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Abstract

In this paper, we prove the Fukui–Kurdyka–Paunescu conjecture, which says that sub-
analytic arc-analytic bi-Lipschitz homeomorphisms preserve the multiplicities of real
analytic sets. We also prove several other results on the invariance of the multiplicity
(respectively, degree) of real and complex analytic (respectively, algebraic) sets. For
instance, still in the real case, we prove a global version of the Fukui–Kurdyka–Paunescu
conjecture. In the complex case, one of the results that we prove is the following: if
(X, 0) ⊂ (Cn, 0), (Y, 0) ⊂ (Cm, 0) are germs of analytic sets and h : (X, 0) → (Y, 0) is
a semi-bi-Lipschitz homeomorphism whose graph is a complex analytic set, then the
germs (X, 0) and (Y, 0) have the same multiplicity. One of the results that we prove in
the global case is the following: if X ⊂ C

n, Y ⊂ C
m are algebraic sets and φ : X → Y

is a semi-algebraic semi-bi-Lipschitz homeomorphism such that the closure of its graph
in P

n+m(C) is an orientable homological cycle, then deg(X) = deg(Y ).

1. Introduction

Zariski’s famous multiplicity conjecture, stated by Zariski in 1971 (see [Zar71]), is formulated as
follows.

Conjecture 1 (Zariski’s multiplicity conjecture). Let f, g : (Cn, 0) → (C, 0) be two reduced
complex analytic functions. If there is a homeomorphism ϕ : (Cn, V (f), 0) → (Cn, V (g), 0), then
m(V (f), 0) = m(V (g), 0).

This is still an open problem; see [Eyr07] for a survey on this conjecture. In the real case, of
course, Zariski’s multiplicity conjecture does not hold in the same form as in the complex case.
However, we have the following conjecture, stated by Fukui et al. [FKP04, Conjecture 3.3].

Conjecture 2 (Fukui–Kurdyka–Paunescu conjecture). Let X,Y ⊂ R
n be two germs at the

origin of irreducible real analytic subsets. If h : (Rn, 0) → (Rn, 0) is the germ of a sub-
analytic, arc-analytic and bi-Lipschitz homeomorphism such that h(X) = Y , then m(X, 0) ≡
m(Y, 0) mod 2.

Several authors approached this conjecture: For example, Risler [Ris01] proved that multi-
plicity mod 2 of a real analytic curve is invariant under bi-Lipschitz homeomorphisms; Fukui
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et al. [FKP04] confirmed the conjecture in the case that X and Y are real analytic curves;
and Valette [Val10] showed that multiplicity mod 2 of real analytic hypersurfaces is invariant
under arc-analytic bi-Lipschitz homeomorphisms. The third named author of this paper proved
in [Sam22a] the real version of the Gau–Lipman theorem: i.e. multiplicity mod 2 of real ana-
lytic sets is invariant under homeomorphisms ϕ : (Rn, 0) → (Rn, 0) such that ϕ and ϕ−1 have a
derivative at the origin. A generalization of this result was presented in [Sam22b].

In this paper, we give a complete, positive answer to the Fukui–Kurdyka–Paunescu conjecture
(see Theorem 7.14). A global version of this conjecture is also proved (see Corollary 4.8).

Coming back to the complex case, let us list some contributions to Zariski’s multiplicity
conjecture from the Lipschitz point of view. For instance, Neumann and Pichon [NP14], with
previous contributions of Pham and Teissier [PT69] and Fernandes [Fer03], proved that the bi-
Lipschitz geometry of plane curves determines the Puiseux pairs, and as a consequence if two
germs of complex analytic curves with any codimension are bi-Lipschitz homeomorphic (with
respect to the outer metric), then they have the same multiplicity. Comte [Com98] proved that
multiplicity of complex analytic germs (not necessarily codimension-one sets) is invariant under
bi-Lipschitz homeomorphisms with the severe assumption that the Lipschitz constants are close
enough to one. This motivated the following conjecture in [dBFS18].

Conjecture 3. Let X ⊂ C
n and Y ⊂ C

m be two complex analytic sets with dimX =
dimY = d. If their germs at zero are bi-Lipschitz homeomorphic, then their multiplicitiesm(X, 0)
and m(Y, 0) are equal.

In [dBFS18] the following conjecture was also posed.

Conjecture 4. Let X ⊂ C
n and Y ⊂ C

m be two complex algebraic sets with dimX =
dimY = d. If X and Y are bi-Lipschitz homeomorphic at infinity, then deg(X) = deg(Y ).

Still in [dBFS18] the authors proved that Conjectures 3 and 4 are equivalent and, moreover,
have positive answers for d = 1 and d = 2. However, Birbrair et al. [BFSV20] disproved these
conjectures when d � 3, by showing explicit counter-examples. More precisely, it was shown that
we have two different embeddings of P

1(C) × P
1(C) into P

5(C), say X and Y , such that their
affine cones Cone(X),Cone(Y ) ⊂ C

6 are bi-Lipschitz equivalent, but they have different degrees.
Hence, the problem of invariance of degree under bi-Lipschitz homeomorphisms is still open in
the important case of affine hypersurfaces in C

n with n > 3. Moreover, there are several cases
where Conjectures 3 and 4 hold true, for instance, the Lipschitz regularity theorem [Sam16,
Theorem 4.2] (see also [BFLS16, FS22]) shows that if a germ of an analytic set is bi-Lipschitz
equivalent to a smooth germ, then it is smooth itself, which implies that multiplicity 1 of a
complex analytic germ is a bi-Lipschitz invariant. Fernandes and Sampaio [FS20] proved that
degree one of a complex algebraic set is invariant under bi-Lipschitz homeomorphism at infinity
and Sampaio in [Sam19] proved the version of Comte’s result for the degree: the degree of complex
algebraic sets is invariant under bi-Lipschitz homeomorphism at infinity with Lipschitz constant
close enough to one. Recently, Jelonek [Jel21] proved that the multiplicity of complex analytic
sets is invariant under bi-Lipschitz homeomorphisms which have analytic graphs, and the degree
of complex algebraic sets is invariant under bi-Lipschitz homeomorphisms (at infinity) which
have algebraic graph.

In this paper, we prove some generalizations of the results proved by Jelonek [Jel21]. For
instance, we show that the multiplicity of complex analytic sets is invariant under semi-bi-
Lipschitz homeomorphisms which have analytic graph (see Theorem 6.1) and the degree of
complex algebraic sets is invariant under semi-bi-Lipschitz homeomorphisms at infinity which
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have algebraic graph (see Theorem 5.1). We also prove that degree of a complex algebraic set
is invariant under semi-algebraic semi-bi-Lipschitz homeomorphisms at infinity such that the
closure of their graphs are orientable homological cycles (see Theorem 3.1).

2. Preliminaries

2.1 Lipschitz and semi-bi-Lipschitz mappings
Definition 2.1. Let X ⊂ R

n and Y ⊂ R
m be two sets and let h : X → Y .

(i) We say that h is Lipschitz if there exists a positive constant C such that

‖h(x) − h(y)‖ � C‖x− y‖, ∀x, y ∈ X.

(ii) We say that h is bi-Lipschitz if h is a homeomorphism, it is Lipschitz and its inverse is also
Lipschitz.

(iii) We say that h is bi-Lipschitz at infinity (respectively, a homeomorphism at infinity) if
there exist compact subsets K ⊂ R

n and K ′ ⊂ R
m such that h|X\K : X \K → Y \K ′ is

bi-Lipschitz (respectively, a homeomorphism).
(iv) We say that h is semi-Lipschitz at x0 ∈ X if there exist a positive constant C such that

‖h(x) − h(x0)‖ � C‖x− x0‖, ∀x ∈ X.

(v) We say that h is semi-bi-Lipschitz at x0 ∈ X if h is a homeomorphism, it is semi-Lipschitz
at x0 and its inverse is also semi-Lipschitz at h(x0). We say that h is semi-bi-Lipschitz if h
is semi-bi-Lipschitz at some x0 ∈ X.

(vi) We say that h is semi-bi-Lipschitz at infinity if there exist compact subsets K ⊂ R
n and

K ′ ⊂ R
m such that h|X\K : X \K → Y \K ′ is semi-bi-Lipschitz at some point x0 ∈ X \K.

Now we give a geometric characterization of semi-bi-Lipschitz mappings. For a similar
characterization of bi-Lipschitz mappings see [Jel21].

Definition 2.2. Let Ls, Hn−s−1 be two disjoint linear subspaces of P
n(C). Let π∞ be a hyper-

plane (a hyperplane at infinity) and assume that Ls ⊂ π∞. The projection πL with center Ls is
the mapping

πL : C
n = P

n(C) \ π∞ � x 	→ 〈Ls, x〉 ∩Hn−s−1 ∈ Hn−s−1 \ π∞ = C
n−s−1.

Here 〈L, x〉 we mean the linear projective subspace spanned by L and {x}.

Lemma 2.3. Let X be a closed subset of C
n. Denote by Λ0 ⊂ π∞ the set of directions of all

secants of X which contain x0 and let Σ0 = Λ0, where π∞ is the hyperplane at infinity and we
consider the euclidean closure. Let πL : C

n → C
l be the projection with center L. Then πL|X is

semi-bi-Lipschitz at x0 if and only if L ∩ Σ0 = ∅.
Proof. (a) Assume that L ∩ Σ0 = ∅. We proceed by induction. As a linear affine isomorphism is
a bi-Lipschitz homeomorphism, we can assume that πL coincides with the projection π : C

n �
(x1, . . . , xn) 	→ (x1, . . . , xk, 0, . . . , 0) ∈ C

k × {0, . . . , 0}. We can decompose π into two projec-
tions: π = π2 ◦ π1, where π1 : C

n � (x1, . . . , xn) 	→ (x1, . . . , xn−1, 0) = C
n−1 × 0 is the projection

with center P1 = (0 : 0 : · · · : 1) and π2 : C
n−1 � (x1, . . . , xn−1, 0) 	→ (x1, . . . , xk, 0, . . . , 0) ∈ C

k ×
{(0, . . . , 0)} is the projection with center L′ := {x0 = 0, . . . , xk = 0}. Since P1 ∈ L and con-
sequently P1 �∈ Σ, we prove that π1 is a semi-bi-Lipschitz homeomorphism. Indeed, P1 ∈
P

n−1(C) \ Σ0. We show that the projection p = π1|X : X → C
n−1 × 0 is semi-bi-Lipschitz. Of

course ‖p(x) − p(x0)‖ � ‖x− x0‖. Assume that p is not semi-bi-Lipschitz, i.e. there is a sequence
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of points xj ∈ X such that
‖p(xj) − p(x0)‖

‖xj − x0‖ → 0

as j → ∞. Let xj − x0 = (a1(j), . . . , an−1(j), b(j)) and denote by Pj the corresponding point
(a1(j) : · · · : an−1(j) : b(j)) in P

n−1(C). Hence,

Pj =
(a1(j) : · · · : an−1(j) : b(j))

‖xj − x0‖ .

As
(a1(j), . . . , an−1(j))

‖xj − x0‖ =
p(xj) − p(x0)
‖xj − x0‖ → 0,

we see that Pj → P . It is a contradiction. Note that if π1(X) = X ′, then Σ′
0 = π1(Σ0), x′0 = p(x0).

Moreover L′ = L ∩ {xn = 0} and 〈L′, P1〉 = L. This means that Σ′
0 ∩ L′ = ∅. Now by induction

the projection π2|p(X) is semi-bi-Lipschitz at p(x0), hence also π = π1 ◦ π2 is semi-bi-Lipschitz.
(b) Assume that πL|X is a semi-bi-Lipschitz mapping and Σ0 ∩ L �= ∅. As before

we can change the system of coordinates in such a way that π : C
n � (x1, . . . , xn) 	→

(x1, . . . , xk, 0, . . . , 0) ∈ C
k × {0, . . . , 0}. Moreover, we can assume that P1 = (0 : 0 : · · · : 1) ∈ Σ0.

Actually π1 is not semi-bi-Lipschitz. Indeed there is a sequence of secants ln = 〈xn, x0〉 ofX whose
directions tend to P1. Let xj − x0 = (a1(j), . . . , an−1(j), b(j)) and denote by Pj the corresponding
point (a1(j) : · · · : an−1(j) : b(j)) in P

n−1(C). Hence,

Pj =
(a1(j) : · · · : an−1(j) : b(j))

‖xj − x0‖ .

As Pj → P we have
(a1(j), . . . , an−1(j))

‖xj − x0‖ =
p(xj) − p(x0)
‖xj − x0‖ → 0.

Hence, the mapping π1 is not semi-bi-Lipschitz at x0.
Let x′0 = π1(x0). Now it is enough to note that ‖π2(x) − π2(x′0)‖ � ‖x− x′0‖, hence ‖π(xn) −

π(x0)‖ = ‖π2(π1(xn)) − π2(π1(x0))‖ � ‖π1(xn) − π1(x0)‖. Thus,

‖xn − x0‖
‖π(xn) − π(x0)‖ � ‖xn − x0‖

‖π1(xn) − π1(x0)‖ → ∞.

This contradiction finishes the proof. �
Lemma 2.4. Let X ⊂ C

n be a closed set and let f : X → C
m be semi-Lipschitz at x0. Let

Y := graph(f) ⊂ C
n × C

m. Then the mapping φ : X � x 	→ (x, f(x)) ∈ Y is semi-bi-Lipschitz
at x0.

Proof. As f is semi-Lipschitz at x0, there is a constant C such that

‖f(x) − f(x0)‖ � C‖x− x0‖.
We have

‖φ(x) − φ(x0)‖ = ‖(x− x0, f(x) − f(x0))‖
� ‖x− x0‖ + ‖f(x) − f(x0)‖ � ‖x− x0‖ + C‖x− x0‖
� (1 + C)‖x− x0‖.

Moreover
‖x− x0‖ � ‖φ(x) − φ(x0)‖.
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Hence,

‖x− x0‖ � ‖φ(x) − φ(x0)‖ � (1 + C)‖x− x0‖. �

Remark 2.5. It is easy to note that Lemmas 2.3 and 2.4 hold in the real case also.

Definition 2.6. Let A ⊂ R
n be a subset. We say that v ∈ R

n is a tangent vector to A at p ∈ A
(respectively, at infinity) if there is a sequence of points {xi}i∈N ⊂ A such that limi→∞ ‖xi − p‖ =
0 (respectively, limi→∞ ‖xi‖ = +∞) and there is a sequence of positive numbers {ti}i∈N ⊂ R

+

such that

lim
i→∞

1
ti

(xi − p) = v

(
respectively, lim

i→∞
1
ti
xi = v

)
.

Let C(A, p) (respectively, C∞(A)) denote the set of all tangent vectors to A at p (respectively,
at infinity). The subset C(A, p) (respectively, C∞(A)) is called the tangent cone of A at p
(respectively, at infinity).

Definition 2.7. Let X ⊂ R
n and Y ⊂ R

m be sub-analytic sets with 0 ∈ X and 0 ∈ Y and
let h : (X, 0) → (Y, 0) be a sub-analytic Lipschitz mapping. We define the pseudo-derivative of
h at 0, d0h : C(X, 0) → C(Y, 0), by d0h(v) = limt→0+ h(γ(t))/t, where γ : [0,+ε) → X satisfies
limt→0+ γ(t)/t = v.

Definition 2.8. Let X ⊂ R
n and Y ⊂ R

m be semi-algebraic sets and let h : X → Y be a semi-
algebraic Lipschitz mapping. We define the pseudo-derivative of h at infinity d∞h : C(X,∞) →
C(Y,∞) by d∞h(v) = limt→+∞ h(γ(t))/t, where γ : (r,+∞) → X satisfies limt→+∞ γ(t)/t = v.

2.2 Multiplicity and degree of real sets
Let X ⊂ R

n be a d-dimensional real analytic set with 0 ∈ X and

XC = V (IR(X, 0)),

where IR(X, 0) is the ideal in C{z1, . . . , zn} generated by the complexifications of all germs
of real analytic functions that vanish on the germ (X, 0). We know that XC is a germ of a
complex analytic set and dimCXC = dimRX (see [Nar66, Propositions 1 and 3, pp. 91–93]).
Then, for a linear projection π : C

n → C
d such that π−1(0) ∩ C(XC, 0) = {0}, there exists an

open neighborhood U ⊂ C
n of 0 such that #(π−1(x) ∩ (XC ∩ U)) is constant for a generic

point x ∈ π(U) ⊂ C
d. This number is the multiplicity of XC at the origin and it is denoted by

m(XC, 0).
Please note that m(XC, 0) is well posed even if XC is not of pure dimension. However, if XC

is of pure dimension, then our definition of multiplicity coincides with the classical one.

Definition 2.9. With the above notation, we define the multiplicity of X at the origin by
m(X, 0) := m(XC, 0).

In the same way, we define the degree of a real algebraic set A ⊂ R
n by deg(A) := deg(AC),

where AC = V (IR(A)) and IR(A) is the ideal in C[z1, . . . , zn] generated by the complexifications
of all real polynomials that vanish on A.

Definition 2.10. We shall not distinguish between a 2(n− d)-dimensional real linear sub-
space in C

n and its canonical image in the Grassmannian G2n
2(n−d)(R). Thus, we regard the

Grassmannian Gn
n−d(C) as a subset of G2n

2(n−d)(R). Let E(XC) denote the subset of G2n
2(n−d)(R)

consisting of all L ∈ G2n
2(n−d)(R) such that L ∩ C(XC, 0) = {0}.
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Remark 2.11 [Sam22a]. We have the following comments on the set E(XC).
(i) We have that E(XC) is an open dense set in G2n

2(n−d)(R) ∼= G2n
2d (R).

(ii) For each L ∈ E(XC) ∩Gn
n−d(C), let πL : C

n → L⊥ be the orthogonal projection along
L. Then there exist a polydisc U ⊂ C

n and a complex analytic set σ ⊂ U ′ := πL(U) such that
dimσ < dimXC and πL : (U ∩XC) \ π−1

L (σ) → U ′ \ σ is a k-sheeted cover with k = m(XC, 0).
(iii) As π := πL is an R-linear mapping, we identify the d-dimensional real linear subspace

π(Rn) with R
d and, with this identification, we find that R

d ∩ σ is a closed nowhere dense
subset of R

d ∩ U ′. Indeed, it is clear that R
d ∩ σ is a closed subset of R

d ∩ U ′ and, thus, if σ is
somewhere dense in R

d ∩ U ′, then σ contains an open ball Br(p) ⊂ R
d ∩ U ′, which implies that

σ must contain a non-empty open subset of U ′ a contradiction. Therefore, σ is nowhere dense in
R

d ∩ U ′ and so R
d ∩ U ′ \ σ is an open dense subset of R

d ∩ U ′.
(iv) For a generic point x ∈ R

d near the origin (i.e. for x ∈ (Rd ∩ U ′) \ σ), we have

m(XC, 0) = #(π−1(x) ∩ (XC ∩ U))

= #(Rn ∩ π−1(x) ∩ (XC ∩ U)) + #((Cn \ R
n) ∩ π−1(x) ∩ (XC ∩ U))

= #(π−1(x) ∩ (X ∩ U)) + #(π−1(x) ∩ ((XC \ R
n) ∩ U)).

As for each f ∈ IR(X, 0), we may write f(z) =
∑∞

|I|=k aIz
I with aI ∈ R for all I, it follows

that f(z1, . . . , zn) = 0 if and only if f(z̄1, . . . , z̄n) = 0, where each z̄i denotes the complex
conjugate of zi. In particular, #(π−1(x) ∩ ((XC \ R

n) ∩ U)) is an even number. Therefore,
m(X, 0) ≡ #(π−1(x) ∩ (X ∩ U)) mod 2 for a generic point x ∈ R

d near the origin.

3. Homological cycles

Let M be a smooth compact manifold of (real) dimension n. Given homology classes α ∈ Hk(M)
and β ∈ Hn−k(M), we choose representative cycles α̃ and β̃, respectively. We can assume that
every singular simplex appearing in each of these cycles is a smooth mapping and also that any
two simplices meet transversally. This means that the only points of intersection are where the
interior of a k-simplex in α̃ meets the interior of an (n− k)-simplex in β̃. At every such point x
of intersection both α̃ and β̃ are local embeddings and their tangent spaces are complementary
in TxM . We assign a sign to each point of intersection by comparing the direct sum of the
orientations of the tangent spaces of α̃ and of β̃ with the ambient orientation of the tangent space
of M . The sum of the signs over the (finitely many) points of intersection gives the intersection
pairing applied to (α, β).

If M = P
n(C), then H2i(M,Z) = Z for i = 0, 1, . . . , n and H2i−1(M,Z) = 0. The space

H2i(M,Z) is generated by the class Li where Li is a complex linear subspace of dimension i
(see, e.g., [Gre66, 19.21]). Hence, every 2i-dimensional homological cycle α can be described
as dLi. We say that the number |d| is the topological degree of α. Note that if X ⊂M is an
i-dimensional projective subvariety, then the algebraic degree of X coincides with the topological
degree.

Similarly, if M = P
n(R), then Hi(M,Z/(2)) = Z/(2) for i = 0, 1, . . . , n. The space

Hi(M,Z/(2)) is generated by the class Li where Li is a linear subspace of dimension i (see,
e.g., [Gre66, 19.25]). Hence, every i-dimensional homological cycle α can be described as dLi.
We say that the number d is the topological degree mod 2 of α. Note that if X ⊂M is an
i-dimensional projective subvariety, then the algebraic degree mod 2 coincides with the topo-
logical degree. More generally, if X ⊂ R

n is a closed subset, such that its projective closure is a
homological cycle, then we define the topological degree of X as the topological degree of X.
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Let R = Z or R = Z/(2). Let X be a compact semi-algebraic set of dimension d. We say that
X is a homological cycle over R, if there exists a stratification S of X such that it gives on X a
structure of a R-homological d-cycle α. We say that this cycle is orientable if R = Z and [α] �= 0
in Hd(X,Z). It is well known that if X ⊂ P

n(C) is an irreducible algebraic variety, then it is an
orientable homological cycle.

The next result generalizes Theorem 3.4 in [Jel21].

Theorem 3.1. Let X ⊂ C
n, Y ⊂ C

m be complex algebraic varieties of dimension d and let
h : X → Y be a semi-algebraic and semi-bi-Lipschitz homeomorphism. Assume that the closure
of Graph(h) in P

n+m(C) is an orientable homological cycle. Then deg(X) = deg(Y ).

Proof. Let G be the closure of graph(h) in P
n+m(C) and X be the closure of X in P

n(C). Let
α be a homological cycle of G. First we show that p∗(α) is a fundamental class of X, where
p : G→ X is a projection. We use the notation A = X \X and B = G \ graph(h). As X \A
is homeomorphic to G \B we have isomorphism p∗ : H(X,A) ∼= H(G,B) (see [Lam81]). Let us
consider the following diagram.

0 = H2d(B)

��

�� H2d(G)

��

�� H2d(G,B)

��

�� H2d−1(B)

��
0 = H2d(A) �� H2d(X) �� H2d(X,A) �� H2d−1(A) = 0

As X is a projective variety we have H2d(X,Z) = Z and H2d−1(A,Z) = 0. In particular,
H2d(X,A,Z) = Z. As [α] �= 0, the diagram above shows that [p∗([α]) = mβ �= 0. Here β denotes
the fundamental class of X. Changing the orientation of α if necessary, we can assume that
m > 0. Let Ln−d be a linear space which cuts X transversally such that #L ∩X = degX. It is
easy to see that |p∗([α]) · L| � degX. This implies that m = 1 and, consequently, p∗([α]) = β.

Hence, we can take the orientations of 2d-dimensional simplices in G to be the same
as in X (using a projection p : G→ X). Now if a linear space meets X transversally with
#L ∩X = degX then also p−1(L) meets G transversally and it is easy to see that the intersec-
tion number is +1. Indeed, let M = Ker(π) where π : C

n × C
m → C

n is the projection. Hence,
π−1(L) = L×M . Fix a canonical orientation on M given by vectors v1, . . . , v2m, on L given by
w1, . . . , w2n−2d and on a 2d-dimensional simplex σ in X - u1, . . . , u2d. Let σ′ be a simplex in G
such that π(σ′) = σ and let u′1, . . . , u′2d be its orientation at a generic point such that π(u′i) = ui.
In particular, u′i = ui +

∑2m
j=1 aijvj . Hence, the cycles L and X at a point of intersection have

orientation given by w1, . . . , w2n−2d, u1, . . . , u2d. The cycles π−1(L) and G have orientation given
by v1, . . . , v2m, w1, . . . , w2n−2d , u′1, . . . , u′2d (note that π−1(L) = L×M). Now it is easy to see
that the determinant of the vectors v1, . . . , v2m;w1, . . . , w2n−2d;u′1, . . . , u′2d is equal to the product
of the determinant of v1, . . . , vd and the determinant of the w1, . . . , w2n−2d;u1, . . . , u2d. Conse-
quently, the sign of these two determinant is the same. This means that the orientation of the
vectors w1, . . . , w2n−2d, u1, . . . , u2d is the same as the orientation of v1, . . . , v2m, w1, . . . , w2n−2d,
u′1, . . . , u′2d.

Moreover, by Lemma 2.3, the set π−1(L) ∩G has no points at infinity, because otherwise
L ∩X would have points at infinity (the center of the projection is disjoint from G).

This means that the topological degree of G coincides with the algebraic degree of X. The
same holds for Y . Hence, deg(X) = deg(Y ). �

In the same way (in fact, the proof is simpler, because we do not have to control the
orientation) we have the following result.
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Theorem 3.2. LetX ⊂ R
n, Y ⊂ R

m be real algebraic sets and let h : X → Y be a semi-algebraic
and semi-bi-Lipschitz homeomorphism. Assume that the projective closure of the graph of h is
a Z/(2) homological cycle. Then deg(X) = deg(Y ) mod 2.

In the sequel we need the following definition.

Definition 3.3 (See [Val10]). Let C be an n-dimensional sub-analytic subset. We say that C
is an Euler cycle, if it is locally compact and if, for a stratification of C (and, hence, for any that
refines it), the number of n-dimensional strata containing a given (n− 1)-dimensional stratum
in their closure is even.

In particular, if C is compact and it is an Euler cycle, then it is Z/2 homological cycle.

Remark 3.4. This definition is slightly weaker than that introduced in [Par04].

Remark 3.5. In fact, more general statements are true. It is easy to see that our proof works
if h is semi-bi-Lipschitz at infinity. Indeed, under this assumption, we still have Γ \ Γ ⊂ Σ0,
where Γ = graph(h). Moreover, there are sufficiently general linear subspaces L which omit K
(or K ′). Theorem 3.2 holds if the mapping is sub-analytic and X,Y are sub-analytic sets with
sub-analytic projective closures, which are homological cycles, e.g. for full sub-analytic cones
with Euler links (at 0).

4. On the global version of the Fukui–Kurdyka–Paunescu conjecture

Here we need the concept of arc-symmetric sets and arc-analytic mapping, which was developed
by Kurdyka and later by Parusiński (see, e.g., [Kur88, Par04, KP08]).

Definition 4.1 [Par04, Definition 4.2] and [KP08, Proposition 3.2]. We say that a semi-
algebraic subset E ⊂ P

N (R) is an AS set, if for any analytic arc γ : (−1, 1) → P
N (R) such that

γ((−1, 0)) ⊂ E, we have γ((0, ε)) ⊂ E, for some ε > 0.

Remark 4.2. The arc-symmetric sets were first introduced and studied by Kurdyka [Kur88]. His
definition is slightly different to ours (taken from the Parusiński paper [Par04]). In [Kur88]
Kurdyka considers only closed semi-algebraic subsets of R

n such that for every real analytic arc
γ : (−ε, ε) → R

n if γ((−ε, 0)) ⊂ X, then γ(−ε, ε) ⊂ X. Parusiński’s AS sets are Euler cycles and
they form a constructible category. Kurdyka’s arc-symmetric sets are also Euler, however they
do not form a constructible category.

Definition 4.3 [Kur88]. Let M and N be analytic manifolds. Let X ⊂M and Y ⊂ N be
analytic subsets. We say that a mapping f : X → Y is arc-analytic if for any analytic arc
γ : (−1, 1) → X, the mapping f ◦ γ is an analytic arc as well.

Theorem 4.4. Let A ⊂ R
n, B ⊂ R

m be real algebraic d-dimensional sets and let h : A→ B be
a semi-algebraic and semi-bi-Lipschitz homeomorphism. If the graph of h is an AS set, then
deg(A) ≡ deg(B) mod 2.

Proof. Let Γ = graph(h). Let Γ be the closure of Γ in P
n+m(R). Let Z be the Zariski closure of

Γ \ Γ in P
n+m(R). As the AS sets form a constructible category [Par04], we find that Γ′ := Γ ∪ Z

is an AS set.
Take a semi-algebraic triangulation S of Γ′ such that the set Z is a union of strata. Hence,

all d-dimensional cells of this stratification are contained in R
n+m. On Γ we have the induced

stratification S ′. Now every (d− 1)-dimensional cell C in S ′ comes from S. As the set Γ′ is
an AS set it is an Euler cycle, see [Par04]. This means that C meets an even number of
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d-dimensional cells. But every d-dimensional cell is contained in Γ. Finally C meets an even num-
ber of d-dimensional cells in S ′. This means that Γ is a Z/(2) homological cycle. By Theorem 3.2,
deg(A) ≡ deg(B) mod 2. �
Corollary 4.5. Let A ⊂ R

n, B ⊂ R
m be real algebraic d-dimensional sets and let h : A→ B

be a polynomial (or even regular) and semi-bi-Lipschitz homeomorphism. Then deg(A) ≡
deg(B) mod 2.

Definition 4.6. Let X ⊂ R
n and Y ⊂ R

m be semi-algebraic subsets and let X be the closure
of X in P

n(R). We say that a mapping f : X → Y is arc-analytic at X if for any analytic arc
γ : (−1, 1) → P

n(R) such that γ((−1, 0) ∪ (0, 1)) ⊂ X, we have f ◦ γ|(−1,0)∪(0,1) extends to an
analytic arc γ̃ : (−1, 1) → P

m(R).

Remark 4.7. It is worth noting that a similar concept of arc-analyticity at infinity appeared
in [KR88].

Corollary 4.8. Let A ⊂ R
n, B ⊂ R

m be real algebraic d−dimensional sets, let A be the closure
of A in P

n(R) and let h : A→ B be a semi-algebraic and semi-bi-Lipschitz homeomorphism.
Assume that h is arc-analytic at A. Then deg(A) ≡ deg(B) mod 2.

Remark 4.9. In fact, Corollary 4.8 holds true for a more general class of homeomorphisms, i.e. for
semi-algebraic and semi-bi-Lipschitz homeomorphisms h : A→ B such that the following holds:
for an analytic arc γ : (−1, 1) → P

n(R) with γ((−1, 0)) ⊂ A, if h ◦ γ|(−1,0) is an analytic arc and
there is an analytic arc γ̃ : (−1, 1) → P

m(R), such that γ̃|(−1,0) = h ◦ γ|(−1,0), then h ◦ γ|(0,ε) =
γ̃|(0,ε) for some ε > 0.

5. Invariance of the degree

Theorem 5.1. LetX ⊂ C
n, Y ⊂ C

m be complex algebraic sets and let h : X → Y be a mapping.
Assume that h is semi-bi-Lipschitz at infinity and its graph is a complex algebraic set. Then
deg(X) = deg (Y ).

Proof. This follows directly from Theorem 3.1. �
Remark 5.2. In Theorem 5.1, if h is bi-Lipschitz at infinity, we only have to ask that its graph
is a complex analytic set (see [Sam21b, Theorem 3.1]).

Theorem 5.3. Let X ⊂ C
n, Y ⊂ C

m be complex algebraic sets and let h : X → Y be a semi-
algebraic and bi-Lipschitz homeomorphism. Assume that d∞h is C-homogeneous. Then deg(X) =
deg (Y ).

Proof. We can extend the mapping h to the infinity: we simply take a path a(t) = wt+ o∞(t)
which tends to the point [0 : w] ∈ P

n(C) and by semi-linearity the limit limt→∞ f(a(t)) does not
depend on w but only on [0 : w]. Hence, we can take h([0 : w]) = [0 : d∞h(w)].

In the same way we have an induced homeomorphism ῑ : X → G, where X is the closure of X
in P

n(C) and G is the closure of graph(h) in P
n+m(C). Indeed if we take a path a(t) = wt+ o∞(t)

which tends to the point [0 : w] ∈ P
n(C), then the limit limt→∞(a(t), f(a(t)) = [0 : w : d∞h(w)]

does not depend on w but only on [0 : w]. Hence we can take ῑ([0 : w]) = limt→∞(a(t), f(a(t)) =
[0 : w : d∞h(w)].

Hence, G is an orientable homological cycle. Then the conclusion follows from Theorem 3.1.
�

In the same way as in Theorem 5.3 we have the following result.
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Theorem 5.4. LetX ⊂ R
n, Y ⊂ R

m be real algebraic sets and let h : X → Y be a semi-algebraic
and bi-Lipschitz homeomorphism. Assume that d∞h is R-homogeneous, i.e. if v,−v ∈ C∞(X),
then d∞h(−v) = −d∞h(v). Then deg(X) = deg (Y ) mod 2.

Definition 5.5. We say that a set C ⊂ R
n is a-invariant if it is preserved by the antipodal

mapping (i.e. a(C) = C, with a(x) = −x). If V is an a-invariant cone, then we say that V is a
full cone.

Remark 5.6. Let V ⊂ R
n be a full sub-analytic cone. Assume that a link of this cone is an Euler

cycle. The closure of V in P
n(R) is also an Euler cycle.

Now we can state Theorem 5.4 in the form which will be useful later (here we use the
topological degree):

Corollary 5.7. Let X ⊂ R
n, Y ⊂ R

m be full sub-analytic cones with Euler links and
let h : X → Y be a sub-analytic and bi-Lipschitz homeomorphism. Assume that d∞h is
R-homogeneous. Then deg(X) = deg (Y ) mod 2.

6. Invariance of the multiplicity

The next result generalizes Theorem 4.1 in [Jel21].

Theorem 6.1. Let (X, 0) ⊂ (Cn, 0), (Y, 0) ⊂ (Cm, 0) be germs of complex analytic sets and let
h : (X, 0) → (Y, 0) be a germ of homeomorphism which is also semi-bi-Lipschitz at 0. Assume
that the graph of h is a complex analytic set. Then m(X, 0) = m(Y, 0).

Proof. Let U, V be small neighborhoods of 0 in C
n and C

m such that the mapping h : U ∩X =
X ′ → V ∩ Y = Y ′ is defined and it is semi-bi-Lipschitz. Denote by Γ ⊂ U × V the graph of h.
By Lemma 2.4 the projections πX′ : Γ → X ′ and πY ′ : Γ → Y ′ are semi-bi-Lipschitz homeo-
morphism. Let π1 : C

n × C
m → C

n and π2 : C
n × C

m → C
m be projections and denote by

S1, S2 ⊂ π∞ = P
n+m−1(C) the centers of these projections. Denote by Λ0 ⊂ π∞ the set of direc-

tions of all secants of Γ which contain 0 and let Σ0 = cl(Λ0). As π1|Γ = πX and π2|Γ = πY

we see by Lemma 2.3 that Σ0 ∩ S1 = Σ ∩ S2 = ∅. Let C(Γ, 0) denote the tangent cone of Γ
at 0. We have C(Γ, 0) \ C(Γ, 0) ⊂ Σ0 and consequently C(Γ, 0) ∩ Si = ∅ for i = 1, 2. Now let
L ⊂ C

n be a generic linear subspace of dimension k = codimX. Then #(L ∩X ′) = mult0X and
L has no common points with C(X, 0) at infinity (we can shrink U, V if necessary). This implies
that also (C(Γ, 0) \ C(Γ, 0)) ∩ 〈S1, L〉 = ∅ and, consequently, #(〈S1, L〉 ∩ Γ) = mult0 Γ, where
〈S1, L〉 is the linear (projective) subspace spanned by L and S1. However, the mapping πX′ is
a bijection, hence #(〈S1, L〉 ∩ Γ) = mult0X. In particular, mult0 Γ = mult0X. In the same way
mult0 Γ = mult0 Y . Hence mult0X = mult0 Y . �

7. Proof of the Fukui–Kurdyka–Paunescu conjecture

Definition 7.1. The mapping βn : S
n−1 × R

+ → R
n given by βn(x, r) = rx is called the

spherical blowing-up (at the origin) of R
n.

Note that βn : S
n−1 × (0,+∞) → R

n \ {0} is a homeomorphism with inverse β−1
n : R

n \
{0} → S

n−1 × (0,+∞) given by β−1
n (x) = (x/‖x‖, ‖x‖).

Definition 7.2. The strict transform of the subset X under the spherical blowing-up βn is
X ′ := β−1

n (X \ {0}) and the boundary ∂X ′ of the strict transform is ∂X ′ := X ′ ∩ (Sn−1 × {0}).

Note that ∂X ′ = CX × {0}, where CX = C(X, 0) ∩ S
n−1.
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Definition 7.3. Let X ⊂ R
n be a sub-analytic set such that 0 ∈ X is a non-isolated point. We

say that x ∈ ∂X ′ is a simple point of ∂X ′ if there is an open U ⊂ R
n+1 with x ∈ U such that:

(a) the connected components of (X ′ ∩ U) \ ∂X ′, say X1, . . . , Xr, are C1 manifolds with
dimXi = dimX, i = 1, . . . , r;

(b) (Xi ∪ ∂X ′) ∩ U are C1 manifolds with boundary.

Let Smp(∂X ′) be the set of simple points of ∂X ′.

Definition 7.4. Let X ⊂ R
n be a sub-analytic set such that 0 ∈ X. We define kX :

Smp(∂X ′) → N, by letting kX(x) be the number of connected components of the germ
(β−1

n (X \ {0}), x).

Remark 7.5. It is clear that the function kX is locally constant. In fact, kX is constant in each
connected component Cj of Smp(∂X ′). Then, we define kX(Cj) := kX(x) with x ∈ Cj .

Remark 7.6. By Theorems 2.1 and 2.2 in [Paw85], Smp(∂X ′) is an open dense subset of the
(d− 1)-dimensional part of ∂X ′ whenever ∂X ′ is a (d− 1)-dimensional subset, where d = dimX.

Remark 7.7. The numbers kX(Cj) are equal to the numbers nj defined by Kurdyka and Raby
[KR89, p. 762].

Definition 7.8. Let X ⊂ R
n be a real analytic set. We denote by C ′

X the closure of the union
of all connected components Cj of Smp(∂X ′) such that kX(Cj) is an odd number. We call C ′

X

the odd part of CX ⊂ S
n. We denote by C ′(X, 0) the cone over C ′

X (respectively, Smp(∂X ′)),
i.e. C ′(X, 0) = {tx; t > 0 and (x, 0) ∈ C ′

X}.

The next proposition follows directly from the more general fact from [Sam21a, Theorem 4.2],
however for the sake of completeness we give here a simple proof, which works in our situation.

Proposition 7.9. Let (X, 0) and (Y, 0) be germs of sub-analytic subsets of R
n and R

m, respec-
tively. If h : (X, 0) → (Y, 0) is bi-Lipschitz and sub-analytic, then its pseudo-derivative d0h
transforms C ′(X, 0) onto C ′(Y, 0).

Proof. Let us denote by {Cj} the components of Smp(∂X ′) and by {C̃i} the components of
Smp(∂Y ′). Let φ = β−1

m ◦ h ◦ βn : β−1
n (X \ 0) → β−1

m (Y \ 0). We see that φ is a sub-analytic
homeomorphism (with inverse mapping given by β−1

n ◦ h−1 ◦ βm). As h is bi-Lipschitz and sub-
analytic, φ extends to a sub-analytic homeomorphism from the strict transform X ′ of (X, 0)
onto the strict transform Y ′ of (Y, 0). Let us denote that extension by Φ. We have the restric-
tion of Φ to the boundary ∂X ′ = CX × {0} gives a homeomorphism from ∂X ′ = CX × {0} onto
∂Y ′ = CY × {0} where CX = C(X, 0) ∩ S

n−1 and CY = C(Y, 0) ∩ S
m−1, given by

Φ(v, 0) =
(

d0h(v)
‖d0h(v)‖ , 0

)
.

In particular, Φ(Smp(∂X ′)) = Smp(∂Y ′).
Finally, because (up to a re-ordering of the components, if necessary), Φ(Cj) = C̃j ∀j, and

Φ defines a homeomorphism from β−1
n (X \ {0}, x) onto β−1

m (Y \ {0},Φ(x)) ∀x ∈ Smp(∂X ′), we
obtain kX(Cj) = kY (C̃j) ∀j, hence Φ(C ′

X) = C ′
Y and, therefore, d0h sends C ′(X, 0) onto C ′(Y, 0)

as we had claimed. �
Definition 7.10. Let A ⊂ R

n, B ⊂ R
d and C ⊂ A be sub-analytic sets and π : A→ B be a

continuous mapping. If #(π−1(x) ∩ C) is constant mod 2 for a generic x ∈ B, we define the
degree of C with respect to π to be degπ(C) := #(π−1(x) ∩ C) mod 2, for a generic x ∈ B.
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Let X ⊂ R
n be a sub-analytic set. If degπ(X) is defined and does not depend on a generic

projection π : R
n → R

d, then we denote degπ(X) just by deg2(X).

Remark 7.11. If X ⊂ R
n is an algebraic set, then deg2(X) is defined and deg2(X) ≡

deg(X) mod 2. Moreover, it coincides with the topological degree of X. Similarly, if X is
sub-analytic with sub-analytic projective closure, which is a homological cycle, then deg2(X)
coincides with the topological degree of X.

Proposition 2.14 in [Sam22b] (see also [Val10]) implies the following result.

Proposition 7.12. Let X ⊂ R
n be a d-dimensional real analytic set with 0 ∈ X and π : C

n →
C

d be a projection such that π−1(0) ∩ C(XC, 0) = {0}. Let π′ : S
n \ π−1(0) → S

d−1 be the
mapping given by π′(u) = π(u)/‖π(u)‖. Then degπ′(C ′

X) is defined and satisfies degπ′(C ′
X) ≡

m(X, 0) mod 2.

Definition 7.13. Let M and N be analytic manifolds. Let X ⊂M and Y ⊂ N be analytic
subsets. We say that a mapping f : X → Y is arc-analytic if for any analytic arc γ : (−1, 1) → X,
the mapping f ◦ γ is an analytic arc as well.

The next result gives the following strong version of the Fukui–Kurdyka–Paunescu (we do
not require here that the germs (X, 0) and (Y, 0) have to be irreducible or that h has to be
defined on a neighborhood of 0 ∈ R

n).

Theorem 7.14. Let (X, 0) ⊂ (Rn, 0), (Y, 0) ⊂ (Rm, 0) be germs of real analytic sets and let
h : (X, 0) → (Y, 0) be a sub-analytic arc-analytic bi-Lipschitz homeomorphism. Then m(X, 0) ≡
m(Y, 0) mod 2.

Proof. By Proposition 7.12, for any projection p : C
n → C

d such that p−1(0) ∩ C(XC, 0) = {0},
the degree of C ′

X with respect to π′, degπ′(C ′
X), is well defined and degπ′(C ′

X) ≡ m(X, 0) mod 2,
where π = p|Rn : R

n → R
d and π′ : S

n−1 \ π−1(0) → S
d−1 is given by π′(u) = π(u)/‖π(u)‖. In

particular, m(X, 0) ≡ 0 mod 2 whenever C ′
X = ∅. However, by Proposition 7.9 (or Theorem 4.2

in [Sam21a]), we know that C ′
X = ∅ if and only if C ′

Y = ∅. Thus, we can assume that C ′
X �= ∅

and, thus, C ′
Y �= ∅.

As C ′(X, 0) is the cone over C ′
X , the degree of C ′(X, 0) with respect to π|Rn : R

n → R
d,

degπ(C ′(X, 0)), is well defined and

degπ(C ′(X, 0)) ≡ degπ′(C ′
X) ≡ m(X, 0) mod 2.

It follows from Proposition 2.2 in [Val10] that C ′
X is an Euler cycle.

Claim 7.14.1. We claim that C ′
X is a-invariant.

Proof of Claim 7.14.1. Let v ∈ C ′
X ∩ Smp(∂X ′). Take an orthogonal projection π : C

n →
π(Cn) ∼= C

d such that π(v) = v and π−1(0) ∩ C(XC, 0) = {0}. Changing π by its composition
with a small rotation around the direction v, we can assume that π is transversal to C ′(X, 0)
at v. Thus, C = π−1((−δv, δv)) ∩X is an analytic curve. Then, by Lemma 3.3 in [Mil68], there
are an open neighborhood U ⊂ R

n of 0 and Γ1, . . . ,Γr ⊂ R
n+1 such that Γi ∩ Γj = {0} if i �= j

and

C ∩ U =
r⋃

i=1

Γi.
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Moreover, for each i ∈ {1, . . . , r}, there is an analytic homeomorphism γi : (−ε, ε) → Γi.
We consider the following subsets of {1, . . . , r}:

I =
{
i; lim

t→0−

γi(t)
‖γi(t)‖ = − lim

t→0+

γi(t)
‖γi(t)‖ = ±v

}
,

J+ =
{
j; lim

t→0−

γj(t)
‖γj(t)‖ = lim

t→0+

γj(t)
‖γj(t)‖ = v

}

and

J− =
{
j; lim

t→0−

γj(t)
‖γj(t)‖ = lim

t→0+

γj(t)
‖γj(t)‖ = −v

}
.

As kX(v) = #I + 2#J+ is an odd number, then I is not the empty set and, thus, −v ∈ C(X, 0).
By the density of Smp(∂X ′) in C(X, 0) ∩ S

n−1, we can assume that −v ∈ Smp(∂X ′). Since
kX(−v) = #I + 2#J−, we find that −v ∈ C ′

X . Therefore, C ′
X is a-invariant. �

As h is a bi-Lipschitz sub-analytic homeomorphism, it follows that d0h : C(X, 0) →
C(Y, 0) is also a sub-analytic bi-Lipschitz homeomorphism (see, e.g., [BL07] or [Sam16]). By
Proposition 7.9, ψ = d0h|C′(X,0) : C ′(X, 0) → C ′(Y, 0) is a bi-Lipschitz homeomorphism and by
the proof of Claim 7.14.1 and using the fact that h is arc-analytic, ψ satisfies ψ(−v) = −ψ(v)
whenever v ∈ C ′(X, 0). Thus, d∞ψ = ψ is R-homogeneous and we conclude the proof by
Corollary 5.7. �

Finally we have to remark that we cannot expect in the Fukui–Kurdyka–Paunescu conjecture
invariance of multiplicity without mod 2, as we can see in the next example.

Example 7.15. Consider X = {(x, y, z) ∈ R
3; z(x2 + y2) = y3} and Y = {(x, y, z) ∈ R

3; z(x4 +
y4) = y5}. Let h : (R3, 0) → (R3, 0) be the mapping given by

h(x, y, z) =

⎧⎨
⎩

(
x, y, z − y3

x2 + y2
+

y5

x4 + y4

)
if x2 + y2 �= 0,

(0, 0, z) if x2 + y2 = 0.

ThenX and Y are irreducible real analytic sets such thatm(X, 0) = 3 andm(Y, 0) = 5. Moreover,
h is a semi-algebraic arc-analytic bi-Lipschitz homeomorphism such that h(X) = Y .

8. Fukui–Kurdyka–Paunescu conjecture in the complex case

The next result is a direct consequence of Theorem 7.14, but we present a proof which is a little
easier.

Theorem 8.1. Let X ⊂ C
n, Y ⊂ C

m be complex analytic sets and let h : (X, 0) → (Y, 0) be a
sub-analytic arc-analytic bi-Lipschitz homeomorphism. Then m(X, 0) ≡ m(Y, 0) mod 2.

Proof. Let ψ = d0h : C(X, 0) → C(Y, 0) be the pseudo-derivative of h at 0. Let A1, . . . , Ar be
the irreducible components of C(X, 0). Thus, B1 = ψ(A1), . . . , Br = ψ(Ar) are the irreducible
components of C(Y, 0).

As h is arc-analytic, Γi = graph(ψi) is an a-invariant Euler cycle, where ψi = ψ|Ai . There-
fore, the closure Γi of Γi in P

2(n+m)(R) is a Z/(2) homological cycle. By Theorem 3.2,
deg(Ai) = deg (Bi) mod 2. As deg(Ai) = m(Ai, 0) and deg(Bi) = m(Bi, 0), we obtain m(Ai, 0) ≡
m(Bi, 0) mod 2, for each i ∈ {1, . . . , r}. Moreover, m(X, 0) =

∑r
i=1 kX(Ai)m(Ai, 0) and
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m(Y, 0) =
∑r

i=1 kY (Bi)m(Bi, 0). By Proposition 1.6 in [FS16], kX(Ai) = kY (Bi) for each i ∈
{1, . . . , r}. Therefore, m(X, 0) ≡ m(Y, 0) mod 2. �

We have also the following version of the Fukui–Kurdyka–Paunescu conjecture in the complex
case.

Theorem 8.2. Let (X, 0) ⊂ (Cn, 0), (Y, 0) ⊂ (Cm, 0) be germs of analytic sets and let
h : (X, 0) → (Y, 0) be a sub-analytic bi-Lipschitz homeomorphism. If d0h is a C−homogenous
mapping, then m(X, 0) = m(Y, 0).

Proof. Let ψ = d0h : C(X, 0) → C(Y, 0) be the pseudo-derivative of h at 0. Let A1, . . . , Ar be the
irreducible components of C(X, 0). Thus, B1 = ψ(A1), . . . , Br = ψ(Ar) are the irreducible com-
ponents of C(Y, 0). As the mapping ψ is C-homogenous, so is the mapping d∞ψ = ψ. Hence, by
Theorem 5.3 we have degAi = degBi for i = 1, . . . , r, and we obtainm(Ai, 0) = m(Bi, 0), for each
i ∈ {1, . . . , r}. Moreover, m(X, 0) =

∑r
i=1 kX(Ai)m(Ai, 0) and m(Y, 0) =

∑r
i=1 kY (Bi)m(Bi, 0).

We finish as before. �
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