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SUMMARY
The force distribution problem in multilegged vehicle is a
constrained, optimization problem. The solution to the
problem is the setpoints of the leg contact forces for a
particular system task. In this paper, the efficient Compact
QP method which takes into account both the linear and
quadratic objective functions is adopted to resolve this
constrained, optimization problem. Various objective func-
tions such as minimum force, load balance, safety margin
on friction constraints can be considered by the Compact
QP method. This method can also be applied to smooth
discontinuities in commanded forces by manipulating the
homogeneous solution and including smoothing periods
when the leg phase alternates between support and transfer.
This smoothing scheme does not require force sensors.
Multiple goals which consider several alternative objective
functions can also be achieved by the Compact QP
method.

KEYWORDS: Multilegged vehicles; Optimal force; Compact QP
method.

1. INTRODUCTION
It is interesting to notice the difference that animals use
independent limbs while man has made almost exclusive
use of wheeled vehicles to achieve locomotion. Each
method has definite advantages. Legged configurations
typically move slower but do not require hard, smooth
surfaces. On the other hand, wheeled vehicles together with
hard surfaces allow fast and efficient movement of heavy
loads. Multilegged vehicles with their potential for terrain
adaptability are now being developed with hopes that
someday they can provide a valuable service to mankind.
Among the ways in which a legged vehicle might be used
are locating and disarming bombs, extinguishing fires,
underground mining to recover natural resources, explora-
tion of the ocean floors, or exploration of distant planets.
Ultimately, such a vehicle could be utilized in almost any
situation where a human cannot exist or would be in
danger.

A multilegged vehicle is a robotic linkage system
containing multiple chains and forming simple closed-
kinematic loops.1 The basic problem of controlling this
system is that of coordination. In addition to the usually

intra-chain, local coordination problem which involves
control of the individual joints of a chain to achieve the
desired tip control, there is an inter-chain, global coordina-
tion problem which involves coordination among the several
chains. One of the major problem of inter-chain coordina-
tion is that of force distribution.2,3

Because multiple chains share the load, this global
coordination problem is usually underspecified involving
redundancy. Moreover, since friction constraints for pre-
venting slippage, and the physical limits of the joint
actuators often need to be considered, this problem is also
constrained.

A multilegged vehicle is an example of a large-scale
system.4 With the legs of the vehicle forming closed-
kinematic loops, the responses of individual legs are tightly
coupled with one another through the body. The dynamic
equations for each leg of a multilegged vehicle are:

tk = (H(u)·ü + E(u, u̇) + K(u) + V(u̇))k +(JT·hC)k k=1, . . . , m
(1)

where

t = input joint torque/force vector [N3 1],

u, u̇, ü = joint displacement, velocity, acceleration
vectors, each (N3 1],

H(u) = inertia matrix [N3 N],

E(u, u̇) = vector defining centrifugal and Coriolis effects
[N3 1],

K(u) = vector defining the gravity terms [N3 1],

V(u̇) = vector defining the viscous friction terms
[N3 1],

JT = transpose of Jacobian matrix [N3 6],

hC = chain tip contact force/moment vector [63 1],

N = number of degrees of freedom for each chain,
and

m = number of chains.

These m dynamic equations are tightly coupled through the
terms, (JT·hC)k, where all of the (hC)k terms constitute the
required wrench5 (3 force and 3 moment components) to
give the desired motion specified on the body. The equations
which relate (hC)k to the required wrench are termed the
force balance equations.

As for the cases of multifingered hands and multiple
manipulators, a number of investigators6–8 have aggregated
all of the individual chain dynamic equations together with
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the force balance equations to solve this coupled, large-scale
control problem. However, systematic and efficient methods
to treat the coupling terms, (JT·hC)k, which must satisfy the
force balance equations, friction constraints, and joint
torque constraints, are yet needed. Essentially, this is the
problem of force distribution.

A computationally efficient algorithm for solving the
force distribution problem called the Compact-Dual LP
(Linear Programming) method has been developed by
Cheng and Orin.2 The approach taken is based on efficient
use of linear programming techniques,9 and it makes real-
time solution of the linear programming problem feasible.

Nahon and Angeles later pointed out several advantages
of quadratic programming over linear programming in their
study of grasping.10 Quadratic programming produces
continuous solutions under smooth constraint changes, does
not require splitting design variables into positive and
negative parts, is more efficient for large problems, and
permits a quadratic optimization function rather than a
linear one. They applied quadratic programming to mini-
mize either the internal force or the norm of joint torques.
Neither may be minimized using linear programming due to
the quadratic optimization function.

Cheng, et al. have combined the merits of the Compact
formulation (for reducing the optimization problem size)
and the quadratic programming (for continuous solutions
under smooth constraint changes and considering inequality
constraints) to develop the Compact QP method11 for
resolving manipulator redundancy under inequality con-
straints.

In this paper, the Compact QP method11 is applied to
resolve the force distribution problem. The Compact QP
method is a general optimal aglorithm which can accept
most linear and quadratic objective functions. Therefore,
several alternative objective functions are formulated and
implemented in this paper. They are minimum force,10 load
balance,3,12 and safety margins on friction constraints.3

Also, as indicated in reference 13, using the minimum
force objective function, the force set-point solutions for all
supporting legs show major discontinuities whenever the leg
phase alternates between support and transfer. These
discontinuities in the past caused large control impulses to
the system. Klein and Chung13 have applied the so-called
minimum-perturbation solution method to minimize dis-
continuities in commanded forces by utilizing the actual
contact forces (via force sensors) to form the proper
homogeneous solution. However, force sensors are expen-
sive, fragile, and may have slow reaction time. In this paper,
a gradient projection method,14 together with adding
smoothing periods when the leg phase alternates between
support and transfer, is proposed to smooth these dis-
continuities without the help of force sensors.

The Compact QP method can also be applied for multiple
goals.15 Three objective functions for minimum force, load
balance, and smoothing discontinuities in commanded
forces are considered simultaneously in a simulation and the
solution sequences show that all of the three goals are
accomplished.

The organization of the paper is described as follows.
Section 2 describes the general formulation for the force

distribution problem. Section 3 summarizes the Compact
QP method. Section 4 presents the formulations to include
the optimization criteria for load balance and safety margin
on friction constraints into the general formulation. Section
5 describes the example mechanism, the TIT Quadruped,
which will be used for all the simulations. Section 6
explains the general gait planning for the TIT Quadruped.
Section 7 derives alternative objective functions for the
force distribution problem. Finally, Section 8 presents the
summary and conclusions.

2. GENERAL FORMULATION FOR THE FORCE
DISTRIBUTION PROBLEM
The general formulation for the force distribution problem
of a simple closed-chain mechanism, considering the chain
dynamics and a general contact model of the chains with the
load or support surface, has been derived in references 1 and
2.

The case of a multilegged vehicle with hard point
contacts is presented in this section. This formulation
includes equality constraints (force balance equations) and
inequality constraints (friction constraints and maximum
joint torque constraints) which will be derived in the
following paragraphs.

2.1 Force balance equations
For hard point contact with friction, only forces are
transmitted from the tips of the legs through the legs to the
body, hereinafter the body is called the reference member
(Fig. 1). The force balance equations on the reference
member may then be written as:

oFo = Om

k=1

[2 (oDC·CgC)k 2 (ohB)k] + oho (2)

where
oFo = resultant force/moment vector applied to

reference member expressed in reference
member coordinate frame (O) [63 1],

Fig. 1. Force balance on the body (reference member).
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(oDC)k = transform to resolve contact forces from
contact coordinate frame for chain k(Ck) to
reference member coordinate frame (O)
[63 3],

(CgC)k = unknown contact force vector onto support
surface from chain k expressed in contact
coordinate frame (Ck) [33 1],

(ohB)k = force/moment vector applied to chain k at its
base when unconstrained (open chain)
expressed in reference member coordinate
frame (O) [63 1], and

oho = external force/moment vector on reference
member (including gravity) expressed in
reference member coordinate frame (O) [63 1].

Moreover, the components of (CgC)k are:

(CgC)k =
Cfx

Cfy

Cfz
k

(3)

where, for example, Cfx is the x component of the contact
force expressed in the contact coordinate frame. Also, note
that (gC)k is just the unknown part of (hC)k (Eq. (1)).

2.2 Friction constraints
With the contact normal along the z direction and directed
outward and a coefficient of friction of m, the friction force
constraints may be expressed as:

2 Cfx
k +

m

Ï2
·Cfz

k ≤ 0, (4)

Cfx
k +

m

Ï2
·Cfz

k ≤ 0, (5)

2 Cfy
k +

m

Ï2
·Cfz

k ≤ 0, (6)

Cfy
k +

m

Ï2
·Cfz

k ≤ 0, (7)

which give a conservative but linear set of constraints
describing a friction pyramid inscribed within the desired
friction cone [1]. It is noted that Eqs. (4)–(7) imply Cf z

k ≤ 0.
The friction force constraints may be rewritten as:

21
1
0
0

0
0

21
1

m/Ï2

m/Ï2
m/Ï2

m/Ï2

Cfx

Cfy

Cfz
k

≤

0
0
0
0

. (8)

In short, Eq. (8) yields:

(S·CgC)k ≤ 0 (9)

where S is the matrix coefficients of the friction constraints.

2.3 Maximum joint torque constraints
To keep the joint torques within the physical limits of the
actuators, maximum joint torque constraints may be written1

as

tk min ≤ tk ≤ tk max (10)

where

tk = (CĴT
C·CgC)k + tk (11)

and

tk max = maximum actuator torque vector for chain k
[N3 1],

tk min = minimum actuator torque vector for chain k
(N3 1],

(CĴT
C)k = transpose of Jacobian for linear velocity of

chain k using the origin of contact coordinate
frame as velocity reference point, expressed
in contact coordinate frame [N3 3], and

tk = joint torque/force vector for chain k when
unconstrained (open chain) [N3 1].

Combining Eqs. (10) and (11) results in:

(CĴT
C · CgC)k ≤(tmax 2 t)k, (12)

2 (CĴT
C · CgC)k ≤(2tmin + t)k, (13)

If all of the (CgC)k, k =1, . . . , m, are organized into a
composite contact force vector, G, of size [3m3 1], and the
legs’ dynamics (ohB)k are not considered, the force balance
equations Eq. (2) may be expressed as:

W·G=F (14)

where F= oFo 2 oho and W is the composite vector space of
G with size [63 3m]. And, the inequality constraints which
include the friction constraints (Eq. (9)) and the maximum
joint torque constraints (Eqs. (12) and (13)) may be
combined and written as:

A·G≤B (15)

A = coefficient matrix of inequality constraints
[l3 3m],

B = boundary-value vector of inequality constraints
[l3 1], and

l = number of inequality constraints (4m + 2Nm).

Equations (14) and (15) define an underspecified problem
which has multiple solutions. The general form of objective
functions for a QP problem may be formulated as:

Minimize
1

2
·(G2Z)T·H·(G2Z) (16)

where H is a 3m3 3m positive semidefinite cost matrix and
Z is an arbitrary vector which has the same dimension as G.
This objective function will search for an optimal solution,
G*, which is nearest to a given vector Z.

The objective function in Eq. (16) can be rewritten in the
standard QP form as:
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Minimize C·G +
1

2
·GT·H·G (17)

with

C=2ZT·H (18)

Combining Eqs. (14), (15) and (17), a constrained, optimi-
zation problem, the force distribution problem, has been
formulated as:

Minimize C·G +
1

2
·GT·H·G (19)

Subject to W·G=F, (20)

A·G≤B, (21)

which is in the Original QP form. If a proper objective
function is selected (with C and H specified), then a QP
routine can be applied to obtain the optimal solution.
However, the Original QP form may be computationally
intensive. In order to improve the computational efficiency,
the Compact QP method is introduced in the following
section. Note that, the Compact QP method was first
proposed by Cheng et al. to resolve manipulator redundancy
under inequality constraints.11

3. THE COMPACT QP METHOD
The problem size of QP is mainly determined by the number
of variables and constraints. Therefore, in order to maintain
a smaller problem size, the numbers of variables and
constraints should be as few as possible. In the area of
numerical analysis, the elimination of the equality con-
straints by using them to reduce the number of independent
variables is a standard approach.16,17 Also, from the robotics
literature, Cheng and Orin2 applied the Gaussian elimina-
tion, Abdel-Rahman18 used the Gram-Schmidt
orthogonalization, and Nahon and Angeles10,19 adopted the
Householder reflections to eliminate the equality con-
straints. In this paper, the so-called Compact formulation as
derived in reference 2 is adopted since the technique of
Gaussian elimination with partial pivoting can ensure
adequately numerical stability with better computational
efficiency.20,21 Furthermore, through the process of Gaussian
elimination with partial pivoting, the decisions on which
variables to be eliminated (i.e. basic variables) and which to
be retained (i.e. free variables) are also made. In the
following section, the Compact formulation for obtaining
the general solution of the force balance equations is briefly
described.

3.1 The compact formulation
The Compact formulation was originally derived by the
Cheng and Orin [2]. If W has full rank, then, using Gaussian
elimination with partial pivoting, Eq. (20) may be trans-
formed into a desired row-reduced echelon form22 which
has an identity matrix of order 6, I6 in the first 6 columns of
the resulting matrix:

[I6 Wr] F Gb

Gf
G=[Fr] (22)

where

I6 = identity matrix of order 6[63 6],

Wr = remaining columns of the matrix W after
transformation [63 (3m26)],

Gb = partial vector for basic variables of G [63 1],

Gf = partial vector for free variables of G
[(3m26)3 1], and

Fr = the resulting vector of F after transformation
[63 1].

Equation (22) may be rewritten as:

G =FGb

Gf
G=FFr

0G+F2Wr

I G[Gf]

= Gp + N·Gf (23)

where

Gp =FFr

0G, (24)

N=F2Wr

I G, (25)

and

Gp = particular solution of G [3m3 1],

N·Gf = homogeneous solution of G [3m3 1],

N = matrix which maps Gf into the nullspace of W
[3m3 (3m26)],

0 = zero column vector [(3m26)3 1], and

I = identity matrix [(3m26)3 (3m26)].

In addition, Eq. (20) may be decomposed such that the
computation time for obtaining the general solution may be
further reduced.23

The purpose for obtaining the general solution is to
eliminate the linear equality constraints (formed by the
force balance equations) of the optimization problem such
that the problem size is reduced.2 After reducing the
problem size, a suitable optimization method may then be
applied to solve this underspecified, optimization problem
efficiently.

3.2 The compact QP method
The force distribution problem formulated in the Original
QP form was expressed in Eqs. (19)–(21). Substituting Eq.
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(23) (the general solution of Eq. (20)) into Eqs. (19) and
(21) result in the Compact QP form:

Minimize Ĉ·Gf +
1
2

·GT
f ·Ĥ·Gf (26)

Subject to Â·Gf ≤ B̂, (27)

with

Ĉ=C·N + GT
p ·H·N [13 (3m26)], (28)

Ĥ=NT·H·N [(3m26)3 (3m26)], (29)

Â=A·N [l3 (3m26)], (30)

B̂=B2A·Gp [l3 1]. (31)

Finally, a computationally efficient QP algorithm24 is
applied to obtain the constrained, optimal solution for the
force distribution problem.

4. OPTIMIZATION CRITERIA FOR LOAD
BALANCE AND SAFETY MARGIN ON FRICTION
CONSTRAINTS
The choice of an objective function is critical. In this
research, the optimization criteria for minimum force,19 load
balance,3,12 slippage avoidance,3 and minimizing disconti-
nuities in commanded forces13 have been considered. While
friction constraints were included in the formulation in the
previous section to avoid slippage, an additional margin of
safety may be introduced and maximized. This will involve
introduction of an additional variable into the formulation,
and details of this will be given later in this section. Also, to
include the load balance criterion into the objective
function, it is often necessary to introduce additional
variables and constraints, and this will be discussed in the
following paragraphs. The criteria for minimum force and
minimizing discontinuities in commanded forces do not
involve any major changes in the formulation, and they will
be considered further in a later section of the paper.

4.1. Load balance
The optimization criterion for load balance was first
developed by Orin and Oh.12 The approach they used was to
minimize the maximum normal component of contact force
among the chains, Cfz

max. This resulted in a criterion which
was linear and relatively straightforward to include in the
formulation. This new positive variable, Cfz

max, is defined
as:3,12

2 Cfz
k ≤ Cfz

max k =1, . . . , m (32)

where Cfz
k is the normal component of the contact force at

chain k with the support surface and as expressed in a
contact coordinate frame. Consequently, Eq. (32) shall be
included into the force distribution formulation so that with
a suitable objective function, the load may be evenly
distributed among the chains. This will be explained later.

From Eq. (3), Cfz
k can be expressed in terms of (CgC)k as:

Cfz
k = [0 0 1]· (CgC)k. (33)

Then

Cfz
k = [0 0 1]·(CRo)k·(

ogC)k (34)

where

(CRo)k = rotation matrix which transforms the
components expressed in reference member
coordinates into those expressed in kth contact
coordinates (Ck)[33 3], and

(ogC)k = unknown contact force vector onto reference
member expressed in reference member
coordinate frame (O) [33 1].

Or
Cfz

k = ak·(
ogC)k (35)

with

ak = [0 0 1]·(CRo)k. (36)

Combining these m equations yields:

2

Cfz
1

Cfz
2

:
Cfz

m

2

Cfz
max

Cfz
max

:
Cfz

max

≤

0
0
:

0

(37)

or

2

a1

0
:

0

0
a2

:

0

. . .

. . .
...

. . .

0
0
:

am

(ogC)1

(ogC)2

:

(ogC)m

2

Cfz
max

Cfz
max

:
Cfzmax

≤

0
0
:

0

. (38)

In short, they are:

2 Cfz 2 Cfz
max ≤ 0 (39)

or

2L·G2 Cfz
max ≤ 0 (40)

where Cf z is the aggregate vector of Cfz
k, k = 1, . . . , m,

Cfz
max = [1 1 . . . 1]T·Cfz

max, and L is the associated coefficient
matrix with dimensions [m3 3m]. Define

G =F G
Cfz

max
G

(3m + 1)3 1

=

(ogC)1

:

(ogC)m
Cfz

max

. (41)

Then Eq. (40) can be included into the Original QP
formulation as follows:

Original QP Form

Minimize C·G +
1
2

·GT·H·G (42)

Subject to W·G = F, (43)

A·G≤B, (44)

where

C = [C|r]13 (3m + 1), (45)

H =F H 03m3 1

013 3m hb
G

(3m + 1)3 (3m + 1)

, (46)
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W = [W|063 1]63 (3m + 1), (47)

A =F A 0l3 1

2L 21m3 1
G

(l + m)3 (3m + 1)

, (48)

B =F B
0m3 1

G
(l + m)3 1

, (49)

with

1 = [1 1 . . . 1]T,

r = the weight of Cfz
max in the linear objective function,

and

hb = the weight of Cfz
max in the quadratic objective

function.

Note that the range on G is unrestricted, while Cfz
max >0.

Similarly, Eq. (40) can also be included into the Compact
QP formulation:

Compact QP Form

minimize Ĉ·Gf +
1
2

·GT
f ·Ĥ·G f (50)

Subject to Â·Gf ≤ B̂, (51)

where

Ĉ = [Ĉ|r]13 (3m25), (52)

Ĥ =F Ĥ 0(3m26)3 1

013 (3m26) hb
G

(3m25)3 (3m25)

, (53)

Â =F Â O(l3 1

2L·N 21m3 1
G

(l + m)3 (3m25)

, (54)

B̂ =F B̂
L·Gp

G
(l + m)3 1

, (55)

G f = F Gf
Cf z

max
G

(3m25)3 1

, (56)

with Gf unrestricted and Cfz
max > 0.

4.2 Safety margin on friction constraints
A friction pyramid (Eqs. (4)–(7)) is used in the formulation
to give linear friction force constraints. The physical
interpretation for these equations is that the contact force
should be constrained to be inside the friction pyramid so as
to avoid slippage. A nonnegative variable, s, termed the
safety margin with units of force, may be added to the
friction force constraints as given in Eq. (4):

2 Cfx
k +

m

Ï2
· Cfz

k + s ≤ 0. (57)

Then a positive value for s provides an additional margin
within the friction pyramid for safety. Hence, slippage
avoidance may be further enhanced3 by maximizing s.

Using the aggregate vector G, the friction force con-
straints (Eq. (9)) become:

Q ·G ≤ 0, (58)

where Q is the matrix coefficients for the friction constraints
and has diagonal elements of Sk. The safety margin, s, may
be added to the friction inequalities by modifying Eq. (58)
as:

Q ·G + s ≤ 0, (59)

where s = [s s . . . s]T with dimensions [4m3 1].
By the same token, Eq. (59) can be included into the

Original QP, and Compact QP formulations. After including
the safety-margin variable, s, into the formulations, the
primary variables become:

G
=

=
G

Cfz
max

s (3m + 2)3 1

(60)

and the free variables are:

G
= f =

Gf
Cfz

max

s (3m 24)3 1

(61)

Then, the objective function yields

C
=

· G
=

+
1

2
·G
=

T·H
=

·G
=

(62)

where

C
=

= [C|r|h]13 (3m + 2) (63)

H
=

=
H 03m3 2

hb 0
O23 3m 0 hs

(3m + 2)3 (3m + 2)

(64)

with h representing the weight for s in the linear objective
function and hs representing the weight for s in the quadratic
objective function.

With completion of the above formulation for the force
distribution problem, a specific case will be considered to
illustrate the approach. The force distribution problem of the
TIT Quadruped provides such an example and will be
presented in the next section.

5. EXAMPLE MECHANISM
The schematic diagram and graphical simulation model for
the TIT Quadruped are shown in Fig. 2. See Leg 1 of
Fig. 2, the weights for Links 1–4 of Leg 1 are 20.4, 11,
3.92, and 1.8 kg, respectively. The body weight is 120 kg.
Therefore, the total weight of the TIT Quadruped is
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268.48 kg. The TIT Quadruped has four legs, each with 3
degrees of freedom. Joint 1 is a rotational joint for
sidestepping movement; Joint 2 is a sliding joint for up/
down motion; and Joint 3 is a rotational joint in
forward/backward direction. The body is the reference
member and the chains (legs) are in frictional contact with
the ground. The case of 4 legs is considered (m = 4), and
each leg has 3 degrees of freedom (N = 3). Also, for hard
point contact with friction, 3 degrees of constraint are
imposed at the contact point. For this example, a reference
member coordinate frame (O) is defined with its origin at
the geometric center of the object and with the x-axis
parallel with the body central line forward direction. The z-
axis of the reference member coordinate frame is pointing
upward, while the y-axis is assigned by the right-hand rule.

The definition of the contact coordinate frame (C) is also
shown in Fig. 2.

Before evaluating the effects of various objective func-
tions, the motion planning for the TIT Quadruped shall be
defined first. In the following section, wave gaits are
described.

6. GAIT PLANNING
A gait is the sequence of lifting and placing of legs during
the locomotion of a legged system. A specific type of gait
called a wave gait is used in this paper. Wave gaits are
common in nature and are characterized by a longitudinally
symmetric legged system. In this section, a brief summary
of McGhee’s work in formalizing gait definitions and
specifications is presented.25

Fig. 2. Schematic diagram and graphical simulation model for the TIT Quadruped (I =initial, O =reference member, B =base, and
C =contact coordinate frames.)
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A periodic gait is a specific type of gait in which every
limb has the same cycle time. Periodic gaits can greatly
simplify motion planning. The period, T, is the time
required for one locomotion cycle of a periodic gait. The
stride length, l, is the distance by which the center of
gravity of a system is translated during a complete
locomotion cycle. Stride length, l, and period, T, together
determine the velocity of the system.

Periodic gaits may be characterized by two parameters
for each leg. The relative leg phase, f i, is the fraction of the
locomotion cycle by which the contact of leg i with the
supporting surface lags the contact of leg 1 (front left leg).
The duty factor, b i, of leg i is the fraction of a locomotion
cycle during which leg i is in contact with the supporting
surface. Gaits in which all legs share a common duty factor,
b, are called regular gaits, and ones in which the motion of
each left-right pair is exactly one-half cycle out of phase are
known as symmetric gaits.

A parameter known as the stroke, R, may be related to the
stride length and duty factor for a gait. Stroke is the distance
by which the center of gravity of a system is translated
during the support phase of a leg. Stroke is equal to stride
length times duty factor.

An important parameter of gaits is the longitudinal
stability margin. This is the shortest distance, over an entire
cycle of locomotion, from the vertical projection of the
center of gravity onto the supporting surface, to an edge of
the support pattern as measured in the direction of travel. A
statically stable gait is a gait in which the longitudinal
stability margin is always positive. Note that this depends
on kinematics as well as leg sequencing.

Wave gaits are the unique gaits which maximize longitu-
dinal stability margin for any given duty factor in
longitudinally symmetric walking vehicles.26 They are
periodic, regular, and symmetric, and are characterized by a
progression of stepping events from back to front of a
walking vehicle.

The quadruped gait diagram and leg placing sequence for

wave gaits with b =
5

6 
is shown in Fig. 3, where hollow

circles represent leg lifting and solid circles stand for leg
placing.

Using the general formulation of Section 2, the Compact
QP method of Section 3, together with various optimization
criteria of Section 4, and the gait planning of this section, it
is now possible to study various effects for alternative
objective functions. Section 7 describes the resulting
simulation.

7. ALTERNATIVE OBJECTIVE FUNCTIONS
The Compact QP method is a general optimization algo-
rithm which can accept most linear and quadratic objective
functions without reformulation. Therefore, we may apply
this method to accomplish a variety of objectives.

In order to demonstrate the versatility of the Compact QP
method, several objective functions have been considered to
solve the force distribution problem of the example
mechanism, the TIT Quadruped. The associated weights of
C, r, h, and H, hb, hs in Eqs. (63) and (64) as well as the
desired vector Z in Eq. (16) will be defined, followed by
presenting the corresponding simulation results.

7.1 Circular motion planning
In order to evaluate the proper objective functions (such as
minimum force, load balance, and safety margins on friction
constraints) for the optimal force distribution, a suitable
motion planning shall be defined. We have tried several
body motion plannings such as circular motion, up-and-
down simple harmonic motion, left-and-right simple
harmonic motion, etc. We discovered that the circular
motion is the most general one because it can generate
suitable varying forces in all x, y, and z directions for
evaluating those objective functions.

The circular motion planning is designed with all the 4
legs of the quadruped being on the ground and the center of
gravity of the body performs a plannar circular trajectory.
The center of the circle is at the geometric center, the radius
of the circle is 20 cm, and the period is 5 sec. This motion
planning is applied to evaluate the effectiveness of the
objective functions for the minimum force, load balance,
and safety margins on friction constraints.

7.2. Minimum force
The most common minimum effort criterion is the mini-
mum norm of all the contact forces (for the case of hard

Fig. 3. Quadruped gait diagram and leg placing sequence for wave gaits with b =
5

6
.
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point contacts).10 The objective function for minimum force
(MF) is:

Minimize
1

2
·GT ·H ·G (65)

Therefore, the associated weights are:

C = 0, (66)

r = 0, (67)

h = 0, (68)

H = I, (69)

hb = 0, (70)

hs = 0. (71)

Figure 4 shows the simulation results of the contact forces
using this objective function.

7.3 Load balance
In order to take advantage of using all the feet on the
ground, the load should be more equally shared by them.
The strategy of load balance (LB) is to minimize the

maximum normal component of the contact forces, Cf z
max.

Therefore, the objective function yields:

Minimize Cf z
max (72)

or

Minimize (Cf z
max)

2. (73)

The corresponding weights for Eq. (72) are r = 1 and all the
others being set to zeros. As for the associated weights for
Eq. (73), they are hb = 1 and all the others being set to zeros.
Both objective functions will result in similar results. The
simulation results of Eq. (73) are shown in Fig. 5.
Comparing the magnitudes of the z-component contact
forces between MF and LB, indeed those for LB objective
are smaller. However, the x- and y-component contact forces
display discontinuous results. It is due to the fact that in this
motion planning, all four contact points are on the ground
and in the same x–y plane, therefore the force balance
equation (Eq. (20)) can be decomposed into 2 smaller linear
equations with one possesses the variables of x and y
components only and the other has the variables of z
component only.23 Also, because the objective function
specified in Eq. (73) can merely affect the z-component
contact forces, this optimization process cannot control the

Fig. 4. The contact forces for foot 1 at C1 expressed in the reference member coordinate frame (O) under circular motion and with
m = 0.5. Objective function for MF used.

Fig. 5. The contact forces for foot 1 at C1 expressed in the reference member coordinate frame (O ) under circular motion and with
m = 0.5. Objective function for LB used.
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results of x- and y-component contact forces. Further, since
the decomposed, smaller equations which possess the
variables of x and y components only are redundant (8
variables in 3 equations), multiple solutions exist.23 As such,
any feasible solutions may result, it causes these dis-
continuous solution sequences in x and y directions as
shown in Fig. 5.

7.4 Safety margins on friction constraints
For the purpose of avoiding slippage, the objective function
of safety margin (SM) is specified as:

Minimize 2s (74)

which results in h = 21 and all the other weights being set
to zeros. This will bring the contact forces away from the
edge of the friction force constraints. Figure 6 shows the
simulation results for the contact forces over time, with
m = 0.5.

The curves of Cf z
max for MF, LB, and SM are depicted in

Fig. 7. Figure 7 shows that LB produces the minimum-
effort results among those three objective functions. Also
shown in Fig. 7, to maximize slippage avoidance, the TIT
Quadruped exerts more effort than the cases for MF and LB.
Hence, it is recommended not to use the objective function
of SM. If indeed safety margins on friction constraints need
to be considered, we may assign a smaller value of m such
that the desired safety margins can be achieved in the
inequality constraints.

7.5. Minimum force plus load balance
From the above analysis, it appears that we may combine
the advantages obtained from both MF and LB such that
smooth solution sequences and less normal contact forces
may be achieved. The desired objective function becomes:

Minimize
1

2
·GT·H·G + (Cf z

max)
2 (75)

Figure 8 shows the simulation results of all the contact
forces of feet 1–4 for applying MF + LB.  From Fig. 8, the
results of the optimal force distribution between the legs are
clearly displayed. Comparing the contact forces for foot 1

among Figures 4, 5, and 8, we can conclude that the x- and
y-component contact forces of MF + LB are the same as
those of MF and the z-component contact forces of
MF + LB are identical to those of LB.

The objective function for MF + LB will also be applied
to the TIT Quadruped for walking on an even terrain with
wave gaits. The setup for the straight, even-terrain motion

planning is l = 60 cm, T = 9.6 sec, and b =
5

6
. Also, the gait

diagram and leg placing sequence shown in Fig. 3 are
adopted. As depicted in Fig. 9, with the objective function
of MF + LB, the curve of the force setpoint is piecewise
linear. Notice that the curve shows discontinuities whenever
the set of supporting legs is changed. These discontinuities
in the past caused large control impulses to the system.13 In
this research, we would like to modify the gait diagram and

Fig. 6. The contact forces for foot 1 at C1 expressed in the reference member coordinate frame (O) under circular motion and with
m = 0.5. Objective function for SM used.

Fig. 7. Comparison of Cf z
max among the objective functions of MF,

LB and SM.
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derive a proper set of desired vector, Gd, to manipulate the
homogeneous solution for solving this problem. It will be
presented next.

7.6. Smoothing discontinuities in commanded forces
Klein and Chung13 have applied the so-called minimum-
perturbation solution method to solve this problem.  In their

Fig. 8. The contact forces for feet 1–4 at C1–C4 expressed in the reference member coordinate frame (O) under circular motion and with
m=0.5. Objective function for MF+LB used.
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approach, the actual contact forces shall be available (via
force sensors) and assigned to be the desired vector, Z, such
that the objective function as shown in Eq. (16) can be
applied to minimize the differences between the actual
contact forces, Z, and the optimal solution of G. However,
force sensors are expensive, fragile, and may have slow
reaction time. It is desirable to propose an alternative which
does not require force sensors.

The approach proposed in this research is to add
20-sample smoothing periods (the number, 20, is simply a
design that we chose to undertake) when the leg phase
alternates between support and transfer. During the smooth-
ing period, a desired contact-force sequence will be defined
wbich will guide the optimal solution to gradually reduce
the magnitude of the contact forces when lifting or
gradually increase the magnitude of the contact forces when
placing. The gait diagram of Fig. 3 is then modified as in
Fig. 10.

As depicted in Fig. 10, a hollow triangle represents

begin-lifting and a hollow circle stands for end-lifting. Also,
a solid diamond represents begin-placing and a solid circle
stands for end-placing. Two more 20-sample smoothing
periods (for 0.2 sec each) are included during leg switching
between Leg 2 and Leg 4 as well as between Leg 1 and Leg
3. Therefore, the corresponding duty factor and leg phases
yield b = 0.84, f1 = 0, f2 = 0.5, f3 = 0.82, and f4 = 0.32.

Three cases exist for determining the desired contact-
force sequence, Gd.

Case 1: Leg Lifting

Suppose that Leg 4 is lifting and only the normal contact
forces are considered, then, we may assign the desired
[Cf z

1, 
Cf z

2, 
Cf z

3, 
Cf z

4] to change from

FM
4

, 
M
4

, 
M
4

, 
M
4 G

to

Fig. 9. The contact forces for foot 1 at C1 expressed in the reference member coordinate frame (O) for walking on an even terrain using

wave gaits with T = 0.6. sec and b =
5

6
. Objective function for MF + LB used.

Fig. 10. Quadruped gait diagram for including two more 20-sample smoothing periods with b = 0.84, f1 =0, f2 =0.5, f3 =0.82, and
f4 =0.32.
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FM
3

, 
M
3

, 
M
3

, 0G
gradually, where M stands for the mass of the quadruped. A
half-cosine curve is chosen to smooth the desired contact-
force sequence:

i) from 
M
4

to 0:

g10 =
1
2 F1 + cosS p

20
· tsDG ts = 0220 (76)

ii) from 
M
4

to 
M
3 Sor from 0 to SM

3
2

M
4 DD:

g01 = 12
1
2F1 + cos S p

20
· tsDG ts = 0220 (77)

Thus, Gd is defined as:

Gd = F0 0 SM
4

2
M
3 D3 g01 2

M
4

0 0 SM
4

2
M
3D3 g01

2
M
4

0 0 SM
4

2
M
3 D3 g01 2

M
4

0 0 2
M
4

3 g10GT

(78)

Case 2: Leg Placing

Suppose that Leg 1 is placing and only the normal contact
forces are considered, then, we may assign the desired
[Cf z

1, 
Cf z

2, 
Cf z

3, 
Cf z

4] to change from

F0, 
M
3

, 
M
3

, 
M
3G

to

FM
4

, 
M
4

, 
M
4

, 
M
4G

gradually. Therefore, Gd yields:

Gd = F0 0 2
M
4

3 g01 0 0 SM
4

2
M
3D3 g10 2

M
4

0 0 SM
4

2
M
3 D3 g10 2

M
4

0 0 SM
4

2
M
3D3 g10 2

M
4GT

(79)

Case 3: Leg Switching on the Same Side

Suppose that Leg 4 is placing and Leg 2 is lifting
simultaneously and only the normal contact forces are
considered, then, we may assign the desired [Cf z

1, 
Cf z

2, 
Cf z

3,
Cf z

4] to change from

FM
3

, 
M
3

, 
M
3

, 0G
to

FM
3

, 0, 
M
3

, 
M
3G

gradually. As such, Gd becomes:

Gd = F0 0 2
M
3

0 0 2
M
3

3 g10 0 0 2
M
3

0 02
M
3

3 g01GT

(80)

Now, we may assign

Z = a ·Gd (81)

where a is a positive scaling factor. Note that, while this
method provides the optimal direction for the contact force
vector within the null space, its magnitude is not unique and
is adjusted27 by the scalar coefficient, a.

The simulation results by using the gait diagram shown in
Fig. 10 are depicted in Fig. 11. Two cases are shown: one

Fig. 11. Comparison of the smoothing effect between a=0 and
a=optimal value.
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for a = 0 (without smoothing) and the other for a = optimal
value. The smoothing effect by using this approach is
clearly displayed in Fig. 11.

8. CONCLUSIONS
Optimal force distribution in multilegged vehicles was
studied in this paper. It began by summarizing the general
formulation for the force distribution problem. Then, the
Compact QP method was introduced and the optimization
criteria for load balance and safety margin of friction
constraints were also formulated. The TIT Quadruped was
adopted as the example mechanism. Then, the gait planning
was introduced followed by evaluating alternative objective
functions. The combined objective function for MF + LB
was proposed to be the basic objective function for optimal
force distribution. Finally, a scheme for smoothing dis-
continuities in commanded forces was proposed. In
conclusion, the Compact QP method is a general and
efficient optimization scheme for resolving the constrained,
optimal force distribution problem with multiple criteria.
Also, the proposed smoothing scheme can effectively
manipulate the null space solution to smooth the dis-
continuities in commanded forces without the help of force
sensors.

This work was supported by the National Science
Council (R.O.C.), under contract NSC-86-2213-E-006-042.

References
1. F.-T. Cheng and D.E. Orin, “Efficient Formulation of the

Force Distribution Equations for Simple Closed-Chain
Robotic Mechanisms” IEEE Trans. Syst. Man Cybern. 21,
25–32 (Jan./Feb., 1991).

2. F.-T. Cheng and D.E. Orin, “Efficient Algorithm for Optimal
Force Distribution – The Compact-Dual LP Method”, IEEE
Trans. Robotics Automat. 6, No. 2, 178–187 (Apr., 1990).

3. F.-T. Cheng and D.E. Orin, “Optimal Force Distribution in
Multiple-Chain Robotic Systems” IEEE Transactions on
Systems, Man, and Cybernetics 21, No. 1, 13–24 (Jan./Feb.,
1991).

4. M. Jamshidi, Large-scale Systems Modeling and Control
(North-Holland, New York, 1983).

5. K.H. Hunt, Kinematic Geometry of Mechanisms (Clarendon,
Ocxford, 1978).

6. A. Cole, J. Hauser, and S. Sastry, “Kinematics and Control of
Multifingered Hands with Rolling Contact” Proc. 1988 IEEE
Int. Conf. Robotics and Automation, Philadelphia, PA (Apr.,
1988), pp. 228–233.

7. I.D. Walker, R.A. Freeman and S.I. Marcus, “Dynamic Task
Distribution for Multiple Cooperating Robot Manipulators”,
Proc. 1988 IEEE Int. Conf. Robotics Automat., Philadelphia,
PA (Apr., 1988) pp. 1288–1290.

8. Y.-F. Zheng and J. Luh, “Optimal Load Distribution for Two
Industrial Robots Handing a Single Object” Proc. 1988 IEEE
Int. Conf. Robotics and Automat., Philadelphia, PA (Apr.,

1988) pp. 344–349.
9. D. Solow, Linear Programming: An Introduction to Finite

Improvement Algorithms (North-Holland, New York, 1984).
10. M.A. Nahon and J. Angeles, “Real-Time Force Optimization

in Parallel Kinematic Chains under Inequality Constraints”
IEEE Transactions on Robotics and Automation 8, 439–450
(August, 1992).

11. F.-T. Cheng, T.-H. Chen and Y.-Y. Sun, “Resolving Manip-
ulator Redundancy under Inequality Constraints” IEEE Trans.
on Robotics Automat. 10, No. 1, 65–71 (Feb., 1994).

12. D.E. Orin and S.Y. Oh, “Control of Force Distribution in
Robotic Mechanisms Containing Closed Kinematic Chains”
J. Dynamic Syst. Meas. Contr. 102, 134–141 (June, 1981).

13. C.A. Klein and T.-S. Chung, “Force Interaction and Alloca-
tion for the Legs of a Walking Vehicle” IEEE J. Robotics
Automat. RA-3, No. 6, 546–555 (Dec., 1987).
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