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PSEUDO-FINITE SETS, PSEUDO-O-MINIMALITY

NADAV MEIR*

Abstract. We give an example of two ordered structures M, N in the same language £ with the
same universe, the same order and admitting the same one-variable definable subsets such that M is a
model of the common theory of o-minimal £-structures and A admits a definable, closed, bounded, and
discrete subset and a definable injective self-mapping of that subset which is not surjective. This answers
negatively two question by Schoutens: the first being whether there is an axiomatization of the common
theory of o-minimal structures in a given language by conditions on one-variable definable sets alone. The
second being whether definable completeness and type completeness imply the pigeonhole principle. It also
partially answers a question by Fornasiero asking whether definable completeness of an expansion of a real
closed field implies the pigeonhole principle.

§1. Introduction. o-minimality is not preserved under ultraproducts, as shown in
the following example:

ExampLE 1.1. Let £ = {<,U} where < is a binary relation symbol and U is a
unary predicate. For every n € N, let M,, be a structure interpreting < as a dense
linear order without end points and U as a set of points of size n. Then each
M, is o-minimal. But for any nonprincipal ultrafilter / on N, in the ultraproduct
HNMn /U, the definable set U is infinite and discrete, thus the ultraproduct of
o-minimal structures need not be o-minimal.

Example 1.1 can be generalized to any first-order language £ 2 {<}. So By Los’
Theorem, given a first-order language £ D {<}, there is no first-order theory 7., such
that M =T <= M is o-minimal for every L-structure M.

Here we focus our attention on some properties implied by o-minimality which
are first-order, that is, those properties which both hold in all o-minimal structures,
and, given a language £ = {<, ...}, can be axiomatized by a set of L-sentences.
Rigorously, we follow the conventions from [12], defined below:

DEFINITION 1.2. Given a language £ = {<....}. let T2"" be the set of all £-
sentences satisfied in every o-minimal £-structure.
An L-structure M for £ = {<. ...} is pseudo-o-minimal if M = T2"".

Fact 1.3 ([12, Corollary 10.2]). An L-structure M for L = {<, ...} is pseudo-o-
minimal if and only if M is elementarily equivalent to an ultraproduct of o-minimal
structures.
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The following two definitions are examples of first-order weakenings of o-
minimality.

DEerINITION 1.4. An expansion of a dense linear order without endpoints M =
(M; <, ...) is definably complete if every definable subset of M has a least upper
bound.

DEerFINITION 1.5. An expansion of a dense linear order without endpoints M =
(M <,...) is locally o-minimal if for any definable subset A C M and any a € M
there are b1.b, € M such that b; < a < b, and if I = (b1,a) or (a.b,) then either
IcAorInAd=0.

Notice that both definable completeness and local o-minimality, in a given language
L. are axiomatized by first-order schemes which hold in any o-minimal structure.
Thus, any pseudo-o-minimal £-structure is definably complete and locally o-minimal.

Fornasiero, Hieronymi, Miller, Schoutens, Servi and others proved many
tameness properties for definably complete and for locally o-minimal structures.
(See, e.g., [ 8. 2-7, 12].) Citing all tameness properties proved in this area will be
longer than this paper, so we give two elementary examples by Miller:

Fact 1.6 ([9, Corollary 1.5]). Let M = (M:<,...) be an expansion of a dense
linear order without endpoints. Then the following are equivalent:

1. M is definably complete.

2. M has the intermediate value property, that is, the image of an interval under a
definable continuous map is an interval.

3. Intervals in M are definably connected, that is, for every interval A C M and
every disjoint open definable subsets U,V C M. if A= (ANU)U(ANV), then
either ANU =0 or ANV =0.

4. M is definably connected.

Fact 1.7 ([9, Proposition 1.10]). Let M = (M <, ...) be definably complete. Let
f 1 A— M" be definable and continuous with A closed and bounded. Then f(A) is
closed and bounded. In particular, If f : A — M is definable and continuous with A
closed and bounded, then f achieves a maximum and a minimum on A.

In [12], Schoutens presented a strengthening of local o-minimality by the name
of type completeness, as defined below. In a sense this strengthening extends the
locality to +oco:

DEerINITION 1.8. An expansion of a dense linear order without endpoints M =
(M; <, ...)is type completeif it is locally o-minimal and, in addition, for any definable
subset A C M there are ¢1,c; € M such thatif I = (— 0o,c1) or (¢3, +00), then either
IcAorInAd=0.

Type completeness is a first-order scheme, and therefore satisfied by any pseudo-
o-minimal structure.

Several tameness results were proved for definably complete type complete
structures in [12]. For example, a version of o-minimal cell decomposition called
quasi-cell decomposition ([12, Theorem 8.10]) and the following monotonicity
theorem:
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Fact 1.9 ([12, Theorem 3.2]). Let M = (M: <, ...) be a definably complete type
complete structure. The set of discontinuities of a one-variable definable map f :
Y — M is discrete, closed, and bounded, and consists entirely of jump discontinuities.
Moreover, there is a definable discrete, closed, bounded subset D C Y so that in between
any two consecutive points of D U{£oc }, the map is monotone, that is to say, either
strictly increasing, strictly decreasing, or constant.

Of particular importance in the study of definably complete structures are the
definable pseudo-finite sets, as defined below.

DrerFINITION 1.10. Let M = (M; <,...) be a definably complete structure. A
definable subset 4 C M" is pseudo-finite if it is closed, bounded, and discrete.

These definable sets play a role in each of the papers cited above. We follow the
convention in [2, 3], where there is an extensive study of pseudo-finite sets and
their tameness properties. In [2], the wording was justified in the definably complete
context by saying that pseudo-finite sets are first-order analogue of finite subsets of
R”, with evidence given by numerous tameness properties of such sets.

One must not confuse pseudo-finite sets defined above with pseudo-o-finite sets,
as we define below, coined in [12]. Though, as we will see in Fact 1.12 the two
definitions coincide if M is assumed to be pseudo-o-minimal.

DEerINITION 1.11. Let M = (M:<,...) be a pseudo-o-minimal structure. A
definable set X C M" is pseudo-o-finite if (M, X ) satisfies the common theory of
o-minimal structures expanded by a unary predicate for a distinguished finite subset.

The following fact can be immediately extracted from [12, Corollary 12.6] together
with [12, Theorem 12.7].

Fact 1.12. Let M = (M: <, ...) be a pseudo-o-minimal structure. A definable set
A C M" is pseudo-finite if and only if it is pseudo-o-finite.

A tameness property of pseudo-finite sets occurring naturally is “the discrete
pigeonhole principle” [12]. (Or just “the pigeonhole principle” in [2, 3].)

DEerINITION 1.13.  An expansion of a dense linear order without endpoints M =
(M; <, ...) has the pigeonhole principle if for any pseudo-finite X C K" and definable
f X — X, if fis injective, then it is surjective.

We remark that the pigeonhole principle can be formulated as “every pseudo-
finite set is definably Dedekind finite”, and as this is a first-order scheme, every
pseudo-o-minimal structure has the pigeonhole principle.

In [3] and [2], Fornasiero conjectured the following:

CoONIECTURE 1.14. If K= (K, +.-,<,...) is a definably complete expansion of a
real closed field, then KC has the pigeonhole principle.

This conjecture remained open even for K a definably complete expansion
of a dense linear order. Clearly. the conjecture holds for ' pseudo-o-minimal.
Consequently, it is connected to two other questions asked by Schoutens in [12]:
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QUESTION 1.15. Does every definably complete type complete structure have the
pigeonhole principle?

QUESTION 1.16. Is there an axiomatization of pseudo-o-minimality by first-order
conditions on one-variable formulae only?

To clarify the meaning of a first-order conditions on one-variable formulae only, this
does not mean a first-order sentence conditioned on a specific one-variable formula,
as the following example demonstrates how any first-order theory is axiomatized by
such sentences, in particular 707",

ExampLE 1.17. Let £ be any language and T be any £-theory (not necessarily
complete). For every sentence o € T, let w,(x) := x = x Ao and let ¢, := Ix w, (x).
Then ¢, is a first order condition on y,, however -y, <= 7,50 {y, | €T }is
an axiomatization of 7.

Clearly, this is not the intended meaning in the question. Rather, following the
terminology of [12], we interpret a first-order condition on one-variable formulae as a
first-order scheme ranging over all one-variable formulae. Rigorously, a first-order
condition on one-variable formulae is obtained as follows:

e Let 7 be a first-order sentence in the language {<,U} where U is a unary
predicate.
o Let @ be the set of all partitioned £-formulae o (x;7) where x is a single variable
and ¥ is a finite tuple of variables not appearing in z.
e Forevery p(x:7) € ®. let 7, (x:7) be the L-formula obtained by replacing any
instance of U(x) by ¢(x:7).
o Ac:={VIr,(x:7) | p(x:7) € @}
For example, definable completeness is axiomatized by A, in the above fashion by
setting 7 to be

Fovw (U(w) = w <v) —
Fv(Vw (U(w) = w <v) AV (Vu (U(w) = w <v)) = v <').

Namely, 7 is the { <, U }-sentence stating if U is bounded, then it has a least upper
bound. Following the same terminology, an axiomatization of pseudo-o-minimality
by first-order conditions on one-variable formulae only is an £-theory T’ such that
T’ and T°™" have the same models, and

T' CU{A, | risan {<,U} —sentence }.

In[11], Rennet showed that there is no recursive first-order axiomatization of pseudo-
o-minimality in the language of rings {+. —.-.0.1}. In particular, as definable
completeness and type completeness are both recursive first-order schemes, given a
recursive language, they cannot axiomatize pseudo-o-minimality.

In this paper, we show a stronger result (with respect to one-variable definable
sets) by constructing two ordered structures M, N on the same universe. in the same
language, with the same definable subsets in one variable, where M is pseudo-o-
minimal and NV does not have the pigeonhole principle. This gives a negative answer
to both Questions 1.15 and 1.16, as well as a partial answer to Conjecture 1.14.
Furthermore, this gives a stronger result than a negative answer to Question 1.16.
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It shows that not only is there no first order axiomatization 7’ as above, but also
there is no second order theory in the language Lper := {<, Def} where Def is a
unary predicate on subsets interpreted as the definable subsets. This result is strictly
stronger as any axiomatization T’ as above is equivalent to a second order theory
in Lper, but not vice-versa.

This also implies that there is no result analogous to Fact 1.12 in the theory of
definably complete type complete structures, namely there is a definably complete
type complete structure M and a pseudo-finite subset X C M such that (M. X)
does not satisfy the common theory of definably complete type complete structures
expanded by a unary predicate for a finite set.

It is still open whether we can extend this result to the case where M is an
expansion of a real closed field and fully answer Conjecture 1.14.

OuTLINE. The construction is done as follows: In Section 3, the theory T is
constructed as an expansion of a dense linear without endpoints by a predicate for
a discrete, closed, and bounded set Z and some extra structure in the language Lo
such that 7, O T Z’;’i”. We then introduce an expansion £; D £y and T} D Ty an
L1-theory containing a function symbol /" which is bijective on Z. We show Tj and
T are consistent. In Section 4 we prove quantifier elimination for 7.

In Section 5, we give the construction of M, which will be an expansion of some
model My of Ty to £; with the same one-variable definable sets as M such that
M, does not have the pigeonhole principle. This is done by tweaking a given model
M of T} expanding M, so that f is now injective but not surjective. It is done
carefully enough, so that any definable set in M, differs from a set definable in M,
by finitely many constant terms. In Section 6 we show quantifier elimination in M,
and deduce that any definable subset of M, is definable in M. We then define M
to be a trivial expansion of M, to £y and A to be M, and show that M, N possess
the properties proclaimed in the introduction.

§2. Preliminaries—cyclic orders. In this section, we present the standard defini-
tion of a cyclic order, as defined below, and present some of its properties needed for
the construction following.

DErINITION 2.1. A cyclic order on a set A is a ternary relation C satisfying the
following axioms:

1. Cyclicity: If C(a.b.c). then C(b.c.a).

2. Asymmetry: If C(a.b.c), then not C(c.b.a).

3. Transitivity: If C(a,b.c) and C(a.c.d), then C(a.b.d).

4. Totality: If a.b,c are distinct, then either C(a.b.c) or C(c.b,a).

The following fact is folklore (e.g., [8] and [1, Part I, Section 4]) and can be easily
verified:

Fact 2.2. If (A, <) is a linearly ordered set, then the relation defined by
Colabec) = (a<b<c)V(b<e<a)V(e<a<hb)

is a cyclic order on A.
We call C the cyclic order induced by <.
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DEFINITION 2.3. Let (X, <) be a linearly ordered set. A <-cut in X is a pair of
subsets (4. B) of X such that X = AU B and a < b foreverya € Aand b € B.

Fact 2.4 ([10, Corollary 3.9]). Let X be a set with |X| > 2. Let <, , <, be distinct
linear orders on X. Then C., = C., holds if and only if there exist nonempty disjoint
subsets A, B of X such that (4, <1) = (4, <3), (B, <1) = (B, <2), (4.B) is a <;-cut
in Xand (B, A) is a <»>-cut in X.

DEerINITION 2.5. Let C be a cyclic order on a set A. For any a.b € A, denote
Cla,—.b):={x€Ad|Claxb)}.
LEMMA 2.6. Let C be a cyclic order on a set A and let a,b,c € A. If C(a,b,c) then
Cla,—.c)=Cl(a,—.b)u{b}uC(b, —.c).

Proor. e To prove C(a, —.c¢) D C(a, —.b)u{b}uC(b, —.c):
— By definition, b € C(a., —.c).
— If C(a.x.b), then together with C(a.b,c), and transitivity, we get
Cla,x,c).
— If C(b.x.c), then by cyclicity, C(c.b.x). By cyclicity again, C(c.a.b). Now
by transitivity, C(c.a.x), which is equivalent by cyclicity to C(a.x.c).
e To prove C(a, —,c) C C(a, —.b)U{b}UC(b, —.c),if

x ¢ (Cla.—.b)u{b}uC(b,-.c)).

then x ¢ {a.b,c} and by totality, C (b,x,a) and C(c,x,b). By cyclicity, we get
that C(x,a.b) and C(x,b.c), which in turn, by transitivity, implies C(x.a,c)
which by cyclicity is equivalent to C (¢, x,a) which by asymmetry, implies that
x ¢ Cla,—.c). =

DEerINITION 2.7. Let C be a cyclic order on a set 4 and let X C A. Two elements
a,b € A are X-close if either X N C(a, —.b) or XN C (b, —.a) is finite.
Denote a ~y b if a,b € A are X-close.

Lemma 2.8. Let C be a cyclic order on a set A and let X C A. Then ~y is an
equivalence relation on A.

PROOF. e XNCl(a,—.,a)=0forall a € A, so reflexivity holds.

e Symmetry is obvious by definition.

e To prove transitivity, let a.b,c € A such that a ~y b and b ~y c. Assume
towards a contradiction that X N C(a, —.c) and X N C(c, —.,a) are both
infinite. We may further assume, without loss of generality, that C(a.b.c).
So by cyclicity, also C(c,a.b) and C(b,c.a). By Lemma 2.6,

XnCla.—.c)=(XNCla.-.b))u(Xn{b}Hu(XNnC(b.-.c)). (1)
XNCle,-.b)=(XNC(c.—.a))u(Xn{a})u(XNCla.-.b)). (2)
XNC(b,—.a)=(XNC(b, —.c))u(Xn{c})u(XNClc.—.a)). (3)

By Equation 2, X N C(c, —.b) is infinite and by Equation 3, X N C (b, —.a) is
infinite. But by Equation 1, either X N C(a, —.,b) or X N C (b, —.c) is infinite.
soeithera Ly borb Ly c. .
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LEMMA 2.9. Let Cbhe a cyclic order onaset A. Let a,a’,b.b’,c.c’ € Aandlet X C A
such that

ar~yad,br~yb c~yc,
adyb,adyc, biyc.
Then C(a.b,c) < C(a',b',c").

Proofr. By symmetry of ~x and cyclicity of C, it suffices to show that
C(a.b.c) = C(a.,b,c’). So assume towards a contradiction

Cla.b.c). (4)

C(c'.b.a). (5)
By cyclicity on (5), we get

Cla,c'.b). (6)

By transitivity applied to (4) and (6) we get C(a.c’.c), which in turn by cyclicity is
equivalent to (7) below. By cyclicity and transitivity applied to (4) and (5), we get
(8) below.

C(e,a.c), (7)
C(c'.b.c). (8)

By the assumption of the lemma, either C(c’, —.c) or C(c. —.c’) is finite. By
Lemma 2.6 and by (7) and (8). this implies that at least one of the following is finite:
C(c', —.b).C(b. —.c).C(c, —.a).C(a, —,c"). By transitivity of ~y (Lemma 2.8),
a ~y ¢ orb ~y c. Contradiction. -

§3. Definitions of 7 and T7.

DEFINITION 3.1. Let £ := (<, Z:S.P,7;c1.¢2,¢3,¢4) where < is a binary relation
symbol, Z is a unary predicate, S,P,n are function symbols and c¢y,¢p.¢3.¢4 are
constant symbols. Let 7 be the £y-theory consisting of the following axioms:

1. < is a dense linear order without end points.
2 Tomin
ST

3. Z is discretely ordered, that is, every nonmaximal (respectively, nonminimal)
element in Z has an immediate successor (respectively, predecessor) in Z.

4. Zisclosed, thatis, for all x ¢ Z, there is an interval disjoint from Z containing
X.

5. min(Z) = c¢;. max(Z) = cy.

6. ¢,c3 € Z are such that ¢ < ¢; < ¢3 < ¢4 and there are infinitely many elements
in Z between any two of them.

7. = is the cyclic forward projection on Z:

(Vx) (z(x) € Z)A(Vy € Z(=C(x.y.7(x)))).
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8. S is defined as the cyclic successor function on Z, and as the identity outside
of Z:

Sx)=yeo (x¢ZAx=y)V(xeZAy e ZAN-Tz € Z(C(x.2.y))).
P is defined as S~'.

The consistency of Ty will be proven together with the consistency of 77 defined
in Definition 3.2 below.

DEerINITION 3.2, Let £ := LoU{f.g} where f,g are unary function symbols.
Let T be Ty together with the following axioms:
9. fis bijectiveand g = /.

10. f(ZN[er.ea]) = ZN[escs] and f | (ZN[er.¢2]) is a partial order isomor-
phism.

11. f(ZN(c2.cs]) = ZN[er.e3) and [ (ZN(ea.¢4]) is a partial order isomor-
phisms.

12. Foralln > 1 and forevery z € Z

ZNCo(z.—.f"(z))and ZNC(f"(2). —.2)

are infinite, that is, z 7 f"(z). Notice that this is a first-order scheme.
13. f(x)=xforeveryx ¢ Z
14. C.(f™(2). f"(z).z) for all m > n > 0 and for every z € Z.

ProposITION 3.3. T is consistent.

Proor. To prove finite satisfiability of 7' take some sufficiently large natural
number N. Take Z = {0,....N } x {0,...,N } with the lexicographic order and
consider a structure M which is a DLO containing Z as an ordered subset.

Let ¢; :=(0,0),¢2 := (0.N),c3 := (N,0),c4 := (N, N).

Let

f((a,b))::{ (a1 mod (N +1).5) g;(za,b)ez,

andlet g := /1.

Let 7 the circular projection, as defined in Axiom 7.

Let S be the circular successor function, as defined in Axiom 8 and let P := S !.

Then M satisfies Axioms 1 to 5, 7 to 11 and 13 by definition. As for Axioms 6,
12 and 14:

Any finite segment of Axiom 6 is contained in the following axiomatization, for a
fixed k € N:

6i. c2.¢c3 € Z are such that ¢; < ¢» < ¢3 < ¢4 and there are at least k elements in
Z between any two of them.
12;. For all k > n > 0 and for every z € Z.
(a) There are at least k elementsin ZNC.(z, —. f"(z)).
(b) There are at least k elementsin Z N C. Ef” (2), - ,z;.
4. Co(f™(2).f"(z).z) forallk >m>n>0.

If N > k then M satisfies Axioms 6 ; and 12 ;. by definition.
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Under the assumption N > k, we prove that M satisfies Axiom 14 ;, thus 77 is
finitely satisfiable.
For all (x,y) € Z:

S"((x.y)) = (x—m mod (N +1).y).
S"((x.y)) = (x—n mod (N +1).y).

So proving Axiom 14 ; reduces to proving that for any x € {0,...,N } and 0 <n <
m < N one of the following holds:

(a) xom<xon<x,

(b) xCn<x<xOm,

(c) x<xOm<xon,
where © is subtraction modulo N + 1.

If m < x then (a) holds.

If n < x < m then (b) holds.

If x < n then (c) holds. —

§4. Quantifier elimination in 7). We now show that 7, eliminates quantifiers:

REMARK 4.1. Let M |= T and 7,a € M. Then the following hold:
1. S(t)eZ < t€Z.

2. P(1)eZ <= 1€ Z,
3. S(r)=a < 7= Pla),
4. 8(1)<a <= [t<Pla)At#caha# iV
[ =csAS(cy <a] [a—cl/\r<cl],
5. P(1) >a — [T>S(a)/\r7écl/\a7é04]\/
[t=ciAP(c1) >a]V[a=ciht>c4).
6. n(t)€Z < c1€Z,
1. a(t)=a < [t<aNhac€ ZAPa)<t<a|V[t>caAc =al
8. n(t)<a — [‘L’SC4/\T§Pon(a)]\/[T>C4/\Cl<a],
9. n(r)>a < [t <csAt>PomoS(a)]V[r>csner >al

REMARK 4.2. If x € Z then:

1. S"Mon™Mo-0SM on oS! (x) =M+ +tmtl(y).

2. P"(x)=S"(x)and P7"(x) = S™(x) forallm € N.

3. §"(x)0Ox <= S™(cy)0ey for all m e N, O € {<, >, =}x ¢ {cs. P(cq), ...,
P"(cq),}. P"(x)0x <= S"(cz)0c, for all m e N, Oe {<,>,=}, x ¢
{Cl,S(Cl),...,Sm(Cl),}.

Ifx¢Z:

. S™onMo- 08"k ok 0 S (x) = S™T Mk o (x).

. S"(x)0x <= c10cy forallm e Z, O e {<, >, =}.

. S"on(x)=x < ¢ # ¢ form #0.

. S"on(x) > x <= S"on(x) > n(x).

. S"on(x) <x <= S"on(x) < n(x).

DB N -
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Lemma 4.3. For any M |= Ty and a.b € M,
ME[IxeZla<x<b)] > [roS(a) <b].

Proor. If a € Z then M =[x € Z(a < x < b)] <+ [S(a) < b] and S(a) =
noS(a).
Ifa¢ Zthen M |=[3x € Z(a<x < b)] +» [n(a) <b]and n(a) =noS(a).

PrOPOSITION 4.4. Ty admits quantifier elimination.

PrOOF. Let¢ =3x A\, 0;(7.x) such that {6; };c; are atomic and negated atomic
formulae. We need to find a quantifier-free £y-formula ¢ such

Ty |:V7|:(3x/\9i(?,x)) & <p(7)].

iel

First, since - 3x(x(7.x) A0(3)) <> Ix(x(7.x)) A0(¥) we may assume that x
occurs in 0; for all i € I. Second,

- |:3x/\0,-(7,x)i| < [ﬂx(/\ﬁi(7,x)/\(x €ZVx¢ Z))] &

iel iel

[ ponvez))y (3 Aognrez))]

iel iel

So we may assume ¢ is either of the form Jx( A\;c; 0:(¥.x) Ax € Z) or of the form
3x (N 0i(7.x) Ax ¢ Z) where 0; are atomic and negated atomic formulae such
that x occurs in each ;. We may assume that 6; is neither ‘x € Z’ nor ‘x ¢ Z’ for
any i € I, as such occurrence would be either superfluous or inconsistent. So each
0; is of the form ¢,00¢, where )., are terms with variables in x.,7.

By Remark 4.1, we may assume either

k
d(F) = EIx(/\t,D,-x/\x € Z)

i=1

or

k
() :Elx</\li|:|iX/\x ¢ Z),

i=1

where #; are with variables from {x, ¥}, O € {<,>,=,<,>,#}. By Remark 4.2, we
may assume that x does not occur in any ¢;. Next, notice that >, <, # are positive
Boolean combinations of <, >, = and if [J; is “ = ” for some i we can just replace x
with 7;. So we may assume [J; € {<,>}, that is, either

¢(7):3x</m\l,-<x/\/n\ui>x/\x62) 9)

i=1 j=1
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or

q&(?):ﬂx(/m\li<x/\/n\u,~>x/\x¢Z>, (10)

i=1 j=1

where /;,u; are terms not containing x.
If ¢ is asin (9), then by Lemma 4.3, ¢(7) is equivalent to

AN o5 <u).

i=1j=1

If ¢ is as in (10), then since Z is co-dense, ¢(¥) is equivalent to

n m

/\/\(l,-<uj). 4

i=1j=1

§5. Definition of 7, and the relation to 77;.

DEerFINITION 5.1. Let M = T be arbitrary, with universe M.

Let My be the restriction of M to Ly, that is, My = M [ Ly. Consequently,
My = Ty.

Let M, be the same L£;-structure as M with a slight modification on f and g, as
follows.

M () Po fMi(x) if §"(x) = c4 for somen € N,

f fMi(x) if §"(x) # ¢4 foralln € N,
a ng oS(x) ifS™(x

X) ‘—{ gMi if $” (x

In words, there is some convex set X with maximum ¢4 such that the order type
of XNZis w*. fi maps X NZ to a convex subset /1 (X NZ) of Z of order
type o* with maximum P(c3), by Axiom 11 in Definition 3.2.

Then fM2,gM2 are obtained from fM1, gM1 by applying a shift by one element
in XNZ, f(XNZ) respectively.

= P(c3) for some n € N,

Mz(
# P(c3) foralln € N.

g

vv

Lemma 5.2. M1 preserves the cyclic order on Z, that is.
Ty = (Vz1.22.23 € Z)[C<(21.22.23) 5 C<(f (21). f (22). [ (23)) ]
PrOOF. Define a new ordering <’ on Z by
x<'y <:>(xy€ [c3,c4] /\x<y)
(x.y €ler.es) Ax<y) V
(x €[es.caly €c1.¢3)).

By Axioms 10 and 11 in Definition 3.2, ([¢1.¢2]. <) = ([e3.¢4]. <') and ((c2.¢4]<) =
([e1.¢3). <') and

ToE(VxyeZ)x<y«e f(x)<" f(»)]
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Additionally, by definition of <’. it follows that ([c3.c4].[c1.¢3)) is a <’-cut in Z
and ([c1.¢3).[c3.¢4]) is a <-cut in Z. So by Fact 2.4, C.» = C.. In conclusion

Ty = (V21,22,23 S Z) [C<(21,22,23) P
Co(f(21).f(22).f(23)) >
C<(f (201 (22).f () | .

LemMa 5.3. Let f,g.S, P be as in Definition 3.2. Then (f.g,S,P). the closure of
{f.g.S.P} under composition is an Abelian group.

PrOOF. By definition, go f =1 = Po S, so f.S are invertible and (f,g.S.P), =
(f.S)grp where (f.S)gp is the group generated by { /.S }.

Since S is definable by the cyclic order on Z (Axiom § in Definition 3.1) and f
preserves the cyclic order on Z (Lemma 5.2), it follows that f 0 S(x) = So f(x).
Now (f.S)erp is Abelian, as the group defined by (a.b|ab = ba) is Abelian. =

COROLLARY 54. Letn>1landx € Z.
(g™M1)"(x) 2 x.
PrOOF. Since x € Z. sois (g*1)"(x). Therefore, by Axiom 12,
(7)o () () e () (o).
By Lemma 5.3, (fM1)" o (g™1)"(x) = x. =
LEMMA 5.5. Let x € M and n € N. There are k1,k, € N such that
(fM2)"(x) = PFro (fM1)"(x) and
(™) (x) = 8% 0 (¢™1)"(x).

PrROOF. By definition of M2 g™M2 (Definition 5.1). there are €. ....€,.V1. ... Vi €
{0,1} such that

(/)" (x) = Pro f Moo Pro f 2 (x), (11)
(gM2)"(x) =8 ogMio-08" 0 gMi(x). (12)
By Lemma 5.3, the right hand side in Equation 11 is equal to
peitten o (fMl)"(x)
and the right hand side in Equation 12 is equal to
S (M) (x), |

COROLLARY 5.6. For alln € N and every x € M:
(fM) () ~z (F2) () and (71)" (x) ~z (72)" (x).
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§6. Quantifier elimination in 7,. In this section, unless otherwise specified, we
work inside M,. so f is fM2 and g is gM>.
LEmMMA 6.1. M, satisfies the following:

1. f(ZN[cr.e2]) = ZN[es.cql and | ] (Z N [cl,cz]) is a partial order isomorphism,
and its inverse is g | Z N[c3.¢4].

2. f(ZNn(cres)) = ZN[er.P(e3)) and f | (Z N (ca.cal) is a partial order
isomorphisms, and its inverse is g | Z N[cy, P(c3)).

3. g(x)=f(x)=xforevery x ¢ Z.

4. fis injective and not surjective on Z. Moreover, f(Z) = Z \ {P(c3)}.

5.go0f(x)=xforallx c M.

6. fog(x)=xforallx e M\{P(c3)}.

7. Foralln > 1 and for every z € Z

ZNCo(z.—.f"(2)) and ZNC(f"(2). —.2)

are infinite, that is, z 47 f"(z).
8. Foralln > 1 and for every z € Z

ZNCc(z.—.g"(2)) and ZN C(g"(2). —.2)
are infinite, that is, z 47 g"(z).

PRrROOF. o Items 1 to 3 follow by definition of 2 and by Axioms 10. 11 and
13 in Definition 3.2.
e [tem 4 follows from Items 1 and 2, as

Z = (Zﬂ [Cl,Cz]) U (Zﬂ (C2,C4]),
Z\P(C3) = (Zﬂ[CI,P(C3))) Q] (Zﬂ[C3,C4]).

e To prove Item 5, we separate into two cases:
—if §"(x) = ¢4 for some n € N, then S” o fMi(x) = P(c3). so
S o fM(x) =8"0S 0 Po fMi(x) = 8" 0 fM(x) = Plca).
So by definition of gMZ,
gMeo fMa(x) = gMioSoPo fMi(x) =x.
—if §"(x) # ¢4 forall n € N, then §" o fMi(x) # P(c3) for all n € N. So
g0 fMe(x) = gMio £ (x) = x.

e To prove Item 6, by Items 3 and 4, for all x € M \ { P(c3) }. x = f(p) for some
y € M, therefore by Item 5

fog(x)=fogof(y)=rf(y)=x.

e Item 7 follows from Axiom 12 in Definition 3.2 and Corollary 5.6.
e Item 8 follows from 5.4 and Corollary 5.6. -
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COROLLARY 6.2. Leta.b e Z,0e{<.> =}

. If a € [cr.co] and b € [¢3,¢4], then M, |:f(a)Db < alOg(b).

. Afa €lcr.cx] and b ¢ [c3.¢4], then My |= f(a)Ob < ¢;00b.

. Ifa € (cp.cyl and b € [c1.P(c3)). then My |= f(a)Ob <= aOg(b).
. Ifa € (cr.cql and b ¢ [c1.P(c3)), then My |= f(a)Ob <= c¢,b.

. Ifa €lc1,P(c3)) and b ¢ (ca.c4), then My |= g(a)Ob <= ¢40b.

. Ifa €[cs.cq] and b ¢ [c1,¢2), then M = g(a)0b <= ¢,0b.

) and (4) follow from Lemma 6.1, Items 2 and 6.
) follows from Lemma 6.1, Items 2 and 5.

1

2

3

4

5

6

Proor. (1) and (2) follow from Lemma 6.1, Items 1 and 6.
(3

(5

(6) follows from Lemma 6.1, Items 1 and 5.

COROLLARY 6.3. Letx € M.y € Z. O € {<.>.=}.

(x¢2) A %
(x € ZN[er.a)Ay €lea]) A ng %
My f(x)Oy < (xeZNleraAy ¢lesal) A C3Dy v
(x € Zn(ca.cal Ny € [cr. P(c;))) A xOg(y ) v
( (x € Zn(cr.cal Ny ¢[cr.P(e3))) A Oy )
( (x¢2) A xOy ) v
(x e ZN[e.aalAy €Elered]) A xOf (p Y%
Mo g ()0 g xEZﬂ [e3,ca]l Ny ¢ [c1. cz) A Oy g vV
x € ZN[e.P(c3)) Ay € (02,64]) A xOf(y Vv
( x e Zﬂ[cl P(e3))Ay ¢ (caesl) A Oy Y%
( = P(c3)) A P(c3)0y )

REMARK 6.4. If x ¢ Z then M, |= f(x) = g(x) = x. In particular,

e MoyEf(x)eZ+xeZforallxe M.

e MyEg(x)eZ+xeZforallx e M.

e My E f(x)0y < g(x)Oy <> xOy foranyx e M\ Z,y e M, 0 € {<,>.=}.
REMARK 6.5. If x € Z.y ¢ Z then:

e MyEx>y o x>n(y).

e MyEx<y«x<Por(y).

COROLLARY 6.6.

E[xeZAy¢ZAx>yle[x€eZAy¢ ZAx>r(y)Ar(y) € Z].
LE[xeZAy¢ZAx<y|«[x€ZAy¢ZAx<Por(y)APor(y) € Z].
E[x€eZAy¢EZAx=y|<[x€ZNyEZNe)#c].
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DermNITION 6.7. Following standard terminology, a constant term is a term with
no free variables.

DErINITION 6.8. Given two L;-definable maps F,G : M — M, denote F ~ G if
there are finitely many constant terms 7y, ..., 7, such that

k
T, = (Vx) |:F(x) = G(x)\/\/x —ri:|.

~ 1s an equivalence relation. For any £;-definable map F : M — M, let [F] be its
equivalence class.

LEMMA 6.9. foS=Sof.

PROOF. o If x ¢ Z then both S and f are the identity on x, so the equality
foS(x)=Sof(x)is trivial.

elfxc Zandc; < x < ¢y orcy < x < cy then the equality £ oS(x) =So f(x)
follows by Items 1 and 2 in Lemma 6.1.

In conclusion, the equality f o S(x) = S o f(x) holds for all x # ¢y,¢2,¢4. =

For any finite-to-one map F.F'.G.G' : M — M, if F ~ F' and G ~ G’ then
FoG = F'oG'. Since f.,S,P are injective and g is injective outside {P(c3)}, the
composition [F]o[G] :=[F o G] is well defined, for any composition of f,g.S,P.

ProposITION 6.10. ([f], [g]. [S]. [P))e. the closure of {[f]. [g]. [S]. [P]} under
composition is an Abelian group.

PrOOF.

T, D Ty ':POS(X):SOP:)C
T, =V(x # Ples))go f(x) = fog(x) =

So [gllf1=1[f1leg]l =[P ][S] [S][P] = 1. In particular [f].[S] are invertible and

(L] [g). [S]) [P]) = ([f]. [SDerp where ([f]. [S])erp is the group generated by
{lf], [g]}- By Lemma 6. 9/ [f][ 1=1I[S1[f]- The claim now follows from the fact the
group defined by (a,b|ab = ba) is Abelian. =

REMARK 6.11. Letx € M and F € {S, P, n}. If there are infinitely many elements
in Z between x and F(x), then F(x) € {cy. ¢4}.

By infinitely many elements in Z between x and F (x), we mean with respect to the
order < and not the cyclic order C., that is, either x < F(x) and Z N[x,F (x)] > N,
or F(x) < xand ZN[F(x).x] > N.

This is weaker than x 7 F(x); for example, ¢; ~z ¢4 but there are infinitely
many elements in Z between ¢ and c¢4.

LEMMA 6.12. Let F.G € (S,P.n).. Then there are finitely many constant terms
T1s oo Tps such that if F(x) & {z1.....7 }, then there are only finitely many elements in
Z between x and F(x).
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PrOOF. Let F = Gy o---0 Gy where Gy,....Gy € {S, P, n}. Let Fy:=1d, F; :=
Gio---oGy forany 1 <i <k, so F = Fy. If there are infinitely many elements in
Z between x and F (x), then there is some 1 < i < k with infinitely many elements
in Z between F;(x) and F; ;(x). so by Remark 6.11, F;(x) € {c|, ¢4} and thus
F(x) = Fi(x) = Fy_j o Fi(x) € { Fii(c1). Fi_i(cq) }. Soif

F(x)¢{F;(c)|0<i<k-1lcée{c, ca}}

then there are finitely many elements in Z between x and F (x). -

LEMMA 6.13. C(f™(z). f"(z).z) for all m > n > 0 and for every z € Z.

Proor. Letm >n>0and z € Z. By Axiom 14 in Definition 3.2,

C((SM)"(2). (S ) (2).2).
By Corollary 5.6,
(fM2)"(2) ~z (fM) ' (2) and (f72)"(2) ~z (SM)" ().

and the lemma follows from Lemma 2.9. o

Lemma 6.14. foranyn € Nand z € Z:
Myl (z) <z 0 AN(F1(2) > ).
i=0

Proor. We prove the lemma by induction on n. For n = 0 the claim holds by
definition of £. For n > 1. By Lemma 6.13, C.(f"*!(z). f"(z).z). So

Mok ") <z o " 2) < fM(2) <z

By the induction hypothesis, f”(z) < z is equivalent to /\;’;:]( f(z) > ¢3) and
f"1(z) < f7(z) is equivalent to f”(z) > c. .

DEFINITION 6.15. 1. @:={¢" |p€{f. g}. neN}.

2. %:={c"|oe{S. P}.meN}.

3. M:={n"|ee{0. 1}}.

4. For any functions Ay, ....h, and A4,B C (hy,....h,;), let AB :={aoblacA.b

€B}.
LEMMA 6.16. Letn > 1, w1y, €Xll,and D€ {<, >, =}. Then
1. There are constant terms 1, ..., T such that

T = f"owi(x)Oya(x)
(1(x) & Z Ay (x) D (x))
o (w1(x) € Zyi(x).ya(x) ¢ {t1. ot FA S oy (x) Oy (x))
(VL (11 (x) = 5 A " (2) Ty ()
(V. (y2(x) =7 A f" oy (x)07,))

2. There are constant terms o1, ....o; such that

T = g" oy (x)Oya(x)

< <<
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(w1(x) ¢ Z Ay (x)0wa(x)) \
(w1(x).pa2(x) € Z\{o1.....o1} Ag" oy (x)Oy(x)) Vv
(Vi (w1 (x) = ai Ag"(0:) Oy (x))) v

(\/5:1 (w2(x) =0i Ag" oy (x)0a;))

PrOOF. 1. By Lemma 6.12 applied twice, there are constant terms 7y, ..., 7%
such that whenever w (x)1,w2(x) ¢ {71. ...,7x }. there are finitely many elements
in Z between w(x); and w;(x).

o If wi(x) ¢ Z. then by Item 3 of Lemma 6.1, f"ow(x) = y(x). In
particular,

Ma = Moy (x)0ws(x) < wi(x)Opa(x).

o Ifyi(x) € Z, wi(x).wa(x) & {71.....74 }, then by Lemma 6.1, Item 7 there
are infinitely many elements in Z between w1 (x) and f” ow;(x). As there
are only finitely many elements in Z between w1 (x) and w»(x), it follows
that

My = "oy (x)Oya(x) < f" oy (x)Oy (x).
2. The proof is similar. -

DEFINITION 6.17. 1. We define deg(F) for F € (f, g. S, P, n).; inductively, as
follows:

e deg(Id) = deg(S) = deg(P) = deg(n) = 0.

o deg(f) = deg(g) = 1.
e deg(FoG)=deg(F)+deg(G)forall F,G e (f. g S, P. n)y.

Notice that this is a syntactic definition, for example, deg(F o G) = 2.
2. For any quantifier free £-formula (x,7) and variable x we define rank (0, x) €

({~oo}u N)2 by induction on the complexity of 0:

e If x does not occur in #, then rank (6, x) = (- co, — 00).

e If 0 is atomic of the form F(x) € Z then rank(0, x) = (- oo, deg(F)).

e If 6 is atomic of the form F(x)Or where F € (f, g. S, P)y. O € {<.>,=},
and 7 is an £;-term such that x does not occur in 7, then rank(f,x) =
(- 0o, deg(F)).

e If 0 is atomic of the form F(x)JG (x) where F.G € (f, g. S, P). O € {<.
>,=}, and deg(F) < deg(G), then rank(0,x) = (deg(F), deg(G)).

e If 0 is a Boolean combination of atomic formulae 60y, ....0;, then rank (0, x)
is the lexicographic maximum of { rank(6;,x) ;‘:1.

e ranks are endowed with the lexicographic order on pairs, that is, (n, m) <
(n', m') ifeither n < n’ or bothn = n’ and m < m’. Notice that if rank(0, x) =
(n, m) thenn < m.

DEFINITION 6.18. A quantifier free £;-formula 0(x, ¥) is x-corrected if any term
F(x) appearing in 0 belongs to ®XII.

LemmA 6.19. For any quantifier free Li-formula ¢ and variable x, there is some
x-corrected formula y such that rank(y, x) <rank(p, x) and Tr = ¢ < .
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Proor. A Boolean combination of x-corrected formulae is x-corrected, so we
may assume ¢ is atomic.

o If o is of the form F(x) € Z forsome F € (f, g. S, P, n)y; \{f. & S. P)y
then Th E F(x) e Z <+ n(x) € Z.

o If  is of the form F(x) € Z for some F € (f, g, S. P).; then T, | F(x) €
Z=xe”Z.

e If ¢ of the form F(x)Or for some term 7 and 0J € {<,>,=}:

~IfFe(f, g S. P).. then by Proposition 6.10, there is some F’ € ®X with
deg(F’) = deg(F), and constant terms 7y, ...,7; such that F(x) = F'(x)
for all x ¢ {z1.....7, }.So

(N_ x A0 AF'(x)00) v
nE [F(x)Or] |:\/f'€_11(x ZTIZ/\F(TZ')DT) :|

~-IfFe(f. g S P, i)g\{f. g S, P)y, then there are F|, F, €
(f. g. S. P). such that M, = F(x) = FjonoFy(x) for all x € M
and deg(Fy) < deg(Fj o F») = deg(F). So M, = F(x) = F o F>(x) for
allx € Zand My = F(x) = Fyon(x) forall x ¢ Z. So

T e [F(x)O] [(x €EZNFy OFz(X)Dr)\/}

(x ¢ ZAFyon(x)Or)

and F|, FiloF, €(f, g. S. P).;, so we can apply the previous case to get
a formula where every term F(x) to the left of [J belongs to ®XII.

Finally, if x does not appear in t we are done. Otherwise, if 7 = G(x) for
some term G, a symmetric argument applied to G will yield an x-corrected
formula y equivalent to ¢ as needed. o

LemMA 6.20. Let ¢ be an x-corrected atomic formula of rank (— oo, n+1) or of
rank (n+1, k) for some n.k € N. Then there is some quantifier free formula w such
that rank(y. x) < rank(p, x) and Tr = ¢ <> .

Proor. (1) Assume rank(y,x) = (—oc, n+1).
If ¢ is of the form F o H(x) € Z where F € ®, H € XI1, by Remark 6.4,
MyEFoH(x)€Z <= H(x)€ Zandrank(H (x) € Z, x) = (- 00, 0).
If ¢ is of the form F o H(x)Otr where F € ®, H € OXII, deg(F) =
1.deg(H) = n. and 7 is some L;-term not containing xIn which case.
Fe{f.g}and

(FoH(x)OrAT€ Z) Y
My E[FoH(x)Or]« | (FoH(x)OtAT¢ ZAH(x)¢Z) V
(FoH(x)OrAt¢ ZANH(x) € Z)

So it suffices to show that each of the disjuncts above is equivalent to an

x-corrected formula of rank < (—oo, n+1).

(a) Applying Corollary 6.3 to H (x) and 7, there is some x-corrected formula
w'(x,7) of rank (~oo, n) such that M, = y/(x, 7) <+ F o H(x)Oz for all
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1€Z.So
Moy (x,t)A\t€eZ+ FoH(x)Or At € Z
(b) By Remark 6.4, (F o H(x)Ot At ¢ ZAH(x) ¢ Z) is equivalent to
(Hx)OtAt¢ ZANH(x) ¢ Z)

and the latter is an x-corrected formula of rank (—oo, n).
(c) Applying Corollary 6.6 to F o H(x) and 7, we obtain that

(FoH(x)OrAt¢ ZAH(x) € Z) (13)

is equivalent to one of the following:
FoH(x)eZANt ¢ ZANFoH(x)>n(t)An(z) € Z, (14)
FoH(x)eZANt¢ ZNFoH(x)<Pon(t)APon(z)eZ,  (15)
FoH(x)eZANt ¢ ZNcy =1. (16)

As in la, there are y{(x, n(zr)) and y}(x.Po=n(zr)) of rank (- oo, n)
equivalent to Fo H(x) > n(z)An(r) € Zand FoH(x) < Pon(t)APo
n(t) € Z. respectively. So (13) is equivalent to one of the following:

H(x)e ZAt ¢ ZAyi(x, n(t))An(t) € Z, (17)
H(x)eZANt ¢ ZAyh(x, Por(t))APor(z) € Z, (18)
H(x)eZNt¢ZNAcei=1 (19)

an each is x-corrected of rank (- oo, ).

(2) Assume rank(p, x) = (n+1, k). Then ¢ is of the form F o H(x)OG(x)
where F € ®,H.G € OXI1, deg(F) = 1.deg(H ) = n.deg(G) =k and n < k.
We repeat an argument similar to that in Item (1) of this lemma, with
replaced by G (x):

(FoH(x)OG(x)AG(x) € Z)
MyE[FoH (x)OG)] ++| (FoH(x)OG(x)ANG(x) ¢ ZAH(x) ¢ Z)
|:(FoH(x)DG(x)/\G(x) ¢ZANH(x)€eZ) :|

So it suffices to show that each of the disjuncts above is equivalent to an

x-corrected formula of rank < (n+1, k).

(a) Applying Corollary 6.3 to H(x) and G(x), there is some quantifier-
free formula yw’'(x) of rank < (n, k + 1) such that M, = w/(x) <+ F o
H(x)OG(x) whenever G(x) € Z. So

Moy (x)ANG(x)eZ+ FoH(x)OG(x)ANG(x) € Z

<<

(b) By Remark 6.4, (F o H (x)OG (x) AG(x)¢ Z AH (x) ¢ Z) is equivalent to
(Hx)OG(x)ANG(x) ¢ ZNH(x) ¢ Z)

and the latter is an x-corrected formula of rank (n, k).
(c) Applying Corollary 6.6 to F o H(x) and G(x), we obtain that

(FoH(x)OG(x)AG(x) ¢ ZAH(x) € Z) (20)
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is equivalent to one of the following:
FoH(x)€ZANG(x)¢ ZANFoH(x)>noG(x)AnoG(x) € Z, (21)

FoH(x)eZANG(x)¢ ZANFoH(x)
<PormoG(x)APornoG(x)c Z, (22)

FoH(x)€ ZANG(x)¢ ZNer=G(x). (23)

As in 2a, applying Corollary 6.3 to H(x).no G(x) and to H(x),Pono
G(x). there are y/(x) and w}(x) of rank < (n, k + 1) equivalent to
FoH(x)>noG(x)AnoG(x)€Zand FoH(x) < PonoG(x)APo
noG(x) € Z, respectively. So (20) is equivalent to one of the following:

H(x) e ZANG(x) ¢ ZAyi(x))AroG(x) € Z, (24)
H(x)€eZANG(x) ¢ ZAwh(x)ANPoroG(x) € Z, (25)
H(x)€ZANG(x)¢ ZAcp=G(x) (26)

an each is quantifier-free of rank < (n, k +1). To finally obtain an
x-corrected formula of rank < (n, k + 1), apply Lemma 6.19. =

LEMMA 6.21. Let ¢ be an x-corrected atomic formula of rank (0, k + 1) for some
k € N. Then there is some quantifier free formula w such that rank(y, x) < rank (¢, x)
and Tr =@ < .

Proor. By Lemma 6.16, we may assume ¢ is either of the form %+ o (x)do(x)
or of the form g1 o g (x)0a (x) for some ¢ € £I1, 0 € {<,>,=}.
1. Incase ¢ is %1 og(x)do(x):
o If ¢(x) ¢ Z. then, by Lemma 6.1, Item 3. 4+ op(x) = ¢(x).
o If ¢(x) € Z, then, by Lemma 6.1, Item 7, fk*log(x) # ¢(x). So fAt1o
#(x) > ¢(x) is equivalent to K1 op(x) £ ¢(x). By Lemma 6.14,

Ty =¢(x) € ZA S oo (x) < a(x) (27)
k

(¢(X)GZ/\\/(61 <fi00(x)<62)> (28)
i=0

and the formula in (28) is of rank (0,0). In conclusion, for this case ¢ is a
Boolean combination of formulae of the form ¢(x) € Z, ¢(x)Tep(x). and
formula (28) above, all of which are of rank (0, 0).

2. In case ¢ is g¥t' oo (x)Oa(x), by Proposition 6.10, there are finitely many
constant terms 7. ....7,, such that 1o ghk*l(x) = x for all x ¢ {zy.....7,,}.
So

T, =g" oo (x)do(x)

|:(a(x) ¢{t1....tw} Ag oo (x)Of o gl og(x)) \/:|
(Vi (o(x) =1 ng" () = 11))

and rank(\/f.;o(cl < flog(x) <), x)=(-00, k-1)
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Now, replacing o (x) with g“*! oo (x) in (27), we get

T = oghog(x)Ogk oo (x) (29)
gkoa(x)EZ/\\/f.{: (c1 < floghtlog(x) <)) V
e ey v e

By noticing that F gc*l oo (x) = g¥*l oo (x) <+ x = x. the formula in (30) is
of rank (0, 0). 4

LEMMA 6.22. Let @ be an x-corrected atomic formula of rank (0, 0). Then there is
some quantifier free formula y such that rank(w,x) < rank(¢,x) and Tr = ¢ <> .

ProoF. By Remarks 4.1 and 4.2 we may assume ¢ is of the form ¢ (x)Ox where
o €Xlland O € {<,>,=}. Now

Fo(x)Ox] + [(e(x)OxAx € Z) V(a(x)Ox Ax ¢ Z)].

By Remark 4.2, the right hand side is equivalent to a quantifier free formula of rank
(— 00, — ). =

LeEmMMA 6.23. Let ¢ be a quantifier free formula with free variable x. Then there
is some x-corrected formula ¢ such that rank(¢, x) < (- oo, 0) for some k € N and

ThEe < ¢

Proor. By Lemma 6.19 we may assume ¢ is x-corrected. Since the lexicographic
order on well-ordered sets is well-ordered, by induction it suffices to show that if
rank(yp, x) > (— oo, 0), then there is some x-corrected ¢ such that rank(¢. x) <
rank(yp, x) and T, = ¢ <> ¢. As a Boolean combination of formulae of rank at
most (— oo, 0) is of rank at most (— oo, 0) as well, we may further assume that ¢ is
atomic.

o Ifrank(¢p, x) = (n+1, k) for some n, k € N, then by Lemma 6.20 there is some
quantifier free formula ¢’ such that rank(¢’, x) < rank(¢p. x).

o If rank(¢p, x) = (0, k + 1) for some k € N, then by Lemma 6.21 there is some
quantifier free formula ¢’ such that rank(¢’, x) < rank(¢p. x).

o If rank(p, x) = (0. 0) for some k € N, then by Lemma 6.22 there is some
quantifier free formula ¢’ such that rank(¢’, x) < rank(¢p. x).

o Ifrank(¢p, x) = (— 0o, n+1) for some k € N, then by Lemma 6.20 there is some
quantifier free formula ¢’ such that rank(¢’, x) < rank(¢p. x).

So in conclusion, whenever ¢ is x-corrected and rank (e, x) > (- oo, 0), there is some
quantifier free formula ¢’ such that T, = ¢ < ¢’ and rank(¢’, x) < rank(yp, x). By
Lemma 6.19, there is some x-corrected formula ¢ such that 75 = ¢ <> ¢’ +> ¢ and
rank(¢, x) = rank(¢’. x) < rank(ep, x). -

THEOREM 6.24. T, admits quantifier elimination.

PrOOF. Let ¢(x.,y1.....yx) be a quantifier free £,-formula. It suffices to find a
quantifier free formula ¢ (yy. ...,y ) such that 75 = Ixe(x, y1, ... vk) < (Y1, oo k).
By Lemma 6.23, we may assume ¢ is x-corrected and rank(p,x) = (- oo, 0). Since
rank (¢, x) = (- 0o, 0), there is some quantifier-free £o-formula ¢’(x,z1, ...,z;) and
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L-terms 7y, ...,#; with variables in {yy, ..., yx } such that

(X1, ) = @' (Xt ).
Now by Proposition 4.4, there is some quantifier-free formula ¢(zy, ...,z ) such that
To = 3xp’ (x.21, ..0.21) < d(x. 215 .00 2)).
As T> D Ty, in conclusion,

To ): Elxcp(x,yl, ...,yk) <~ Elxcp’(x,tl, ...,ll) <~ ¢>(Z1, ...,l[)
and ¢(zy, ....1) is a quantifier-free £;-formula with variables from {yy, ...y }.
COROLLARY 6.25. Every one-variable set definable in M, is definable in M.

Proor. By Theorem 6.24, every definable set in M, is quantifier-free definable.
By Lemma 6.23, every quantifier-free one-variable set definable in M, is equivalent
to an x-corrected formula of rank < (- oo, 0), which in turn is definable (with
parameters) in M. -

We conclude by articulating the answers to Questions 1.15 and 1.16.

THEOREM 6.26. There is a definably complete type complete structure without the
pigeonhole property.

Proof. The failure of the pigeonhole principle in M, is witnessed by Z and
f | Z. But by Corollary 6.25, My and M, have the same definable sets in one free
variable. In particular, M, is definably complete and type complete. -

THEOREM 6.27. There are two ordered structures in the same language M, N on
the same universe, admitting the same order and the same definable subsets with M
being pseudo-o-minimal and N not.

In particular, the answer to Question 1.16 is negative and there is no axiomatization
of pseudo-o-minimality by first-order conditions on one-variable formulae only.
Furthermore, there is no axiomatization of pseudo-o-minimality by any second order
theory in the language Lper := {<. Def} where Def is interpreted as the definable
one-variable subsets.

PrOOF. M is pseudo-o-minimal and M5, is not pseudo-o-minimal as the failure
of the pigeonhole principle is witnessed by Z and f [ Z. But My | {<} = M, | {<}
and by Corollary 6.25, M, and M, have the same definable sets in one free variable.
We may now define A to be M; and M to be a trivial expansion of My to £,
(letting every function symbol be interpreted as the identity map and any relation
symbol be interpreted as the ). =

Acknowledgments. The author is grateful to Phillip Hieronymi for presenting
the question which motivated this paper, as well as for the fruitful discussions.
The author is grateful to Assaf Hasson for the fruitful discussions and the warm
support along the way. The author thanks Itay Kaplan for his helpful comments on

https://doi.org/10.1017/js1.2020.58 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2020.58

PSEUDO-FINITE SETS, PSEUDO-O-MINIMALITY 599

a preliminary version of this paper and for the discussion which helped clarify and
strengthen the main result.

The work in this paper is part of the author’s Ph.D. studies at the Department of
Mathematics, Ben-Gurion University of the Negev under the supervision of Assaf
Hasson.

The author was partially supported by ISF Grant 181/16 and the Hillel
Gauchman scholarship. The author was partially supported by Leverhulme Trust
grant number RPG — 2017 — 179. The author is supported by National Science
Center, Poland, grant 2016/22/E/ST1/00450.

REFERENCES

[1] E. CEcH, Bodové mnoziny, Academia Nakladatelstvi Ceskoslovenské Akademie Véd, Prague,
1966.

[2] A. FORNASIERO, Locally o-minimal structures and structures with locally o-minimal open core. Annals
of Pure and Applied Logic, vol. 164 (2013), no. 3, pp. 211-229.

[3] , Tame structures and open cores, preprint, 2010, arXiv:1003.3557

[4] A. Fornasiero and P. HIERONYML, A4 fundamental dichotomy for definably complete expansions of
ordered fields. this JOURNAL, vol. 80 (2015). no. 4, pp. 1091-1115.

[5] A. Fornasiero and T. Servi, Relative Pfaffian closure for definably complete Baire structures.
Hllinois Journal of Mathematics, vol. 55 (2011). no. 3, pp. 1203-1219.

[6] P. HIERONYMI, Expansions of subfields of the real field by a discrete set. Fundamenta Mathematicae,
vol. 215 (2011), no. 2, pp. 167-175.

[7] , An analogue of the Baire category theorem, this JOURNAL, vol. 78 (2013), no. 1.
pp. 207-213.

[8] E. V. HUNTINGTON, Inter-relations among the four principal types of order. Transactions of the
American Mathematical Society. vol. 38 (1935). no. 1. pp. 1-9.

[9] C. MILLER, Expansions of dense linear orders with the intermediate value property, this JOURNAL,
vol. 66 (2001), no. 4, pp. 1783-1790.

[10] V. NovAk, Cuts in cyclically ordered sets. Czechoslovak Mathematical Journal, vol. 34 (1984),
no. 2, pp. 322-333.

[11] A. ReNNET, The non-axiomatizability of o-minimality, this JOURNAL, vol. 79 (2014), no. 1,
pp. 54-59.

[12] H. SCHOUTENS, o-minimalism, this JOURNAL, vol. 79 (2014). no. 2, pp. 355-409.

DEPARTMENT OF MATHEMATICS
BEN GURION UNIVERSITY OF THE NEGEV
P.O.B. 653, BE’ER SHEVA 8410501, ISRAEL
and

INSTYTUT MATEMATYCZNY, UNIWERSYTET WROCLAWSKI
PL. GRUNWALDZKI 2/4, 50-384 WROCLAW, POLAND

E-mail: mein@math.bgu.ac.il

https://doi.org/10.1017/js1.2020.58 Published online by Cambridge University Press


https://arxiv.org/abs/1003.3557
mailto:mein@math.bgu.ac.il
https://doi.org/10.1017/jsl.2020.58

	1 Introduction
	2 Preliminaries—cyclic orders
	3 Definitions of T0 and T1
	4 Quantifier elimination in T0
	5 Definition of T2 and the relation to T1
	6 Quantifier elimination in T2

