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Abstract We extend Penrose’s peeling model for the asymptotic behaviour of solutions to the scalar
wave equation at null infinity on asymptotically flat backgrounds, which is well understood for flat
space-time, to Schwarzschild and the asymptotically simple space-times of Corvino—Schoen/Chrusciel—
Delay. We combine conformal techniques and vector field methods: a naive adaptation of the ‘Morawetz
vector field’ to a conformal rescaling of the Schwarzschild metric yields a complete scattering theory on
Corvino—Schoen/Chrusciel-Delay space-times. A good classification of solutions that peel arises from
the use of a null vector field that is transverse to null infinity to raise the regularity in the estimates.
We obtain a new characterization of solutions admitting a peeling at a given order that is valid for
both Schwarzschild and Minkowski space-times. On flat space-time, this allows larger classes of solutions
than the characterizations used since Penrose’s work. Our results establish the validity of the peeling
model at all orders for the scalar wave equation on the Schwarzschild metric and on the corresponding
Corvino—Schoen/Chrusciel-Delay space-times.

Keywords: conformal compactification; Schwarzschild space-time; wave equation; peeling;
vector field methods; weighted estimates

AMS 2000 Mathematics subject classification: Primary 35B40; 35B65; 351.05; 35Q75; 53A30; 83C57

Contents
Introduction 180
Peeling on flat space-time 183
2.1. Conformal compactification of Minkowski space 183
2.2. Conformal rescaling of the wave equation 184
2.3. The usual description of peeling 184
2.4. Description by means of vector field methods 184

3. Basic formulae 188
3.1. Stress—energy tensor and conservation laws 189
3.2. Foliation and identifying vector field 189
3.3. The Morawetz vector field 191
3.4. Energy density and error terms for K¢ =T 192

https://doi.org/10.1017/51474748008000297 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000297

180 L. J. Mason and J.-P. Nicolas

4. Fundamental estimates 193
5. Higher-order estimates and peeling 195
6. Interpretation of the results 198
Appendix A. Proofs of the main results 200
A.1. Proof of Lemma 4.1 200
A.2. Proof of Lemma 4.3 202
A.3. Proof of Corollary 4.4 202
A .4. Proof of Theorem 4.5 203
A.5. Proofs of Proposition 5.1 and Theorems 5.2 and 5.3 204
A.6. Proof of Theorem 4.6 204
A.7. Proof of Theorem 4.7 204
A.8. Proof of Proposition 6.2 205
References 207

1. Introduction

Penrose’s null infinity, .#, of a Lorentzian space-time is a powerful tool for studying the
asymptotics of massless fields in both flat and curved space-times. The asymptotic series
of the physical field in the physical space-time translates, in an unphysical conformally
rescaled space-time, into the Taylor series of the field off the finite hypersurface .#. This
can also be used as a basis for reformulating the scattering theory of massless fields into
a Goursat problem based on .# (see [1,8,9,15,17]). However, the use of .# in curved
space-times has for a long time been controversial since firstly, it has not been clear that
there is a good generic class of space-times with smooth null infinities and secondly, even
if so, it is still not known whether interesting massless fields do in fact fall off as proposed
in the formalism so as to be amenable to analysis. The former problem has now been
resolved in various ways: by Christodoulou and Klainerman [2], Corvino [5], Chrusciel
and Delay [3,4], Corvino and Schoen [6], Friedrich [10] (which contains a survey of
Friedrich’s contributions) and Klainerman and Nicolo [12-14]. As far as the second issue
is concerned, schemes in which fields admit all kinds of singularities at null infinity have
been proposed and shown to be consistent, at least in the neighbourhood of .#. Such
results have often been understood as an indication that the peeling model (introduced
in Penrose’s 1965 founding paper [18]) on non-trivial asymptotically flat space-times
may apply to more restrictive sets of data than in the flat case. To this day, even in the
relatively simple case of the Schwarzschild metric, there is no precise understanding of
the type of initial data that will guarantee the regularity of solutions on null infinity.
Minkowski space can be conformally embedded into the Einstein cylinder, R x S2 and
compactified by adding .#~ (past null infinity), 4+ (future null infinity), which are
respectively the past and future light cones of a point at space-like infinity (denoted
i®) in the conformal compactification and which refocus to the vertices i~ and i (past
and future timelike infinities). The points ¥ and i® are smooth points of the conformal
structure. In this picture, it is easy to see that data for massless fields on a Cauchy surface
through ° will propagate smoothly up the Einstein cylinder indefinitely if the data is
smooth over the Cauchy surface including i° in the conformally rescaled space-time. This
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shows that there is a good class of massless fields that are smooth at .# in Minkowski
space, consisting of fields whose conformal rescaling admits a smooth extension across
i’. Solutions that are regular on Minkowski space but with arbitrarily bad behaviour
at .# can be understood in this picture as arising from data that is singular at ® after
conformal rescaling.

A non-trivial asymptotically simple curved space-time has almost the same global
structure with smooth conformal boundary .#* and smooth vertices i* but there is
necessarily a singularity at i°. Black hole space-times such as Schwarzschild or Kerr have
a more complicated conformal geometry, with singular i*, but in the neighbourhood of °,
they are similar to asymptotically simple space-times. The singularity at ¥ is associated
with the ADM mass and so cannot be removed in a physical context except in the case
of flat space-time. Thus the above conformal argument for the existence of a large class
of solutions that are smooth at .# needs to be modified: using naive methods, one can
only guarantee that solutions are smooth on .# if they are compactly supported away
from . The general understanding in such situations is that if solutions only fall off at
9 on spacelike slices, the rate of fall-off at spacelike infinity will
determine the regularity of the solution at .#. However a precise quantitative description
of this relation has not previously been available and very different opinions have been
expressed as to what it should be.

This paper provides this description completely for scalar fields on Schwarzschild space-
time. This immediately extends to the corresponding Corvino—Schoen/Chrusciel-Delay
space-times (asymptotically simple space-times that are diffeomorphic to Schwarzschild
outside a compact set). The essential tool is energy estimates, also referred to as vector
field methods, with the additional feature that we apply these techniques on a conformally
rescaled space-time and not on the physical space-time. We choose carefully a vector
field to contract with the stress—energy tensor: the associated energy must be positive
on spacelike slices and on .#, and the asymptotic behaviour of the vector field near .#
and i® has to be chosen so as to keep a uniform control on the estimates in these regions.
The ‘Morawetz vector field’, introduced by Morawetz in the early 1960s (see [16]), is
a well-known tool for obtaining pointwise decay estimates in flat space-time. It can be
easily adapted to the Schwarzschild case and has indeed already been used in this setting
to obtain pointwise decay rates for spherically symmetric equations by Dafermos and
Rodnianski [7]. The Schwarzschild version of the Morawetz vector field allows us to
obtain basic energy estimates between .# and some initial data surface. Higher-order
estimates are then deduced by commuting into the equation a null vector field transverse
to ., and not the Morawetz vector field itself, contrary to what can be done for flat space-
time. This provides a rigorous definition of the peeling as well as the precise function
spaces of initial data giving rise to solutions that peel at any given order. We show that
these function spaces are optimal for our definition. Comparing them to the usual peeling
picture on Minkowski space-time, it turns out that our classes of data giving rise to a
given regularity of the solution on .# are larger than what was previously known for flat
space-time. Our results therefore validate the peeling model for the wave equation on
the Schwarzschild metric at all orders: they also provide a new definition of the peeling

some finite rate near i
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that is more precise than the definitions used sofar. A remarkable feature of this new
definition is that, for two different values of the mass m of the black hole, the spaces of
initial data for a given regularity are canonically isomorphic. Moreover, the equivalence
in the norms is uniform on any compact interval in m, typically m € [0, M], M > 0,
which includes Minkowski space.

The paper is organized as follows. Section 2 describes the peeling on Minkowski space
as it is usually understood, then gives an alternative description in terms of vector field
methods. Section 3 contains the basic ingredients that will be used in the rest of the
paper: a foliation of a neighbourhood of i® in Schwarzschild’s space-time is given, a
careful choice of identifying vector field is made for this foliation (this will be crucial for
higher-order estimates), the Morawetz vector field is introduced and explicit formulae
are obtained for energy densities and error terms. The fundamental energy estimates are
derived in §4 and it is remarked that they entail a conformal scattering theory for the
wave equation on Corvino—Schoen/Chrusciel-Delay space-times. Higher-order estimates
are then obtained in §5, giving a complete classification of the spaces of data that give
rise to solutions that peel at any order; these spaces are expressed in Definition 5.5,
which concludes the section. The results are interpreted in §6. The appendix contains
the proofs of the theorems.

Important remarks

(1) All our results are focused on a neighbourhood of spacelike infinity i, where the diffi-
culty is localized. Our definition of the peeling is therefore concerned with the regularity
on null infinity near i°. Global regularity on .# can then easily be recovered by assuming
in addition that the data are in local Sobolev spaces on a Cauchy hypersurface.

(2) We work with the wave equation in this paper since some pathological schemes have
been put forward in this case. We would expect the situation to be simpler for higher
helicity massless fields. This will be the subject of a subsequent study.

(3) Throughout the paper, the energy estimates are performed for solutions associated
with smooth compactly supported data; a completion of the space of smooth compactly
supported functions in the norms given by these estimates then give the function spaces
that characterize data giving rise to solutions that peel at a given order.

(4) For more details on the conformal compactifications of the Schwarzschild and
Minkowski space-times that we use, see [19].

Notation

(1) We shall use the notation < to signify that the left-hand side is bounded by a positive
constant times the right-hand side, the constant being independent of the parameters and
functions appearing in the inequality.

(2) Given M a smooth manifold and O an open set of M, we denote by C3°(O) the space
of smooth functions with compact support on O, and by D’(0O) its topological dual, the
space of distributions on O.

https://doi.org/10.1017/51474748008000297 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000297

Regularity at space-like and null infinity 183

2. Peeling on flat space-time

We denote by Ml Minkowski space and by n the Minkowski metric. The peeling properties
of solutions to field equations on Minkowski space can be easily understood as a conse-
quence of the embedding of M into the Einstein cylinder. We first recall the conformal
compactification of Minkowski space that realizes this embedding, then we proceed with
the usual description of the peeling in this framework. Finally, we propose an alternative
description based on vector field methods.

2.1. Conformal compactification of Minkowski space
We choose the advanced and retarded coordinates
u=t—r, v==t+r,
then we put
p = arctanu, q = arctanw,

T =p+q=arctan(t — r) + arctan(t + r),

¢ =q —p = arctan(t + r) — arctan(t — ).
Choosing the conformal factor

2
= 2.1
V1+uvl+ 02 @1)
we obtain the rescaled metric
2
— 2y =dr% —dc2 — (v—u)
e= O =dr A G o

and Minkowski space is now described by the domain

dw? = dr? — d¢? — sin? ¢ dw? (2.2)

M= {r|+¢(<m (>0, we S?}.

The metric ¢ is the Einstein metric dr2 — 0?93, where 0?93 is the Euclidean metric on the
3-sphere, and it extends analytically to the whole Einstein cylinder € =R, x S 2’79, o+ The
full conformal boundary of Minkowski space can be defined in this framework. Several
parts can be distinguished.

e Future and past null infinities:

It ={(r,¢w); T+{=m, (0,7, we 5%},
I :{(T7<aw); (—7=m, CE]O,'/T[, wESz}.

They are smooth null hypersurfaces for e.
e Future and past timelike infinities:
it ={(r=4m (=0, w); we S?}.

They are smooth points for e.
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e Spacelike infinity:
i ={(r=0, (=7, w); we S}
It is also a smooth point for e.

The hypersurface {¢ = 0} in Minkowski space is described by the 3-sphere {7 = 0} minus
the point i° on the Einstein cylinder.
The scalar curvature of e can be calculated easily using the conformal factor §2:

+Scal, = 27°0,02 = 1. (2.3)

In this framework, the vector field 0. is Killing since the metric ¢ does not depend on 7.

2.2. Conformal rescaling of the wave equation

The conformal invariance of the wave equation entails the equivalence of the two prop-
erties:

(i) ¥ € D'(M) satisfies

. 1 1
O, =0, 0O,=0;— ﬁarﬁar — 5As (2.4)

(ii) v := 2719 satisfies
Op +¢ =0, O, =0 Ags. (2.5)

2.3. The usual description of peeling

The observation of the peeling in Minkowski space is usually derived from the property
that the Cauchy problem on the Einstein cylinder is well-posed in the space of C*
functions. This is a completely standard result, we just quote it here.

Proposition 2.1. For any initial data 1,11 € C®(S?), there exists a unique solution
1 € C(€) of (2.5) such that (0) = ¢y and 0.4 (0) = 1.

This provides a natural definition of solutions that peel at all orders.

Definition 2.2. A solution ¢ of (2.4) is said to peel at all orders if ¢» = 2714 extends as
a C* function on the whole Einstein cylinder. The latter property is satisfied by solutions
1 of (2.5) arising from initial data 1|,—g € C>°(S?) and 9,v|,—¢ € C°°(S3). Going back
to Minkowski space and to the physical field 1/~), this gives us a corresponding class of
data for (2.4), giving rise to solutions that peel at all orders.

2.4. Description by means of vector field methods

Although it is not commonly used, we can give a description of the peeling in Minkowski
space in terms of Sobolev spaces. This has the advantage of allowing a precise description
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at all orders of regularity, which is trickier in C*¥ spaces that are less well controlled by
the evolution. To do so, we write Equation (2.5) in its Hamiltonian form,

O (v \_.. (¥ Y 1
&(aﬂb)_lH(aﬂﬁ)’ = 1<ASS_1 o)’

and work on the Hilbert space
H=H"(S%) x L*(5%)

with the usual inner product

< @ ’ @;) >H B / (Vs i Vssgi + figs + foge) duso,

where Vg3 is the Levi-Civita connection and pgs the measure induced by the Euclidean
metric on S2. We have the following proposition.

Proposition 2.3. The operator H with its natural domain D(H) = H?(S®%) x H*(S?)
is self-adjoint on ‘H and its successive domains are

D(H*) = HF1(S3) x H*(S?%).

Let k € N. For any initial data 19 € H**1(S%), ¢y € H¥(S?), there exists a unique

solution
k+1
v e () C' (R HHI(57))
1=0
of (2.5) such that 1(0) = vy and 9,1(0) = v;. In particular, ) € HJt(&). Moreover,

for any 0 <1 < k, ||¢(7')||?qz+1(33) + ||871/)(7')||?qz(53) is constant throughout time.

This gives us a definition of solutions that peel at a given order k¥ € N in terms of
Sobolev spaces.

Definition 2.4. A solution ¢ of (2.4) is said to peel at order k € N if ¢ = Q-1
extends as a function that is in H{ZJCrl on the whole Einstein cylinder. The latter prop-
erty is satisfied by solutions 1 of (2.5) arising from initial data v|,—¢ € H**1(S3) and
0:9|,—0 € H*(S?). Going back to Minkowski space and to the physical field 1, this gives
us a corresponding class of data for (2.4), giving rise to solutions that peel at order k.

What is essentially unsatisfactory in Definition 2.4 is that it merely provides an inclu-
sion: we know a class of data that gives rise to peeling at order k, but we do not know
whether it is the largest possible class. An alternative approach consists in using vector
field methods (energy estimates). Such techniques allow to prove easily the last property
in Proposition 2.3 but are much more flexible than a purely spectral result: we can just
as naturally obtain estimates between the initial data surface and #+. This will provide
us with a third description of the peeling on flat space-time. It will be more precise than
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the first two in that the optimal set of suitable data for a peeling at order k& will be
completely characterized.
We consider the stress—energy tensor for Equation (2.5),

Tap = Tiap) = 0at0Opth — Seape®0c00ath + 39 eas, (2.6)
and contract it with the Killing vector field 9. This yields the conservation law
VYK T,) = 0. (2.7)
The energy 3-form K%T,;, d%z® = K9T?0, dvol* has the expression
KTy, 32" = ¢, Vipodvol® + & (—¢2 + |Vgst|? + ¢?)d-sdvol™. (2.8)

Integrating (2.8) on an oriented hypersurface S defines the energy flux across this surface,
denoted Es(1)). For instance, denoting X, = {7} x S the level hypersurfaces of the

function 7
1

Ex.(0) =5 [ W+ Vaul +0) dpe

and parametrizing £ as T =7 — (,

E0 () = % /¢+(—21/H/1c 2 4 [Vst? + ¥?) dpsgo

1 1
B ﬁ /ﬂJr (W}T - wC|2 + sin? <|v52'¢}|2 + ’(/}2) dugs.

This is a natural H' norm of ¢ on .# 7, involving only the tangential derivatives of v
along .7 .

Now consider a smooth solution ¢ of (2.5). The conservation law (2.7) tells us that
(2.8) is closed, hence, integrating it on the closed hypersurface made of the union of X
and .# T, we obtain

Eq+ (V) = Ex, (V)
and since 9 is a Killing vector, for any k € N, 9F4 satisfies equation (2.5), whence
Eg+(0F1) = Ex, (0F).
Using Equation (2.5), for k = 2p, p € N, we have
Exo (OFY) = 10779131 (x0) + 1027 0122 xy
= (1 = Ags)P9 [ (x) + 11— Ags)P0r 0122 x,)
= 91201 (x0) + 10791720 (x5, ): (2.9)
and for k=2p+1,p €N,
Exo(O79) = 1027 9 Fs (o) + 11027729122 x,)
= (1 = Ags)P 0t Fr (o) + (1 = Ao P72 x
= [0l Fr2nrzxg) + 1079 201 (xo)- (2.10)
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Hence, we have, for each k € N,
91121 x0) + 1079 1k (x0) = Exo (OF 1) = E (O74) = 10712 ),

and using the fact that the H* norm controls all the lower Sobolev norms, this gives us
the apparently stronger equivalence

k
[0 k41 (x0) + 10795 (x) = Z 1824 ] 71 4 (2.11)
p=0

Remark 2.5. This equivalence should not in principle be understood as providing
a solution to a Goursat problem on .#7. Indeed, in Lars Hormander’s paper on the
Goursat problem for the wave equation [11], it is made very clear that such an equiv-
alence only provides us with a trace operator on #* that is a partial isometry, it is
then necessary to prove the surjectivity of this operator in order to solve the Gour-
sat problem. However, we know from the same paper that the Goursat problem for
Equation (2.5) with data v|,+ € H'(#7T) is well posed and gives rise to solutions
P € CO(R,; HY(S3)) N CY(R,; L?(S?)). Hence equivalence (2.11) indeed provides us with
a regularity result for the Goursat problem: data on .#T for which the norm on the
right-hand side is finite give rise to solutions that are in C!'(R,; H*+171(83)) for all
0<I<k+1

This is however stronger than the information we are interested in. Equivalence (2.11)
simply says that for smooth solutions, the control of the transverse regularity on .#+
described by €4+ (0P%), 0 < p < k, is equivalent to that of the H**! norm of the
restriction of 1 to Xy and the H*¥ norm of the restriction of 9,9 to Xo. By a standard
density argument, this shows that if we wish to guarantee, by means of some control on
the initial data, that the restriction to # of P+, 0 < p < k, is in H'(# 1), the optimal
condition to impose is that ¥|,—¢ € H**1(Xy) and 9,v|,—¢ € H*(Xy).

This provides us with our third definition of peeling at order k£ and a characterization
by a function space of initial data.

Definition 2.6. A solution ¢ of (2.4) is said to peel at order k € N if the traces on .#+
of 91, 0 < p < k, are in H!(#T). The optimal function space of initial data giving rise
to such property is defined by v¥|,—¢ € H*1(S83) and 0,1|,—o € H*(S?).

Going back to Minkowski space and to the physical field 15, this gives us the exact
function space of data for (2.4), giving rise to solutions that peel at order k.

Remark 2.7. The description given in Definition 2.4 corresponds to the slightly weaker
approach, via the equality

Ex, (950) = Ex,(94) V7 R,
which entails
[l s ry S N1 Frerxg) + 1079 e (o) (2.12)

where 27 is the 4-volume in the future of Xy and the past of #+. It is slightly weaker
in the way we understand the transverse regularity at £+ (implicitly in terms of trace
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theorems for Sobolev spaces), hence the fact that we have merely inequalities instead
of equivalences. But the spaces of initial data for which regularity at a given order is
guaranteed near £+ are the same.

3. Basic formulae

The Schwarzschild metric is

2m 9 om\ " 5 9.4 9
g= 1—7 dt” — 1—7 dr® —r*dw”,

where dw? is the Euclidean metric on the unit sphere S2. The associated d’Alembertian

is
om\ " 92 10 4 2m\ 0 1
Dg—<1‘r> a2 2o (“Jafﬁﬁ

where Ag: is the Laplacian on S? endowed with the Euclidean metric. Putting
R=1/r, u=t—r., withr,=r+2mlog(r—2m),
the metric can be transformed and conformally rescaled to give
G= R’ = R?’(1 -2mR)du® — 2dudR — dw?,

and in this form of the metric, £ is given by R = 0. We denote by G the function that
with r associates 7.:

G:]2m+ oo — R, G(r) = r 4+ 2mlog(r — 2m); (3.1)

it is an analytic diffecomorphism between |2m, 4+oc[ and R. The scalar curvature of g is
given by
1Scal; = R°0yR = 2mR.

The inverse metric is
G ' = —20,0r — R*(1 — 2mR)9% — 00,
which gives the d’Alembertian
Oy = —20,0r — OrR*(1 — 2mR)0r — Ag:.
The equation that we study is the conformally invariant wave equation
(g + §Scalg)p = (O + 2mR)¢ = 0. (32)

It is such that, denoting by B; (for block I) the exterior of the black hole in
Schwarzschild’s space-time, the two following properties are equivalent:

(1) ¢ € D'(By) satisfies Oy¢ = 0;
(2) ¢:= R™'¢ = r¢ satisfies (3.2) on By.
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3.1. Stress—energy tensor and conservation laws

We use the stress—energy tensor for the free wave equation Hg¢ = 0:
Top = Tap) = 0adObd — 3Gabd“0cOadh (3.3)

(although we could equivalently use the one for the Klein-Gordon equation Oz +¢ = 0,
obtained by adding to T,; the term %qs?gab). It satisfies

V“Tab = Dg¢8b¢ = —2mR¢8b¢

This gives rise to approximately conserved quantities for our equation by considering the
integral of the energy 3-form

KT, d32b = KT8y dvol?, (3.4)

where K® is a Killing or approximate Killing vector. We can calculate the error in the
conservation law as follows:

VYK Ty) = 030K 06 + VUK Ty, = —2mROK 0y + (VoK) T™. (3.5)

If K¢ is Killing, the Killing form, also referred to as deformation tensor, V(, K3), vanishes
and so does (V,K;)T, but this still does not give us an exact conservation law because
of the term involving the scalar curvature.

We shall use this to perform energy estimates in a neighbourhood of i°: for a choice
of foliation, we estimate the error term by the energy on each slice and then invoke
Gronwall’s lemma. We also, however, need to be clear about the choice of vector field
used to identify the different slices.

3.2. Foliation and identifying vector field

We shall work on a small neighbourhood of i°
Q2 ={u<wug, t>0}, withug < —1.
Our essential foliation of £2;f is by the spacelike hypersurfaces
He = {u=—sr.}. (3.6)

For s = 1, H; is merely the {t = 0} surface. For s = 0, the part of H within Qjo is to
be understood as the limit of the hypersurface H; as s — 0; it coincides with the part
of #* within Qjo. Indeed, for u and w fixed, as s tends to zero, r, is constrained to
tend towards +o0o: we thus go to infinity along an outgoing principal null geodesic, we
approach the point (u, R = 0,w) € .Z 7.

We record the relations
r.R2(1 — 2mR) 0

duly, = ———————~ du|y, neari .

dr. -1 R%*(1—2mR)
5 Jul

P — d =
dR ~ R2(1-2mR)’ Bl
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The foliation , is not smooth in the sense that r ! is not a smooth function of R at R =
0; although the first derivative is bounded and tends to 1, the second is logarithmically
divergent as R — 0.

In this case, a natural identifying vector field v needs to satisfy v(s) = 1; we choose

v =7r2R*(1 — 2mR)|u| "' 0g. (3.7)

The 4-volume measure dvol, against which the error terms will be integrated, is thus
decomposed into the product of ds and vadvol®|y, = r2R%(1 — 2mR)|u|~! dud?w|s.,
the former being the measure along the integral lines of ¥ and the latter our 3-volume
measure on each H,.

Such a choice of identifying vector field v»®, which is really associated with the choice
of parameter s for the foliation, will lead to error terms that cannot be controlled by the
energy density* and therefore to the impossibility of performing a priori estimates. All
we need to do in order to solve this problem is the following change of parameter:

dr 1
= —-2(v/s—1), sothat — =———. 3.8
= —2(/5 - 1) =7 (33)
The change of sign and the —1 term are there purely for aesthetic reasons, the important
part is 24/s. This new parameter varies from 0 to 2 as s varies from 1 to 0. We denote

Srs) = Hs. (3.9)

The natural new identifying vector field is

il

Jul

V=—Vsv= —\/L?TERQ(l —2mR)|u|"'0r = —(r,R)*/?(1 — 2mR) dr. (3.10)
We shall use both notations {Hs}s and {X.},, i.e. both parameters s and 7 related
by (3.8), for our foliation by spacelike hypersurfaces. The parameter s has a straight-
forward definition, it is useful for calculations on a single hypersurface and for the sake
of simplicity we systematically use it for expressing the main results. The parameter 7
on the other hand is adapted to a priori estimates and will be used in the proof of energy
estimates.
We also need to consider in Qf[o the u = constant surface:

Su={(u,R,w); 0< R<1/G ' (~u), we S?},

that forms, for u = uo, the part of the null boundary of {2, in the finite Schwarzschild
space-time (G is the function (3.1) defining r, in terms of r). The natural vector field
connecting one surface of constant u to the next is

201 _ 2(1-
R*(1-2mR) (reR) (1 =2mB) ) here s = — % (3.11)
S

|u|rs Ty

W =0, + Op = 0y +

* To be more precise, this does not occur for the fundamental estimates, because the scalar curvature
2mR gives us some extra fall-off at .. For higher-order estimates, commuting dg into the equation will
give error terms without any fall-off. So the problem will occur as soon as we try to gain one extra degree
of regularity from the fundamental estimates.
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The vector field W is tangent to each hypersurface H, and on #+ reduces to 9,. The
corresponding decomposition of the 4-volume measure will be the product of du along
the integral lines of W and of the 3-volume measure on each S,:

2(1-2
M :deQWLSu-

L[/ JdV()14 - dR d2w -
Su
S

du d2w>

3.3. The Morawetz vector field
For m = 0, g is the Minkowski metric and the Morawetz vector field (see [16])

K%y = u?0y +v%0, (u=t—r, v=t+r)
= (r2 + t2)at + 2tro,

is a Killing vector for the rescaled metric §. Its expression in terms of the variables
u=t—rand R=1/ris

K9, = u?0, — 2(1 + uR)0g. (3.12)

It is a classic vector field for pointwise decay estimates in flat space-time and a version of
K* on the Schwarzschild space-time has been used recently for pointwise decay estimates
on the Schwarzschild metric by Dafermos and Rodnianski [7]. One of its key features is
that it is transverse to .# T, it will therefore give us more information on .#+ than other
Killing vector fields such as for instance 0,, = 0.

Remark 3.1. Expressing the time translation on the Einstein cylinder J; in the coor-
dinate basis u, R, w, we obtain

0r =3[0y + u?0y — 2(1 + uR)0g).
We see that
20, = 0y + K°0,,
or in terms of variables t, r, w,
20, = 0y + K0,

where K is the Morawetz vector field (3.12). So the two vectors 0, and K® are very close.
We could have chosen to use 0, instead of K%, the results and their proofs would have
been essentially unchanged.

We choose our approximate Killing vector field on the Schwarzschild metric as follows:
we keep the expression (3.12) of the Morawetz vector field, but now in terms of the
variables u =t — r, and R = 1/7; we put

T99, = u?d, — 2(1 + uR)0pg. (3.13)

https://doi.org/10.1017/51474748008000297 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000297

192 L. J. Mason and J.-P. Nicolas

Expressed in the coordinate system (t,r,), this gives

3

T, = (t — r,)%0; — 2(1 + uR) (O + 0r.)

r—2m

—1
= (t* +12)0; — 2tr.0; + 2(1 - 2?) (tr + 1% —rr.) (0 + Or.).

This is no longer a Killing vector field for g, its Killing form is
VTy) = 4mR*(3 + uR) du?, (3.14)

which has a good fall-off at infinity.

It is important to note that the vector field T is uniformly timelike in a neighbourhood
of 19 and can therefore be used for obtaining energy estimates with positive definite
energies on spacelike hypersurfaces.

Remark 3.2. The vector field T is everywhere timelike near %, indeed we have
Gy TT® = u?(4(1 + uR) + v’ R*(1 — 2mR)).

This vanishes for the two values of uR:

1FV2mR

WR)s = 25— 1

that for small R are arbitrarily close to —2, and §u,T*T? is positive for uR outside
[(uR)_, (uR)]. In a small enough neighbourhood of i°, we shall have

-1y <u < —1, hence — I« < Ru < —R,
r

and Ru therefore lives in an interval of the form [—1—¢, 0], where € > 0 is as small as we
wish it to be, since at infinity r, ~ r. Consequently, in a small enough neighbourhood of
i%, the vector T is uniformly timelike.

3.4. Energy density and error terms for K¢ = T¢
The energy density 3-form E(¢) associated with T is given by

E(¢) := T T, d32® = TT 9y dvol*
= [u?¢2 + R*(1 — 2mR) (v pudr — (1 + uR)9%) + (1 + uR)|Vg26[*] du A d?w
+ (2 +uR)® — 2mu’R%)¢% + u?|Vs20*] dR A d°w. (3.15)

For a hypersurface S, we define
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For instance,

£r0(0) = [ 16} +|Vso dun o

Es, (0) = /S (24 uR)? — 2mu”R?*)¢% + u?|Vs20*] dR A dPw. (3.16)
The energy on the surface H is given by

En. () = / [qubi + R*(1 = 2mR)u* ¢, or

s

2 2 2 p3
+R2(12mR)<( +2:R) fm“SR (1+uR)>¢§LE
2p2(1 _
+ <uR(1282mR) +1 +uR> Vsquz] du A d*w.

(3.17)
Using the expression (3.14) of the Killing form of 7%, the error term (3.5) takes the form
T VT — 2mROT 0y = 4mR*(3 + uR)¢% — 2mRP(u?0yd — 2(1 + uR)Ore).

Working on the foliation {X },, this yields the error terms:

(T VT Vadvol® = 4mR2(3 4+ uR)¢%(r.R)*/?(1 — 2mR) WRI du A d*w, (3.18)
(—2mRPT0y¢)Vadvol* = —2mRp(u?0yd — 2(1 4+ uR)Ipd)
x (rR)*?(1—2mR) ILSI du A d?w. (3.19)

4. Fundamental estimates

In this part, we obtain the basic energy estimates for Equation (3.2). We work on the
neighbourhood of i°,

Qf ={(u,R,w); u<up, 0<s<1, we S%Y (s = —u/r*)
= {(u, R,w); u <wug, t>0, we S},

for up < —1 such that 7' is uniformly timelike in quo. In order to prove the energy
estimates, we use the approximate conservation law (3.5); however, we must first show
that the energy on X, (3.17) uniformly dominates the error term (3.18). On 2} with |u|
large enough, this error term is uniformly equivalent to R?\/R/|u|¢%, which is in turn
uniformly controlled by R\u|_1¢%. The following lemma shows that this is controlled by
the energy density restricted to the hypersurface H.
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Lemma 4.1. On 2

s forug < 0, |ug| large enough, the energy density on H, associated
with T, i.e.

a 3,.b
T Tabd X |Hsﬁ9ffo’

is uniformly equivalent to

{ <u2¢3 + Eq% + v52¢|2> du A de}

Jul

.
HoN24,

For the error term (3.19) involving the scalar curvature, the factor

(T*9y¢)Vadvol* = (u?du¢ — 2(1 + uR)Ir¢)(r. R)* (1 — 2mR), /5 du d?w

|ul

is naturally controlled by the energy, thanks to the choice of parameter 7, which gives
us the factor y/R/|u|. Indeed its two terms are respectively equivalent to u?\/R/|u|¢u,
which is uniformly controlled by |u¢,|, and \/R/|u|l¢r. So we just need to control the
factor 2mR¢. The following Poincaré-type estimate and its corollary allow us to do so.
They in fact prove more than is strictly necessary for this step, but this will be useful
for higher-order estimates. We first need to introduce some notation.

Definition 4.2. We denote for 0 < s < 1,

Moo :=Hs N{u <ugl,
for s = 0, we use the alternative notation

b= N {u <u}

For 0 < sp < 1, in addition to the hypersurface Hs, o, we also consider the part of S,
in the past of Hs,:
Sugyso = Sug N{s0 < s < 1}.

Lemma 4.3. Given ug < 0, there exists a constant C' > 0 such that for any f € C5°(R),
we have

| twrase [ er a

— 00
This has an important consequence.”
Corollary 4.4. Foruy < 0, |ug| large enough, there exists a constant C > 0 such that for

any smooth compactly supported initial data at t = 0, the associated rescaled solution
¢ satisfies

Vs e [0,1], / ¢* dud’w < C&y, , (9).
H

s,uQ
From this, we infer the first fundamental estimate.

* Not as immediate as one may think. Indeed, ¢, is the partial derivative of ¢ with respect to the
variable w, it differs from (d/du)(#|w,) (see Equation (A.1)).
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Theorem 4.5. For ug < 0, |ug| large enough, there exists a constant C' > 0 such that,
for any smooth compactly supported initial data at t = 0, the associated rescaled solution
¢ satisfies for all 0 < sg < 1,

Etogug (9) < CE1yy (),

and in particular, for sqg = 0,

€4 () < Céayy ,, (9)-

We also prove a converse inequality in order to ensure the optimality of our estimates.

Theorem 4.6. For uy < 0, |ug| large enough, there exists a constant C' > 0 such that,
for any smooth compactly supported initial data at t = 0, the associated rescaled solution
¢ satisfies for all 0 < sg < 1,

Ety g (9) S CE 51 (9) +E5.,, ., (9));

and in particular, for so = 1,
Ertr g () < C(E 5y (8) + Es,, (6).

Using the foliation {S,}, and the results of Theorem 4.5, we can prove another fun-
damental estimate that gives control over the 4-volume local L? norm of ¢ in 2, , 1t 1s
analogous to the point of view on peeling developed in Remark 2.7 for Minkowski space.

Theorem 4.7. Let ¢ be a smooth solution of (3.2) associated with smooth compactly
supported data at t = 0, we have for all u < u,

/S 0% AR d%w < CEn, . (0),

where the constant C' > 0 is independent of ¢ and w. In particular, for any compact
subset K of 2}, where 2} = 2} U .75 UMy .y, USy,, there exists a constant Cx > 0
independent of ¢ such that

/ ¢ndudRd’w < Cx&y, , (4).
K

Remark 4.8. The estimates of Theorems 4.5 and 4.6 allow us to solve the Goursat
problem on .# for Equation (3.2) and therefore entail a complete conformal scattering
theory as defined in [15].

5. Higher-order estimates and peeling

In order to obtain estimates on the higher-order derivatives of ¢, we commute differential
operators into Equation (3.2). Because of the symmetries of Schwarzschild’s space-time,
we have for any k € N,

(O+2mR)9% ¢ = 0, (5.1)
(O +2mR)VE. ¢ = 0. (5.2)
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Equations (5.1) and (5.2) give us on 8%¢ and V’g.zgi) respectively, exactly the same energy
estimates that we have obtained on ¢.

We now need some control over the derivatives of ¢ with respect to R. Mimicking the
proof of the peeling in flat space given in § 2 would lead to the use of the Morawetz vector
field for this purpose. However, we quickly realize that this leads to serious problems in
the Schwarzschild case. Indeed, we have

[T,2mR] = —4m(1 + uR),
[T,[T,2mR]] = 4mu(2 + uR),
(T, [T, [T, 2mE]]] = 0.
Although the third commutator is zero, the second blows up near °, which leads to

error terms that cannot be controlled as soon as we reach two orders of differentiation

(other terms with similar behaviour will come from repeated commutations of 7" with
the d’Alembertian).
Instead, we commute the operator dr into the equation to obtain

(O+4+2mR)pr = 2(1 — 3m)ROgor — 2(1 — 6mR)dr — 2me. (5.3)
We obtain the following approximate conservation law for v := ¢g:
VT T (1)) = DT 0t + VT T (1)
= (2(1 — 3m)ROgY + 2(1 — 5mR)Y — 2me) T dptp + 4mR>(3 + uR)1p>.
(5.4)

Using Corollary 4.4 for ¢ as well as ¢ and following the proof of Theorems 4.5 and 4.6,
we obtain the following proposition.

Proposition 5.1. There exists a constant C' > 0 such that, for any solution ¢ of (3.2)
associated with smooth compactly supported initial data, we have for all 0 < sg < 1,

Etog g (PR) < C(Ery ., (0) + Exy 1y (PR)),
Etoy g (PR) S C(E g (9) + s, ., (D) + E5p (PR) + €5, ., (PR)):

Further commutations of g into Equation (3.2) will always lead to controllable terms,
simply because the coefficients of the error terms are polynomials in R. We therefore have
the following general result.

Theorem 5.2. For each k € N, there exists a constant Cy > 0 such that, for any
solution ¢ of (3.2) associated with smooth compactly supported initial data, we have for
all 0 < s9 <1,

k
Ety ug (050) < Ch Z Ery vy (ORD),

p=0
k
Etrg g (OR9) < O Y (€ 5s (0R9) + s,y (FRD)),

p=0
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and in particular

k
E i (050) S Ck Y Eny oy (0R9),

p=0
k
Ertr g (050) < O Y (E s (050) + Es., (950)).

p=0
An similarly to Theorem 4.7, we can prove the following result.

Theorem 5.3. Let ¢ be a smooth solution of (3.2) associated with smooth compactly
supported data at t = 0. For all k € N and u < wug, there exists a constant Cy > 0
independent of ¢ and u such that

k
/‘S 0502 AR A0 < O Y & . (006).
u p=0

In particular, for any compact subset K of (2}, where 2 = 2} U 75 UHy 4y USy,,

ug? 0
there exists a constant Ck > 0 such that

k
/K 036 dudRd*w < Cr i Y En,,, (050).
p=0

We can now define the function spaces of initial data that guarantee peeling at order
k for solutions of (3.2). First we need to be clear about what we mean by peeling at a
certain order.

Definition 5.4. We say that a solution ¢ of (3.2) peels at order k € N if for all polynomial
P in 0 and Vg2 of order lower than or equal to k, we have

gyio (P¢) < +oo.
This means than for all p € {0,1,...,k} we have for all ¢ € {0,1,...,p},
Ejjo (0% V% 19) < 400,

By Theorem 5.2, the condition on initial data that guarantees peeling at order k is
therefore that

Vpe{0,1,....k}, Vg € {0,1,....p}, Eny., (0} V2 1¢) < 4o0.

This can be expressed as a condition purely on the initial data that no longer involves
the full solution ¢. First note that Equation (3.2) in terms of variables ¢, ., w becomes

<8t2 —83* —|—F(2m :2A52>>¢= 0, where F(r):=1-— Q—m

73 r
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Whence,

. (ais) |

The operator L purely involves spacelike derivatives. We can now express the spaces of
initial data that entail peeling at a given order.

Definition 5.5. Given ¢g, ¢1 € C5°([—uo, +0[, xS2), we define the following squared

norm of order k:
o
0i9

where we have denoted by

2 k P
g )

k p=04¢=0

%o
Etug <¢1>

the energy &y, (¢) where ¢ is replaced by ¢o and 9:¢ = ¢, is replaced by ¢;.

The space of initial data (on [—ug, +00[., X S2) for which the associated solution peels
at order k is the completion of C§°([—ug,+00[., XS2) x C§°([—uo, +0[-, xS2) in the
norm (5.5). The fact that we have estimates both ways at all orders in Theorem 5.2
guarantees that this setting is optimal in our framework.

Remark 5.6. It is important to note that all estimates in this paper are locally uniform
in m. In particular, ug and all the constants in all the theorems can be fixed independently
of m for m in a fixed compact domain [0, M].

Remark 5.7. Similarly, for two different values of the mass m, the function spaces of
initial data for a given regularity are canonically isomorphic. The equivalence in the
norms is uniform for m in a fixed compact domain [0, M]. This is because the quantity
r« — 7 never appears in these norms. Hence, we do not see any logarithmic divergence
between the norms for two different values of m.

6. Interpretation of the results

The characterization of the peeling given in Definition 5.5 proves the existence of large
classes of data that guarantee peeling at any given order on the Schwarzschild space-time.
It is interesting to see whether these classes are natural extensions to the Schwarzschild
case of the classes of data for Minkowski space-time given in Definition 2.6.
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For m = 0, all our estimates proved for Schwarzschild’s space-time are still valid and
give the corresponding estimates for Minkowski space-time. Accordingly, Definition 5.5
for m = 0 gives a fourth definition of the peeling in flat space-time that is as follows.

Definition 6.1. Given ¢, ¢1 € C5°([—ug, +00[,xS2), we define the following squared

norm of order k:

Or 1
L= —7"2 1 ¢ .
83 + ﬁAsz ar at¢

The space of initial data (on [—ug, +00[.xS2) for which the associated solution peels
at order k is the completion of C§°([—uq,+oo[xS2) x C§°([—ug, +oo[*xS2) in the
norm (6.1).

ZZ% “ (qug;q (j) ) (6.1)

p=0¢=0

where

Of course Definitions 2.6 and 6.1 are of a different nature since the former considers
spaces of data on the whole {t = 0} slice whereas the latter gives only data in a neighbour-
hood of i°. However, we can compare the spaces of data on the domain [—ug, +00[, x S2.
At the level of basic energies, we show that the two definitions are equivalent. First, we
introduce some notations so that we can clearly identify the physical solution and the
rescaled fields obtained using {2 and R. We shall denote the physical field, i.e. the solution
of (2.4) on M, by ¢. The field rescaled using the conformal factor £2 defined in (2.1) will
be denoted by ¢ := (Z’l(z) and when rescaling using R = 1/r, we shall use the notation
¢:=R1p=ro.

Proposition 6.2. In terms of ¢, the energy at T = 0 on the Einstein cylinder reads

7 ~ 2 2\ Vg2 442 1 2
Ex, (V) = /{t—O} (Qg + (¢r+ 1+7“T2¢> +‘ 5 (b’ 1—|—¢r2) ) —Zr r?drd?w

(6.2)
2 7\2 2 7\2 2| V20 ’ 72\, 2 2
= (L+72)(210)° + (1 +7%)(0,0)° + (1 +77°)|——| +¢° |r’drd’w;
2o
(6.3)
while the energy at t = 0 for ¢ satisfies
Erruy (0) ':/ {r b + 1760 + 17 +032}r2 dr d*w. (6.4)
{t=0,r>—uo}

It is for higher orders that the definitions differ. On the Einstein cylinder, we raise
regularity with 0., which, on the hypersurface {t = 0}, coincides with %(1 +72)0;. As
we can see from identities (2.9) and (2.10), the application of J, amounts to that of
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the elliptic operator (1 — Ags)'/2, which can be understood, thanks to the ellipticity, as

providing a control over 728, and angular derivatives on S? independently. In the partial
compactification obtained when rescaling with R, the vector we use for raising regularity
in the estimates is g = —r%(d; + 9,); it is a null vector field whose action cannot be
understood as that of an elliptic operator. Although it also acts as a combination of 129,
and angular derivatives, it gives a weaker control on initial data.

So, our characterization of the peeling on Schwarzchild’s space-time is a natural gener-
alization of a definition on Minkowski space that is not equivalent to the usual description
of the peeling: it provides larger classes of data giving rise to solutions that peel at a
certain order. This is because we pinpoint the relevant null derivative to control near i°
instead of controlling all derivatives. Our paper thus not only proves the validity of the
peeling model for the wave equation on the Schwarzschild metric at all orders, it also
provides a description of the peeling on flat space-time that is more general than the one
used since Penrose’s paper in 1963.
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Appendix A. Proofs of the main results

The following lemma contains trivial but essential observations.
Lemma A.1. Let e > 0, then for ug < 0, |ug| large enough, in the domain Qjo, we have
r<r.<r(l+e), 1< Rr. <l+eg, 0 < Rlu| <1+e, l-e<1-2mR<1,

and of course

0<3:M<1.
Ty

A.1. Proof of Lemma 4.1

The restriction of the 3-form 7T, d3x? to the hypersurface H, is given by

Ty, d32®|5,.

= {u2¢3+R2(1—2mR)< 1—uR—

2s s

(2 +uR)? mu?R3\
s o

R2u%(1 — 2MR)

+ R* (1 = 2mR)u*puop + ( P

+1+ uR> V52qb|2} du A dw,
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and using the definition of Hs = {u = —sr,}, we get

TaTab dgl‘b |7'ls
2+ uR)® r,

= {uQ(bZ + R%*(1 — 2mR) ((—&—Qu)rm —1—uR-— m|u|R3r*)¢%

R?(1 - 2MR)

5 |7 —|—1+uR>|Vsz¢|2}du/\d2w.

+ R*(1 = 2mR)u*puop + (

Let ¢ > 0 small, we choose ug < —1 such as in Lemma A.1. We first deal with the
angular term:

iR*(1 - 2MR)|u|r. + 1+ uR =1+ |[u|R(—-1+ LRr.(1 - 2mR))
=1+ [u[R(—1+ 3(1 4 2mRlog(r — 2m))(1 — 2mR))
=1+ [ulR(—3 +mR(—1+ (1 —2mR)log(r — 2m)))

and taking |ug| large enough, we get
1> 1R*(1 - 2MR)|ulr, +1+uR > (1 —¢).

Now we estimate above and below the term in ¢%:

2
R%(1 - 2mR) <(2+2“R)2| ~1-uR-— m|uR3r*)
2 2
= |]:b|(1 —2mR) (H;R)Rr* — |u|R + (uR)* — mR(uR)er*>

_ |f|(1 omR) ((2 +ouR+ (“];)2> Rro + uR + (uR)? — mR(uR)QRm>

_E — zM u 7(UR)2 u u 2
=12 R)<2+2 R+ 5+ R+(R)>

+ B omn) ((2 4 2uR + (u§)2)2mR10g(r —om) — mR(uR)2Rr*>.

Jul

By Lemma A.1, the term in the penultimate line above dominates the term in the last
line. It can be written as

1R

Em(l —2mR)(3(uR)? + 6uR + 4).

Recall that —1 — e < Ru < 0 in §2} . Noting that the function f(z) = 3z? + 6z + 4 is
everywhere positive on R, takes its minimum at x = —1, f(—1) =1 and f(z) € [1,4] for
z € [—2,0], we infer that for |ug| large enough, ug < 0, we have in £2]f say

il
Jul

1R 2 R)? r,
- — < R*(1-2mR) wL—l—uR—mMR%* <5
3 ul 2 |y
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Then we treat the term in ¢, ¢ in the following way:

R
—®R
|ul

E<25R
=

1 1 R
< (1 + 6)3/25 ()\QUQ(bi + pm

IR2(1 — 2mR)u?pudr| < (Rlu|)®?|ud.,|

< (1+ €)% 2|ugy|

¢§), € R*.

This guarantees that the energy density on H is estimated above by (4.1) uniformly in
.Q:[O. Now in order to establish the estimate below, we need to choose A such that

A2 1 1

21 d — <=

B < an oN2 < 3
i.e. \/3/2 < XA < V2. Taking for example A = £(1/3/2 + /2), this concludes the proof of
the lemma, provided ¢ is small enough. ([l

A.2. Proof of Lemma 4.3

This is a simple integration by parts:

/:JO f2du = [(u—ug) f2", — /“0 (u —ug)2f f' du.

— 00

The boundary term vanishes (recall that f is assumed to be compactly supported, which
gets rid of the boundary term at —oo) and using ug < 0, we get

u uog
/ FM</\wwmeMu

oo

)
< [ Aflfuf|du
1 uo 9 uo 9 N
<L Paee [ e
which gives the result. U

A.3. Proof of Corollary 4.4
We simply need to show that

J,

is controlled uniformly by &, , (¢). For a given s € [0, 1], we have

Bl () = ¢><u,R: Gl(l—u/s)w>

2

udiu((bm‘) du d?w

s,uq
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where G is the function r — 7. = G(r) (see (3.1)). Hence,

o) = (o= Loy @ ufolon)|
= (m - ]j%@) ‘H; o

By Lemma A.1, it follows that

J,

This concludes the proof. O

2
dud?w < / <u2¢i + Sgﬁ{) dud®w < Ex, . (4).
H

s,uq

d
U@(éﬂ?—ts)

s,uQ

A.4. Proof of Theorem 4.5

The surfaces Hs u,, So < s < 1, parametrized by 7, will be denoted X, ,,, 0 < 7 <
7(s0). We also consider S;;0 which is the part of S,, situated in the past of Hs,, i.e. for
which* we have sp < s < 1. We denote by Err the total error term on each hypersurface

Hs:
o 2 2 3/2 R
Err := 4mR*(3 + uR)¢pR(r«R)>=(1 — 2mR) l

— 2mRp(u?yp — 2(1 4+ uR)drd) (r.R)*/?*(1 — 2mR) \/E'

This is estimated uniformly on 2 by

R /R R
|Brr| S — 0% + @] [ugu| + 4] m|¢R| Su’dy + b + 7.

™ Jul |ul

We use the approximate conservation law (3.5) on the domain 2 N{sy <s <1} to
obtain

7(s0)
57.[5011‘0 (¢) + 5833 (¢) — 57.[1’”0 ((b) = / / Errdrdu de
0 X

T,uQ

7(s0) 7(s0)
S / Ex, ., (@)dr + / ( / $? dud2w> dr.
0 0 X

T,uQ

* This hypersurface is not the part of Sy, introduced in Definition 4.2 and considered in Theorem 4.6;
instead, up to a negligible set, it is the complement of Syy,s, in Sy, -
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Furthermore, since (2 +uR)? —2mu?R® > 0 in 27, we have by (3.16) that £gzo (¢) > 0.
Thus, using Lemma 4.3, we get

€8 agyug (D) S ED ()00 (@) +E5, 1 (€)
7(s0) 7(s0)
< EEO,uO (¢) + / 527(5),1‘0 (¢p)dr + / </ ¢2 du d2w> dr
0 0 P

7(s0)
S €50, () + / EX, ()0 (@) dT
0

The result follows via a standard Gronwall estimate. O

A.5. Proofs of Proposition 5.1 and Theorems 5.2 and 5.3

They are straightforward extensions by induction of the proofs of Theorems 4.5—4.7.
O

A.6. Proof of Theorem 4.6

It is very similar to that of Theorem 4.5. On the domain 2 N {0 < s < s¢}, we use
the approximate conservation law (3.5)

2
E g (0) + €5, (D) = €5, )0 (0) = / / Err du d?w dr.
7(s0) Y X7 (s)up

We obtain
2

€5 () S €55, (0) 4 85, 0+ [ 8y, (@)dr

T(s0)

The result follows via a standard Gronwall estimate. O

A.7. Proof of Theorem 4.7
Given u; < ug, we use the approximate conservation law (3.5) on the domain
QF ={0<s<1pn{u<u}

We obtain

E 1 (0) + Es,, (8) — Eny ., ()

= / X (4mR%*(3 + uR)¢% — 2mRe(u’p, — 2(1 + uR)Or¢)) dudR d*w.
o
Foliating 2} by {X;}ru,, we gain in the integral a factor of (r,R)3/2(1 — 2mR)\/R/|u]
and so all the terms are controlled by the energy density on X ,, (see proof of The-

orem 4.5 for details), which is itself controlled uniformly by the energy density of
You, = Hiu, (applying the result of Theorem 4.5 with u; instead of ug). Whence,

€y (9)+ &5, () = Ery , (9) S Ey i, (0):
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Then, the positivity of £ ,+ (¢) gives us the inequality
+

Es,, (¢) = / $[((2+uR)? = 2mu’R*)¢% + v |V 520’ dRd*w < Ex, ().
S

wq

Finally, Lemma A.l entails
| hdrdo S5, (0) S iy (9,
Suy
which concludes the proof. O

A.8. Proof of Proposition 6.2

First we express 1, and )¢ in terms of ét and QET. We have

o 1 . 5.0 )
o 1/ 0 . .0

Hence

L+t2 402 t+r t—r -
= ()
Oy 2 (1+(t+r)2+1+(t—r)2+8t)¢

t+r t—r ~
0! - X
i (1+(t+r)2 1+(t—r)2+8)¢’

t+r t—r ~
=tr7!
O =tr <1+(t+r)2 Jr1+(t—r)2+at>¢S
1+t2 472 t+r t—r ~
5 (1+(t+r)2_1+(tr)2+ar>¢'

In particular at ¢ = 0 (i.e. at 7 = 0 as well) we obtain

14+7r2)2 -
571/J(0) = %aﬂba
@22 2r -
Oc(0) = 1 T2 +0, )o.
Besides the Euclidean measure on the 3-sphere {7 = 0} becomes, in terms of variables
(.0, ),
472 2
dpgs = sin? Cd¢ dw = —— = _qrd2w,

T+ 22T+
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1
Exo() =3 [ 03+ Vel + %) duss
1
= 5/ <¢2+1/)g |VS2¢|2‘H/)2> dpss

G

(1+172)2 (1+r) 2, (1+7r2)2 -, 4r? 2 9
L V2ol + 49 A i v

1 14+, -y 14712 ~ 2r -V
—2/{t_0}( 9 (O1p)” + 5 (3r¢+1+2¢>

1+72 1 2 -
5 |V5 o>+ +Tz¢2>r2drd2w.

N | —

+

This gives (6.2).
Let us now consider only the two following terms:

1472 ~ % -V 2 -5\ o 9
I:= A drd
/Zo< 5 ( ¢+1+r2¢>+1+ 5¢° Jrodrdw
:/ LE 52 1 00, + & + @ )2 dr dw
5\ 2 " 1+2 1+2

:/ < tr +2¢2>r dr d2w.
BN 2

By integration by parts, we have*

+o0 - +oo
/ 2r3¢pp, dr = —3/ H*r?dr
0 0

1+, -
I:/ ( tr ¢3—¢2>r2drd2w.
2o\ 2

It remains to show that the first term in the above integral compensates for the second
and gives us a control over the integral of ¢2. We proceed similarly as for the proof of
Lemma 4.3:

+oo 9 +oo
/ H*r2dr = ~3 / 3o, dr
0 0

A +oo - o 1 +oo -5 4
< = o“rdr + — ¢;r*dr, for any A > 0,
3 Jo 3\

whence

and therefore oo oo
A3 — )\)/ éQTQ dr < / qgfr‘l dr.
0 0

* Note that ¢~S,« certainly does not have a limit at » = 0 in the generic case, but it remains bounded in
the neighbourhood of » = 0, which is enough to justify the integration by parts and prove the equality.

https://doi.org/10.1017/51474748008000297 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748008000297

Regularity at space-like and null infinity 207
The coefficient A(3 — ) is maximum for A = £ where it takes the value 2. Hence, for any
e >0,
I> / (e(1 4 r?)p? + (3 - 5)%(&2 — ¢H)r? dr d%w,
o

say € = ==, we obtain

367

1
I>/ ( 15 +L1d >r2drd2w,
Yo

from which we conclude that

and taking 0 < € < 18,

[ (@407 + (14087 + () L9 + ) drd S £x,0),
o

The reciprocal inequality is trivial. This proves equivalence (6.3). )
To prove equivalence (6.4), we first use Lemma 4.1 and then the equalities ¢ = r¢,
Oy = 0 and Or = —r%(9; + 0,-). We obtain

T\2
EM g 2/ <7"2¢~>f+7" <¢t+¢r ¢> +7?
{r>-uo}
2
[ (waeraar W’
{r>—uo} r

+ / (2r2q~5tq~5T + 27“4525(;3 + 27"<;~Srq~5)7"2 dr dPw.
{T> uo}

2

5| Va2
,

+ q~52> r2dr d?w

+ 2(52> r2dr d?w

Now for any A, B,C € R, we have
2AB +2AC + 2BC < 2(A% + B* + C?)

and using the facts that

(\/§A+ \/§B+ \/gc)z >0 and (\}634r \/gcj >0

we also have

2AB +2AC + 2BC = 2AB + $BC + 2AC + 2BC
> ( A2 232 202) ( 2 + %02)
> (3A2 582 402)

Taking A = r¢;, B = r¢, and C = ¢, this proves equivalence (6.4). O
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