In contrast, when those droplets are moved to
the hot outer periphery, they are subjected to highest vaporization rate. At the same time,
the Lagrangian joint-p.d.f. of the vaporization intensity and the mixing time seen along
the droplet trajectory indicate a highly turbulent time history of those droplets before they
attain the hot periphery region – the droplets with the high evaporation rate are explicitly
characterized by shortest turbulent times.
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