
Probability in the Engineering and Informational Sciences, 29, 2015, 265–276.

doi:10.1017/S0269964814000333

RELIABILITY STUDIES OF BIVARIATE
BIRNBAUM–SAUNDERS DISTRIBUTION

RAMESH C. GUPTA

Department of Mathematics and Statistics, University of Maine, Orono,
Maine 04469-5752, USA

E-mail: rcgupta@maine.edu

In this paper, we study the bivariate Birnbaum–Saunders (BVBS) distribution from a
reliability point of view. The monotonicity of the hazard rates of the univariate as well
as the conditional distributions is discussed. Clayton’s association measure is obtained in
terms of the hazard gradient and its value in the case of the BVBS distribution is derived.
The probability distributions, in the case of series and parallel systems, are derived and
the monotonicity of the failure rate, in the case of series system, is discussed.

1. INTRODUCTION

It is well known that Birnbaum–Saunders (BS) distribution, here after called as BS distri-
bution, is a versatile model for analyzing lifetime data. This two-parameter BS distribution
was originally proposed by Birbaum and Saunders [4] as a fatigue failure model. Later on
Desmond [6] strengthened the physical justification of the use of this model by relaxing
some of the assumptions made by Birnbaum and Saunders [4] and later established the
relationship between the BS distribution and the inverse Gaussian distribution. In fact, it
has been shown that the BS distribution is a special case of the mixture of inverse Gaussian
and its length-biased version when the mixing proportion is equal to 0.5; see Gupta and
Akman [14,15] in this connection.

In the last 25 years, different aspects of the BS distribution have been studied by various
researchers. A comprehensive treatment of the BS distribution can be found in Johnson,
Kotz, and Balakrishnan [21]. More recently, Balakrishnan et al. [1] studied some inference
problems pertaining to mixture models based on the BS distribution. Some other recent
references include Ng, Kundu, and Balakrishnan [27,28] and Kundu, Kannan, and Balakr-
ishnan [22]. The cumulative distribution function (CDF) of the BS distribution is defined
through the CDF of a standard normal variable, and it can be obtained as a monotone trans-
formation from a standard normal variable. This helps us to investigate the monotonicity of
the density function and the hazard function. Independent of this fact, Gupta and Akman
[14] and Kundu et al. [22] showed that the hazard function of the BS distribution is not
monotone and is unimodal.

Recently Kundu, Balakrishnan, and Jamalizadeh [23] derived a bivariate BS (BVBS)
distribution which is an absolutely continuous distribution whose marginals and conditionals
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have BS distribution. This new family of distributions has five unknown parameters whose
inference problems have been studied by these authors.

In this paper, we are interested in studying the class of BVBS distribution from a reli-
ability point of view. More specifically, we study the association between the variables and
obtain conditions for which this class of distributions is TP2 (totally positive of order 2)
or RR2 (reverse rule of order 2). This enables us to study the dependence properties of
the model. We study the hazard components of the hazard gradient in the sense of John-
son and Kotz [20] and their monotonic structure. An association measure θ(x, y) defined
by Oakes [29], is investigated for this class of bivariate distributions. Some of the results
presented here are general and would be useful in studying the association in other classes
of bivariate distributions.

The organization of this paper is as follows: In Section 1, we present some general
results for bivariate distributions. Also we give some definitions and background of relia-
bility functions. The monotonicty of the failure rates of the conditional distributions of the
BVBS distribution is discussed in Section 2. In Section 3, we investigate the association
measure, presented by Clayton [5], and its relationship with some dependence notions in
reliability. The value of the association measure is derived for our model. Section 4 contains
the distributions of the series and parallel systems and the investigation of the monotonicity
of the failure rate of the series system. Finally, in Section 5, we present some comments and
conclusions.

1.1. Some Definitions and Background of Reliability Functions

Let T be a non-negative random variable denoting the life length of a component having
distribution function F (t) with F (0) = 0 and the probability density function (pdf) f(t).
Then the failure rate of T is given by r(t) = f(t)/R(t), where R(t) = 1 − F (t) is the survival
(reliability) function of T . We also assume that f(t) is strictly positive, continuous and twice
differentiable on (0,∞).

Let h : R → R be a real-valued differentiable function. Then
h(t) is said to be

(1) increasing if h′(t) > 0 for all t and is denoted by I;
(2) decreasing if h′(t) < 0 for all t and is denoted by D;
(3) bathtub shaped if h′(t) < 0 for t ∈ (0, t0), h′(t0) = 0, h′(t) > 0 for t > t0 and is

denoted by B;
(4) upside down bathtub shaped if h′(t) > 0 for t ∈ (0, t0), h′(t0) = 0, h′(t) < 0 for t > t0

and is denoted by U.

For some definitions given above, see Gupta and Warren [17] and Barlow and
Proschan [2]. Also see Barlow, Marshall, and Proschan [3] for some properties of probability
distributions with the monotone hazard rate.

In order to determine the monotonicity of the failure rates, we proceed as follows:
Define

η(t) = −f ′(t)/f(t). (1.1)

This function contains useful information about r(t) and is simpler because it does not
involve R(t). In particular, the shape of η(t) (I, D, B, etc.) often determines the shape of
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the failure rate. The relation between r(t) and η(t) is given by

d

dt
ln r(t) = r(t) − η(t). (1.2)

The above equation also suggests that the turning point of r(t) is a solution of the equation
η(t) = r(t). Also it can be verified that limt→∞ r(t) = limt→∞ η(t). For more relations
between η(t) and r(t), see Marshall and Olkin [25].

It can be easily seen that η′(t) > 0 if and only if f(t) is logconcave, and thus, the
distribution is increasing failure rate (IFR). In fact r′(t) > 0 is equivalent to the logconcavity
of R(t), where R(t) is the reliability function. So logconcavity of f(t) is a stronger condition
than the logconcavity of R(t).

In order to determine the monotonicity of r(t), we present a modification, due to Mar-
shall and Olkin [25], of Glaser [9] which helps us to determine the shape of the failure rates
of the four types described above.

Theorem 1.1: Let f be a density strictly positive and differentiable on (0,∞) such that
limx→∞ f(x) = 0. Then

(a) If η(t) ∈ I, then r(t) ∈ I (IFR).
(b) If η(t) ∈ D, then r(t) ∈ D (DFR).
(c) If η(t) ∈ B, then r(t) ∈ B (bathtub-shaped failure rate).
(d) If η(t) ∈ U , then r(t) ∈ U (upside bathtub-shaped failure rate).

Proof: See Marshall and Olkin ([25], page 134).

2. BVBS DISTRIBUTION

The CDF of a two-parameter BS random variable T , for α > 0, β > 0 can be written as

FT (t : α, β) = Φ

[
1
α

{(
t

β

)1/2

−
(

β

t

)1/2
}]

, t > 0, (2.1)

where Φ(.) is the CDF of a standard normal variable.
Using the same idea as (2.1), Kundu et al. [23] introduced the BVBS, hereafter called

BVBS, model as follows:
Let us define the following functions:

A(t1) =
1
α1

{(
t1
β1

)1/2

−
(

β1

t1

)1/2
}

and

B(t2) =
1
α2

{(
t2
β2

)1/2

−
(

β2

t2

)1/2
}

The bivariate random vector (T1, T2) is said to have a BVBS distribution with
parameters α1, α2, β1, β2, ρ, if the CDF of (T1, T2) can be expressed as

P (T1 ≤ t1, T2 ≤ t2) = Φ2[A(t1), B(t2); ρ], (2.2)

for t1 > 0, t2 > 0, and zero otherwise. Here α1 > 0, α2 > 0, β1 > 0, β2 > 0,−1 < ρ < 1 and
Φ2(u, v, ρ) is the CDF of a standard normal vector (Z1, Z2) with correlation coefficient ρ.
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The corresponding pdf of T1 and T2 is given by

fT1,T2(t1, t2) = φ2[A(t1), B(t2); ρ]A′(t1)B′(t2),

where φ2(u, v, ρ) denote the joint pdf of Z1 and Z2 given by

φ2(u, v; ρ) =
1

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)
(u2 − 2ρuv + v2)

}
.

The following theorem provides the marginal and conditional distributions of the BVBS
distribution

Theorem 2.1 (Kundu et al. [23]): If (T1, T2) ˜BVBS (α1, α2, β1, β2, ρ), then

(a) Ti˜BS(αi, βi), i = 1, 2
(b) The conditional pdf of T1 given T2 = t2 is given by

fT1|T2=t2(t1|t2) =
A′(t1)√

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)
(A(t1) − ρB(t2))2

}
.

(c) The conditional CDF of T1 given T2 = t2 is given by

P (T1 ≤ t1|T2 = t2) = Φ

{
(A(t1) − ρB(t2)√

1 − ρ2

}
.

2.1. Conditional Failure Rate of T1 Given T2 = t2

The conditional survival function of T1 given T2 = t2 can be written as

R(t1|t2) = 1 − Φ

{
A(t1) − ρB(t2)√

1 − ρ2

}
,

2.1.1. The conditional failure rate of T1 given T2 = t2. The conditional failure rate of
T1 given T2 = t2 is given by

rT1|T2(t1|t2) = − d

dt1
ln

{
1 − Φ

{
A(t1) − ρB(t2)√

1 − ρ2

}

= hN

[
A(t1) − ρB(t2)√

1 − ρ2

]
A′(t1)√
1 − ρ2

, (2.3)

where hN (.) is the failure rate of a standard normal variable.
In order to investigate the monotonicity of the above failure rate, we have

d

dt1
rT1|T2(t1|t2) = h′

N

[
A(t1) − ρB(t2)√

1 − ρ2

]
(A′(t1))2

1 − ρ2
+ hN

[
A(t1) − ρB(t2)√

1 − ρ2

]
A′′(t1)√
1 − ρ2

.

Now the failure rate of T1 is given by

rT1(t1) = hN (A(t1)A′(t1).

Knowing the fact that rT1(t1) is of the type U , rT1|T2(t1|t2), as a function of t1 is of the
type U , see Gupta and Akman [14]. The turning point of the failure rate of the conditional
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distribution is given by the solution of the equation

h′
N

[
A(t1) − ρB(t2)√

1 − ρ2

]
(A′(t1))2

1 − ρ2
+ hN

[
A(t1) − ρB(t2)√

1 − ρ2

]
A′′(t1)√
1 − ρ2

= 0. (2.4)

For investigating the monotonicity of the above conditional failure rate as a function of
t2, we proceed as follows:

In order to study the dependence between the two variables X and Y, we define a local
dependence function

γf (x, y) =
∂2

∂x∂y
ln f(x, y),

where f(x, y) is the joint pdf of (X,Y ), see Holland and Wang [19] for definition and
properties of the local dependence function. One important property of the local dependence
function is the TP2 (RR2) property defined as:

Definition 2.2: A function f(x, y) is said to be TP2 (totally positive of order 2) or RR2

(reverse rule of order 2) if

f(x1, y1)f(x2, y2) ≥ (≤)f(x1, y2)f(x2, y1), x1 < x2, y1 < y2.

The following theorem ties the local dependence function and the TP2 (RR2) property.

Theorem 2.3: The density of (X,Y ) is TP2 (totally positive of order 2) or RR2 (reverse
rule of order 2) according as the local dependence function γf (x, y) > (<)0.

Proof: See Theorem 7.1 of Holland and Wang [19].
We now show that the BVBS has the TP2 (RR2) property according to ρ > 0 (ρ < 0).

Theorem 2.4: The BVBS distribution has the TP2(RR2) property according to ρ > 0
(ρ < 0).

Proof: The pdf of the BVBS distribution can be written as

fT1,T2(t1, t2)

=
1

2π
√

1 − ρ2
A′(t1)B′(t2) exp

{
− 1

2(1 − ρ2)
(A2(t1) − 2ρA(t1)B(t2) + B2(t2))

}
.

This gives
∂2

∂t1∂t2
ln fT1,T2(t1, t2) =

ρ

1 − ρ2
A′(t1)B′(t2). (2.5)

It can now be verified that A′(t1) > 0 and B′(t2) > 0. The result is proved using
Theorem 2.3.

We now state the following result due to Shaked [30].

Lemma 2.5: If f(x, y) is TP2(RR2, resp.), the conditional failure rate of X given Y = y is
decreasing (increasing, resp.) in y.

Using the above result, we conclude that

Theorem 2.6: For the BVBS, the failure rate of the conditional distribution of T1 given
T2 = t2 is decreasing (increasing) in t2 according as ρ > (<)0.
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2.2. Conditional Failure Rate of T1 Given T2 > t2

As stated before, the conditional CDF of (T1, T2) is given by

P (T1 ≤ t1, T2 ≤ t2) = Φ2[A(t1), B(t2); ρ].

The failure rate of T1 given T2 > t2 is given by

h1(t1, t2) = − ∂

∂t1
ln P (T1 > t1|T2 > t2)

=
A′(t1)φ(A(t1))[1 − Φ(B(t2)−ρA(t1)√

1−ρ2
)]

P (T1 > t1, T2 > t2)
. (2.6)

The corresponding pdf of T1 given T2 > t2 is given by

fT1|T2>t2(t1|t2) = φ(A(t1))A′(t1)

[
1 − Φ(B(t2)−ρA(t1)√

1−ρ2

]
P (T2 > t2)

. (2.7)

For the standard normal distribution, see Gupta and Gupta [10].
In order to investigate the monotonicity of this conditional failure rate as a function of

t1, we present the following two results:

Lemma 2.7: Let X be a continuous random variable with density function f(x) and the
corresponding eta function η(x). Let f∗(x) = w(x)f(x) be the weighted density with weight
function w(x) and the corresponding eta function η∗(x).

A. Suppose η(x) is increasing and w(x) is logconcave. Then f∗(x) is logconcave.
B. Suppose (i) η(x) is of the type U (ii) w(x) is logconcave (iii) ∂3/∂x3[ln(w(x)] > 0.

Then η∗(x) is of the type U

Proof: See Gupta and Arnold [16]

Lemma 2.8: Suppose X is a standard normal variable with failure rate hN (t). Then
h′′

N (t) > 0.

Proof: The truncated variance is given by

Var(X|X > t) = 1 − h′
N (t),

see McGill [26]. This gives

σ2
F (t) = Var(X − t|X > t) = 1 − h′

N (t).

Since X has the IFR, it has decreasing mean residual life function and decreasing
variance residual life function, see Gupta [13]. This means that σ2′

F (t) < 0 or h′′
N (t) > 0.

Using the above two Lemmas, we present the following result.

Theorem 2.9: For the BVBS distribution, the failure rate of T1 given T2 > t2 is of the type
U , assuming ρ > 0.
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Proof: The conditional pdf of T1 given T2 > t2 is given by

fT1|T2>t2(t1|t2) = w(t1)φ(A(t1))A′(t1),

where the weight function w(t1) is given by

w(t1) =

[
1 − Φ

(
B(t2)−ρA(t1)√

1−ρ2

)]
P (T2 > t2)

.

It can be verified that A′(t1) > 0, A′′(t1) < 0 and A′′′(t1) > 0. Also

d

dt1
ln w(t1) =

ρ√
1 − ρ2

hN

(
B(t2) − ρA(t1)√

1 − ρ2

)
A′(t1),

d2

dt21
ln w(t1) =

ρ√
1 − ρ2

[
h′

N

(
B(t2) − ρA(t1)√

1 − ρ2

)(
−ρA′2(t1)√

1 − ρ2

)]

+ hN

(
B(t2) − ρA(t1)√

1 − ρ2

)
A′′(t1)

< 0

and

d3

dt31
ln w(t1) =

−ρ2

1 − ρ2

[
2A′(t1)A′′(t1)h′

N

(
B(t2) − ρA(t1)√

1 − ρ2

)

− ρ√
1 − ρ2

A′3(t1)

[
h′′′

N

(
B(t2) − ρA(t1)√

1 − ρ2

)]

+
ρ√

1 − ρ2

[
A′′′(t1)hN

(
B(t2) − ρA(t1)√

1 − ρ2

)]

− ρ√
1 − ρ2

A′(t1)A′′(t1)hN

(
B(t2) − ρA(t1)√

1 − ρ2

)]

> 0.

Now, for the univariate BS model, η(x) is of the type U, see Gupta and Akman [14]. Also
all the conditions of Lemma 2.7 are satisfied, we can conclude that η∗(t1|T2 > t2) is of the
type U . Thus, the failure rate of T1 given T2 > t2 is of the type U .

In order to study the monotonicity of this failure rate as a function of t2, we state the
following result due to Shaked [30].

Lemma 2.10: If f(x, y) is TP2(RR2), the conditional failure rate of X given Y > y is
decreasing (increasing) in y.

Using the above result, we conclude that

Theorem 2.11: For the BVBS, the failure rate of the conditional distribution of T1 given
T2 > t2 is decreasing (increasing) in t2 according as ρ > (<)0.
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3. ASSOCIATION MEASURE

In the context of bivariate survival models induced by frailties, Oakes [29] studied the
following association measure:

θ(t1, t2)) =
SS12

S1S2
,

where S = S(t1, t2) is the survival function, S12 = ∂2S(t1, t2)/∂t1∂t2, S1 = (∂/∂t1)S(t1, t2)
and S2 = (∂/∂t2)S(t1, t2); see also Clayton [5].

Clayton [5] presented the above association measure, deriving from the Cox model, in
a study of the association between the lifespans of fathers and their sons.

It can be easily seen that

θ(t1, t2) =
r(t1|T2 = t2)

h1(t1, t2)
.

The numerator is the hazard rate for sons at time t1 given that their fathers died at t2. The
denominator is the hazard rate for sons at time t1 given that their fathers live past t2. Also

r(t1|T2 = t2) = −S12/S2 and h1(t1, t2) = −S1/S.

It can now be verified that
∂

∂t2
h1(t1, t2) =

S2

S
[−h1(t1, t2) + r(t1|T2 = t2]

=
S2

S
h1(t1, t2)(θ − 1),

suppressing the argument of θ.
Since S2〈0, θ〉(<)1 is equivalent to ∂

∂t2
h1(t1, t2) < (>)0.

Thus, in the case of BVBS, θ > (<)1 according as ρ > (<)0, see Theorem 2.11
Note that, in general, TP2 property (positive dependence) implies θ > 1. Likewise RR2

property implies θ < 1.
We now express θ(t1, t2) in terms of the hazard components derived earlier
Using the definitions given above, it can be verified that

∂2

∂t1∂t2
ln S(t1, t2) =

S1S2

S2
(θ − 1)

= h1(t1, t2)h2(t1, t2)(θ − 1),

where

h2(t1, t2) = − ∂

∂t2
ln S(t1, t2).

This gives

θ(t1, t2) = 1 −
∂

∂t2
h1(t1, t2)

h1(t1, t2)h2(t1, t2)
.

By symmetry, we also have

θ(t1, t2) = 1 −
∂

∂t1
h2(t1, t2)

h1(t1, t2)h2(t1, t2)
. (3.1)

Remark 3.1: It can be proved that T1 and T2 are independent if and only if θ(t1, t2) = 1.

Using the values of h1(t1, t2) and h2(t1, t2) derived earlier, θ(t1, t2) can be obtained for
the BV BS distribution; see Eq. (2.6).
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3.1. Effect of the association measure

The deviation of the ratio of these hazards from 1 characterizes the measure of mutual
dependence of respective lifespans. The stronger the dependence between T1 and T2 is, the
higher is the value of |θ(t1, t2) − 1|. If θ(t1, t2) decreases to one when t1 and t2 tend to +∞,
then the dependence of the pair (T1, T2) is at least DTP (0, 1) or DTP (1, 0). This means that
the conditional hazard of T2 given T1 = t1 and the conditional hazard of T1 given T2 = t2
decrease in t1 (respectively in t2); see Shaked [30] for the definitions of DTP (0, 1) and
DTP (1, 0). Clayton [5] proposed this measure by assuming that association arises because
the two members of a pair share some common influence and not because one event influ-
ences the other. Thus θ(t1, t2) explains an association between two non-negative survival
times with continuous joint distribution by their common dependence on an unobserved
random variable. This unobserved random variable is commonly known as frailty or envi-
ronmental effect, see Oakes [29] and Manatunga and Oakes [24] for more details on frailty
models. Clayton [5] describes the estimation of the parameter θ(x, y) from longitudinal
studies. He also provides a numerical example in case–control studies. The estimation of
θ(t1, t2) in a discrete form of the model is considered by Oakes [29] even in the presence of
censoring in either or both components and it is shown that these estimates can be used to
test the independence of the two variables. He uses the data of Hanley and Parnes [18] to
illustrate this methodology.

4. SERIES AND PARALLEL SYSTEMS OF TWO COMPONENTS

In this section, we shall obtain the density functions of U1 = min(T1, T2) and U2 =
max(T1, T2). Also we study the monotonicity of the failure rate of U1.

We know that for any bivariate vector (T1, T2), the density functions of U1 and U2 are
given by

fU1(t) = fT1(t)P (T2 > t|T1 = t) + fT2(t)P (T1 > t|T2 = t) (4.1)

and
fU2(t) = fT1(t)P (T2 < t|T1 = t) + fT2(t)P (T1 < t|T2 = t), (4.2)

see Gupta and Gupta [11].
For the BVBS, using (4.1), it can be verified that

fU1(t) = fT2(t)

[
1 − Φ

(
A(t) − ρB(t)√

1 − ρ2

)]
+ fT1(t)

[
1 − Φ

(
B(t) − ρA(t)√

1 − ρ2

)]

and

fU2(t) = fT2(t)Φ

(
A(t) − ρB(t)√

1 − ρ2

)
+ fT1(t)Φ

(
B(t) − ρA(t)√

1 − ρ2

)
.

For the standard bivariate normal distribution, it reduces to

fU1(t) = 2φ(t)
[
1 − Φ

(
t

√
1 − ρ

1 + ρ

)]
(4.3)

and

fU2(t) = 2φ(t)Φ
(

t

√
1 − ρ

1 + ρ

)
.
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4.1. Monotonicity of the failure rate

In most practical applications, the failure rate is quite complicated and so the straight
derivative method is very complex. In such cases, we work with the density function and
use Glaser’s [9] approach described earlier. In our case, even the expression for ηU1(t) is
quite involved to yield an analytic solution of the problem. So we proceed as follows:

Let us denote by h(t) the failure rate of U1 with survival function SU1(t). Then hh(th)(t)

h(t) = − d

dt
ln S(t) = h1(t, t) + h2(t, t), (4.4)

where S(t1,t2) is the survival function of (T1,T2).
Note that hi(t, t), i = 1, 2 is proportional to the failure rate h∗

i (t, t) of the condi-
tional distribution of U1 given T1 < T2(T2 < T1). In the context of competing risks, hi(t, t)
describes the (instantaneous) rate of dying from cause i when both the causes are acting
simultaneously, see Gupta [12] and Elandt-Johnson and Johnson [7].

Then the pdfs f∗
i (t) of the conditional distributions are given by

f∗
i (t) =

1
πi

hi(t, t)SU1(t), i = 1, 2, (4.5)

where SU1(u) is given by

SU1(u) = exp

{
−
∫ u

0

2∑
i=1

hi(x, x)dx

}
(4.6)

and πi is a proper constant of proportionality. For more details and applications, see Gaynor
et al. [8]. Note that f∗

1 (t) helps us to investigate the monotonicity of the hazard rate of the
minimum.

Because of the proportionality mentioned before, the monotonicity of h(t) can be
established if f∗

1 (t) and f∗
2 (t) fulfill the criteria mentioned before.

As seen before

h1(t1, t2) =
A′(t1)φ(t1)

[
1 − Φ

(
B(t2)−ρA(t1)√

1−ρ2

)]
P (T1 > t1, T2 > t2)

. (4.7)

This gives

f∗
1 (t) =

1
π1

A′(t)φ(A(t))

[
1 − Φ

(
B(t) − ρA(t)√

1 − ρ2

)]
. (4.8)

This gives

η∗
1(t) = − d

dt
ln f∗

1 (t)

= −A′′(t)
A′(t)

+ A(t)A′(t) +
B′(t) − ρA′(t)√

1 − ρ2
hN

(
B(t) − ρA(t)√

1 − ρ2

)
, (4.9)

where hN (.) is the failure rate of a standard normal.
Note that, for the case of bivariate normal distribution, it matches with Gupta and

Gupta [11].
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The general analytical investigation of the monotonicity of the failure rate is not feasible.
So we consider the case when A(t) = B(t). In that case f∗

1 (t) becomes

f∗
1 (t) =

1
π1

fT1(t)[1 − Φ((A(t)
√

(1 − ρ)/(1 + ρ)]

The above two graphs indicate that the failure rate of the series system is of the type U .

5. CONCLUSIONS AND COMMENTS

In this paper, we have presented some properties of the BVBS distribution from a reliability
point of view. The dependence properties of the model are studied by examining the local
dependence function and the association measure due to Clayton [5]. The determination
of the monotonicity of the hazard components is discussed and it is shown that the failure
rate of T1 given T2 > t2 is of the type U . In the case of series system, the monotonicity
of the failure rate is discussed. In general, the determination of the monotonicity of the
hazard is not feasible by analytical means. However, in some particular cases, one can get
some information about the monotonicity. We hope that our investigation will be helpful
to reliability researchers and theoreticians.
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