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Abstract

We characterize those countable rooted trees with non-trivial components whose full
automorphism group has uncountable strong cofinality, and those whose full automorphism
group contains an open subgroup with ample generics.

1. Introduction

In this paper, we study full automorphism groups of countable rooted trees, equipped with
the topology of pointwise convergence. We are mainly interested in the notions of strong
cofinality and ample generics.

Recall that a group G has uncountable strong cofinality if whenever G is a union of a
countable chain of symmetric subsets A0 ⊆ A1 ⊆ · · ·, then Ak

m = G for some k, m ∈ N .
This property was introduced by Bergman in [2], and studied by authors such as Droste
and Holland [5] or Kechris and Rosendal [10]. It can also be viewed as a type of fixed point
property, linking it to geometric group theory: it is well known that G has uncountable strong
cofinality if and only if every isometric action of G on a metric space has bounded orbits. In
particular, uncountable strong cofinality implies Serre’s property (FA).

A separable and completely metrizable (that is, Polish) topological group G has ample
generics if the diagonal action of G on Gn by conjugation has a comeagre orbit for every
n ∈ N . This notion was first studied by Hodges, Hodkinson, Lascar and Shelach in [9],
and later by Kechris and Rosendal in [10]. It is a very strong property: a group G with
ample generics, or even containing an open subgroup with ample generics, has the small
index property ([10, theorem 1·6]), every homomorphism from G into a separable group is
continuous ([10, theorem 1·10]), every isometric action of G on a separable metric space is
continuous, and there is only one Polish group topology on G ([10, corollary 6·25].)

These two seemingly unrelated concepts have in fact something in common. For example,
if G has ample generics, and G is a union of a countable chain of non-open subgroups
G0 � G1 � · · ·, then Gm = G for some m ∈ N (see [10, theorem 1·7].) However, in
general none of them is implied by the other.

Our main results show that in the context of automorphism groups of countable rooted
trees, both of these properties are strictly related to the behavior of the algebraic closures of
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finite sets, and that in a sense having ample generics is a strong form of having uncountable
strong cofinality.

For a tree T , X ⊆ T , and G = Aut(T ), by ACLT (X) we denote the algebraic closure of
X in T , that is, the set of all elements of T contained in a finite orbit under the action of the
pointwise stabilizer G〈X〉 of X . Summing up the main results of the paper, we have:

THEOREM 1. Let T be a countable rooted tree with non-trivial components, G =
Aut(T ).

(1) G has uncountable strong cofinality iff ACLT (�) is finite;
(2) G has an open subgroup with ample generics iff ACLT (X) is finite for every finite

X ⊆ T .

It turns out that this sheds light on the relationship between certain known results on
rigidity of groups of automorphisms of trees, which we will discuss in the last section of the
paper. In fact, this investigation was inspired by them.

2. Notation and basic facts

Trees. A tree is a connected graph with no cycles. A rooted tree T with root r is a tree
with a distinguished vertex r ∈ T . For every rooted tree T and every t ∈ T , the unique path
(t0, . . . , tn) from t0 = t to tn = r determines the successor s(t) = t1 of t (where we put
s(r) = r ). Similarly, for t ∈ T , a predecessor of t is any element t ′ ∈ T such that s(t ′) = t .
A leaf in T ′ ⊆ T is an element with no predecessors in T ′. By a subtree of T , we mean a
subset T ′ ⊆ T that is closed under the successor function s(t).

Thus, a rooted tree can also be viewed as a structure (T, s), or as an ordered set (T, <),
with the ordering defined by

t < t ′ ⇐⇒ sn(t) = t ′ for some natural n > 0,

and the largest element r .
For a rooted tree T and t ∈ T , Tt denotes a rooted tree with root t defined by

Tt = {t ′ ∈ T : t ′ � t}.
Every full automorphism group G = Aut(T ) of a countable (rooted) tree T , where T

is regarded as a discrete space, is assumed to be equipped with the pointwise convergence
topology. This topology is easily seen to be separable and completely metrizable, that is,
Polish. For X ⊆ T , the symbol G〈X〉 stands for the pointwise stabilizer of X in G.

In this paper (except for in the final section), all trees are assumed to be rooted and count-
able.

Wreath products and rooted trees. Following [8], we define the unrestricted generalized
wreath product of groups of permutations.

Let � be an ordered set, and let (Gδ, Nδ), δ ∈ �, be transitive permutation groups. Groups
Gδ are called components.

For every δ ∈ �, fix nδ ∈ Nδ. Let S ⊆ ∏
δ∈� Nδ be the set of all elements satisfying

the maximum condition, that is, x ∈ S if and only if there are no infinite strictly increasing
sequences in the support supp (x) of x defined by

supp (x) = {δ ∈ � : x(δ)� nδ}.
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For x ∈ S, δ, γ ∈ �, i ∈ Nδ, define x δ
i ∈ S by

x δ
i (γ ) =

{
x(γ ) if δ � γ,

i if δ = γ.

Now, g ∈ Sym(S) is an element of Wrδ∈� Gδ if for every x, y ∈ S, and δ ∈ �:

(i) x(γ ) = y(γ ) for all γ > δ ⇒ g(x)(γ ) = g(y)(γ ) for all γ > δ;
(ii) there is σ ∈ Gδ such that g(x δ

i )(δ) = σ(i) for all i ∈ Nδ.

It is not hard to see that since all Gδ, δ ∈ �, are transitive, this definition does not depend
(up to permutational isomorphism) on the choice of nδ.

For � = {δ0, δ1} with δ0 < δ1, we write

Wrδ∈� Gδ = Gδ0 Wr Gδ1 .

Then the base group Gbase of G = Gδ0 Wr Gδ1 is a normal group of all the permutations
g ∈ G such g(n0, n1) = (n′

0, n1) for every (n0, n1) ∈ Nδ0 ×Nδ1 , that is, the second coordinate

of (n0, n1) stays fixed. It is easy to see that Gbase = G
Nδ1
0 , and that every element g ∈ G is

of the form g = g0g1, where g0 ∈ Gbase, g1 ∈ G1. In other words, G = GbaseG1.
Now, let T be a rooted tree, G = Aut(T ), and let T be a fundamental domain of T , that is,

a lift of the projection T → T/G. The tree T contains exactly one element of each orbit of
the action of G on T . It is well known (see for example [12, p. 25]) that such T exists. It is
also easy to see that any two fundamental domains are isomorphic as rooted trees. Therefore,
we will always assume that T comes equipped with a fixed fundamental domain T .

For t ∈ T , let Nt denote the orbit of t under the action of G〈s(t)〉 on T . It is easy to see
that the group G〈s(t)〉, when restricted to Nt , is simply the full symmetric group Sym(Nt),
so put Gt = Sym(Nt), t ∈ T . Associate with T the ordering inherited from T , and define
nt = t for every t ∈ T . Observe that every element in

∏
t∈T Nt satisfies the maximum con-

dition because there are no infinite strictly increasing sequences in T . It is a straightforward
exercise to show that G � Wrt∈T Gt .

As a matter of fact, if Nt = {t} for some t ∈ T , then Gt is trivial and such t does not
contribute to the automorphism group of T . Therefore, in this paper we will restrict our
attention to trees T such that |Nt | > 1 for every t ∈ T , t � r , that is trees with non-trivial
components. This will allow for cleaner statements of the results but one could also modify
our arguments so that they work for all countable rooted trees.

Ample generics. Recall that a countable structure M is ultrahomogeneous if every iso-
morphism φ between finite substructures of M can be extended to an automorphism of M .
It is locally finite if all finitely generated substructures are finite.

For a countable locally finite structure M in a fixed countable signature, Age(M) is the
family of all finite substructures of M . Also, for n ∈ N , the family Kn

p consists of all the
objects of the form

〈A, φ0 : B0 −→ C0, . . . , φn : Bn −→ Cn〉 ,

where A, Bi , Ci ∈ Age(M), Bi , Ci ⊆ A, and φi are isomorphisms, i � n.
There is a natural notion of embedding associated with every Kn

p. For

S = 〈A, φ0 : B0 −→ C0, . . . , φn : Bn −→ Cn〉 ,

T = 〈D, ψ0 : E0 −→ F0, . . . , ψn : Dn −→ Fn〉 ,
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f : A → D embeds S into T if it is an embedding of A into D as structures, and

f ◦ φi ⊆ ψi ◦ f

for i � n.
We say that Kn

p satisfies the weak amalgamation property (WAP) if for every S ∈ Kn
p

there exists T ∈ Kn
p, and an embedding e : S → T such that for every F,G ∈ Kn

p, and
embeddings i : T → F , j : T → G, there exists E ∈ Kn

p and embeddings k : F → E ,
l : G → E such that E amalgamates F and G over T , that is,

k ◦ i ◦ e = l ◦ j ◦ e.

The family Kn
p satisfies the joint embedding property (JEP) if any two S, T ∈ Kn

p can be
embedded in some E ∈ Kn

p.
A Polish group G has ample generics if each diagonal action of G on Gn , n ∈ N , by

conjugation:

g.(g0, . . . , gn) = (gg0g−1, . . . , ggng−1),

g, g0, . . . , gn ∈ G, has a comeagre orbit. We have ([10, theorem 6·2]):

THEOREM 2. Let M be a countable, locally finite, ultrahomogeneous structure, K =
Age(M), and G = Aut(M). Then G has ample generics if and only if Kn

p satisfies WAP and
JEP for every n ∈ N .

More information on this topic can be found in [10].
Obviously, not all rooted trees are ultrahomogeneous. Therefore, we add to T a family of

unary predicates Ot , t ∈ T , such that the structure (T, s, {Ot}t∈T ) is locally finite, ultraho-
mogeneous, and has the same automorphisms as T :

t ′ ∈ Ot ←→ t ′ = g(t) for some g ∈ Aut(T ),

for t, t ′ ∈ T .

PROPOSITION 3. Let T be a countable rooted tree. The structure (T, s, {Ot}t∈T ) is locally
finite, ultrahomogeneous, and

Aut(T ) = Aut(T, s, {Ot}t∈T ).

Proof. First of all, local finiteness follows form the fact that each set {sn(t) : n ∈ N },
t ∈ T , is finite. We show that if f : A → B is an isomorphism between finite subtrees of T ,
and t ∈ T \ A is a predecessor of some a ∈ A, then there exists t ′ ∈ T such that f � {(t, t ′)}
is an isomorphism. By the standard back-and-forth argument this implies ultrahomogeneity
of (T, s, {Ot}t∈T ).

Let f : A → B, t, a ∈ T be as above, and fix g ∈ Aut(T ) with g(a) = f (a). Then t
witnesses that Nt \ A ��, so there exists t ′ ∈ g[Nt ] \ f [A]. Clearly, t ′ is as required.

Obviously, the predicates Ot do not affect automorphisms of T .

Using the same argument, one can prove the following.

COROLLARY 4. Suppose that T ′ ⊆ T is a finite substructure of (T, s, {Ot}t∈T ) such that
for every t, t ′ ∈ T ′ we have that

t ′ ∈ Ot 
⇒ ∣∣Nt � T ′∣∣ = ∣∣Nt ′ � T ′∣∣ .
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Then for any finite substructures A, B ⊆ T ′ and every isomorphic f : A → B, there
exists an automorphism g : T ′ → T ′ that extends f .

LEMMA 5. Let T ′′ be a finite subtree of a countable rooted tree T . Then there exists a
finite subtree T ′ such that T ′′ ⊆ T ′ and T ′ satisfies the assumption of Corollary 4.

Proof. This is a simple induction on the height of T ′′. For t ∈ T , let h(t) be the size of
the unique path joining t and r , and let H = max {h(t) : t ∈ T ′′}. Suppose that T ′′ is finite
and such that the assumption of Corollary 4 is satisfied for every t ∈ T ′′ with h(t) � n.
Then, clearly, by adding finitely many elements to T ′′, we can find a subtree T ′ such that the
assumption of Corollary 4 is satisfied for elements t ∈ T ′ with h(t) � n + 1, and h(t) � H
for every t ∈ T ′.

Groups. A group G has uncountable strong cofinality if for any A0 ⊆ A1 ⊆ · · · such that
each Am is symmetric and G = ⋃

m Am , we have Ak
m = G for some k, m. If G = ⋃

m Gm

for some strictly increasing infinite sequence of subgroups G0 < G1 < · · ·, then we say that
G has countable cofinality. Finally, a topological group G has the small index property if
any subgroup of index less than 2ℵ0 is open in G.

3. Uncountable strong cofinality

The first two lemmas are straightforward, so we omit their proofs.

LEMMA 6. Let T be a countable rooted tree, Aut(T ) = Wrt∈T Gt , and S ⊆ T be a
subtree of T . Then S corresponds to an invariant subtree S ⊆ T , Aut(S) = Wrt∈S Gt ,
and g �→ g�S, g ∈ Wrt∈T Gt , defines a continuous and surjective homomorphism φ :
Wrt∈T Gt → Wrt∈S Gt .

LEMMA 7. Let T = {r}� {tn} be a tree such that r is the successor of each tn, and let Gt ,
t ∈ T , be permutation groups. Then Wrt∈T Gt is isomorphic to (

∏
n Gtn )Wr Gr .

LEMMA 8. Let T be a finite rooted tree, and let Gt , t ∈ T , be permutation groups. If every
Gt , t ∈ T , has uncountable strong cofinality (in particular, if Gt is finite), then Wrt∈T Gt

has uncountable strong cofinality.

Proof. This is an easy induction on the size of T . Let t0 ∈ T be such that all prede-
cessors of t0, say t1, . . . , tn , are leaves in T . Let T ′ = T \ {t1, . . . , tn}, and let G ′

t0
=

(
∏n

i=1 Gti )Wr Gt0 , G ′
t = Gt if t ∈ T ′, t � t0. Clearly, G ′

t0
has uncountable strong cofinality,

and |T ′| < |T |. By induction hypothesis, Wrt∈T ′ G ′
t has uncountable strong cofinality, and

Lemma 7 implies that Wrt∈T ′ G ′
t is isomorphic to Wrt∈T Gt

The next lemma contains folklore facts.

LEMMA 9. The group (Z2)
N has countable cofinality, and does not have the small index

property. Therefore, every Polish group G that maps homomorphically, continuously and
surjectively onto (Z2)

N has countable cofinality, and does not have the small index property.

Proof. Select a Hamel basis B for (Z2)
N regarded as a linear space over the field Z2, and

build a countable strictly increasing sequence B0 � B1 � · · · such that B = ⋃
n Bn . The

linear spaces Hn generated by Bn are groups witnessing countable cofinality of (Z2)
N .

Now, let K be the complement of a non-principal ultrafilter on N . Then K is a subgroup
of (Z2)

N of index 2 that is dense in (Z2)
N , and so it cannot be open. Thus, K witnesses that

(Z)N does not have the small index property.
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If G is Polish, and φ : G → (Z2)
N is homomorphic, continuous and surjective, then φ

is open (see [7, theorem 2·3·3]), so φ−1[K ] is not open in G, and has index 2 in G. Also,
groups φ−1[Hn] form a strictly increasing sequence, whose union is G.

LEMMA 10. Let S0 be a countable rooted tree defined by one of the following:
(i) S0 is an infinite branch, or

(ii) S0 = {t0, . . . , tn}� {s0, s1, . . .}, where r = t0, t1, . . . , tn is the unique path joining the
root r and the only non-trivially branching element tn, and tn is the successor of each
s0, s1, . . ..

Suppose that T is a tree with non-trivial components, Aut(T ) = Wrt∈T Gt , and T contains a
subtree S0 as above such that each Gt , t ∈ S0, is finite. Then Aut(T ) has countable cofinality,
and it does not have the small index property.

Proof. Suppose first that T = S0. We consider the case that S0 is an infinite branch.
Let S0 = {s0, s1, . . .} be the increasing enumeration of S0, and let Hn = Wrs∈{s0,...,sn} Gs .
Each Hn is a finite, non-trivial permutation group of a finite set, so each of its elements
g can be homomorphically assigned its sign, sgn(g). In this manner, we get a continuous
and surjective homomorphism Aut(T ) → (Hn)

N → (Z2)
N , so Wrs∈S0 Gs has countable

cofinality and does not have the small index property by Lemma 9.
Let us consider the other case now. Let H = Gtn Wr · · · Wr Gt0 . By Lemma 7, the group

G can be written as G = (
∏

n Gsn )Wr H , where H is a group of permutations of a finite set
of size N + 1, and Gsn are non-trivial symmetric groups. Hence, every element g ∈ Gbase is
of the form

((g0
0, g0

1, . . .), (g1
0, g1

1, . . .), . . . , (g
N
0 , gN

1 , . . .)),

where gi
j ∈ Gsi . Therefore, we can define φ : G → (Z2)

N by

φ(hg) = (sgn(g0
n · · · gN

n ))n∈N

for h ∈ H , g ∈ Gbase. The mapping φ is a homomorphism. To see this, note that for every
h ∈ H , g ∈ Gbase, gh = hḡ, where ḡ is a coordinate permutation of g of the form

((gi0
0 , gi0

1 , . . .), (gi1
0 , gi1

1 , . . .), . . . , (giN
0 , giN

1 , . . .)),

so

φ(h0g0h1g1) = φ(h0h1ḡ0g1) = φ(ḡ0g1) = φ(ḡ0)φ(g1) = φ(g0)φ(g1) = φ(h0g0)φ(h1g1)

for every h0, h1 ∈ H , g0, g1 ∈ Gbase.
As all Gs , s ∈ S0, are symmetric groups, it is also surjective, so, as before, G can be

homomorphically, continuously, and surjectively mapped onto (Z2)
N .

If S0 is a subtree of T , then by Lemma 6, Wrt∈T Gt maps homomorphically, continuously
and surjectively onto Wrt∈S0 Gt . An application of Lemma 9 finishes the proof.

Now we prove the main technical lemma.

LEMMA 11. Suppose that G = ∏N
n=0(Gn)

N , where Gn are any groups, N ∈
{0, 1, . . . ,N }, and that G = ⋃

m Am for some A0 ⊆ A1 ⊆ · · ·. Suppose also that the
following condition is satisfied:

there exists l such that if g = (g0, g1, . . .) ∈ Ak
m for some k, m, and ḡ = (ḡ0, ḡ1, . . .) ∈ G

is such that each ḡn ∈ GN
n is a coordinate permutation of gn, then ḡ ∈ Ak+l

m .
Then G = Ak

m for some k, m.
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Proof. Without loss of generality we can assume that groups Gn are pairwise disjoint, and
that eG ∈ A0. We start with a claim.

Claim. There exists k such that for every countable C ⊆ ⋃
n Gn (that is, C ∈ [⋃n Gn]ω)

there exists gC ∈ G such that for every g ∈ G with range(g) ⊆ C , and every m, if gC ∈ Am ,
then g ∈ Ak

m .
In the proof of the claim, by saying that g�I is a coordinate permutation of h, where

g, h ∈ G, I ⊆ N N , we mean, abusing terminology slightly, that there exists a bijection
f : I → N N such that (g f (i)) = h.

For C as above, take gC = (gC
0 , gC

1 , . . .) to be some fixed element such that each gC
n

contains infinitely many copies of every element from (C � Gn) � (C � Gn)
−1 � {eGn }.

Suppose first that g = (g0, g1, . . .) ∈ G is such that each gn is the identity on infinitely
many coordinates.

We can partition N N into 3 infinite subsets I, I ′, I ′′ such that gC
�I is a coordinate permuta-

tion of g, gC
�I ′ is a coordinate permutation of gC , and gC

�I ′′ is the identity. Then, by the defini-
tion of gC , the element gC

�I�I ′ is a coordinate permutation of (gC)−1, and gC
�I ′�I ′′ is a coordin-

ate permutation of gC . Fix a permutation σ of N N such that σ [I ′′] = I , σ [I � I ′] = I ′ � I ′′,
and (gC

σ )�I ′�I ′′ = (gC)−1
�I ′�I ′′ , where gC

σ is a coordinate permutation of gC induced by σ .

Then, by our assumption, gC
σ ∈ A1+l ′

m for some l ′, gC gC
σ is a coordinate permutation of g,

and gC gC
σ ∈ A2+l ′

m , so, by our assumption again, g ∈ A2+l ′+l ′′
m for some l ′′. Here, l ′, l ′′ are

independent of the choice of C and g.
Since any g ∈ G is a product of two elements as above, g ∈ Ak

m , if k � 2(2 + l ′ + l ′′) and
range(g) ⊆ C . This finishes the proof of the claim.

Put

Bm = {
C ∈ [⋃

n

Gn

]ω : gC ∈ Am

}
.

Clearly,
⋃

m Bm = [⋃n Gn]ω. But this means that there exists m such that Bm = B.
Otherwise, there is some Cm � Bm for every m. Since families Bm are closed under taking
subsets, we have that

⋃
m Cm � Bn for every n, and

⋃
m Bm � B, which is a contradiction.

By the claim, G = Ak
m for some k.

LEMMA 12. Let N ∈ {0, 1, . . . ,N }, and let Gn, n ∈ N, be permutation groups. Then
G = ∏N

n=0(GnWr Sym(N )) has uncountable strong cofinality.

Proof. Every element of G = ∏N
n=0(GnWr Sym(N )) is of the form

(g0s0, g1s1, . . .),

where gn ∈ GN
n , sn ∈ Sym(N ) , n ∈ N , so we can write it as

(g0, g1, . . .)(s0, s1, . . .),

where (g0, g1, . . .) ∈ ∏N
n=0 GN

n , (s0, s1, . . .) ∈ (Sym(N ))N .
Suppose that G = ⋃

m Am , where A0 ⊆ A1 ⊆ · · ·, and put H = ∏N
n=0 GN

n , Bm = H � Am .
By [4, lemma 3·5], the group (Sym(N ))N has uncountable strong cofinality, that is, there
exist k, m such that (Sym(N ))N ⊆ Ak

m . Obviously, without loss of generality we can assume
that m = 0. Observe that the natural action of (Sym(N ))N on H by conjugation gives rise
to all possible permutations of coordinates of elements of H . Therefore, Lemma 11 implies
that there exist k, m such that H ⊆ Bk

m , and G has uncountable strong cofinality.
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THEOREM 13. Let T be a countable rooted tree with non-trivial components. If
ACLT (�) is finite, then Aut(T ) has uncountable strong cofinality. Otherwise, it has count-
able cofinality and does not have the small index property.

Proof. Put G = Aut(T ) = Wrt∈T Gt . Observe that S = ACLT (�) is an invariant subtree
of T , so S = T � S is a fundamental domain of S. Since every component Gs for s ∈ S is
finite, the tree S is finite if and only if S is finite.

Suppose that S is finite, and fix s ∈ S. Let {tn} be an enumeration of all the predecessors
of s in T \ S, that is, Gtn = Sym(N ). Then, for every tn , we have

Wrt∈T tn
Gt = Hn Wr Sym(N ),

for some permutation group Hn . Let Ss = {s} � T t0 � T t1 � · · ·. By Lemma 7,

Wrt∈Ss Gt =
( ∏

n

(Hn Wr Sym(N ))
)

Wr Gs .

We add a new element s ′ to S, which is a predecessor of s, and put

Gs ′ =
∏

n

(Hn Wr Sym(N )).

Then, for S′ = S � {s ′ : s ∈ S}, the group Wrs∈S′ Gs is isomorphic to G. By Lemma 12,
each Gs ′ has uncountable strong cofinality. Since each Gs , s ∈ S, is finite, and S′ is finite,
by Lemma 8, Wrs∈S′ Gs , and so G, has uncountable strong cofinality.

If S is infinite, then, by König’s lemma, S contains an infinite branch, or some element of
S has infinitely many predecessors; in any case, S and thus T contains a subtree S0 as in the
statement of Lemma 10. Therefore, G has countable cofinality and does not have the small
index property.

4. Ample generics

THEOREM 14. Let T be a countable rooted tree with non-trivial components. For G =
Aut(T ) the following conditions are equivalent:

(1) ACLT (X) is finite for every finite X ⊆ T ;
(2) G contains an open subgroup H with ample generics;
(3) G has the small index property.

Proof. We show (1) ⇒ (2). Suppose that ACLT (X) is finite for every finite X ⊆ T , and
let X0 = ACLT (�). Observe that the stabilizer G〈X0〉 of X0 is open in G, and G〈X0〉 can
be regarded as the automorphism group of an ultrahomogeneous, locally finite structure T ′

obtained from (T, s, {Ot}t∈T ) by adding names to T for every x ∈ X0.
We show that for K = Age(T ′), the classes Kn

p, n ∈ N , satisfy WAP and JEP. By The-
orem 2, this will prove that G〈X0〉 has ample generics.

Fix n ∈ N and S ∈ Kn
p of the form

S = 〈A, φ0 : B0 −→ C0, . . . , φn : Bn −→ Cn〉.
By Lemma 5, there exists a finite subtree A′′ such that A ⊆ A′′ and A′′ satisfies the

assumptions of Corollary 4. Put A′ = ACLT (A′′) and observe that A′ also satisfies the
assumptions of Corollary 4. Therefore, we can extend each φi to an automorphism φ′

i :
A′ → A′.

https://doi.org/10.1017/S030500411200045X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411200045X


Rooted trees, strong cofinality and ample generics 221

Let T ∈ Kn
p be defined by

T = 〈
A′, φ′

0 : A′ −→ A′, . . . , φ′
n : A′ −→ A′〉 .

Then, by our assumption, for every predecessor t ∈ T \ A′ of an element a ∈ A′ the set
Nt is infinite. Therefore, if

F = 〈H, χ0 : M0 −→ N0, . . . , χn : Mn −→ Nn〉 ,

G = 〈P, ξ0 : Q0 −→ R0, . . . , ξn : Qn −→ Rn〉 ,

F,G ∈ Kn
p, and i : T → F , j : T → G are embeddings, then we can assume without

loss of generality that H � P = A′, and (χi )�A′ = (ξi)�A′ , i � n. It is a little tedious but
completely straightforward to check that in this case the structure E ∈ Kp

n defined by

E = 〈
H � P, χ0 � ξ0, . . . , χn � ξn

〉
along with natural embeddings k, l of F , G into E amalgamates F and G over T .

To show JEP, observe that every embedding f : A → B between finite substructures of
T ′ fixes all elements in X0, so we can repeat the above argument.

The implication (2) ⇒ (3) follows from [10, theorem 6·9], which says that the existence
of ample generics implies the small index property. Now observe that since [G〈X0〉 : G] �
ℵ0, the group G also has the small index property.

Finally, we show ¬(1) ⇒ ¬(3). Let X1 ⊆ T be a finite set such that ACLT (X1) is infinite.
It is not hard to see that G〈X1〉 � Wrs∈S Gs for some countable rooted tree S and symmetric
groups Gs , s ∈ S. Then we proceed as in the proof of Theorem 13.

By [10, theorems 6·24 and 6·25], we get

COROLLARY 15. Let T be a countable rooted tree with non-trivial components, G =
Aut(T ). If ACLT (X) is finite for every finite X ⊆ T , then:

(1) every homomorphism from G into a separable topological group H is continuous;
(2) the standard product topology is the unique Polish topology on G.

5. Rigidity of trees

Recall that a tree is a connected graph with no cycles. In [1, theorem 4·4], Bass and
Lubotzky proved a rigidity theorem to the extent that a sufficiently rich group of automorph-
isms of a locally finite tree T completely determines T . That is, if G is a group of auto-
morphisms of locally finite trees T1, T2 that satisfies some additional assumptions, we will
not dwell into, then T1 is isomorphic to T2.

As the authors pointed out, the condition of being locally finite is rather restrictive. This
limitation was removed, applying two different approaches, by Psaltis ([11]) and Forester
([6]), however not without some trade-ins. Psaltis managed to get rid of the assumption of
local finitiness of T , but had to restrict himself to full automorphism groups. His main result
[11, theorem 6·9a,b,c] is

THEOREM 16 (Psaltis). Let T be a tree with countable number of edges incident at each
vertex, and iG(e) � 3 for each edge e. Then Aut(T ) completely determines T .

Here iG(e) denotes [Gt : Ge], where Ge is the stabilizer of edge e in G, and Gt is the
stabilizer of vertex t such that e = (t, s) for some s ∈ T .
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On the other hand, Forester’s results concern also subgroups of the full automorphism
groups, but with more additional assumptions present; in particular, they involve Serre’s
property (FA). Recall that G has property (FA) if every action of G on a tree without inver-
sions has a fixed point.

THEOREM 17 (Forester). Let G be a group acting on trees T1, T2 without inversions. Let
T1 be a strongly slide-free, and T2 a proper tree, both cocompact. Suppose that all vertex
stabilizers are unsplittable. If either

(a) one of the trees has (FA) vertex stabilizers, or
(b) one of the trees is locally finite,

then there is a unique isomorphism of G-trees T1 and T2.

We will not define all the technical notions involved in the statement of this theorem.
Suffices to say that if iG(e) � 3 for every edge e in T , then T is strongly slide-free and
proper, and the stabilizers of vertices in Aut(T ) are known to be unsplittable. Cocompactness
means that there are only finitely many orbits of the action of the stabilizer of t on the set of
all children of t , t ∈ T , so it puts extra restrictions on T1, T2, compared to Psaltis’ theorem.
However, one can ask whether the assumption on sharing property (FA) by all stabilizers
can be removed if G is the full automorphism group (or, when it is satisfied.) Because
uncountable strong cofinality clearly implies property (FA), Theorem 14 shows that this
happens only in very special situations, when i(e) = ℵ0 for ‘most’ edges e in T . It turns out
that in this case stabilizers of vertices of T contain an open subgroup with ample generics.

LEMMA 18. Let T be a countable tree. If ACLT ({t}) is finite for every t ∈ T , then
ACLT (X) is finite for every non-empty finite subtree X ⊆ T .

Proof. Let G = Aut(T ), and let X = {x0, . . . , xn} ⊆ T be a finite, non-empty subtree,
that is, a connected subset of T . We fix r ∈ X , and regard T as a rooted tree with root r . For
i � n, let Si be a rooted tree with root xi defined as Ss in Theorem 13, that is, if t0, . . . , tm is
an enumeration of all the predecessors t of xi such that t � X , then

Si = {xi } � Tt0 � · · · � Ttm .

We show that if there is an infinite orbit under the action of some G〈xi 〉 on T , then there is in
an infinite orbit of the action of G〈X〉 on T . This will finish the proof.

Suppose that for some i0 � n there exists an infinite orbit O under the action of G〈xi0〉 on
T . By finiteness of X , there must exist i1 � n such that Si1 � O is infinite. Then it is easy to
see that there exists an infinite orbit under the action of Aut(Si1) on Si1 , and this implies that
there exists an infinite orbit under the action of G〈X〉 on T .

THEOREM 19. Let T be a countable tree such that fixing any vertex of T results in a
rooted tree with non-trivial components, and let G = Aut(T ). The following conditions are
equivalent:

(1) ACLT (X) is finite for every finite non-empty subtree X ⊆ T ;
(2) The stabilizer G〈t〉 of every vertex t ∈ T has property (FA);
(3) the stabilizer G〈t〉 of every vertex t ∈ T contains an open subgroup with ample

generics.

Proof. In view of Theorems 13 and 14, implications (1) ⇒ (3) and (3) ⇒ (2) are ob-
vious. We show (2) ⇒ (1). Since every G〈t〉 has property (FA), by [12, theorem 15] and
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remarks following it, no G〈t〉 has countable cofinality, that is, by Theorem 13, ACLT ({t}) is
finite for every t ∈ T . By Lemma 18, ACLT (X) is finite for every finite non-empty X ⊆ T .
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