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Abstract In this article we introduce the local versions of the Voevodsky category of motives with Fp -
coefficients over a field k, parametrized by finitely generated extensions of k. We introduce the so-called
flexible fields, passage to which is conservative on motives. We demonstrate that, over flexible fields,
the constructed local motivic categories are much simpler than the global one and more reminiscent
of a topological counterpart. This provides handy ‘local’ invariants from which one can read motivic
information. We compute the local motivic cohomology of a point for p = 2 and study the local Chow
motivic category. We introduce local Chow groups and conjecture that over flexible fields these should
coincide with Chow groups modulo numerical equivalence with Fp -coefficients, which implies that local
Chow motives coincide with numerical Chow motives. We prove this conjecture in various cases.
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1. Introduction

The category of algebraic varieties is rich and marvelous but not additive, in the sense

that one cannot add morphisms between varieties. The program to ‘linearize’ the algebro-

geometric world was first introduced in the 1960s by A. Grothendieck, who proposed
the category of Chow motives. It is a close relative of the category of correspondences,

where objects are smooth projective varieties and morphisms are algebraic cycles on the

product modulo rational equivalence. The result is a tensor additive category, because
we can add (and subtract) algebraic cycles and multiply them externally. Moreover, one

does not have to limit oneself to only rational equivalence of cycles. Instead, it is possible

to consider algebraic, numerical or homological equivalence and, actually, the theory of
Chow groups here can be substituted by any oriented cohomology theory (in the sense of

[11, Definition 3.1.1] or [9, Definition 1.1.2]). Chow motives of varieties split into smaller

pieces, which permits expressing in a precise form some of the similarities observed in

the behaviour of different varieties. In particular, the Tate motives appear responsible
for the cellular structure. The above Grothendieck category has innumerate remarkable

applications, but it deals with smooth projective varieties only. At the same time, in
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topology, motives were known for a long time in full generality in the form of singular
complexes of topological spaces. This problem was solved by V. Voevodsky in [20], who

constructed the triangulated category of motives DM(k) over a field k (around the same

time, alternative constructions were proposed by M. Hanamura and M. Levine). This
category of Voevodsky contains the Grothendieck category of Chow motives as a full

additive subcategory closed under direct summands and, in particular, permits studying

these ‘pure’ objects by triangulated methods. Voevodsky supplied his category with many

flexible tools and his motives found numerous bright applications, most notable of which
is to the proof of Milnor’s and Bloch-Kato’s conjectures.

In this article, we study Voevodsky category DM(k ;Fp) with finite coefficients over a

field of characteristic zero. We introduce the local versions DM(E/k ;Fp) of this category,
corresponding to all finitely generated field extensions E/k together with the natural local-

isation functors ϕE : DM(k ;Fp) → DM(E/k ;Fp). In the case of a trivial extension we get

the isotropic motivic categories DM(E/E ;Fp) and localisation functors can be specialised
further to isotropic functors ψE : DM(k ;Fp) → DM(E/E ;Fp). Such isotropic versions (in

the appropriate situation) appear to be much simpler than the original global category

and allow one to obtain ‘local’ invariants of motives, residing in a rather simple world.

The construction of isotropic motivic category is based on the notion of an anisotropic
variety, that is, a variety that does not have closed point of degree prime to a given

prime p (thus the fact that coefficients are finite is really essential). The rough idea is to

‘kill’ the motives of all anisotropic varieties over k . This idea belongs to T. Bachmann,
who in [1] considered the full tensor triangulated subcategory DQMgm of DM(k ;F2)

generated by motives of smooth projective quadrics and studied it with the help of

functors �E : DQMgm → K b(Tate(F2)) to the category of bigraded F2-vector spaces.
These functors were defined by the property that they ‘kill’ the motives of k -quadrics,
which stay anisotropic over E (and act ‘identically’ on Tate motives). In our approach, the

same idea comes naturally from the development of some ideas of Voevodsky and that of

[14]. Namely, we consider the natural ⊗-idempotents in the Voevodsky category, given by
motives XQ of Čech simplicial schemes corresponding to smooth varieties Q over k . The
respective projectors naturally commute with each other and form a partially ordered

set P, where XQ � XP if there exists a correspondence of degree 1 (modulo p) Q � P
(Definition 2.1). This condition is equivalent to the fact that XQ ⊗XP = XQ . That is, a

stronger projector ‘consumes’ a weaker one. Moreover, there is a natural map XQ → XP

(the unique lifting of the projection XQ → T ). For connected varieties, this is actually a
condition on their generic points. The ‘smallest’ idempotent is the unit object of the tensor

structure, given by the trivial Tate motive T (which corresponds to P = Spec(k)). Thus,

we get a P-parametrized filtration by idempotents on the unit object. We may consider the

upper graded components of this filtration. In other words, we take a particular idempotent
XP and mod-out all strictly large ones; that is, we consider the colimit of idempotents

XP ⊗ X̃Q , for all XQ � XP , where X̃Q is an idempotent complementary to XQ . The

result is a certain idempotent in DM(k ;Fp), which actually can be described in terms
of the Čech simplicial scheme of a variety with infinitely many connected components.

This idempotent will be zero unless P is connected up to equivalence (i.e., can be

replaced by a connected variety with the same X ) and, in the latter case, it depends
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only on E = k(P), and even only on the equivalence class of such finitely generated field
extension E/k . Applying the respective projector to DM(k ;Fp) we obtain the motivic

category DM(E/k ;Fp) of the extension E/k (Definition 2.3). It is naturally a full tensor

localising subcategory of the Voevodsky category DM(k ;Fp) supplied with the localisation
functor ϕE : DM(k ;Fp) → DM(E/k ;Fp). In the case of a trivial extension k/k , we get the
isotropic motivic category DM(k/k ;Fp), where the respective projector is the colimit of

projectors X̃Q⊗, where Q runs over all varieties with XQ �= T or, in other words, over

all anisotropic varieties. Because X̃Q ⊗M (Q) = 0, such a projector ‘kills’ the motives of
all anisotropic varieties. These local motivic categories were discovered in an attempt to

find an alternative approach to the functors of Bachmann (mentioned above) and were

briefly introduced in [17, Section 4].
Our next point is that to extract the local information in a meaningful form one

should first pass to an appropriate field extension of a ground field. This is illustrated by

the example of an algebraically closed ground field k , where, up to equivalence, there
is only one (trivial) class of field extensions, represented by the extension k/k , and

the respective localisation functor ϕ : DM(k ;Fp) → DM(k/k ;Fp) is an equivalence of

categories (see Remark 2.12). Thus, it is conservative but not very interesting. At the

same time, there is a large class of fields for which the localisation really simplifies things.
These are the so-called flexible fields introduced in Subsection 1.2; that is, fields that are

purely transcendental extensions of infinite (transcendence) degree of some other fields.

Note that one can always pass from an arbitrary field k0 to a flexible one k0(t1,t2, . . .)
without losing any motivic information. The class of flexible fields is closed under finitely

generated extensions. Thus, if the ground field k is flexible, then all of the functors

ψE : DM(k ;Fp) → DM(E/E ;Fp) take values in ‘flexible’ isotropic categories. And such
categories are really simple. We examine them from two points of view: We look at the

isotropic motivic cohomology of a point H∗,∗′
M (k/k ;Fp) and at the isotropic Chow motivic

category Chow(k/k ;Fp).

We show in Theorem 3.7 that, in the case of a flexible field, H∗,∗′
M (k/k ;F2) is the

external algebra �F2(r{i}|i�0) with the generators in one-to-one correspondence with

Milnor’s operations and the action of the latter given by Qi (r{i}) = 1 and Qi (r{j }) = 0,
for i �= j . Thus, the answer is the same for all flexible fields, and all of these cohomology
elements are ‘rigid’, because we can get 1 from any such nonzero element by applying

an appropriate combination of Milnor’s operations. The answer is also remarkable in

the sense that Milnor’s operations are encoded into the structure of isotropic motivic
category (in the form of their ‘inverses’ r{i}s). The computation is done with the help of

the Voevodsky technique used in the proof of Milnor’s conjecture, and our answer explains

to some extent why Milnor’s operations played such an important role in Voevodsky’s

proof (see Theorem 3.5). Finally, the answer is drastically different from the ‘global’

one and the localisation functor H∗,∗′
M (k,F2) → H∗,∗′

M (k/k ;F2) is zero outside the bidegree

(0)[0]. We are restricted to the prime p = 2, because in our calculations the crucial role

is played by [15, Corollary 3], and there is no analogue of this statement for p > 2.
It appears that isotropic Chow motives are closely related to the numerical equivalence

of cycles with Fp-coefficients. We conjecture that, in the case of a flexible field, isotropic

Chow groups Ch∗
k/k (describing Homs between such motives) coincide with the Chow

https://doi.org/10.1017/S1474748020000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000560


1274 A. Vishik

groups (with Fp-coefficients) modulo numerical equivalence Ch∗
Num (see Conjecture 4.7).

This would imply that the category of isotropic Chow motives is equivalent to the

category of Chow motives modulo numerical equivalence (with finite coefficients). We
prove this conjecture for divisors, for varieties of dimension � 5, and for cycles of

dimension � 2 (Theorem 4.11). In particular, this implies that isotropic Chow groups are

finite-dimensional in these situations. This also shows that the projection Ch∗ � Ch∗
k/k

factors through the third theory of higher type Ch∗
(3) (where Ch∗

(0) = Ch∗ is the original

theory of rational type and Ch∗
(1) = Ch∗

alg is the algebraic version; see Definition 4.3 and

Proposition 4.25). The proof of Theorem 4.11 constitutes the bulk of this article. It is
by induction on the dimension of a variety X . Using the moving technique introduced in

Section 6, we show that after an appropriate blow-up, any class u numerically equivalent

to zero may be represented by a cycle supported on a smooth connected divisor Z and

numerically trivial already on Z . An important step here is to represent u by the class of
a smooth connected subvariety and numerically annihilate certain characteristic classes

of it (cf. Corollaries 6.11, 6.12). Interestingly, the latter is achieved by a combination of

appropriate blow-ups and Steenrod operations, depending on a prime involved.
This article is organized as follows. After briefly discussing flexible fields in

Subsection 1.2, in Section 2 we introduce the local motivic category with Fp-coefficients as

well as its Chow-motivic version. In Section 3 we study the isotropic motivic cohomology
of a point, and Section 4 is devoted to the study of isotropic Chow groups and the

respective Chow-motivic category. In Section 5 we expand the definition of local motivic

category beyond prime coefficients. Finally, in Section 6 we prove various geometric

results used in Section 4.

1.1. Notations and conventions

Everywhere below k will denote a field of characteristic zero.

Smk is the category of smooth quasi-projective varieties over k .
Ch∗ is the Chow groups CH∗ /p with finite coefficients, where p is some prime (in Section 6,
p will be replaced by an arbitrary natural number n).
DM(k ;Fp) will denote the triangulated category of Voevodsky motives over a field [20],

[3] and DMgm(k ;Fp) will denote the full triangulated subcategory of geometric motives
in it.

L is the Lazard ring; that is, the coefficient ring of the universal formal group law.

1.2. Flexible fields

Traditionally, algebraic geometry was considered over algebraically closed fields. Over
such fields, every algebraic variety (of finite type) has a rational point, which simplifies

many things. In the case of a general field the standard approach is to consider the

passage to its algebraic closure. Note, however, that (torsion) information is lost under
such a passage. One of the aims of the current article is to convince the reader that

there are other directions one can pursue. Namely, I propose to move instead in the

direction of the so-called flexible fields. Such fields have the advantage that one does not
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have to distinguish between the ground field and finitely generated purely transcendental
extensions of it. This helps with many algebro-geometric constructions.

Definition 1.1. Let us call a field k flexible if it is a purely transcendental extension of

countable infinite degree of some other field: k = k0(t1,t2, . . .) = k0(P∞).

Note that any finitely generated extension of a flexible field k is itself flexible. Indeed,

such an extension is defined by finitely many generators and relations, which can ‘spoil’

only finitely many of the original transcendental generators. Thus, all of the points of the

large Nisnevich site of Spec(k) are flexible. On the other hand, we have the following.

Remark 1.2. The natural restriction functor DM(k0;Fp) → DM(k ;Fp) is conservative.

Therefore, we can substitute a field by a flexible one without losing any motivic

information. �
The main property of flexible fields we will need is the following obvious observation.

Proposition 1.3. Let k be a flexible field, X , variety of finite type over k , and E/k be a

finitely generated purely transcendental field extension. Then there exists a commutative

diagram

X

��

∼= �� XE

��
Spec(k)

∼= �� Spec(E )

with horizontal maps isomorphisms (over some subfield k0).

Proof. Let k = k0(t1,t2, . . .). Then X is defined over some finitely generated purely
transcendental extension F of k0 such that k/F is purely transcendental. That is, there

is a variety X of finite type over F , such that X k = X . Because extensions k/F and E/F
are isomorphic, we get what we need.

2. Motivic category of a field extension

Everywhere below DM(k ;Fp) will denote the triangulated motivic category of Voevodsky

over Spec(k) with Fp-coefficients (see [20], [3]). We will construct the local versions of

this category, corresponding to all finitely generated field extensions E/k , or in other

words, to all points of the big Nisnevich site over Spec(k). The local motivic categories
will be obtained as full localising subcategories of a global one by application of certain

projectors. These projectors will be produced using Čech simplicial schemes.

Let P be a smooth variety over k . The Čech simplicial scheme Č ech(P) has graded
components (Č ech(P))n = P×(n+1) with faces and degeneracy maps given by partial

projections and partial diagonals. This object is an analogue of the contractible space

EG in topology, and it will be contractible in the Morel-Voevodsky homotopic motivic
category as long as P has a rational point, though in general it ‘measures’ how far we

are from acquiring such a point. In particular, it is a form of a point, because it certainly

contracts over algebraic closure. Let us denote the motive of Č ech(P) as XP . The natural
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projection Č ech(P) → Spec(k) provides the morphism XP → T to a trivial Tate motive,

which is an isomorphism if and only if P has a zero cycle of degree 1 (modulo p, in our

case) (a ‘weak form’ of a rational point) - [14, Theorem 2.3.4]. This gives an exact triangle

XP �� T �� X̃P �� XP [1],

where XP and X̃P are mutually orthogonal idempotents

XP ⊗XP
∼=→ XP ; X̃P ⊗ X̃P

∼=← X̃P ; XP ⊗ X̃P ∼= 0.

Thus, the functors of a tensor product with these objects:

XP⊗ : DM(k ;Fp) → DM(k ;Fp); X̃P⊗ : DM(k ;Fp) → DM(k ;Fp)

are projectors. This defines the semi-orthogonal decomposition of the category DM(k ;Fp)

as an extension of X̃P ⊗DM(k ;Fp) by XP ⊗DM(k ;Fp), because there are no Homs from

the latter subcategory to the former one (by [14, Theorem 2.3.2], which is basically [19,

Lemma 4.9]).
For different varieties, these projectors naturally commute and we have canonical (co-

associative, respectively associative) identifications

XP ⊗XQ
=← XP×Q and X̃P ⊗ X̃Q

=→ X̃P
∐

Q

(note that endomorphism rings of XV and X̃V are either Fp , or zero; [14, Theorems 2.3.2,
2.3.3], and such an endomorphism is fixed by the map XV → T , respectively T → X̃V ).

Thus, the tensor product of any (finite) number of such objects can be always expressed

as XR ⊗ X̃S , for some R and S .
Each XP corresponds to a subsheaf χP of the constant sheaf T =Fp on the big Nisnevich

site over Spec(k) defined as follows. For a smooth connected quasi-projective variety

X , χP (X ) = Fp , if P has a zero-cycle of degree 1 over k(X ), and it is zero otherwise.

Equivalently, χP (X ) = Fp exactly when X̃P ⊗ M (X ) = 0 [14, Theorems 2.3.6, 2.3.3].
Respectively, X̃P corresponds to the quotient sheaf χ̃P = T /χP . We can introduce an

order on the set of XQs as follows.

Definition 2.1. We say that XQ � XP if any of the following equivalent conditions is
satisfied:

(1) The natural map XQ
∼=← XQ ⊗XP is an isomorphism.

(2) The natural map X̃Q ⊗ X̃P
∼=← X̃P is an isomorphism.

(3) The map XQ → T factors through XP → T .

(4) P has a zero-cycle of degree 1 modulo p over the generic point of every component

of Q .

(5) χQ is a subsheaf of χP .

Here (1) ⇔ (2) is automatic from the definition; (2) ⇒ (5) follows from the description of
χP above; (5) ⇒ (4) follows from the fact that χQ (Ql ) = Fp , for any connected component

Ql of Q ; (4) ⇒ (1) is [14, Theorem 2.3.6]; (1) ⇒ (3) is straightforward; and, finally, (3) ⇒
(1) is clear, because XQ ⊗ X̃P ⊗ (XQ → T ) is the identity map of XQ ⊗ X̃P .
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Note that the relation XQ � XP is obviously transitive. In the case of connected
varieties, this relation may be formulated in terms of the respective field extensions

(generic points). Let E/k and F/k be two finitely generated extensions of a field of

characteristic zero. Let P/k and Q/k be smooth projective varieties whose function fields
are identified with E and F .

Definition 2.2. We say that F/k � E/k if there exists a correspondence of degree 1
(with Fp-coefficients) Q � P . We call extensions ‘equivalent’ F/k ∼ E/k if F/k � E/k
and E/k � F/k .

By the composition of correspondences, the property F/k � E/k is transitive. It is also

equivalent to the condition XQ � XP above. If k/l is a field extension, then F/k � E/k
implies that F/l � E/l .
Let P be some smooth variety (of finite type) over k . Let Q be the disjoint union of all

connected varieties Q/k , such that XQ �XP (thus it is a smooth variety but with infinitely

many components), and let XQ be the motive of the respective Čech simplicial scheme,

which is still an idempotent in DM(k ;Fp), and X̃Q be the complementary idempotent.
Define

ϒP := X̃Q ⊗XP .

We can view ϒP as a colimit of projectors X̃Q ⊗XP , where Q runs over all smooth

projective varieties of finite type with XQ � XP .
Note that if P is not connected up to equivalence – that is, if P cannot be substituted

by a connected variety with the same X – then ϒP = 0. Indeed, let P1 be a ‘minimal’

component; that is, XP1 �XPi implies that XP1 =XPi . Suppose that there exists another

component P2 with XP2 ��XP1 . Let P̂1 be the union of all of the components equivalent to

P1. Then for Q1 = P\P̂1 and Q2 = P̂1 we have XQ1 �XP , XQ2 �XP , but XQ1
∐

Q2 =XP .

Now we can define the local motivic category corresponding to a finitely generated
extension E/k (cf. [17, Section 4]).

Definition 2.3. Let E/k be a finitely generated extension and P/k be a smooth

connected variety with k(P) = E . Define the ‘motivic category of the extension E/k ’
as the full localising subcategory

DM(E/k ;Fp) = ϒP ⊗DM(k ;Fp)

of DM(k ;Fp) and the ‘local geometric category’ DMgm(E/k ;Fp) as the full thick

triangulated subcategory of DM(E/k ;Fp) generated by (local) motives of smooth

projective varieties.

This definition does not depend on the choice of a smooth model P , because XP depends
on k(P) only. Moreover, it depends only on the ∼-equivalence class of an extension E/k .
In the case of a trivial extension, we obtain (cf. [17, Section 4]) the following.

Definition 2.4. The ‘isotropic motivic category’ is the full localising subcategory
DM(k/k ;Fp) of DM(k ;Fp) given by ϒSpec(k) ⊗ DM(k ;Fp), and the geometric version

DMgm(k/k ;Fp) is the full thick triangulated subcategory of it generated by (isotropic)

motives of smooth projective varieties.
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Now, we can read the information about motive by looking at local versions of
it. Namely, we get a collection {ϕE |E/k − finitely generated extension} of localisation

functors

ϕE : DM(k ;Fp) −→ DM(E/k ;Fp)

parametrized by all points of the big Nisnevich site over Spec(k). These can be further
specialised to isotropic realisations

ψE : DM(k ;Fp) −→ DM(E/E ;Fp).

The following result shows that there are no unexpected objects in the isotropic

geometric category.

Proposition 2.5. The category DMgm(k/k ;Fp) is the idempotent completion of the full
subcategory ϒSpec(k) ⊗DMgm(k ;Fp) of DM(k ;Fp).

Proof. We need to prove that ϒSpec(k) ⊗DMgm(k ;Fp) is closed under cones. For this, it

is sufficient to show that, for any objects U ,V of DMgm(k ;Fp) and a map f̃ : X̃Q ⊗U →
X̃Q ⊗ V (where Q is the disjoint union of all anisotropic varieties over k), there is a

map f : U ′ → V ′ in DMgm(k ;Fp), such that f ⊗ idX̃Q
∼= f̃ . Composing the map f̃ with

U → X̃Q⊗U we obtain a map g : U → X̃Q⊗V with the property that g ⊗ idX̃Q
∼= f̃ . Define

(X̃Q)�n as Cone((XQ)�n−1 → T ) and (X̃Q)>n as Cone((X̃Q)�n → X̃Q). Then (X̃Q)>n is

an extension of M (Y )[r ], for some smooth varieties Y and r > n. Because U and V are
geometric, for sufficiently large n, there are no Homs from U to (X̃Q)>n ⊗V . Hence, the

map g can be lifted to a map f ′ : U → (X̃Q)�n ⊗V , which, in turn, can be lifted to a

geometric map f : U → (X̃Q )�n ⊗V , for some anisotropic variety Q of finite type over k .
Because X̃Q ⊗ (X̃Q )�n = X̃Q, for any n � 0, we obtain that f ⊗ idX̃Q

∼= f̃ .

We can describe Homs from geometric isotropic motives as follows. For an object X of

DM(k ;Fp) and some idempotent ξ , we will denote by the same letter the image of X in
ξ ⊗DM(k ;Fp).

Proposition 2.6. Let U ∈ Ob(DMgm(k ;Fp)) and V ∈ Ob(DM(k ;Fp)). Then

HomDM(k/k ;Fp )(U ,V ) = colim
XQ �=T

HomX̃Q⊗DM(k ;Fp )(U ,V ),

where the colimit is taken over all of the functors X̃S⊗ : X̃R ⊗ DM(k ;Fp) → X̃S ⊗
DM(k ;Fp), for XR �XS �= T . In other words, Q runs over all anisotropic varieties over k .

Proof.We have HomDM(k/k ;Fp )(U ,V ) = HomDM(k ;Fp )(ϒSpec(k)⊗U ,ϒSpec(k)⊗V ), and the

latter can be identified with HomDM(k ;Fp )(U ,X̃Q⊗V ), where Q is the disjoint union of all

anisotropic varieties over k . But because U is geometric, any map U → X̃Q ⊗V factors

through U → X̃Q ⊗V , for some anisotropic Q of finite type, and the map U → X̃Q ⊗V
vanishes when extended to a map to X̃Q ⊗V if and only if there exists an anisotropic Q ′
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with XQ � XQ ′ , such that the composition U → X̃Q ⊗V → X̃Q ′ ⊗V is zero. Thus, our
Hom-group can be identified with the

colim
XQ �=T

HomX̃Q⊗DM(k ;Fp )(U ,V ),

where the colimit is taken over a directed system (as XQi � X∐
i Qi and if XQi �= T , for

each i , then X∐
i Qi �= T , because the coefficients are Fp).

Geometric motives vanishing in the local category can also be detected by projectors
corresponding to varieties of finite type. Let P be a smooth connected variety with

E = k(P).

Proposition 2.7. An object U of DMgm(k ;Fp) vanishes in DM(E/k ;Fp) if and only if

there is a variety Q of finite type over k , with XQ � XP and X̃Q ⊗XP ⊗U = 0.

Proof. If ϒP ⊗U = 0, then (X̃Q ⊗U )E = 0, where, as above, Q is the disjoint union of

all smooth connected varieties Q over k , with XQ �XP . That means that the projection

(XQ ⊗ U → U )E has a section (from the right). But because U is geometric, such a
section will factor through some section of (XQ ⊗ U → U )E for some variety Q of

finite type over k with XQ � XP . Hence, (X̃Q ⊗U )E = 0 (as UE is a direct summand

of XQ ⊗UE , so X̃Q ⊗UE is a direct summand of it as well, but the latter object is stable

under X̃Q⊗, whereas the former one is killed by it). But, according to [14, Theorem
2.3.5], the functor XP ⊗DM(k ;Fp) → DM(E ;Fp) is conservative. Hence, X̃Q ⊗XP ⊗U = 0
in DM(k ;Fp).

Because X̃Q ⊗M (Q) = 0, the projection to the isotropic motivic category DM(k/k ;Fp)

kills the motives of all anisotropic varieties over k . Hence the name of this
category.

Remark 2.8. The isotropic motivic category DM(k/k ;Fp) is the Verdier localisation
of DM(k ;Fp) modulo the localising subcategory A generated by motives of anisotropic

varieties.1 Indeed, an object U of DM(k ;Fp) vanishes in DM(k/k ;Fp) if and only if U =
U ⊗XQ, where Q is the disjoint union of all connected anisotropic varieties Q/k . Hence,
U belongs to A, because this subcategory is a tensor ideal. By the universal property

of the Verdier localisation, ψE : DM(k ;Fp) → DM(k/k ;Fp) is equivalent to DM(k ;Fp) →
DM(k ;Fp)/A. �

We have functoriality for the ‘denominator’ of the extension E/k . Suppose that we

have a tower of fields L ⊂ F ⊂ E , and P/L, Q/L are smooth projective varieties with
L(P) = E and XQ � XP . Then Q remains anisotropic over L(P), and thus over F (P)

(because F ⊂ L(P)). Hence, XQ |F � XP |F . Thus, we get a natural functor

DM(E/L;Fp) −→ DM(E/F ;Fp).

1I am grateful to T. Bachmann for pointing this out.
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The following result shows that, in the case of a flexible ground field, we can pass
from (geometric) local realisations {ϕE |E/k − f.g. extension} to isotropic realisations

{ψE |E/k − f.g. extension} without losing any information.

Proposition 2.9. Let E/k be a finitely generated extension of a flexible field. Then the

functor

DMgm(E/k ;Fp) −→ DMgm(E/E ;Fp)

is conservative on the image of ϕE .

Proof. Let us start with purely transcendental extensions.

Lemma 2.9.1. Let E/L/k be a tower of finitely generated extensions where L/k is a
purely transcendental extension of a flexible field. Then the functor

DMgm(E/k ;Fp) −→ DMgm(E/L;Fp)

is conservative on the image of ϕE .

Proof. Let L = k(An) and E = k(R) for some smooth variety R/k . Let U ∈ Ob(XR ⊗
DMgm(k ;Fp)) be an object vanishing in DMgm(E/L;Fp). Then, according to Proposition

2.7, there exists a variety Q/L of finite type such that XQ � XRL
and U L ⊗ X̃Q = 0 in

DM(L;Fp). The condition XQ �XRL
means that we have an L-correspondence α : Q � RL

of degree one, and there is no such correspondence in the opposite direction. Because
k = k0(P∞) is flexible, varieties R and Q are actually defined over F and M = F (An),

respectively, where extensions k/F/k0 are purely transcendental and F/k0 is, moreover,

finitely generated. By the same reason, we can assume that the geometric object U
is defined over F , whereas the correspondence α is defined over M . Therefore, there

exist varieties R/F , Q/M , an object U of XR ⊗ DMgm(F ;Fp) and a degree one M -

correspondence α : Q � RM such that R|k = R, Q |L = Q , U |k = U and α|L = α. Note

that we still have XQ � XRM (because α is defined over M and by functoriality), and
UM ⊗ X̃Q = 0 (because the restriction DM(M ;Fp) → DM(L;Fp) is conservative). But

the extension M /F can be embedded into k/F , making k/M purely transcendental.

Let Q ′ be a variety over k obtained from Q using this embedding. Then XQ ′ �
XR (because k/M is purely transcendental) and U ⊗ X̃Q ′ = 0 in DM(k ;Fp). Hence,

U = 0 in DM(E/k ;Fp).

Using Lemma 2.9.1 our problem is reduced to the case of a finite extension. In this
situation, the statement is true for an arbitrary field.

Lemma 2.9.2. Let E/L be a finite extension of fields. Then the functor

DM(E/L;Fp) −→ DM(E/E ;Fp)

is conservative.

Proof. Let E = L(P) for some smooth connected zero-dimensional variety P . Let U ∈
Ob(XP ⊗ DM(L;Fp)) be an object vanishing in DM(E/E ;Fp). Then, for the disjoint
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union Q of all anisotropic varieties over E , we have UE ⊗ X̃Q = 0 in DM(E ;Fp). Consider

a smooth L-variety Q̂ given by the composition Q → Spec(E ) → Spec(L). We have a

natural map Q→ Q̂E . This means that XQ �XQ̂E
, and thus UE ⊗X̃Q̂E

= 0 as well. Clearly,
XQ̂ � XP . Suppose that these are equal. Then there exists a commutative diagram

Q �� Spec(E ) �� Spec(L)

Spec(F )

��

�� Spec(E ) �� Spec(L)

where F is an extension of E of degree prime to p. But becaus [E : L] is finite, the
composition Spec(F ) →Q→ Spec(E ) has the same (prime to p) degree. This contradicts
the fact that Q is anisotropic. Hence, XQ̂ � XP , and so XQ̂ � XQ, where Q is a disjoint

union of all L-varieties Q with XQ � XP . Thus, (U ⊗ X̃Q)E = 0 as well. By [14, Theorem
2.3.5], the functor XP ⊗DM(L;Fp) → DM(E ;Fp) is conservative, so (U ⊗ X̃Q)⊗XP = 0
in DM(L;Fp). This means that U = 0 in DM(E/L;Fp).

This finishes the proof of Proposition 2.9.

Another type of functoriality we have is the following one. Let k(A)/k be a purely

transcendental extension of k . Then we have a natural functor

DM(E/k ;Fp) → DM(E (A)/k(A);Fp).

One just needs to observe that the inequality XQ � XP is preserved under the passage
from k to k(A).

It is natural to ask: In which situations will our localisation functors be conservative?

Question 2.10.

(a) What is the kernel of the collection of functors {ϕE |E/k − f.g. extension}?
(b) What is the kernel of the collection of functors {ψE |E/k − f.g. extension}?

Because the passage from k0 to k = k0(t1,t2, . . .) is conservative and any finitely

generated extension E of k has the form E = E0(tN , . . .), for some finitely generated
extension E0 of k0, and by Proposition 2.9, the triviality of {ϕE0 |E0/k0 − f.g. extension}
on X0 implies the triviality of {ψE0 |E0/k0 − f.g. extension} on X0, implying the triviality

of {ψE |E/k − f.g. extension} on X0|k , which, in turn, is equivalent to the triviality of

{ϕE |E/k − f.g. extension} on X0|k . Thus, for a given geometric object X0/k0,

(a) ⇒ (b) ⇒ (b)flex ⇔ (a)flex,

where (a) means that X0 is in the kernel of the family {ϕE0 |E0/k0 − f.g. extension}, (a)flex

means that X0|k (the restriction to the flexible closure) is in the kernel of the family

{ϕE |E/k − f.g. extension}, etc.
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Remark 2.11. Restricting the functors ψE to the tensor triangulated subcategory
DQMgm generated by motives of smooth projective quadrics and specialising it further,

one gets the functors of T. Bachmann �E : DQMgm → K b(Tate(F2)) to the category

of bigraded F2-vector spaces (see [1]). This can be deduced from the fact that the
functor ψE maps the subcategory DQMgm to the subcategory of geometric Tate motives

in DM(E/E ;Fp) (by [17, Proposition 4.9]). The functors �E , constructed originally by

completely different methods, were shown by T. Bachmann to be conservative [1, Theorem

31]. In particular, the collection {ψE |E/k − f.g. extension} is conservative on DQMgm .
Our approach also permits seeing conservativity on this and other similar subcategories.

Namely, it follows from [17, Proposition 4.9] that, for any object A of DQMgm , there

exists a finite filtration by idempotents on the unit object T , such that associated graded
idempotents map A to geometric Tate motives. And this collection of associated graded

idempotents (having a form X̃Q ⊗XP , for some smooth varieties P and Q , with P -

connected) acts conservatively (as the unit object is an extension of them). It remains to
observe that, for geometric Tate motives, the triviality of X̃Q ⊗XP ⊗A is equivalent to

the triviality of ϒP ⊗A ∈ Ob(DM(E/E ;Fp)), for E = k(P). �
Remark 2.12. If the ground field k0 is algebraically closed, then there exists only one

∼-equivalence class of finitely generated extensions of k0 (the trivial one). Thus, there is
only one ‘local’ point and only one localisation functor ϕ : DM(k0;Fp) −→ DM(k0/k0;Fp),

which is an equivalence of categories (because there are no anisotropic varieties over k0).

Thus, in this case, the family {ϕE0 |E0/k0 − f.g. extension} is conservative, but it does not
provide any interesting information. �
The collection {ϕE |E/k − f.g. extension} is not conservative, in general.

Example 2.13. (1) Let k be a flexible field and C be an elliptic curve over k without

complex multiplication. Consider p = 2. Then M (C ) = T ⊕M̂ (C )⊕T (1)[2]. Consider the
Chow groups ChNum(p) modulo numerical equivalence with F2-coefficients (see Subsection
4.2). Then

Ch1
Num(p)(C ×C ) = [pt ×C ] ·F2 ⊕ [C ×pt ] ·F2.

Indeed, for an arbitrary p, such a group is generated by [pt ×C ], [C ×pt ] and the class

of the diagonal [
] (in the absence of complex multiplication). But with F2-coefficients,

[
]
Num(p)∼ [pt × C ] + [C × pt ]. Thus, M̂ (C ) = 0 in ChowNum(E ;F2), for any extension

E/k . Hence, by Theorem 4.11(1), it is zero in Chow(E/E ;F2), which is a subcategory

of DM(E/E ;F2). Therefore, all isotropic realisations ψE (M̂ (C )) are trivial. At the same
time, M̂ (C ) is nontrivial, because the (complex) topological realisation of it is nontrivial

(has nonzero H 1
Top). Alternatively, one can see that the restriction to the algebraic closure

M̂ (C )|k is nontrivial. Note that the choice of a prime was essential here.

(2) Refining the previous example, we can show that even the combination

{ϕE |E/k − f.g. extension}∪ resk

is not conservative on DMgm(k ;F2). In the above situation, consider some nontrivial

quadratic extension F = k(
√

a) and P = Spec(F )
π→ Spec(k). Let α = {a} ∈ KM

1 (k)/2
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and M̃ α be the ‘completely’ reduced Rost motive (see the proof of Theorem 3.5). This

motive fits into the exact triangle M̃ α → X̃α[1] → X̃α → M̃ α[1], where X̃α = X̃P . Let us

show that U = M̂ (C ) ⊗ X̃α �= 0. Indeed, such a triviality is equivalent to the fact that

the projection XP × M̂ (C ) → M̂ (C ) has a section. And because M̂ (C ) is a pure motive
(= Chow motive), any such section is liftable to a section of P × M̂ (C ) → M̂ (C ). This

would mean that the projector ρ defining M̂ (C ) is in the image of the natural map

π∗ : Ch1(C ×C ×P) → Ch1(C ×C ). Note, however, that Ch1(C ×C |k ) = [
] ·F2 ⊕ [pt ×
C ] ·F2 ⊕ [C × pt ] ·F2 (because k -points of the Jacobian form a 2-divisible group), and

so the map resk ◦π∗ : Ch1(C × C × P) → Ch1(C × C |k ) is zero (because the action of

the Galois group on Ch1(C × C |k ) is trivial, which implies that resk ◦π∗ = 2 · resk/F).
On the other hand, ρ|k �= 0, because it is nonzero even in the topological realisation.

Hence, ρ is not in the image of resk ◦π∗ and M̂ (C ) ⊗ X̃α �= 0. Notice that ψE (U ) = 0,
because ψE (M̂ (C )) = 0, and resk (U ) = 0, because resk (X̃α) = 0. Thus, we have produced

a nontrivial example on which the needed combination of functors vanishes but, so far,
not a geometric one.

Consider V = M̂ (C )⊗ M̃ α. Then we have a distinguished triangle V → U [1] → U →
V [1]. In particular, V is geometric and all of the above functors vanish on it. It remains
to show that V �= 0. Note that because U �= 0, the homology HomDM(E ;F2)(T (∗)[∗′],U )

considered for all finitely generated extensions E/k is nontrivial. At the same time, this

homology is zero for ∗′ < ∗ (below the main diagonal). This implies that V �= 0. Indeed,
if it were zero, then the homology of U would be [1]-periodic, which is not the case. �

2.1. Local Chow motivic category

Let X be a scheme of finite type over k . We can define its isotropic Chow groups as

Chk/k ;r (X ) := HomDM(k/k ;Fp )(T (r)[2r ],M c(X )),

where M c(X ) is the motive with compact support of X (see [20]). For smooth varieties,

we have from duality

Chr
k/k (X ) = HomDM(k/k ;Fp )(M (X ),T (r)[2r ]).

The theory Chk/k has natural pull-backs and push-forward maps coming from the

respective maps between motives of varieties that satisfy all of the axioms of [9, Definition

1.1.2] (because these follow from the properties of motives). Finally, we have the excision
axiom (EXCI ), claiming that for a scheme X with the closed subscheme Z and open

complement U , there is an exact sequence

Chk/k ;∗(Z )
i∗−→ Chk/k ;∗(X )

j ∗−→ Chk/k ;∗(U ) → 0.

This follows from the Gysin exact triangle [20, (4.1.5)]

M c(Z ) → M c(X ) → M c(U ) → M c(Z )[1]

and the fact that the map Ch∗ � Ch∗
k/k is surjective, which follows from Proposition 2.16

below. Thus, Ch∗
k/k is an oriented cohomology theory (with excision) on Smk in the sense

of [18, Definition 2.1].
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Definition 2.14. Let Q be a scheme (of finite type) over k and n ∈ N. We say that Q is

‘n-anisotropic’ if the degrees of all closed points of Q are divisible by n.

Schemes that do not have this property will be called not n-anisotropic, and we will
reserve the term isotropic for a scheme having a zero-cycle of degree 1 (mod n). Below
almost everywhere we will be dealing with n = p-prime, and so isotropic will be the

complement to anisotropic. Unless specified, the term anisotropic will mean p-anisotropic,
for some prime p.

Definition 2.15. Let X be a scheme over k , and x ∈ Chr (X ). We call x ‘anisotropic’ if

there exists a proper morphism f : Y → X from a p-anisotropic scheme Y and a class

y ∈ Chr (Y ) such that x = f∗(y).

For fields of characteristic zero and X projective, x is anisotropic if and only if it is a

push-forward of the generic cycle from some smooth projective anisotropic variety over k .
Isotropic Chow groups can be alternatively described as follows.

Proposition 2.16.

Chk/k (X ) = Ch(X )/(anisotropic classes).

Proof. By Proposition 2.6, HomDM(k/k ;Fp )(T (r)[2r ],M c(X )) is the colimit of the groups

HomDM(k ;Fp )(X̃Q (r)[2r ],M c(X )⊗ X̃Q),

where Q runs over all anisotropic varieties over k . Recall that we have an exact triangle

XQ �� T �� X̃Q �� XQ [1].

By [14, Theorem 2.3.2] (which is basically [19, Lemma 4.9]), HomDM(k ;Fp )(XQ (∗)[∗′],
M c(X ) ⊗ X̃Q ) = 0, and so our group is the colimit of groups HomDM(k ;Fp )(T (r)[2r ],
M c(X )⊗ X̃Q ), where Q can be assumed to be projective. Because X̃Q is an extension
of M (Q×i )[i ], for i � 0, and HomDM(k ;Fp )(T (r)[2r ],M c(Y )[i ]) = 0, for any i > 0 and any

scheme Y of finite type, we can identify

HomDM(k ;Fp )(T (r)[2r ],M c(X )⊗ X̃Q) = Coker(Chr (X ×Q)
πQ ∗−→ Chr (X )).

Thus, HomDM(k/k ;Fp )(T (r)[2r ],M c(X )) = Chr (X )/I , where I is the subgroup generated

by the images of (πQ )∗, for all anisotropic varieties Q/k . In other words, we mod-out all

anisotropic classes.

The isotropic motivic category DMgm(k/k ;Fp) has a pure part.

Definition 2.17. Define the ‘isotropic Chow motivic category’ Chow(k/k,Fp) as the

full additive subcategory of DMgm(k/k,Fp) - the image of Chow(k,Fp) under the natural
projection

DMgm(k,Fp) → DMgm(k/k,Fp).

Thus, the objects of Chow(k/k,Fp) can be identified with direct summands of motives

of smooth projective varieties over k , and the morphisms are described as follows.
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Proposition 2.18. Let X and Y be smooth projective k -varieties. Then

HomChow(k/k,Fp )(M (X ),M (Y )) = Chdim(Y )

k/k (X ×Y ).

Proof. If B is an object of DMgm(k ;Fp) with the dual B∨, and A,C are objects of

DM(k ;Fp), then we have a functorial identification

HomDM(k ;Fp )(A⊗B,C ) = HomDM(k ;Fp )(A,B∨ ⊗C ).

Hence, for the projector ρQ = X̃Q⊗ we also have a functorial identification

HomDM(k ;Fp )(ρQ (A)⊗ρQ(B),ρQ (C )) = HomDM(k ;Fp )(ρQ (A),ρQ (B∨)⊗ρQ (C )).

Taking into account that M (X )∨ = M (X )(−d)[−2d ], where d = dim(X ), we obtain that

HomChow(k/k,Fp )(M (X ),M (Y )) = HomDM(k/k ;Fp )(T (d)[2d ],M (X ×Y ))

= Chdim(Y )

k/k (X ×Y ).

We can describe Chow motives disappearing in the isotropic category.

Remark 2.19. An object U of Chow(k,Fp) vanishes in Chow(k/k,Fp) if and only if it is
a direct summand in the motive of a (smooth projective) anisotropic variety.2 Indeed, a

direct summand U of M (P) vanishes in Chow(k/k,Fp) if and only if the identity map idU :
U → U does. By Propositions 2.16 and 2.18, this means that the map 
U : T → U ⊗U ∨
factors through (the motive of) a smooth projective anisotropic variety Q . Consequently,

U is a direct summand of M (Q)⊗U , which, in turn, is a direct summand of M (Q ×P),

and the latter variety is still anisotropic. �

From Propositions 2.16 and 2.18 we obtain the following.

Corollary 2.20. The functor Chow(k,F/p) → Chow(k/k,F/p) is surjective on mor-

phisms.

In other words, all ‘local’ morphisms between (isotropic) Chow motives are defined

‘globally’.

We will have a closer look at the category Chow(k/k,Fp) in Section 4.

3. Local motivic cohomology of a point

In this section we will compute the motivic cohomology of a point in the isotropic
motivic category for p = 2. This will be achieved by substituting all anisotropic k -
varieties in the colimit of Proposition 2.6 by norm-varieties for nonzero pure symbols from

KM∗ (k)/2 (anisotropic Pfister quadrics, in our case). This makes the problem amenable
to calculation due to Voevodsky technique. Moreover, the resulting answer, drastically

different from the ‘global’ one, in turn sheds some light on this technique.

2I am grateful to T. Bachmann for emphasizing this.
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The starting point is the following statement, which is a slight modification of the result
of J.-L. Colliot-Thélène and M. Levine [4, Theorem 3]. We provide a somewhat different

proof.

Statement 3.1. Let B be an anisotropic (mod n) projective variety. Then, over some

finitely generated purely transcendental extension, it can be embedded into an anisotropic
hypersurface of degree n.

Proof. Embed B into a projective space. Passing to a Veronese embedding, we can assume

that all of the relations in the projective coordinate ring of B are generated by quadratic

ones or, in other words, that B is defined by quadrics. Then it will also be defined by
hypersurfaces of degree n (in our Pm), for any n � 2. Let Pr = Proj |D | be the projective

system of hypersurfaces of degree n containing B . I claim that the generic element of

this linear system is an anisotropic hypersurface. Consider Y ⊂ (Pm\B)×Pr defined by

Y = {(x,H )|x ∈ H }. Then Y is a projective bundle Proj(Pm\B)(V ) over (Pm\B), where
V is a codimension 1 subbundle in the trivial bundle |D |. Let Yη be the generic fibre

of the projection Y → Pr . This is exactly (Qη\B), where Qη is the generic hypersurface

of degree n passing through B . Note that the degree (mod n) is well defined on the
zero-cycles on Yη, because B is anisotropic. By the projective bundle theorem, CH∗(Y )

is a free module over CH∗(Pm\B) with the basis 1,ρ, . . . ,ρr−1, where ρ = c1(O(1)). On

the other hand, we have a surjective ring homomorphism CH∗(Y ) � CH∗(Yη) that is
zero on ρ (because this class is supported on a hypersurface in Pr ). Thus, we obtain

the surjective map CH∗(Pm\B) � CH∗(Yη), which sends the class c ∈ CH∗(Pm\B) to

the restriction of π∗(c) to Yη, where π is our projective bundle fibration. In particular,

c ∈ CH1(Pm\B) is mapped to a zero-cycle on Yη whose degree is equal to the intersection
number of c and any hypersurface from our linear system (which, again, makes sense,

because B is anisotropic). Hence, it is a zero-cycle of degree 0 (mod n). Thus, the

degrees of all zero-cycles on Yη are divisible by n, and so the same is true about
Qη = Yη ∪B .

Corollary 3.2. Let k be a flexible field, U ∈ Ob(DMgm(k ;Fp)) and V ∈ Ob(DM(k ;Fp)).

Then

HomDM(k/k ;Fp )(U ,V ) = colim
Q

HomX̃Q⊗DM(k ;Fp )(U ,V ),

where the colimit is taken over all of the functors ⊗X̃Q , where Q runs over all anisotropic
hypersurfaces of degree p over k . This system is directed.

Proof. Let B be any anisotropic variety over k . By Statement 3.1, there exists a purely

transcendental field extension E/k and anisotropic hypersurface Q over E such that

XB |E � XQ . Let k = k0(P∞). Then there exists a diagram of purely transcendental

extensions of fields
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k �� E

k0 �� l

��

�� L

��

with the extensions of the bottom row finitely generated, such that the variety B is defined

over l , and the variety Q and the correspondence B � Q (of degree 1) are defined over

L. But we can embed L into k over l so that k/L will be purely transcendental. Thus, we
obtain an anisotropic hypersurface Q ′ over k together with a correspondence B � Q ′ of
degree 1. Anisotropic hypersurfaces of degree p thus form a final subsystem in the system

of all anisotropic varieties that is directed; hence, this subsystem is directed as well.

Corollary 3.3. Let k be a flexible field and p = 2. Let U ∈ Ob(DMgm(k ;Fp)) and V ∈
Ob(DM(k ;Fp)). Then

HomDM(k/k ;Fp )(U ,V ) = colim
α

HomX̃Qα ⊗DM(k ;Fp )(U ,V ),

where the colimit is taken over all of the functors ⊗X̃Qα , where α runs over all nonzero
pure symbols from KM∗ (k)/2 and Qα is the respective Pfister quadric. This is a directed

system.

Proof. By [15, Corollary 3] (see also [8]), every anisotropic quadric Q (over any field

k) can be embedded into an anisotropic Pfister quadric Qα over an appropriate purely
transcendental extension of finite transcendence degree. If now k is flexible, then arguing

as in the proof of Corollary 3.2, we can embed Q into some anisotropic Pfister quadric

Qα′ over k . Thus, the set of anisotropic Pfister quadrics forms a final subsystem in the

system of all anisotropic varieties over a flexible field, which, again, must be directed.

From the fact that the system in Corollary 3.3 is directed, as a by-product, we obtain

the following result (which, of course, is a simple consequence of Statement 3.1 and [15,
Corollary 3] and can be even seen from the latter result alone).

Proposition 3.4. Let k be a flexible field and {αl }l∈L be a finite collection of nonzero pure

symbols from KM∗ (k)/2. Then there exists a nonzero pure symbol α ∈ KM∗ (k)/2 divisible

by every αl .

Using Corollary 3.3, we can compute the cohomology of a point in isotropic motivic

category for p = 2. For a nonzero pure symbol α ∈ KM
r (k)/2, let us denote as DM(α̃/k ;F2)

the full triangulated subcategory X̃α ⊗ DM(k ;F2), where X̃α = X̃Qα and Qα is the

respective Pfister quadric. Homs between Tate objects in this category can be computed

as follows.
Define an F2-vector space Q−1(n) = ⊕I rI · F2, where I runs over all subsets of

n = {0,1, . . . ,n}, with the structure of a module over Milnor’s operations Qi defined by

Qi (rI ) = rI \i , if i ∈ I , and zero otherwise, and with the bidegree of r∅ being (0)[0]. Let
r{n+1} be a polynomial generator with Qn+1(r{n+1}) = r∅ and Qi (r{n+1}) = 0, for i �= n +1.
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Let Rα be a module over KM∗ (k)/2 isomorphic to the principal ideal α ·KM∗ (k)/2 with the

generator in bidegree (0)[0]. In other words, Rα = KM∗ (k)/Ker(·α). In particular, it has a

natural ring structure. The multiplicative structure on Q−1(n)[r{n+1}]⊗F2 Rα is provided

by rI = ∏
i∈I r{i} and the identity r2

{i} = r{i+1} ·ρ, for 0 � i � n, and ρ = {−1}. In other
words, this is the ring Rα[r{i}|0�i�n+1]/(r2

{i} − r{i+1} ·ρ|0�i�n).

For a motivic category D with Tate objects, let us denote as EndD(V ) the ring

⊕a,b HomD(V ,V (a)[b]).

Theorem 3.5. Let α ∈ KM
m (k)/2 be a nonzero pure symbol. Then

EndDM(α̃/k ;F2)(T )=Q−1(m−2)[r{m−1}]⊗F2 Rα =Rα[r{i}|0�i�m−1]/(r2
{i}−r{i+1} ·ρ|0�i�m−2).

Proof. By definition, EndDM(α̃/k ;F2)(T ) = EndDM(k ;F2)(X̃α). From this point, all of the

Homs will be in the category DM(k ;F2), unless specified otherwise, so I will omit it from

notations.
Let Mα be the respective Rost motive [12]. We have natural maps T (d)[2d ] → Mα → T ,

where d = 2m−1 −1, whose composition is zero. Cutting out the respective Tate motives

from Mα and tensoring the result by Xα and X̃α, respectively, we obtain

T

[1]
��

[1]

����
��

��
��

��

Mα

������������
R�� ��

�

�

M̃ α

[1]����
��
��
��
�

T (d)[2d ]

��		���������

and Xα

[1]μ

��

Mα

������������
�

Xα(d)[2d ]

		���������

; X̃α

[1]

���
��

��
��

��
�

M̃ α

[1]����
��
��
��
�

�

X̃α(d)[2d ]

[−1] η

��

Here we are using the fact that Mα ⊗ X̃α = 0 and that M̃ α ⊗Xα = 0, which are equivalent

to the exactness of the left triangle [22, Theorem 4.4]. Let us denote the above half of
the octahedron as ♦. Note that because there are no Homs from Xα to X̃α(∗)[∗′], we can

naturally identify groups Hom(X̃α,X̃α(∗)[∗′]) = Hom(T,X̃α(∗)[∗′]).
For each 0 � i < m −1, let β ∈ KM

i+1(k)/2 be any pure symbol dividing α. We obtain a
similar map ηβ(−di)[−2di ] : X̃β → X̃β(−di)[−2di −1], where di = 2i −1. Tensoring it with

X̃α, we obtain the map r{i} : X̃α → X̃α(−di)[−2di −1] or, in other words, an element r{i} ∈
HomDM(α̃/k ;F2)(T,T (−di)[−2di − 1]). Below we will see that this map does not depend

on the choice of the divisor β.
For any smooth projective R, we have the natural (homological) action of the

Steenrod algebra on Hom(T,X̃R(∗)[∗′]) and the natural (cohomological) action of it on

Hom(X̃R,T (∗)[∗′]), which commute with the maps X̃R → X̃S (for XR �XS ). In particular,
we have the action of the Milnor’s operations Qi . If R is a νi -variety, then by the arguments

of V. Voevodsky [22, Corollary 3.8], the differential Qi is exact on Hom(X̃R,T (∗)[∗′]). By
the same arguments, it is exact on Hom(T,X̃R(∗)[∗′]). In particular, in our case, Qi is
exact on Hom(T,X̃α(∗)[∗′]) and Hom(X̃α,T (∗)[∗′]), for any i � m −1.
Consider N = ⊕Hom(X̃α[−1],Xα(∗)[∗′]). It has the natural right action of Ã = End(X̃α)

as well as the left action of A = End(Xα). In particular, there is a right action by η

https://doi.org/10.1017/S1474748020000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000560


Isotropic motives 1289

and a left one by μ. I claim that these are mutually inverse. Indeed, to see that for any
f : X̃α → Xα(a)[b], one has μ • f • η = f , it is sufficient to look at the ‘vertical axis’ of

♦⊗ (X̃α

f→ Xα(a)[b]), which is (after rotating by 90◦)

X̃α

f
��

[1] X̃α[−1]

��

X̃α(d)[2d ]
η��

f (d)[2d]
��

Xα(a)[b]
[1]

μ(a)[b]
�� Xα(a +d)[b +2d ] Xα(a +d)[b +2d ]

.

Thus, N is μ − η-periodic, because the actions by μ and η are mutually inverse

isomorphisms on N .

At the same time, Hom(X̃α,X̃α(a)[b]) = Hom(T,X̃α(a)[b]) is zero for b > a, and
Hom(X̃α,T (a)[b]) = 0 for b � a +1 by the Beilinson-Lichtenbaum ‘conjecture’ (note that

X̃α disappears in the etale topology). Considering Homs from X̃α[−1] to the (a)[b]-shifted
exact triangle Xα → T → X̃α → Xα[1], we obtain that Ã is exactly the � 0 diagonal part

of N , and H∗,∗′
M (X̃α[−1];F2) is exactly the > 0 diagonal part of it. Thus, N combines the

homology and cohomology groups of X̃α.

Because there are no Homs from T to Xα(a)[a + 1], the map Hom(T,T (a)[a]) �
Hom(T,X̃α(a)[a]) is surjective, so the 0th diagonal of Ã (or the 0th diagonal of N , which
is the same) as a KM∗ (k)/2-module is generated by 1 - the unit of this ring. Let Rα

be this 0th diagonal. From μ − η-periodicity, the diagonal number (−2m−1) (where η

resides), as a KM∗ (k)/2-module, is generated by η. Because the differential Qm−1 is exact
on Ã, we obtain that 1 is covered by the image of Qm−1 (because Ã is concentrated

in nonpositive diagonals). But the only nonzero element of the needed bidegree is η.

Thus, Qm−1(η) = 1. Applying the same arguments to the symbol β (considered above),
we obtain that Qi (ηβ) = 1, so Qi (r{i}) = 1.
For any I ⊂ (m −2), denote rI := ∏

i∈I r{i} and QI = ◦i∈IQi . Denote as Dj the j th
diagonal of N . For 0 � i � m − 2, let Ii = {i,i + 1, . . . ,m − 2}. Because H∗,∗′

M (X̃α[−1];F2)

is trivial below the first diagonal, and Qls are exact, the composition QIi : D2i → D2m−1

is injective. But from μ−η-periodicity, D2m−1 as a KM∗ (k)/2-module is generated by μ.

In particular, the D2i is trivial below μ • 1 • rIi . By the μ − η-periodicity, D2i−2m−1 is
trivial below rIi . In particular, Qi (η) = 0, for any 0 � i � m −2 (because this element is

below rIi ), and because η generates D−2m−1 , all of the differentials Qi , for i � m −2, are
trivial on this diagonal. Applying the same arguments to the divisor β of degree (i +1),

we obtain that Ql (ηβ) = 0 and, hence, Ql (r{i}) = 0, for l < i (the fact that Ql (r{i}) = 0, for
l > i , is obvious, because Ã is concentrated in nonpositive diagonals). Combining it with

the (external) co-multiplication identity for Milnor’s operations,

QK (x ×y) =
∑

2I +2J =2K

QI (x )×QJ (y) · {−1}|I |+|J |−|K |, (1)

where 2I = ∑
i∈I 2i , we obtain that QI (rI ) = 1, for any I ⊂ (m −2).

Let us show that D−2I is a free module over D0 = Rα generated by rI . Let s be the

smallest element of I (which we assume to be m −1, if I is empty). Decreasing induction
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on s. The (base) s = m − 1 follows from μ−η-periodicity. The, (step): let 2J = 2I + 2s .

Because I \s and J consist of elements larger than s, by inductive assumption, D−(2I +2s ) =
rJ ·D0 and D−(2I −2s ) = rI \s ·D0 (where we denote r{m−1} := η). In particular, Qs is trivial

on D−(2I +2s ), and from the exact sequence D−(2I +2s )

Qs−→ D−2I
Qs−→ D−(2I −2s ), taking into

account that Qs(rI ) = rI \s , we see that Qs : D−2I
∼=−→ D−(2I −2s ) is an isomorphism inverse

to the multiplication by rs . Thus, D−2I = rI ·D0.

From μ−η-periodicity we obtain that Ã is a free module over Rα generated by ηk · rI ,
for k � 0 and I ⊂ (m −2), and H∗,∗′

M (X̃α[−1];F2) is a free module over Rα generated by

μl • rI , for l > 0 and I ⊂ (m −2). Consider γ = μ • 1 • r(m−2) – the generator of D1 –

the first diagonal in N , or the first diagonal in the motivic cohomology of X̃α[−1], which
is the same. By the Beilinson-Lichtenbaum conjecture, multiplication by τ identifies D1
with the kernel Ker(KM∗ (k)/2 → KM∗ (k(Qα))/2) (see [19, Lemma 6.4]). The generator

γ is identified with some element of degree m, which must coincide with the symbol
α (because α vanishes over k(Qα) and there exists exactly one nonzero element of the

respective degree in D1). Hence, as a KM∗ (k)/2-module, Rα can be identified with the

principal ideal of KM∗ (k)/2 generated by α. So, as a ring, Rα = (KM∗ (k)/2)/(Ker(·α)).
This gives the description of Ã (as well as N ) as a module over KM∗ (k)/2 and over

Steenrod algebra. Finally, the equation r2
{i} = r{i+1} ·ρ follows from the co-multiplication

identity for Milnor’s operations (1).

As a by-product, we obtain the description of motivic cohomology of X̃α (known already

from the original version of [10] and [23, Theorem 5.8]) but now enhanced with the

structure of a module over motivic homology of X̃α.

Corollary 3.6. Let α ∈ KM
m (k)/2 be a nonzero pure symbol. As a module over Ã =

EndDM(k ;F2)(X̃α),

H∗,∗′
M (X̃α[−1];F2) = Ã[r−1

{m−1}]/Ã.

It is a free Rα-module with the basis r−l
{m−1} · rI , for l > 0 and I ⊂ (m −2).

Now we can compute the ‘local’ motivic cohomology H∗,∗′
M (k/k ;F2) =EndDM(k/k ;F2)(T ).

Theorem 3.7. Let k be a flexible field. Then

H∗,∗′
M (k/k ;F2) = Q−1(∞) = �F2(r{i}|i�0).

Proof. As we know, our colimit (from Corollary 3.3) is taken over a directed system.

Let α ∈ KM
m (k)/2 and β = α · {b} ∈ KM

m+1(k)/2 be nonzero pure symbols. Consider the

restriction

EndDM(α̃/k ;F2)(T )
res−→ EndDM(β̃/k ;F2)(T ).

Then res = X̃β⊗ is a ring homomorphism respecting Steenrod algebra action and, in the

notations of Theorem 3.5, for I ⊂ {0, . . . ,m −2}, we have res(rI ) = rI and res(r{m−1} ·rI ) =
rI∪{m−1}. Indeed, res sends r∅ to r∅, and rI and rI (respectively r{m−1} ·rI and rI∪{m−1}) are
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the only elements (in the source and the target) that are mapped to r∅ via QI (respectively,

QI∪{m−1}). In addition, res : Rα → Rβ is the natural projection, corresponding to the map

α ·KM∗ (k)/2
·{b}−→ β ·KM∗ (k)/2.

Combining this with Corollary 3.3, we obtain that

H∗,∗′
M (k/k ;F2) = Q−1(∞)⊗F2 (KM

∗ (k)/2)/N ,

where N = ∪α Ker(·α), where α runs over all nonzero pure symbols in KM∗ (k)/2. It remains
to observe that N contains KM

1 (k)/2. Indeed, let {a} ∈ KM
1 (k)/2 be any element such that

{a} �= 0 �= {−a}. Then, from {a,−a} = 0, both {a} and {−a} belong to N . This implies that

{−1} ∈ N . Because over a flexible field an element a as above always exists, we obtain that

N contains KM
1 (k)/2 and thus coincides with the augmentation ideal KM

>0(k)/2. Hence,
(KM∗ (k)/2)/N = F2.

Finally, from the equation r2
{i} = r{i+1} ·ρ it follows that r2

{i} = 0. Thus, we obtain the

external algebra in r{i}s over F2.

What is remarkable here is that the Milnor operations are intertwined into the

very fabric of the local motivic category. In addition, all of the nonzero elements of

H∗,∗′
M (k/k ;F2) are ‘rigid’ in the sense that the identity map of the unit object of the

local category can be obtained from any such element using Milnor’s operations, so these

classes disappear only together with the category itself.

We can now compare ‘local’ and ‘global’ motivic cohomology of a point

Note that in contrast to ‘global’ motivic cohomology of a point residing in the first
quadrant, the ‘local’ version resides in the third one. In particular, the global-to-local map

H∗,∗′
M (k,F2) −→ H∗,∗′

M (k/k,F2)

is zero in all bidegrees aside from (0)[0].
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Our ring generators r{i} are related by the action of the Steenrod algebra.

Namely, because (modulo ρ = {−1}), Qi+1 = [Qi, Sq2i+1
] [21] and ρ disappears

locally, we obtain from bidegree considerations that Sq2i+1
(r{i+1}) = r{i}. In particular,

Sq1 Sq2 . . .Sq2i−1
Sq2i

r{i} = r∅ = 1.

Remark 3.8. Despite some similarities between the (complex) topological realisation
functor and isotropic functors, there is a difference in the way they handle τ . Namely,

τTop = 1, and ψE (τ ) = 0 (in the case of a flexible field). �

The only obstacle that prevents us from performing the same calculations for odd

primes is the lack of the analogue of [15, Corollary 3] in this situation. In particular, it

would be sufficient to have a positive answer to the following.

Question 3.9. Let Q be an anisotropic hypersurface of degree p over k . Is it true that,
over some finitely generated purely transcendental extension E/k , the kernel

Ker(KM
∗ (E )/p → KM

∗ (E (Q))/p)

contains a nonzero pure symbol?

4. Isotropic category of Chow motives

In this section we will study in detail local Chow motives. As we will see, over a flexible
field, these resemble in many respects their topological counterparts and are closely related

to the numerical equivalence of cycles with finite coefficients. In particular, the Homs

between such local pure motives are expected to be not larger than Homs between their
topological realisations and so finite-dimensional. We will prove this in various situations.

Let us start by introducing some ‘gradual’ approach to the numerical equivalence of

cycles, which will permit measuring our progress towards the goal.

4.1. Theories of higher types and numerical equivalence

Let A be a commutative ring and L
ϕ−→ A be some formal group law with A-coefficients.

Denote as A∗
(0) := �∗ ⊗L A the respective free theory in the sense of Levine-Morel [9,

Remark 2.4.14]. By [18, Proposition 4.7] this is a theory of rational type. We call this type

0. We are going to introduce the theory A∗
(n) of type n as some quotient of A∗

(0). This is

based on the following construction (cf. [6, Example 4.6]):

Example 4.1. Let A∗ be some oriented cohomology theory (with localisation) in the

sense of [18, Definition 2.1] and � = {Qλ,aλ}λ∈� be a collection of smooth projective

k -varieties with some classes aλ ∈ A∗(Qλ). That is, we have a collection of A∗-
correspondences ρλ : Qλ � Spec(k). Construct the new theory A∗

� as follows:

A∗
γ (X ) := A∗(X )/(im((ρλ × id)∗)λ∈�),

where ρλ × id is the correspondence Qλ ×X � X . In other words, we mod-out all of the

elements of the form β∗(α∗(aλ) ·u), where u is an arbitrary element of A∗(Qλ ×X ) and α
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and β are natural projections:

Qλ Qλ ×Xα�� β �� X .

One can check that the resulting theory A∗
γ will be an oriented cohomology theory in the

sense of [18, Definition 2.1] �
Definition 4.2. Let Q π−→ Spec(k) be a smooth projective variety and a ∈ A∗(Q). We

say that a
Num∼ 0, if π∗(a · b) = 0, for any b ∈ A∗(Q).

Now we can introduce the theories of higher types.

Definition 4.3. Consider the collection �n = {Qλ,aλ}λ∈�, where Qλ runs through all

smooth projective k -varieties of dimension 2n −1 and aλ ∈ A∗(Qλ) runs over all elements
Num∼ 0. Define

A∗
(n) := (A(0))

∗
�n .

If a ∈ A∗(Q) is
Num∼ 0, then a × [(P1)] ∈ A∗(Q × (P1)×2) is also

Num∼ 0. Therefore, the
images of correspondences from �n are covered by those from �n+1. Hence, we get a
chain of surjections

A∗
(0) � A∗

(1) � A∗
(2) � . . . � A∗

(n) � . . .

with the colimit A∗
Num . Here A∗

Num is obtained from A∗ by moding-out all classes
Num∼ 0

on all varieties.

Remark 4.4. For n = 1, the theory A∗
(1) is, by definition, the algebraic version A∗

alg . In

particular, CH∗
(1) = CH∗

alg . �
The meaning of the theory A∗

Num is described by the following universal property.

Proposition 4.5. For any oriented generically constant cohomology theory (with
localisation) Ã∗ (in the sense of [18, Definition 2.1] and [9, Definition 4.4.1]) with the

formal group law L
ϕ−→ A, there exists a unique morphism of theories Ã∗ � A∗

Num that
is surjective.

Proof. By [18, Proposition 4.8], the canonical morphism of theories G : A∗
(0) � Ã∗ is

surjective (this morphism is induced by the canonical morphism �∗ → Ã∗ of [9, Theorem
1.2.6]). By the same universality of algebraic cobordism, such morphism is unique. In

particular, there is a unique morphism of theories A∗
(0) � A∗

Num . Note that G |Spec(k) :

A =→ A is an isomorphism. Hence, if x ∈ A∗
(0)(X ) belongs to the kernel of G , then x

Num∼ 0.
Thus, the unique morphism of theories A∗

(0) � A∗
Num factors through Ã∗ → A∗

Num .

Thus, A∗
Num plays the role opposite to that of A∗

(0) and can be denoted as A∗
(∞), and

any generically constant theory Ã∗ with the formal group law ϕ is canonically squeezed
between A∗

(0) and A∗
(∞):

A∗
(0)

�� �� Ã∗ �� �� A∗
(∞) ,

and the latter provides an alternative way of describing such theories Ã∗.
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4.2. Numerical equivalence modulo p and isotropy

Everywhere below X is a smooth projective variety over a field k of characteristic zero.

In the case of a theory Ch∗ = CH∗ /p, we will denote the numerical equivalence
Num∼ as

Num(p)∼ to stress that we consider finite coefficients. Thus, Ch∗
Num(X ) = Ch∗(X )/N , where

N is the ideal of elements
Num(p)∼ 0. In our situation, x ∈ Ch(X ) is

Num(p)∼ 0 if, for any

y ∈ Ch(X ), the deg(x ·y) = 0 ∈ Fp .

By the very definition, we have a nondegenerate pairing

ChNum(X )×ChNum(X ) −→ Fp

defined by (x,y) �→ deg(x ·y). Moreover, because deg(x ·y) may be defined on the level of
the (complex) topological realisation, the kernel of the topological realisation functor is

contained in N , so ChNum(X ) is a subquotient of the topological cohomology HTop(X ;Fp)

of X . In particular, ChNum(X ) is finite-dimensional Fp-vector space. Note, however, that
this subquotient depends on the ground field k , because for different fields the images of

the topological realisation functor will be different.

The theory Ch∗
Num inherits the action of the reduced power operations from Ch∗,

as follows from Proposition 4.6 below. Recall that we have reduced power operations
P i : Ch∗ → Ch∗+i(p−1) (see [2] and [21]) commuting with pull-back morphisms and the

respective homological operations Pi : Ch∗ → Ch∗−i(p−1) commuting with push-forwards.

These are connected as follows:

P i =
i∑

l=0

dl (TX ) ·Pi−l,

where dl satisfies Cartan’s formula and, for a line bundle L, d1(L) = xp , where x = c1(L).

Proposition 4.6. Let u ∈ Ch∗(X ). Then u
Num(p)∼ 0 ⇒ P i(u)

Num(p)∼ 0.

Proof. Induction on i . Because P0 = id , we have the (base) i = 0.
(step) We need to show that deg(P i(u) · v) = 0, for any class v of complementary

dimension. By Cartan’s formula, P i(u) · v = P i(u · v) − ∑i−1
j=0 P j (u) · P i−j (v). By the

inductive assumption, we have that deg(P j (u) · P i−j (v)) = 0, for any j < i . And the
degree of the first summand can be rewritten as

deg(P i(u · v)) = deg

(
i∑

l=0

dl (TX ) ·Pi−l (u · v)

)

= deg(Pi(u · v))+deg

(
i∑

l=1

dl (TX ) ·
i−l∑
m=0

dm(−TX ) ·P i−l−m(u · v)

)
.

The second summand is zero by the inductive assumption, and the degree of Pi(u · v) is

the same as that of Pi(π∗(u · v)), where π : X → Spec(k) is the natural projection. The

latter degree is equal to zero for any i > 0. The induction step is proven.
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If x is an anisotropic cycle, then x
Num(p)∼ 0. Indeed, x = f∗(x ′) for some projective map f :

Z → X from anisotropic variety Z and some x ′ ∈ Ch∗(Z ). But then deg(x ·y) = deg(f∗(x ′) ·
y) = deg(x ′ · f ∗(y)) = 0, because all zero-cycles on Z have zero degree (modulo p). Thus,
we get the surjective map:

Ch∗
k/k (X ) � Ch∗

Num(X ).

I conjecture that, over flexible fields, in reality these two cohomology theories coincide.

Conjecture 4.7. Let k be a flexible field. Then Ch∗
k/k = Ch∗

Num .

Remark 4.8. The condition on the flexibility of k is essential here. For example, if k is

algebraically closed, then from Remark 2.12 we know that Ch∗
k/k = Ch∗, and Ch∗

Num is
some subquotient of it. �
Remark 4.9. This conjecture, in particular, implies that the local Chow motivic category
Chow(k/k ;Fp) is equivalent to the numerical Chow motivic category ChowNum(k ;Fp).

Because the degree pairing is defined over the algebraic closure and even in the

topological realisation, we obtain that the numerical Chow groups over E are subquotients
of the respective groups over E , which, in turn, are subquotients of topological cohomology

ChNum/E (X ) �↪→ ChNum/E (X ) �↪→ HTop(X ;Fp).

Thus, our conjecture implies that any object of Chow(k ;Fp) that vanishes over k , or even
in the topological realisation, should vanish in every isotropic category Chow(E/E ;Fp).

In contrast, ‘non-pure’ motives behave differently. For example, the idempotent,

corresponding to the projector πE : DM(k ;Fp) → DM(E/k ;Fp), is mapped via ψE to the

unit object of the category DM(E/E ;Fp). On the other hand, its restriction to k is trivial,
because X̃Q |k = 0, for any nonempty Q (note that E �= E , because k is flexible, so the

respective directed system contains nonempty Qs). Consequently, all of the subcategories

DM(E/k ;Fp), for all finitely generated E/k , are killed by the restriction to the algebraic
closure functor DM(k ;Fp) → DM(k ;Fp). There are geometric examples as well: the motive

M̃ α of Section 3 vanishes over k but is nonzero in the isotropic motivic category. �

Remark 4.10. Although the numerical Chow motivic category ChowNum(k ;Fp) is a

subquotient of a topological category (that is, of the category of graded Fp-vector spaces),

it is more interesting. In particular, it is not generated by a single object (Tate motive).
This is reflected by the absence of the Kunneth formula. Namely, for smooth projective

X and Y , the product map

ChNum(X )⊗ChNum(Y ) → ChNum(X ×Y )

is not an isomorphism (⇔ not surjective), in general. �

Our aim is to prove the following result.

Theorem 4.11. Conjecture 4.7 is true in the following cases:

(1) dim(X ) � 5;
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(2) Ch1;
(3) Chm , for m � 2.

Item (2) will be proven in Proposition 4.15, item (3) follows from Corollary 4.16 and

Propositions 4.20 and 4.23, and for item (1) we need to add Proposition 4.24.

Corollary 4.12. In the situation of Theorem 4.11, the local Chow groups Ch∗
k/k (X ) are

finite-dimensional Fp-vector spaces.

This contrasts with the global situation, where Chow groups of varieties are often huge.

We have the following Chow-motivic questions of increasing strength related to

Question 2.10.

Question 4.13.

(1) Is it true that any U ∈ Ob(Chow(k ;Fp)) that vanishes in the (complex) topological
realisation is zero?

(2) Is it true that any f ∈ EndChow(k ;Fp )(V ) that vanishes in the (complex) topological

realisation is nilpotent?

As we saw, by Conjecture 4.7, for a flexible field the triviality of the topological

realisation should imply the triviality of all local realisations.

Remark 4.14. Note that the stronger variant of Question 4.13(2) fails. Namely, C. Soule

and C. Voisin produced an example of a class c ∈ Ch3(X ), for some smooth projective
X , such that c vanishes in H6

Top(X ;Fp), but c is not smash-nilpotent (that is, c×r �= 0 ∈
Ch3r (X ×r ), for any r) [13, Theorem 5].
If we are interested instead only in the triviality of local realisations, it is sufficient

to take the image x of any torsion class x from CH1(X ), whose topological realisation

in H2
Top(X ;Fp) is nontrivial. Then, because the degree pairing is defined integrally,

x |E Num(p)∼ 0, for any E/k . Thus, all local realisations of x are trivial by Theorem 4.11(2).
At the same time, its topological realisation is nontrivial and thus not smash-nilpotent.

Hence, x is not smash-nilpotent either. �
A weaker variant of Question 4.13 with ‘topological realisation’ replaced by the

‘restriction to the algebraic closure’ is a safer bet. In this form, question (2) becomes

the Rost Nilpotence Conjecture.

4.3. The proof of the Main Theorem

4.3.1. Divisors and zero-cycles. We start the proof of Theorem 4.11 with the case
of divisors (item (2)), which is actually the base for the whole technique.

Proposition 4.15. Let k be a flexible field and u ∈ Ch1(X ) be
Num(p)∼ 0. Then u = 0 ∈

Ch1
k/k (X ).

Proof. Adding to an effective divisor representing u a p-multiple of a very ample divisor,

we may assume that u is represented by a very ample divisor D . Let (Pn)∨ = Proj |D |
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be the projective linear system of D . This defines the embedding of X into Pn . From
Statement 6.3, the embedding ι : Dη → X of the generic representative of our linear

system into X induces a surjective map ι∗ : Ch1(X ) � Ch0(Dη). But because D
Num(p)∼ 0,

the degree of the zero-cycle ι∗(v) is zero for any v ∈ Ch1(X ). Hence, Dη is anisotropic.
Thus, over k((Pn)∨), our class u is represented by the class of an anisotropic divisor

Dη. Because k is flexible, it is represented by an anisotropic class already over k (by

Proposition 1.3).

Because the theory Ch∗
k/k has the structure of push-forwards and pull-backs, we obtain

the following.

Corollary 4.16. Let k be a flexible field. The projection Ch∗ � Ch∗
k/k passes through

Ch∗
alg = Ch∗

(1).

Proof. A class u ∈ Ch∗(X ) is algebraically equivalent to zero if it can be presented as

f∗(y ·g∗(v)), where X
f←− X ×C

g−→ C are natural projections, C is a smooth projective

curve, y ∈ Ch∗(X ×C ) and v ∈ Ch0(C ) is a zero-cycle of degree zero. Because v
Num(p)∼ 0,

Proposition 4.15 implies that v = 0 ∈ Ch∗
k/k (C ), so u = 0 ∈ Ch∗

k/k (X ).

Because any zero-cycle on a smooth projective variety X is a push-forward of some
zero-cycle from a curve, we also get the case of zero-cycles.

Corollary 4.17. Let k be a flexible field and u ∈ Ch0(X ) be
Num(p)∼ 0. Then u = 0 ∈

Chk/k ;0(X ).

Our general strategy of proving that the class u
Num(p)∼ 0 is anisotropic will be to find an

appropriate blow-up π : X̃ → X , so that π∗u may be represented by a cycle supported

on a smooth connected divisor Z ⊂ X̃ , which is
Num(p)∼ 0 already on Z . Then we use

induction on the dimension of X and the fact that u = π∗π∗u. In order to achieve this,

we will need first to present u by the class of a smooth connected subvariety S and make

the appropriate characteristic classes of it
Num(p)∼ 0 on X .

4.3.2. 3-folds and 1-cycles. We will be moving up the dimension of varieties. The
above statements settle the case of curves and surfaces. Our next aim are 3-folds, where

only the case of 1-cycles remains open.

Proposition 4.18. Let k be a flexible field and X be a smooth projective variety over k
of dimension 3. Let u ∈ Ch1(X ) be

Num(p)∼ 0. Then u = 0 ∈ Chk/k ;1(X ).

Proof. We will show that there is a blow-up π : X̃ → X such that π∗(u) is represented

by the class of a smooth anisotropic curve on X̃ . Because π∗π∗(u) = u, this will show
that the class u is anisotropic. Here, as in many statements below, we will be gradually

reducing a general case to the one with better and better special properties.

Lemma 4.18.1. We may assume that u is represented by a class of a smooth curve S
on X and, moreover, deg(c1(NS⊂X ) · [S ]) = 0 (mod p).

https://doi.org/10.1017/S1474748020000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000560


1298 A. Vishik

Proof. By Corollary 6.2, after some blow-up, we may represent u by the class of a
smooth curve S on X (we keep the same name for the variety). Note that c1(NS⊂X ) =
c1(TX )+ c1(−TS ) and deg(c1(TX ) · [S ]) = 0, because [S ]

Num(p)∼ 0 and c1(TX ) is a class
defined on X . Now we need to treat separately p = 2 and odd primes. Such separate

treatment of different primes is the feature that we will see repeatedly below.

(p = 2) Our degree is equal to the deg(c1(−TS ) · [S ]) = deg(P1([S ])), where P1 is the
homological Steenrod operation Sq2. But deg(P1([S ])) = deg(P1(ε∗[S ])), where ε : S →
Spec(k) is the projection, and ε∗[S ] = 0.
(p �= 2) Let [Z ] be a smooth very ample divisor on S representing 1

2c1(−TS ) in Ch0(S ).

Let π : X̃ → X be the blow-up of X at Z . Let S̃ be the proper pre-image of S in X̃ . Then

by [5, Theorem 6.7], we have

π∗([S ]) = [S̃ ]+ [P1
Z ],

where [P1
Z ] is the class supported on the special divisor P2

Z . Therefore, π∗([S ]) is

represented by the class of a smooth curve S ′ = S̃
∐

P1
Z (we can always choose the curve

P1
Z not intersecting S̃ ). Note that S̃ ∼= S . Then

deg(c1(−TS ′) · [S ′]) = deg(c1(−TS̃ ) · [S̃ ])+deg(c1(−T
P
1
Z
) · [P1

Z ])

= deg(c1(−TS ) · [S ])+deg([Z ]) · (−2) = 0.

Now, in addition, we can make our class to be supported on some smooth surface.

Lemma 4.18.2. We may assume that u is represented by the class of a smooth (possibly,

disconnected) curve S that is contained in some smooth (possibly, disconnected) surface

E on X , and the curve S also satisfies deg(c1(NS⊂X ) · [S ]) = 0.

Proof. By Lemma 4.18.1, we can assume that u = [S ], where S ⊂X is a smooth curve and,

moreover, deg(c1(NS⊂X ) · [S ]) = 0. Consider X̃ = BlS (X ) with the projection π : X̃ → X .

Then π∗(u) is supported on E = PS (NS⊂X ), which is a smooth surface. More precisely,

it is represented by ρ + ε∗(c1(NS⊂X )), where ε : E → S is the natural projection and
ρ = c1(O(1)) = −[E ]. By adding a p-multiple of a very ample divisor, we can assume (by

Statement 6.4) that π∗(u) is represented by a very ample divisor on every component

of E and so is represented by a smooth curve S ′ on E . Moreover, c1(NS ′⊂X̃ ) is the
restriction of ε∗(c1(NS⊂X )) to S ′. Hence, deg(c1(NS ′⊂X̃ ) · [S ′]) = deg(c1(NS⊂X ) ·ε∗([S ′])) =
deg(c1(NS⊂X ) · [S ]) = 0.

In view of Corollary 6.12, it remains to make our curve and surface connected.

Lemma 4.18.3. We may assume that u is represented by the class of a smooth connected

curve contained in a smooth connected divisor E on X , and the curve S also satisfies

deg(c1(NS⊂X ) · [S ]) = 0.

Proof. By Lemma 4.18.2 we may assume that u = [S ], where S is smooth and S ⊂
E ′ ⊂ X , where E ′ is a (possibly disconnected) smooth surface and deg(c1(−TS ) · [S ]) =
deg(c1(NS⊂X ) · [S ]) = 0. By Statement 6.5 applied to the divisor E ′ considered as a
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single component, over some purely transcendental extension of k , there is an irreducible
divisor E ′′ on X containing S and smooth outside an anisotropic subset. Because k
is flexible, we may assume that the divisor E ′′ of X is defined already over k . Let

π : X̃ → X be the embedded desingularization of E ′′. Let Ẽ be the proper pre-image
of E ′′ and S̃ be the proper pre-image of S . Then π∗(u) is equal to [S̃ ] plus some

classes supported on the special divisors of our blow-up. But these special divisors are

anisotropic (because the singularities were). Hence, modulo anisotropic classes, π∗(u) is

equal to the class [S̃ ] supported on a smooth connected surface Ẽ . And because S̃ ∼= S ,
we have deg(c1(−TS̃ ) · [S̃ ]) = deg(c1(−TS ) · [S ]) = 0. Our class is a divisor on Ẽ . Adding a

p-multiple of an appropriate very ample divisor, we may assume that our divisor is very

ample (by Statement 6.4) and thus is represented by a smooth connected curve on Ẽ .
Note that this procedure does not change the deg(c1(−TS ) · [S ]) = 0 ∈ Fp .

Proposition 4.18 follows now from Corollary 6.12 and flexibility of k .

Now, the case of varieties of dimension � 3 is settled, which, due to the presence of push-

forwards and pull-backs, implies that isotropic Chow groups factor through the second

theory of higher type.

Proposition 4.19. Let k be a flexible field. The projection Ch∗ � Ch∗
k/k factors through

Ch∗
(2).

Proof. A class u ∈ Ch∗(X ) is = 0 ∈ Ch∗
(2), if it can be presented as f∗(y · g∗(v)), where

X
f←− X ×Q

g−→ Q are natural projections, Q is a smooth projective variety of dimension

3, y ∈ Ch∗(X ×Q) and v ∈ Ch∗(Q) is
Num(p)∼ 0. Then, by Proposition 4.15, Corollary 4.17

and Proposition 4.18, v = 0 ∈ Ch∗
k/k (Q), so u = 0 ∈ Ch∗

k/k (X ).

The case of surfaces and 3-folds permits starting induction and dealing with 1-cycles
on a variety of an arbitrary dimension.

Proposition 4.20. Let k be a flexible field and X be a smooth projective variety over k .
Let u ∈ Ch1(X ) be

Num(p)∼ 0. Then u = 0 ∈ Chk/k ;1(X ).

Proof. Induction on n = dim(X ).

(base) The case n = 1 is trivial. The cases n = 2 and n = 3 follow from Propositions 4.15
and 4.18, respectively.

(step (n −1) → (n)) We may assume that n > 3.
First of all, we need to make our class supported on a smooth divisor.

Lemma 4.20.1. We may assume that u is represented by a class supported on some

smooth (possibly disconnected) divisor Z on X .

Proof. By Corollary 6.2, we may assume that u is represented by the class of a smooth

curve S on X . Consider the blow-up π : X̃ = BlS (X ) −→ X . Then π∗(u) is supported on

the special divisor E = PS (NS⊂X ), which is smooth.
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Now we can make the supporting (smooth) divisor connected and, in addition, we can

make all codimension 1 classes on it restrictions of some classes from X , at least, modulo

anisotropic classes.

Lemma 4.20.2. We may assume that u is represented by a class supported on some

smooth connected divisor Z on X such that the restriction Ch1
k/k (X ) � Ch1

k/k (Z ) is
surjective.

Proof. By Lemma 4.20.1, we may assume that u is represented by the class of a curve
S contained in a smooth divisor Z . By Statement 6.5 and flexibility of k , S is contained

in some irreducible divisor Z ′, smooth outside an anisotropic subset, and such that the

restriction Ch1
k/k (X ) � Ch1

k/k (Z ′\S ) is surjective. Because dim(Z ′)−1 > 1 = dim(S ), we

also get the surjection Ch1
k/k (X ) � Ch1

k/k (Z ′).
Let π : X̃ → X be the embedded resolution of singularities of Z ′. Because the

singularities of Z ′ were anisotropic, the special divisors of X̃ will be also such. Let Z̃ ′ be the
proper pre-image of Z ′ and S̃ be the proper pre-image of S . Then Ch∗

k/k (Z ′) = Ch∗
k/k (Z̃ ′),

so the map f ∗ : Ch1
k/k (X ) � Ch1

k/k (Z̃ ′), induced by the natural projection f : Z̃ ′ → X , is

surjective. The image of π∗(u) in Ch∗
k/k (X̃ ) = Ch∗

k/k (X ) is represented by the class of S̃
supported on Z̃ ′.

Because the restriction j ∗ : Ch1
k/k (X ) � Ch1

k/k (Z ) is surjective, u = j∗(u ′), for some

class u ′ ∈ Chk/k ;1(Z ), and u
Num(p)∼ 0 on X , we get that u ′ Num(p)∼ 0 on Z . Because Z is

a smooth connected projective variety of dimension n −1, by the inductive assumption,

u ′ = 0 ∈ Chk/k ;1(Z ). Then the class u is equal to 0 ∈ Chk/k ;1(X ) as well. Proposition 4.20

is proven.

4.3.3. 4-folds. The next target is 4-folds, where only the case of codimension 2-cycles
is left.

Proposition 4.21. Let k be a flexible field and X be a smooth projective k -variety of

dimension 4. If u ∈ Ch2(X ) is
Num(p)∼ 0, then u = 0 ∈ Ch2

k/k (X ).

Proof. Our strategy will be to find an appropriate blow-up π : X̃ → X such that π∗(u)

is supported on some smooth connected divisor Z and is
Num(p)∼ 0 on it.

By Corollary 6.2, we may assume that u is represented by the class of a union of smooth

complete intersections of very ample divisors with components meeting transversally. In
such a situation (of transversal smooth components), let us denote as c2

1(NS⊂X ) · [S ] the
sum

∑
i c

2
1(NSi⊂X ) · [Si ], and similar for other characteristic classes.

The case of a prime 2 requires certain preparations to be made still at this level of
transversal complete intersections, before passing to a single smooth subvariety (to be

done in the next step).

Lemma 4.21.1. We may assume that u is represented by the class of ∪iSi , where each Si

is a complete intersection of very ample divisors, with components meeting transversally.

For p = 2, we may moreover assume that deg(c2
1(NS⊂X ) · [S ]) = 0.
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Proof. Let p = 2 and [S ] = ∑
i xiyi , where xi and yi are classes of very ample divisors.

Then, in Ch2, we can substitute this presentation by

[S ′] =
∑
i

(xiyi +xi (xi +yi )+yi(xi +yi )+ (xi +yi )(xi +yi )),

where all of the divisor classes involved are very ample and thus components can be

made transversal. Then c2
1(NS ′⊂X ) · [S ′] = ∑

i(xiyi(xi + yi)
2 + xi (xi + yi)y2

i + yi(xi + yi )

x2
i +0)=0.

For a surface S = ∪iSi with smooth transversal components, let us denote �2[S ] :=∑
{i,j }[Si ] · [Sj ] in Ch0(X ), where the sum is over all 2-element subsets of the set of

components.
The following result permits combining our transversal components into a single smooth

connected surface. Moreover, there is some control over the characteristic classes of the

surface obtained this way.

Lemma 4.21.2. Let S = ∪iSi be a surface on X with smooth transversal components.

Then there exists a blow-up η : X̂ → X such that η∗([S ]) is represented by the class

of a smooth connected surface Ŝ contained in a smooth connected divisor Ẑ , and

deg(c2
1(NŜ⊂X̂ ) · [Ŝ ]) = deg(c2

1(NS⊂X ) · [S ]−2�2([S ])). If, moreover, [S ]
Num(p)∼ 0, then this

degree is equal to the deg
((

c2
1 + c2

)
(NS⊂X ) · [S ]

)
.

Proof. Let u = [∪iSi ] = ∑
i ui be the class of [S ]. Let π : X̃ → X be the blow-up of X in

all components Si . Let Ei be the respective components of the special divisor and ρi =
c1(O(1)i ) = [−Ei ]. Then, by [16, Proposition 5.27], ũi = π∗([Si ]) = [Ei ] ·(c1(NSi⊂X )+ρi) is

supported on Ei and may be represented by a smooth surface S̃ i . Note that c1(NS̃ i⊂X̃ ) =
π∗(c1(NSi⊂X )), so deg(c2

1(NS̃⊂X̃ ) · [S̃ ]) = deg(c2
1(NS⊂X ) · [S ]).

Let Ti,j = Ei ∩ Ej be the intersection of the components of the special divisor, and
ti,j = [Ti,j ]. We have deg(ũi · ũj ) = deg(ui ·uj ), and deg(ũi · ti,j ) = deg(−[Ei ]3 · [Ej ]) = 0
and deg(ũi · tj,k ) = 0, for any i �∈ {j,k}, as well. Finally, deg(t2

i,j ) = deg([Ti,j ] · ρi · ρj ) =
deg(ui ·uj ), and ti,j · tk,l = 0, for {i,j } �= {k,l}. Now, for all pairs (i,j ) of distinct numbers

let us choose signs ε(i,j ) ∈ ±1 with the condition that ε(i,j ) + ε(j,i) = 0. Let us substitute
classes ũi by ũ ′

i := ũi + ∑
j �=i ε(i,j )ti,j . Note that the sum

∑
i ũ

′
i is still equal to the∑

i ũi = π∗(u). On the other hand,

deg(ũ ′
i · ũ ′

j ) = deg
((

ũi +∑
k �=iε(i,k)ti,k

) · (ũj +∑
l �=j ε(j,l)tj,l

))
= deg(ui ·uj )−deg(ti,j · tj,i) = 0.

Because these classes ũ ′
i are divisors on (connected) Ei , we can make them very ample (by

adding a p-multiple of some very ample divisor), so we can move them around and make

them smooth connected and transversal to any given subvariety. Let S̃ ′
i be the generic

representative of the respective linear system |ũ ′
i | on Ei . It is a smooth connected surface

on Ei representing ũ ′
i . We now have a divisor with strict normal crossings E = ∪iEi and

a surface S̃ ′ = ∪i S̃ ′
i on it, with S̃ ′

i smooth connected, transversal to each other and to the

other components of E .
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Because deg(ũ ′
i · ũ ′

j ) = 0, for i �= j , by the arguments of the proof of Proposition 4.15,

all of the intersections S̃ ′
i ∩ S̃ ′

j are anisotropic. Because k is flexible, we may assume that

S̃ ′
i is defined already over k (by Proposition 1.3). Finally, denoting γi = π∗(c1(NSi⊂X )),

because ρiρjγi , ρiρ
3
j , ρiρjρk are zero, for distinct i,j,k , we have

deg(c2
1(NS̃ ′⊂X̃ ) · [S̃ ′]) =

∑
i

deg
(
−ρi

(
γi +ρi +∑

j �=iε(i,j )ρj
)(

γi +∑
j �=iε(i,j )ρj

)2)
=

∑
i

deg(−ρi (γi +ρi )γ
2
i −∑

j �=iρ
2
i ρ2

j ) = deg(c2
1(NS̃⊂X̃ ) · [S̃ ]−2�2([S ]))

= deg(c2
1(NS⊂X ) · [S ]−2�2([S ])).

If [S ]
Num(p)∼ 0, then deg(2�2([S ])) = deg([S ] · [S ] − ∑

i [Si ] · [Si ]) = −deg(c2(NS⊂X ) · [S ]).
Thus, in this case, deg

(
c2
1(NS⊂X ) · [S ]−2�2([S ])

) = deg
((

c2
1 + c2

)
(NS⊂X ) · [S ]

)
.

After all, we managed to present our cycle by the class of the union of smooth
surfaces transversal to each other and all intersections anisotropic. It remains to use

Statement 6.6.

In order to apply Corollary 6.12, we need to eliminate (numerically) the powers of the
first Chern class of the normal bundle of our surface. We will proceed from highest to

smallest powers.

Lemma 4.21.3. We may assume that u is represented by the class of a smooth connected

surface S that is contained in a smooth connected divisor Z , and deg(c2
1(NS⊂X ) · [S ]) =

0 ∈ Fp .

Proof. By Lemmas 4.21.1 and 4.21.2, we may assume that u is represented by the class

of a smooth connected surface S contained in a smooth connected divisor Z , and (again

by the same lemmas) we already know the case (p = 2). We need to treat separately p = 3
and the remaining primes.

(p = 3) Let d1 = c2
1 + c2. This characteristic class of degree 2 corresponds to the reduced

power operation P1 : Chr → Chr+2. Namely, P1([S ]) = d1(NS⊂X ) · [S ]. By Proposition 4.6,

deg(d1(NS⊂X ) · [S ]) = 0 ∈ F3, because [S ]
Num(p)∼ 0. On the other hand, deg(c2(NS⊂X ) ·

[S ]) = deg([S ] · [S ]) = 0 (by the same reason). Hence, deg(c2
1(NS⊂X ) · [S ]) = 0 ∈ F3.

(p �= 2,3) Let R be a smooth zero-cycle representing the complete intersection (of very

ample divisors) 1
2c1(NS⊂X ) · 1

3c1(NS⊂X ) on S . Let π : X̃ = BlR(X ) → X be the blow-up of

X at R, and E ε→ S be the special divisor of π , with ρ = c1(O(1)) = −[E ]. Then π∗([S ]) =
[S̃ ]+ [F ], where S̃ is the proper transform of S , and [F ] = [E ] · (ε∗(c1(NS⊂X ))+ρ). We

have c1(NS̃⊂X̃ ) = 2ρ +π∗
S (c1(NS⊂X )), and c1(NF⊂X̃ ) = ε∗(c1(NS⊂X )). Hence (taking into

account that π(E ) is zero-dimensional),

c2
1(NS̃⊂X̃ ) · [S̃ ]+ c2

1(NF⊂X̃ ) · [F ] = j∗π∗
S (c2

1(NS⊂X ) · [S ])+4ρ2 · [S̃ ]
= j∗π∗

S (c2
1(NS⊂X ) · [S ]−4[R]) = j∗π∗

S
( 1
3c2

1(NS⊂X ) · [S ]
)
,
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where S
πS←− S̃

j−→ X̃ are natural maps. On the other hand,

[S̃ ] · [F ] = [S̃ ] · [E ] · (ε∗(c1(NS⊂X ))+ρ) = [P1
R] ·ρ = j∗π∗

S
(1
6c2

1(NS⊂X ) · [S ]
)
.

By Lemma 4.21.2, there exists a blow-up μ : X → X̃ such that μ∗π∗([S ]) ∈ Ch2
k/k (X ) is

represented by a smooth connected surface S contained in a smooth connected divisor Z
with

deg(c2
1(NS⊂X ) · [S ]) = deg(c2

1(NS̃⊂X̃ ) · [S̃ ])+deg(c2
1(NF⊂X̃ ) · [F ])−deg(2[S̃ ] · [F ])

= deg
(( 1

3c2
1(NS⊂X )− 1

3c2
1(NS⊂X )

) · [S ]
) = 0.

It remains to treat the first power of the first Chern class.

Lemma 4.21.4. We may assume that u is represented by the class of a smooth connected

surface S that is contained in a smooth connected divisor Z , with c2
1(NS⊂X ) · [S ]

Num(p)∼ 0
and c1(NS⊂X ) · [S ]

Num(p)∼ 0.

Proof. By Lemma 4.21.3, we may assume that u = [S ], where S ⊂ Z ⊂ X are smooth

connected, with the needed condition on c2
1 . It remains to terminate c1. We need to treat

separately p = 2 and larger primes.
(p = 2) The characteristic class c1 corresponds to the reduced power opera-

tion P1 : Chr → Chr+1 (modulo 2). Because [S ]
Num(p)∼ 0, by Proposition 4.6,

c1(NS⊂X ) · [S ] = P1([S ])
Num(p)∼ 0.

(p �= 2) Let R be a smooth connected curve on S representing 1
2c1(NS⊂X ) · [S ]. Let π :

X̃ = BlR(X ) → X be the blow-up at R, with the (connected) special divisor E ε→ S and

ρ = c1(O(1)) = −[E ]. Then π∗([S ]) = [S̃ ]+ [F ], where S̃ is the proper pre-image of S , and
[F ] = [E ] ·(ε∗(c1(NS⊂X ))+ρ) is supported on E . Note that πS : S̃ → S is an isomorphism.

Then

cm
1 (NS̃⊂X̃ ) · [S̃ ] = [S̃ ] · (π∗

S (c1(NS⊂X ))+2ρ)m = 0 ∈ Ch∗(X̃ ), for m > 0,

because ρ +π∗
S ( 1

2c1(NS⊂X )) = 0 on S̃ .

Because c2
1(NS⊂X ) · [S ]

Num(p)∼ 0 on X , and R is connected, we have that c1(NS⊂X ) ·
R

Num(p)∼ 0 on R, which implies that [E ] · ε∗(c1(NS⊂X ))
Num(p)∼ 0 on E . Hence,

cm
1 (NF⊂X̃ ) · [F ] = [E ] · (ε∗(c1(NS⊂X ))+ρ) · ε∗(cm

1 (NS⊂X ))
Num(p)∼ 0 on X̃ , for m > 0.

Finally, [S̃ ] · [F ] = [S̃ ] · (−ρ) · (π∗
S (c1(NS⊂X ))+ρ) = [S̃ ] ·π∗

S ( 1
2c1(NS⊂X )) ·π∗

S ( 1
2c1(NS⊂X ))

Num(p)∼ 0 on S̃ , because c2
1(NS⊂X ) · [S ]

Num(p)∼ 0 on S .
Substituting F by the generic representative of the (very ample) linear system |F | on E ,

by the proof of Proposition 4.15 we may assume that the intersection S̃ ∩F is anisotropic.

Then, by Statement 6.6, there exists a blow-up μ : X → X̃ such that μ∗π∗([S ]) is
represented by the class of a smooth connected surface S contained in a smooth connected

divisor Z , such that cm
1 (NS⊂X ) · [S ]

Num(p)∼ μ∗cm
1 (NS̃⊂X̃ ) · [S̃ ]+cm

1 (NF⊂X̃ ) · [F ]
Num(p)∼ 0, for

m � 0.
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Now Proposition 4.21 follows from Corollary 6.12 and flexibility of k .

4.3.4. 2-cycles. The case of 4-folds is completed. Our next destination is 2-cycles. The

main difficulty here is the case of 2-cycles on a 5-fold, which (together with the treated

4-folds) will form a base of our induction.

Proposition 4.22. Let k be a flexible field and X be a smooth projective k -variety of

dimension 5. If u ∈ Ch2(X ) is
Num(p)∼ 0, then u = 0 ∈ Chk/k ;2(X ).

Proof. The strategy, as usual, is to find an appropriate blow-up, so that the pull-back of

u is supported on some smooth connected divisor Z and is
Num(p)∼ 0 already on Z .

We start by presenting u by the class of a disjoint union of smooth complete intersections

and eliminating numerically its second (normal) Chern class.

Lemma 4.22.1. We may assume that u is represented by the class of a smooth surface

S on X , with all components complete intersections and deg(c2(NS⊂X ) · [S ]) = 0 ∈ Fp .

Proof. By Corollary 6.2, we may assume that u is represented by the class of a disjoint
union of smooth complete intersections: u = [S ] = [

∐
i Si ]. We need to treat separately

the case p = 2 and that of odd primes.

(p = 2) The characteristic class c2 corresponds to the reduced power operation P2 (modulo

2); that is, P2([S ]) = c2(NS⊂X ) · [S ]. But [S ]
Num(p)∼ 0, so by Proposition 4.6, P2([S ])

Num(p)∼
0, too. Hence, deg(c2(NS⊂X ) · [S ]) = 0 ∈ F2.

(p �= 2) If the degrees of c2 of all of the components are trivial, there is nothing to prove.

Otherwise, there is a component Sl given by x1x2x3 such that deg(x 2
1 x 2

2 x3) = r �= 0 ∈ Fp .
Let R be a disjoint union of d copies of the curve x2

1 x 2
2 , where one factor of x1 and

x2 here is the same as in Sl and the other one is generic, so that Q = R ∩ Sl is given

by the d disjoint copies of x2
1 x 2

2 x3 and R does not meet other components of S . Let
π : X̃ → X be the blow-up at R with the special divisor E and ρ = c1(O(1)) = −[E ].
Then, by [5, Theorem 6.7], π∗([Sl ]) = [S̃ l ]+ [V ], where S̃ l

πS−→ Sl is the proper transform
of Sl and V = P2

Q is a subvariety of the Q-fibre of the P3-bundle E → R. Here S̃ l is a

complete intersection (x1 +ρ)(x2 +ρ)x3, and V is a complete intersection −ρ2 ·x3. We can

move [Q ] along R and make V disjoint from S̃ l (it is automatically disjoint from other

components). On S̃ l , xi ·ρ = 0 (because πS (S̃ ∩E ) is zero-dimensional) and ρ2 = −π∗
S [Q ],

and on V = P2
Q , xi = 0 and ρ2 is the class of a section Q → P2

Q . Hence,

deg(c2(NS̃ l⊂X̃ ) · [S̃ l ])+deg(c2(NV⊂X̃ ) · [V ]) = deg((x1x2 +x2x3 +x3x1 +ρ2)[S̃ l ])

+deg(−ρ2[V ]) = deg(c2(NS⊂X )[S ])−2deg([Q ]) = deg(c2(NS⊂X )[S ])−2rd .

Because p �= 2, by choosing d appropriately, we can always make the total degree of
c2(NS⊂X ) · [S ] zero (in Fp), while keeping all of the components complete intersections.

Having made the second (normal) Chern class of our surface numerically trivial, now
we will do the same with every connected component of it. This will make the mentioned

Chern class numerically trivial already on the surface itself (not just after the push-

forward to X ).
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Lemma 4.22.2. We may assume that u is represented by the class of a smooth surface
S on X , and for each component Sl of S , we have deg(c2(NSl⊂X ) · [Sl ]) = 0 ∈ Fp .

Proof. By Lemma 4.22.1, we may assume that u is represented by the class of a disjoint
union of smooth complete intersections: u = [S ] = [

∐
l Sl ] with deg(c2(NS⊂X ) · [S ]) = 0.

Let Sl be represented by the intersection x1x2x3 of very ample divisors. Let R{i,j } ⊂ X
be the complete intersection x2

i x 2
j , where one copy of xi and xj is the same as in Sl ,

but the other copy is generic, so that R{i,j } meets Sl at a zero-cycle x 2
i x 2

j xm (where

{m} = {1,2,3}\{i,j }), and does not meet other components of S . Let R = ∐
{i,j }∈(32)R{i,j }

(we can make components disjoint). Note that [R ∩ Sl ] represents the class c2(NSl⊂X )

on Sl . Let π : X̃ → X be the blow-up at R, where E{i,j }
π{i,j }−→ R{i,j } are the components

of the special divisor, ρ{i,j } = −[E{i,j }] and ρ = ∑
{i,j } ρ{i,j }. Let S̃ l

πS−→ Sl be the proper

transform of Sl .
The Chern roots of NS̃ l⊂X̃ are xi +∑

j �=i ρ{i,j },i = 1,2,3. Moreover, S̃ l is still a complete

intersection: [S̃ l ] = ∏
i(xi +∑

j �=i ρ{i,j }), and on S̃ l we have identities xi ·ρ{j,k} = 0, and
ρ2

{i,j } = −π∗
S [R{i,j } ∩Sl ] and ρ{i,j } ·ρ{i ′,j ′} = 0, for {i,j } �= {i ′,j ′}. Then, on S̃ l ,

c2(NS̃ l⊂X̃ ) = −π∗
S [R ∩Sl ]+π∗

Sc2(NS⊂X ) = 0.

Let Q{i,j } = Sl ∩ R{i,j }. By [5, Theorem 6.7], π∗([Sl ]) = [S̃ l ] + [V ], where V =∐
{i,j }∈(32)[V{i,j }], V{i,j } = P2

Q{i,j } given by ρ ·π−1
{i,j }(Q{i,j }) and contained in the P3-bundle

E{i,j } → R{i,j } is a complete intersection −ρ2
{i,j }xm (m as above). We can move the class

[Q{i,j }] along R{i,j } and so can make P2
Q{i,j } disjoint from S̃l (and it is automatically

disjoint from the other components of S ). The Chern roots of NV⊂X̃ are −ρ,0,ρ, so

deg(c2(NV⊂X̃ ) · [V ]) = −
∑
{i,j }

deg([Q{i,j }]) = −deg(c2(NSl⊂X ) · [Sl ]).

Let P{i,j } be the (p − 1) (disjoint) copies of P1
Q{i,j } contained in π−1

{i,j }(Q{i,j }) but not in

P2
Q{i,j } . Let P = ∐

{i,j } P{i,j } and μ : X → X̃ be the blow-up at P . Let G = ∐
{i,j } G{i,j } be

the special divisor of μ, with projections μ{i,j } : G{i,j } → P{i,j } and α = c1(O(1)) = −[G ].
Let V {i,j } be the proper transform of V{i,j }, and F{i,j } = μ−1

{i,j }(P
2
Q{i,j } ∩P{i,j }) ·α (which

is isomorphic to the disjoint union of (p − 1) copies of P2
Q{i,j }) whose class is given by

−α ·α ·ρ{i,j }. Let F = ∐
{i,j } F{i,j }. By [5, Theorem 6.7], μ∗([V{i,j }]) = [V {i,j }]+ [F{i,j }]. The

Chern roots of NV {i,j }⊂X are α −ρ,α,ρ. Hence,

c2(NV {i,j }⊂X ) · [V {i,j }] = (α2 −ρ2 +αρ) · [V {i,j }] = ((p −1)(−1)−1+0) ·μ∗
V q = 0,

where q is the class of a section Q{i,j } → V{i,j } = P2
Q{i,j } . The Chern roots of

NF{i,j }⊂X are −α,α,0. Therefore, the deg(c2(NF⊂X ) · [F ]) = deg(−α2 · [F ]) = −(p − 1)∑
{i,j } deg([Q{i,j }]) = deg(c2(NSl⊂X ) · [Sl ]).
Let us apply the above construction to every component Sl of S and denote the

respective objects by the subscript l . Now, after applying μ∗π∗, the degree of c2(NS⊂X ) ·
[S ] is concentrated in the F -components, where [Fl ] is given by −αl · αl · ρl . Then
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[F ] = ∑
l (−αl · αl · ρl ). But because ρl · αk = 0, and αl · αk = 0, for l �= k , this can be

rewritten as −α ·α ·ρ, where α = ∑
l αl and ρ = ∑

l ρl . We can substitute −α, α and ρ

by very ample divisors and represent [F ] by (the class of) a smooth connected surface
with the same deg(c2(NF⊂X ) · [F ]), not meeting other components of S . Now, the whole

degree of c2(NS⊂X ) · [S ] is concentrated in a single component F . But, by Lemma 4.22.1,

this total degree is zero.
Lemma 4.22.2 is proven.

Now we can finish the proof of Proposition 4.22. By Lemma 4.22.2, we may assume

that u is represented by the class of a smooth surface S with c2(NS⊂X )
Num(p)∼ 0 on S .

Let π : X̃ → X be the blow-up at S , with the special divisor E
πE−→ S and ρ = c1(O(1)) =

−[E ]. Let c1 = π∗
Ec1(NS⊂X ). By [5, Proposition 6.7], π∗([S ]) = (ρ2+c1ρ) · [E ] in Ch∗

k/k (X̃ ),

because c2(NS⊂X )
Num(p)∼ 0 on S (and by Corollary 4.17). Being a complete intersection on

E , this class may be represented by a smooth surface S̃ on E . Note also that ρ(ρ2 +c1ρ) ·
[E ] = 0 and that the Chern roots of NS̃i⊂X̃ are −ρ,ρ,ρ + c1, so the deg(c2(NS̃ i⊂X̃ ) · [S̃ i ])
is still zero.

By Statement 6.5 and flexibility of k , there is an irreducible divisor Z , containing
S̃ , smooth outside an anisotropic closed subscheme of S̃ , and such that the restriction

Ch∗(X̃ ) � Ch∗(Z \S̃ ) is surjective. Let μ : X → X̃ be the embedded desingularization of

Z and S̃ (note that we may assume that no component of S̃ belongs to the singular locus

of Z , because this locus is anisotropic). Let Z and S be the proper pre-images of Z and
S̃ , respectively. Then, Z is smooth connected and, modulo anisotropic classes, μ∗([S̃ ]) is
represented by [S ] supported on Z . Because the maps Z \S̃ ←− Z \μ−1(S̃ ) −→ Z\S induce

isomorphisms Ch∗
k/k (Z \S̃ )

=→ Ch∗
k/k (Z\μ−1(S̃ ))

=← Ch∗
k/k (Z \S ), we obtain that the group

Ch2
k/k (Z ) is generated by the image of j ∗ : Ch2

k/k (X ) → Ch2
k/k (Z ) and the classes [S i ] of all

of the connected components of S . Because S
Num(p)∼ 0 on X , the image of j ∗ is orthogonal

to [S ] on Z . Finally, on Z

deg([S ] · [S i ]) = deg([S i ] · [S i ]) = deg(c2(NSi⊂Z ) · [S i ])

= deg(c2(NSi⊂X ) · [S i ]) = deg(c2(NS̃ i⊂X̃ ) · [S̃ i ]) = 0,

because c2(NSi⊂X ) = c2(NSi⊂Z ) + c1(NSi⊂Z ) · c1(NZ⊂X ), where c1(NZ⊂X ) = μ∗c1

(NE⊂X̃ )= − μ∗ρ ∈ Ch1
k/k (X ) (because S coincides with S̃ , Z coincides with Z and

X coincides with X modulo anisotropic subvarieties) and ρ · [S̃ i ] = 0 ∈ Ch∗(X̃ ).

Hence, [S ]
Num(p)∼ 0 on Z . By Proposition 4.21, the class [S ] is represented by an

anisotropic subvariety on Z , and thus on X . Proposition 4.22 is proven.

Having treated 2-cycles on 4- and 5-folds, now the general case follows by an easy

induction.

Proposition 4.23. Let k be a flexible field and X be a smooth projective k -variety. If
u ∈ Ch2(X ) is

Num(p)∼ 0, then u = 0 ∈ Chk/k ;2(X ).
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Proof. Induction on n = dim(X ). The case n = 2 is trivial, and the cases n = 3,4,5 are
covered by Propositions 4.15, 4.21 and 4.22, respectively. This gives the base of induction.

(step) Let dim(X ) > 5. By Corollary 6.2, we may assume that u is represented by a

class of a smooth (possibly disconnected) surface S on X . Let π : X̃ → X be the blow-up
at S , with the special divisor E . Then π∗(u) has support on a smooth divisor E and

is represented there by a class of some surface S ′ (possibly nonsmooth). By Statement

6.5 and flexibility of k , there is an irreducible divisor Z , containing S ′, smooth outside
an anisotropic closed subscheme of S ′, such that the restriction Ch∗(X̃ ) � Ch∗(Z \S ′) is

surjective.

Let μ : X → X̃ be the embedded resolution of singularities of Z , with Z and S the

proper transforms of Z and S ′, respectively. Then Z is a smooth connected divisor on
X and μ∗([S ′]) is represented by [S ] ∈ Ch∗

k/k (X ) supported on Z (because the remaining

ingredients are anisotropic). Because Z , respectively, S , coincides with Z , respectively

S ′, modulo anisotropic subvarieties, the restriction Ch2
k/k (X ) � Ch2

k/k (Z \S ) = Ch2
k/k (Z )

is surjective (note that dim(Z ) � 5). But [S ]
Num(p)∼ 0 on X ; hence, it is

Num(p)∼ 0 on Z as
well. By inductive assumption, [S ] is represented by the class of an anisotropic surface

on Z , and thus on X . The induction step and Proposition 4.23 are proven.

4.3.5. Codimension 2-cycles on a 5-fold. The last remaining case of Theorem 4.11
is that of the codimension 2-cycles on a 5-fold. This is, by far, the hardest one and will

require various new tools and extensive computations.

Proposition 4.24. Let k be a flexible field and X be a smooth projective variety of

dimension 5. If u ∈ Ch2(X ) is
Num(p)∼ 0, then u = 0 ∈ Ch2

k/k (X ).

Proof. By Corollary 6.2, we may assume that u is represented by the class [S ] = ∑
i xiyi ,

where xi,yi are classes of very ample divisors. In particular, all of the components of S
are smooth and transversal to each other.

We start by eliminating (numerically) certain zero-dimensional characteristic classes of
S . This needs to be done still at the level of the union of complete intersections (before

passing to a single component). In the case of a prime 2, we also need to make numerically

trivial the square of the first Chern class of S at this stage.

Lemma 4.24.1. We may assume that u is represented by the class [S ], where components

of S are smooth complete intersections transversal to each other, with c3
1(NS⊂X ) · [S ]

Num(p)∼
0 and c1c2(NS⊂X ) · [S ]

Num(p)∼ 0 on X . For p = 2, we may assume, in addition, that

c2
1(NS⊂X ) · [S ]

Num(p)∼ 0 on X .

Proof. We need to treat separately the case p = 2 and that of odd primes.
(p = 2) Replace [S ] = ∑

i xiyi by [S ′] = ∑
i(xiyi + (xi + yi)xi + (xi + yi)yi + (xi + yi )

(xi +yi)). Then

c3
1(NS ′⊂X ) · [S ′] =

∑
i

(xiyi(xi +yi )
3 + (xi +yi )xiy3

i + (xi +yi )yix 3
i ) = 0 ∈ Ch5(X ).
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On the other hand, (c3
1 +c1c2)(NS ′⊂X ) · [S ′] = P2P1([S ′]), where P l is the reduced power

operation (modulo 2). By Proposition 4.6, because [S ′]
Num(p)∼ 0 on X , so is P2P1([S ′]).

Thus, c1c2(NS ′⊂X ) · [S ′]
Num(p)∼ 0 on X . Finally,

c2
1(NS ′⊂X ) · [S ′] =

∑
i

(xiyi(xi +yi )
2 + (xi +yi )xiy2

i + (xi +yi )yix 2
i ) = 0 ∈ Ch4(X ).

(p �= 2) In the case of an odd prime, we need to complement the above method with
blowing certain zero-cycles on S . This keeps the result in the form of a union of complete

intersections, while modifying the degrees of the needed zero-dimenional Chern classes.

How exactly it does this is described by the following result.

Sublemma 4.24.1.1. Let π : X̃ → X be a blow-up at a smooth point of degree 1 on

S . Then π∗([S ]) may be represented by the class of S ′, where the components of S ′ are
smooth complete intersections (transversal to each other), and deg(c1c2(NS ′⊂X̃ ) · [S ′]) =
deg(c1c2(NS⊂X ) · [S ])−2, and deg(c3

1(NS ′⊂X̃ ) · [S ′]) = deg(c3
1(NS⊂X ) · [S ])−8.

Proof. Clearly, we may assume that S consists of a single smooth complete intersection.
Let E = P4 be the special divisor of π and ρ = c1(O(1)) = −[E ]. By [5, Theorem 6.7],

π∗([S ]) = [S̃ ]+ [F ], where S̃ is the proper transform of S and F =P3 is a divisor on E given

by ρ. We can make S̃ and F transversal. If [S ] = xy , then S̃ is a complete intersection
(x +ρ)(y +ρ), and F is a complete intersection −ρ ·ρ. On S̃ we have ρ ·x = ρ ·y = 0, and
ρ3 is the minus class of a point. Then

deg
(
c1c2(NS̃⊂X̃ ) · [S̃ ]+ c1c2(NF⊂X̃ ) · [F ]

) = deg([S̃ ](x +ρ)(y +ρ)(x +y +2ρ))

= deg([S̃ ] · (xy(x +y)+2ρ3)) = deg(c1c2(NS⊂X ) · [S ])−2.

Similarly,

deg
(
c3
1(NS̃⊂X̃ ) · [S̃ ]+ c3

1(NF⊂X̃ ) · [F ]
)

= deg([S̃ ](x +y +2ρ)3) = deg([S̃ ] · ((x +y)3 +8ρ3)) = deg(c3
1(NS⊂X ) · [S ])−8.

Denote as c3
1 the deg(c3

1(NS⊂X ) · [S ]) and similar for c1c2. For [S ] = ∑
i xiyi , let us denote

[Sexp ] = ∑
i (xiyi − (xi +yi)xi − (xi +yi)yi + (xi +yi)(xi +yi )), which represents the same

class. This operation affects the degrees of Chern classes as follows.

Sublemma 4.24.1.2. The substitution of [S ] by [Sexp ] acts on characteristic numbers as

follows: (
(c′

1)
3

c ′
1c

′
2

)
=

(
20 −2
5 1

)(
c3
1

c1c2

)
.

Proof. It is sufficient to treat the case of a single complete intersection [S ] = xy . Then

c′
1
3 − c3

1 = deg((x +y)2(2(x +y))3 − (x +y)x (2x +y)3 − (x +y)y(2y +x )3)

= deg(xy(x +y)(19(x +y)2 −2xy)) = 19c3
1 −2c1c2, and

https://doi.org/10.1017/S1474748020000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000560


Isotropic motives 1309

c′
1c

′
2 − c1c2 = deg((x +y)22(x +y)3 − (x +y)2x 2(2x +y)− (x +y)2y2(2y +x ))

= deg(5xy(x +y)3) = 5c3
1 .

Now we can combine both methods. Substituting S by Sexp and blowing up the zero-

cycles 5
2c3

1(NS⊂X ) and 1
2c1c2(NS⊂X ) on it (note that p �= 2), we obtain [S ′′] = π∗([S ])

such that all of the components of S ′′ are still smooth complete intersections transversal

to each other, and by Sublemma 4.24.1.1,(
(c ′′

1)3

c ′′
1c

′′
2

)
=

(
0 −6
0 0

)(
c3
1

c1c2

)
.

Applying this procedure twice, we obtain c3
1 = 0 and c1c2 = 0. Lemma 4.24.1 is proven.

The next step is to make S into a single connected component. This will be possible

due to the preparations we made (trivial zero-dimensional Chern classes).

Lemma 4.24.2. We may assume that S is smooth connected with c3
1(NS⊂X ) · [S ]

Num(p)∼
0, c1c2(NS⊂X ) · [S ]

Num(p)∼ 0. For p = 2, we may assume, in addition, that c2
1(NS⊂X ) ·

[S ]
Num(p)∼ 0.

Proof. By Lemma 4.24.1 we may assume that S = ∪iSi consists of smooth transversal

complete intersections and the needed conditions on the characteristic classes are satisfied.

Let π : X̃ → X be the blow-up at all intersections Si ∩Sj , i �= j . Let E{i,j }
π{i,j }−→ Si ∩Sj be

the respective component of the special divisor, ρ{i,j } = −[E{i,j }] and ρ = ∑
{i,j } ρ{i,j }. By

[5, Theorem 6.7], π∗([S ]) = [S̃ ]+ [F ]+ [G ], where S̃ = ∐
i S̃ i is the proper transform of S ,

and F = ∐
{i,j } F{i,j }, where

[F{i,j }] = [E{i,j }] · (ρ{i,j } +π∗
{i,j }(c1(NSi⊂X )+ c1(NSj ⊂X ))) and [G ] = (−ρ) ·ρ.

Let S ′ = S̃ ∪F ∪G . Here ρ{i,j } satisfies ρ4
{i,j } +ρ3

{i,j }(xi +yi +xj +yj )+xiyixj yj = 0, where
[Sk ] = xkyk . Of course, one can get rid of the G-term by considering

[F̃ {i,j }] = [E{i,j }] · (2ρ{i,j } +π∗
{i,j }(c1(NSi⊂X )+ c1(NSj ⊂X ))).

This will work for odd primes. But for p = 2, this term really makes a difference.

The following result computes the degrees of characteristic classes of S̃ , F , G and their

intersections in terms of those of S .

Sublemma 4.24.2.1.

(1) deg(c1c2(NS̃⊂X̃ ) · [S̃ ]) = 2 ·deg(c1c2(NS⊂X ) · [S ]);
(2) deg(c1c2(NF⊂X̃ ) · [F ]) = deg(c1c2(NS⊂X ) · [S ]); deg(c1c2(NG⊂X̃ ) · [G ]) = 0;
(3) deg(c3

1(NS ′⊂X̃ ) · [S ′]) = deg((c3
1 +4c1c2)(NS⊂X ) · [S ]);

(4) deg(c1(NS̃⊂X̃ ) · [S̃ ] · [F ]) = −3 ·deg(c1c2(NS⊂X ) · [S ]);
(5) deg(c1(NF⊂X̃ ) · [S̃ ] · [F ]) = −2 ·deg(c1c2(NS⊂X ) · [S ]).

Proof. Let ρi = ∑
j �=i ρ{i,j }. The Chern roots of S̃i are ρi + xi,ρi + yi , and the Chern

roots of F{i,j } are −ρ{i,j },ρ{i,j } + xi + yi + xj + yj . Denote: ai = xi + yi , bi = xiyi , and
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a{i,j } = ai +aj , b{i,j } = bibj . Using the equation for ρ{i,j } and the fact that ρ{i,j }, multiplied
by any monomial of degree � 2 in x and ys, is zero, we get

deg(c1c2(NS̃⊂X̃ ) · [S̃ ]) = deg
(∑

i

(ρi +xi )
2(ρi +yi )

2(2ρi +ai)

)
= deg

(∑
i

(2ρ5
i +5ρ4

i ai + b2
i ai)

)
= deg

(
2
∑
i

b2
i ai−

∑
i

biai ·
(∑

j

bj
))

= 2 ·deg(c1c2(NS⊂X ) · [S ]),

because
∑

j xj yj = [S ]
Num(p)∼ 0 on X . Analogously,

deg(c1c2(NF⊂X̃ ) · [F ]) = deg
(∑

{i,j }
ρ2

{i,j }(ρ{i,j } +a{i,j })2a{i,j }
)

= deg
(∑

{i,j }
ρ4

{i,j }a{i,j }
)

= deg
(∑

i

∑
j �=i

− bibjai

)
= deg

(∑
i

b2
i ai −

(∑
i

biai

)(∑
j

bj
))

= deg(c1c2(NS⊂X ) · [S ]),

again because [S ]
Num(p)∼ 0 on X . Using the same properties, we obtain

deg(c3
1(NS̃⊂X̃ ) · [S̃ ]) = deg

(∑
i

(ρi +xi )(ρi +yi )(2ρi +ai)
3
)

= deg
(∑

i

(8ρ5
i +20ρ4

i ai + bia3
i )

)
= deg

∑
i

(4b2
i ai + bia3

i )−4deg
(∑

i

biai ·
∑
j

bj
)

= deg((4c1c2 + c3
1)(NS⊂X ) · [S ]), and

deg(c3
1(NF⊂X̃ ) · [F ]) = deg

∑
{i,j }

−ρ{i,j }(ρ{i,j } +a{i,j })a3
{i,j } = 0.

Clearly, deg(c3
1(NG⊂X̃ ) · [G ]) = 0 and deg(c1c2(NG⊂X̃ ) · [G ]) = 0, because c1(NG⊂X̃ ) = 0.

As a result, deg(c3
1(NS ′⊂X̃ ) · [S ′]) = deg((c3

1 +4c1c2)(NS⊂X ) · [S ]).
Finally, deg(c1(NS̃⊂X̃ ) · [S̃ ] · [F ]) =

deg
∑
{i,j }

(
c1(NS̃ i⊂X̃ )[S̃ i ]+ c1(NS̃ j ⊂X̃ )[S̃ j ]

)
(−ρ{i,j })(ρ{i,j } +a{i,j })

= deg
(∑

{i,j }
−ρ3

{i,j }(4ρ{i,j } +3a{i,j })(ρ{i,j } +a{i,j })
)

= deg
(∑

{i,j }
−ρ4

{i,j }(4ρ{i,j } +7a{i,j })
)

= deg
∑
{i,j }

(4ρ4
{i,j } +7b{i,j })a{i,j } = 3deg

∑
{i,j }

b{i,j }a{i,j } = −3deg(c1c2(NS⊂X ) · [S ]); and
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deg(c1(NF⊂X̃ ) · [S̃ ] · [F ]) = deg
∑
{i,j }

((ρi +xi )(ρi +yi)+ (ρj +xj )(ρj +yj ))

× (−ρ{i,j })(ρ{i,j } +a{i,j })a{i,j }

= deg
∑
{i,j }

(−2ρ4
{i,j }a{i,j }) = −2deg(c1c2(NS⊂X ) · [S ]).

For the prime 2 we also need to control the square of the first Chern class of S .

Sublemma 4.24.2.2. For p = 2, we have

c2
1(NS̃⊂X̃ ) · [S̃ ] = π∗c2

1(NS⊂X ) · [S ]
Num(p)∼ 0 and c2

1(NF⊂X̃ ) · [F ] = 0.

Proof. Using the fact that the centers of the blow-up π were one-dimensional, we obtain

c2
1(NS̃⊂X̃ ) · [S̃ ] =

∑
i

(ρi +xi )(ρi +yi )(xi +yi)
2 =

∑
i

xiyi(xi +yi )
2 = π∗c2

1(NS⊂X ) · [S ];

c2
1(NF⊂X̃ ) · [F ] =

∑
{i,j }

(−ρ{i,j })(ρ{i,j } +xi +yi +xj +yj )(xi +yi +xj +yj )
2 = 0.

We may assume that our class is represented by the class of S ′ = S̃ ∪F ∪G , where S̃ , F
and G are smooth (possibly disconnected) and transversal to each other (note that we do

not have triple intersections of Sis), and [G ] = (−ρ) ·ρ, for some divisor ρ. Moreover, both
S̃ and F have trivial c3

1 and c1c2 characteristic numbers and deg(c1(NS̃⊂X̃ ) · [S̃ ∩F ]) = 0
and deg(c1(NF⊂X̃ ) · [S̃ ∩F ]) = 0. Because components of S̃ , respectively F , are disjoint,

by Statement 6.6 there exists a blow-up μ : X → X̃ such that μ∗([S̃ ]) and μ∗([F ]) are
represented by the classes [S ] and [F ] of smooth connected transversal subvarieties, such

that S ∩F is connected, with trivial c3
1 and c1c2 characteristic numbers for both S and F

and with deg(c1(NS⊂X ) · [S ∩F ]) = 0 and deg(c1(NF⊂X ) · [S ∩F ]) = 0. For p = 2, we have,

in addition, c2
1(NS⊂X ) · [S ]

Num(p)∼ 0 and c2
1(NF⊂X ) · [F ]

Num(p)∼ 0. As a next step, we will

combine S ∪F into a single component. We start with the following general statement

about codimension 2 subvarieties on a variety of an arbitrary dimension.

Sublemma 4.24.2.3. Let Y = ∪iYi be a divisor with strict normal crossings on X such

that Yis and all of the intersections Y{i,j } = Yi ∩Yj , for i �= j , are connected. Let S =
∪iSi be a union of smooth transversal components, where Si ⊂ Yi are divisors. Suppose

that [Si ∩ Sj ]
Num(p)∼ 0 on Y{i,j }. Then [S ] = [S ′], where S ′ = ∪iS ′

i , with S ′
i ⊂ Yi smooth

connected and transversal to each other, and all of the intersections S ′
i ∩S ′

j anisotropic.

This procedure does not change the characteristic classes of NS⊂X in Ch∗(X ).

Proof. Adding to Si a p-multiple of a very ample divisor on Yi , we may assume that Si is

given by a very ample divisor on Yi (this does not change the characteristic classes (mod

p)). Let S ′
i be the generic representative of the linear system |Si |. Then S ′

i is connected
and, by Statement 6.3, the restriction Ch2(Yi ∩ Yj ) � Ch0(S ′

i ∩ S ′
j ) is surjective. This

implies that S ′
i ∩S ′

j is anisotropic, because [Si ∩Sj ]
Num(p)∼ 0 on Yi ∩Yj . Because [S ′

i → Yi ]
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is cobordant to [Si → Yi ] in �∗(Yi), all of the characteristic classes are preserved. Finally,

because k is flexible, we may assume that S ′ is defined over k .

Using this result we can make S ∪F into a single smooth component with the needed

Chern classes numerically trivial. This is done with the help of the following statement,

specific to dimension 5.

Sublemma 4.24.2.4. Let S = S1 ∪S2 with S1,S2 smooth connected transversal to each

other and connected S{1,2} = S1 ∩S2.

(1) Suppose that deg(c1(NSi⊂X ) · [S{1,2}]) = 0, deg(c1c2(NSi⊂X ) · [Si ]) = 0, for i = 1,2,

deg(c3
1(NS⊂X ) · [S ]) = 0, and for p = 2, c2

1(NS⊂X ) · [S ]
Num(p)∼ 0 on X . Then there

exists a blow-up ε : X̂ → X such that ε∗([S ]) is represented by the class of a smooth

connected subvariety Ŝ with deg(c1c2(NŜ⊂X̂ ) · [Ŝ ]) = 0, deg(c3
1(NŜ⊂X̂ ) · [Ŝ ]) = 0, and

for p = 2, c2
1(NŜ⊂X̂ ) · [Ŝ ]

Num(p)∼ 0 on X̂ .

(2) If [S ]
Num(p)∼ 0 and deg(c1c2(NSi⊂X ) · [Si ]) = 0, then deg(c1(NSi⊂X ) · [S{1,2}]) = 0.

Proof. (2) Denote Ni = NSi⊂X . Then deg(c1(N1) · [S{1,2}]) = deg(c1(N1) · [S1] · [S2]) =
deg(c1(N1) · [S1] · [S ])−deg(c1(N1) · [S1] · [S1]) = −deg(c1c2(N1) · [S1]) = 0, as [S ]

Num(p)∼ 0
and, similarly, deg(c1(N2) · [S{1,2}]) = 0.
(1) Let π : X̃ → X be the blow-up in the components of S , with the components

Ei
πi−→ Si of the special divisor, and ρi = −[Ei ]. Note that E1,E2 and E{1,2} = E1 ∩E2

are connected. Then π∗([Si ]) = [Ei ] · (ρi +π∗
i c1(Ni)). Consider the classes [E1](ρ1 −ρ2 +

π∗
1c1(N1)) and [E2](ρ1+ρ2+π∗

2c1(N2)). We may assume that these classes are represented

by the classes of smooth connected subvarieties S ′
1 and S ′

2, contained in E1 and E2,

respectively, and transversal to each other and to E{1,2}. Let S ′ = S ′
1 ∪S ′

2. Then [S ′] =
π∗([S ]). Using the equation ρ2

i +ρiπ
∗c1(Ni)+π∗c2(Ni) = 0, on E{1,2} we get

[S ′
1 ∩S ′

2]E{1,2} = (ρ1 −ρ2 +π∗
{1,2}c1(N1))× (ρ1 +ρ2 +π∗

{1,2}c1(N2))

= π∗
{1,2}(−c2(N1)+ c2(N2)+ c1(N1)c1(N2))+ρ1π

∗
{1,2}c1(N2)+ρ2π

∗
{1,2}c1(N1)

= ρ1π
∗
{1,2}c1(N2)+ρ2π

∗
{1,2}c1(N1),

where π{1,2} : E{1,2} → S{1,2} = S1 ∩S2 is the projection. Here S{1,2} is a smooth connected

curve, with deg(c1(Ni) · [S{1,2}]) = 0. Because S{1,2} is connected, this implies that [S ′
1 ∩

S ′
2]

Num(p)∼ 0 on E{1,2}.
By Sublemma 4.24.2.3, we can substitute S ′

i by smooth connected S̃ i , transversal to each

other, with anisotropic S̃ 1 ∩ S̃ 2, without changing characteristic classes in Ch∗(X̃ ). Let

η : X → X̃ be the blow-up in S̃ 1, S̃ 2, with the special divisor V . Here V is smooth outside
an anisotropic subscheme (the intersection of components), so we can treat it as a single

component. η∗([S̃ ]) is represented by the class of a subvariety S of V whose characteristic

classes are η∗ of those of S̃ and that is smooth outside an anisotropic subscheme. Then
using Statement 6.5 (with V treated as a single component) and flexibility of k , we

can find an irreducible divisor Z on X , smooth outside an anisotropic subscheme, and

containing S . Let μ : X̂ → X be the embedded desingularization of Z and Ẑ , S ′′ be the
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proper pre-images of Z and S . Because the singularities of Z are anisotropic, the map

μ∗ : Ch∗
k/k (X )

=→ Ch∗
k/k (X̂ ) is an isomorphism, and μ∗([S ]) = [S ′′]. Let Ŝ be a smooth

connected variety representing [S ′′] on the smooth connected divisor Ẑ . Because S ′′ is
smooth outside an anisotropic subscheme, the characteristic classes of Ŝ with values in
Ch∗

k/k (X̂ ) coincide with μ∗ of those of S .
It remains to check that the needed characteristic classes of Ŝ are trivial. Using the

fact that E{1,2} is a P1 ×P1-bundle over a curve S{1,2} and the equation ρ2
i +ρiπ

∗
i c1(Ni)+

π∗
i c2(Ni) = 0 on Ei , we get

deg(c3
1(NŜ⊂X̂ ) · [Ŝ ]) = deg(c3

1(NS ′⊂X̃ ) · [S ′])
= deg([E1](ρ1 −ρ2 +π∗

1c1(N1))(−ρ2 +π∗
1c1(N1))

3

+ [E2](ρ2 +ρ1 +π∗
2c1(N2))(ρ1 +π∗

2c1(N2))
3)

= deg([E1]ρ1(π
∗
1c3

1(N1)+3ρ2
2π∗

1c1(N1)−ρ3
2)+ [E2]ρ2(π

∗
2c3

1(N2)+3ρ2
1π∗

2c1(N2)+ρ3
1))

= deg(π∗
1 (c3

1(N1)[S1])ρ1)+deg(π∗
2 (c3

1(N2)[S2])ρ2)

−deg(π∗
{1,2}((2c1(N1)+4c1(N2))[S{1,2}])ρ1ρ2)

= deg(c3
1(NS⊂X ) · [S ])−2deg(c1(N1) · [S{1,2}])−4deg(c1(N2) · [S{1,2}]) = 0,

Similarly,

deg(c1c2(NŜ⊂X̂ ) · [Ŝ ]) = deg(c1c2(NS ′⊂X̃ ) · [S ′])
= deg(−[E1]ρ1(ρ1 −ρ2 +π∗

1c1(N1))
2(−ρ2 +π∗

1c1(N1))

− [E2]ρ2(ρ2 +ρ1 +π∗
2c1(N2))

2(ρ1 +π∗
2c1(N2)))

= deg(−[E1]ρ1(ρ
2
2(π∗

1 (3c1(N1)+ c1(N2))+2ρ1)+ (ρ1 +π∗
1c1(N1))

2π∗
1c1(N1))

− [E2]ρ2(ρ
2
1(π∗

2 (3c1(N2)− c1(N1))+2ρ2)+ (ρ2 +π∗
2c1(N2))

2π∗
2c1(N2)))

= deg([E{1,2}]π∗
{1,2}(2c1(N1)+4c1(N2))ρ1ρ2)+deg([E1]ρ2

2(2ρ1π
∗
1c1(N1)))

+deg([E2]ρ2
1(2ρ2π

∗
2c1(N2)))

−deg([E1]π∗
1c1(N1)ρ1(ρ1 +π∗

1c1(N1))
2)−deg([E2]π∗

2c1(N2)ρ2(ρ2 +π∗
2c1(N2))

2)

= deg([E{1,2}] ·2π∗
{1,2}c1(N2)ρ1ρ2)+deg([E1] ·π∗

1c1c2(N1)(ρ1 +π∗
1c1(N1)))

+deg([E2] ·π∗
2c1c2(N2)(ρ2 +π∗

2c1(N2)))

= deg(c1c2(NS⊂X )[S ])+2 ·deg(c1(N2) · [S{1,2}]) = 0.

Finally, for p = 2, the fact that c2
1(NŜ⊂X̂ ) · [Ŝ ]

Num(p)∼ 0 follows from Sublemma 4.24.2.5.

Sublemma 4.24.2.5. In the situation of Sublemma 4.24.2.4, on X̂ ,

c2
1(NŜ⊂X̂ ) · [Ŝ ]

Num(p)∼ ε∗(−2[S1] · [S2]+ c2
1(NS⊂X ) · [S ]).

Proof. In the notations of the proof of Sublemma 4.24.2.4, denoting ν = η ◦μ and using

the fact that E{1,2} is a P1 ×P1-bundle over a curve S{1,2}, the equation ρ2
i +ρiπ

∗
i c1(Ni)+

π∗
i c2(Ni) = 0 on Ei , and [5, Theorem 6.7], we obtain

c2
1(NŜ⊂X̂ ) · [Ŝ ] = ν∗(c2

1(NS ′⊂X̃ ) · [S ′])
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= ν∗([E1](ρ1 −ρ2 +π∗
1c1(N1))(−ρ2 +π∗

1c1(N1))
2

+ [E2](ρ2 +ρ1 +π∗
2c1(N2))(ρ1 +π∗

2c1(N2))
2)

= ν∗([E1](ρ2
2(π∗

1 (3c1(N1)+ c1(N2))+ρ1)+ρ2(−2π∗
1c1(N1)ρ1)+π∗

1c2
1(N1)(π

∗
1c1(N1)+ρ1))

+ [E2](ρ2
1(π∗

2 (3c1(N2)− c1(N1))+ρ2)+ρ1(2π∗
2c1(N2)ρ2)+π∗

2c2
1(N2)(π

∗
2c1(N2)+ρ2))

= ν∗((j{1,2})∗(π∗
{1,2}(−3c1(N1)−3c1(N2))ρ2 +π∗

{1,2}(−3c1(N2)+3c1(N1))ρ1 −2ρ1ρ2)

+π∗(c2
1(N1)[S1])+π∗(c2

1(N2)[S2]))
Num(p)∼ ν∗π∗(c2

1(NS⊂X ) · [S ]−2[S1] · [S2]),

because c1(Ni)
Num(p)∼ 0 on S{1,2} (note that S{1,2} is connected). Here j{1,2} : E{1,2} → X̃ is

the closed embedding.

The subvariety S ∪F satisfies the conditions of Sublemma 4.24.2.4(1). Thus, we may
substitute it by a single connected component and assume that our class is represented

by the class of T ∪ G , where [G ] = (−ρ) · ρ, for some divisor ρ, and T is a smooth

connected subvariety with c3
1(NT⊂X ) · [T ]

Num(p)∼ 0, c1c2(NT⊂X ) · [T ]
Num(p)∼ 0, and for p = 2,

in addition, c2
1(NT⊂X ) · [T ]

Num(p)∼ 0. We may assume T and G transversal, with G and

T ∩G connected. Clearly, c3
1(NG⊂X ) · [G ]

Num(p)∼ 0, c1c2(NG⊂X ) · [G ]
Num(p)∼ 0, and for p = 2,

c2
1(NG⊂X ) · [G ]

Num(p)∼ 0 as well. Because [T ]+ [G ]
Num(p)∼ 0, applying Sublemma 4.24.2.4(2)

and (1) again, we may represent our class by [S ], where S is smooth connected with

c3
1(NS⊂X ) · [S ]

Num(p)∼ 0, c1c2(NS⊂X ) · [S ]
Num(p)∼ 0, and for p = 2, in addition, c2

1(NS⊂X ) ·
[S ]

Num(p)∼ 0. Lemma 4.24.2 is proven.

Now as S is smooth connected with numerically trivial zero-dimensional Chern classes,

we can move up the dimension and make the square of the first Chern class numerically

trivial as well. This is already achieved for the prime 2. It remains to treat the odd primes.
We will actually make the mentioned c2

1 numerically trivial not only on X but already

on S itself. This will be important for the next step.

Lemma 4.24.3. We may assume that S is smooth connected with c3
1(NS⊂X ) · [S ]

Num(p)∼ 0,
c1c2(NS⊂X ) · [S ]

Num(p)∼ 0 and c2
1(NS⊂X ) · [S ]

Num(p)∼ 0 on X . We also may assume that

c2
1(NS⊂X )

Num(p)∼ 0 on S .

Proof. By Lemma 4.24.2, we have all of the needed conditions, aside from that on c2
1 . Let

us first make c2
1(NS⊂X ) · [S ]

Num(p)∼ 0 on X . For p = 2 we already have it by Lemma 4.24.2.

(p �= 2,3) Let π : X̃ → X be the blow-up in the smooth connected complete intersection

R = 1
2c1(NS⊂X ) · 1

3c1(NS⊂X ) (of very ample divisors on S ). Let E be the special divisor

of π , and ρ = −[E ]. Then π∗([S ]) = [S̃ ]+ [F ], where S̃ is the proper transform of S and F
is a smooth connected (very ample) divisor on E , transversal to S̃ , with connected S̃ ∩F
and with [F ] = [E ](ρ + π∗

Ec1), where cl = cl (NS⊂X ). Also, c1(NS̃⊂X̃ ) = 2ρ + π∗
Sc1 and

c1(NF⊂X̃ ) = π∗
Ec1, where πS : S̃ → S and πE : E → R are natural projections. Because ρ
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satisfies the equation ρ2 + 5
6π∗

Sc1 ·ρ + 1
6π∗

Sc2
1 on S̃ , and dim(R) = 1, we have

c2
1(NS̃⊂X̃ ) · [S̃ ]+ c2

1(NF⊂X̃ ) · [F ] = [S̃ ](2ρ +π∗
Sc1)

2 + [E ](ρ +π∗
Ec1)π

∗
Ec2

1

= [S̃ ](−4 · 5
6π∗

Sc1 ·ρ −4 · 1
6π∗

Sc2
1 +4π∗

Sc1 ·ρ +π∗
Sc2

1)

= [S̃ ]( 2
3π∗

Sc1 ·ρ + 1
3π∗

Sc2
1)

Num(p)∼ [S̃ ] · 1
3π∗

Sc2
1,

because −[S̃ ]ρ is represented by the class of a P1-bundle P = PR(NR⊂S ) over R, and

c1
Num(p)∼ 0 on R, as deg(c3

1 · [S ]) = 0 and R is connected. By the same reason,

[S̃ ] · [F ] = [S̃ ](−ρ)(ρ +π∗
Ec1) = [S̃ ]( 5

6π∗
Sc1 ·ρ + 1

6π∗
Sc2

1 −π∗
Sc1 ·ρ)

Num(p)∼ [S̃ ] · 1
6π∗

Sc2
1 .

At the same time, because ρπ∗
Sc1

Num(p)∼ 0 on S̃ , as we saw above, and [S ]c3
1

Num(p)∼ 0, by
assumption,

c3
1(NS̃⊂X̃ ) · [S̃ ] = [S̃ ](2ρ +π∗

Sc1)
3 Num(p)∼ [S̃ ](8ρ3 +π∗

Sc3
1)

Num(p)∼
[S̃ ] ·8ρ3 = [P ] ·8( 5

6π∗
Sc1 ·ρ + 1

6π∗
Sc2

1)
Num(p)∼ 0, and

c3
1(NF⊂X̃ ) · [F ] = [E ](ρ +π∗

Ec1)c3
1 = 0,

again because dim(R) = 1 and c1
Num(p)∼ 0 on R. Using the same arguments,

c1c2(NS̃⊂X̃ ) · [S̃ ] = [S̃ ](2ρ +π∗
Sc1)(ρ

2 +π∗
Sc1 ·ρ +π∗

Sc2)
Num(p)∼

π∗
S (c1c2 · [S ])+ [S̃ ] ·2ρ3 Num(p)∼ π∗

S (c1c2 · [S ])
Num(p)∼ 0, and

c1c2(NF⊂X̃ ) · [F ] = [E ](ρ +π∗
Ec1)

2(−ρ)π∗
Ec1

Num(p)∼ 0.

Let ε : X̂ → X̃ be the blow-up from Sublemma 4.24.2.4 applied to S̃ ∪F . Then we get a

smooth connected subvariety Ŝ on X̂ such that c3
1(NŜ⊂X̂ ) · [Ŝ ]

Num(p)∼ 0 and c1c2(NŜ⊂X̂ ) ·
[Ŝ ]

Num(p)∼ 0. Finally, by Sublemma 4.24.2.5,

c2
1(NŜ⊂X̂ ) · [Ŝ ] = ε∗(c2

1(NS̃⊂X̃ ) · [S̃ ]+ c2
1(NF⊂X̃ ) · [F ]−2[S̃ ] · [F ])

Num(p)∼
ε∗([S̃ ] · ( 1

3π∗
Sc2

1 −2 · 1
6π∗

Sc2
1)) = 0.

The case (p �= 2,3) is done.

(p = 3) Let d1 = c2
1 + c2 be the characteristic class of degree 2 corresponding to

the reduced power operation P1 : Ch∗ → Ch∗+2 (modulo 3). Because [S ]
Num(p)∼ 0, by

Proposition 4.6, d1(NS⊂X ) · [S ] = P1([S ])
Num(p)∼ 0 as well. On the other hand, c2(NS⊂X ) ·

[S ] = [S ] · [S ]
Num(p)∼ 0. Hence, c2

1(NS⊂X ) · [S ]
Num(p)∼ 0 too. The case (p = 3) is done.

Thus, we managed to make c2
1(NS⊂X ) · [S ]

Num(p)∼ 0, while keeping c3
1(NS⊂X ) · [S ]

Num(p)∼ 0
and c1c2(NS⊂X ) · [S ]

Num(p)∼ 0. Let us now make the complete intersection c1(NS⊂X ) ·
c1(NS⊂X ) on S anisotropic.
By blowing up S , we may assume that S ⊂ Y , where Y is smooth connected divisor

on X . Note that the new c3
1,c1c2 and c2

1 characteristic classes are the pull-backs of

the old ones and so are still numerically trivial. By Statement 6.5 and flexibility of k ,
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there exists an irreducible and smooth outside an anisotropic subscheme (of S ) divisor Z
containing S , such that the restriction Ch1(X ) � Ch1(Z \S ) is surjective. Let π : X̃ → X
be an embedded desingularisation of Z and S , with proper pre-images Z̃ and S̃ , which
are smooth connected subvarieties. Because singularities were anisotropic, the maps

π∗ : Ch∗
k/k (X )

=→ Ch∗
k/k (X̃ ) and π∗

Z : Ch∗
k/k (Z \S )

=→ Ch∗
k/k (Z̃\S̃ ) are isomorphisms, so

the restriction Ch1
k/k (X̃ ) � Ch1

k/k (Z̃\S̃ ) is surjective as well. Thus, the group Ch1
k/k (Z̃ )

is generated by the image of j ∗ : Ch1
k/k (X̃ ) → Ch1

k/k (Z̃ ) and the class [S̃ ]. In addition, on

X̃ , the classes c3
1(NS̃⊂X̃ ) · [S̃ ], c1c2(NS̃⊂X̃ ) · [S̃ ] and c2

1(NS̃⊂X̃ ) · [S̃ ] are
Num(p)∼ 0. Because

c2
1(NS̃⊂X̃ ) · [S̃ ]

Num(p)∼ 0 on X̃ , this class will be orthogonal to the im(j ∗) on Z̃ . On Z̃ ,

deg(c2
1(NS̃⊂X̃ )[S̃ ] ·Z̃ [S̃ ]) = deg(c2

1(NS̃⊂X̃ )c1(NS̃⊂Z̃ )[S̃ ]) = deg(c3
1(NS̃⊂X̃ ) · [S̃ ]) = 0,

because c2
1(NS̃⊂X̃ ) · [S̃ ]

Num(p)∼ 0 on X̃ and c1(NZ̃⊂X̃ ) is in the image of j ∗. Hence,

c2
1(NS̃⊂X̃ ) · [S̃ ]

Num(p)∼ 0 already on Z̃ . Because this class is a complete intersection on Z̃ ,
the intersection of generic representatives of the respective (very ample) linear systems is

anisotropic by Statement 6.3. The respective subvariety S is smooth connected, and c3
1

and c1c2 characteristic classes are preserved. Because k is flexible, we may assume that
our varieties are defined over k . Lemma 4.24.3 is proven.

In order to apply Corollary 6.12 and finish the proof of Proposition 4.24, it remains to

terminate numerically the first Chern class of our S .

Lemma 4.24.4. We may assume that S is smooth connected and cm
1 (NS⊂X ) · [S ]

Num(p)∼ 0,
for m � 0.

Proof. By Lemma 4.24.3, we may assume that S is smooth connected variety with the

numerically trivial c3
1 , c1c2 and c2

1 characteristic classes. It remains to make c1 numerically
trivial. We need to treat separately the case p = 2 and that of odd primes.

(p �= 2) Let R be the generic representative of the (very ample) linear system | 12c1(NS⊂X )|
on S . It is a smooth connected surface and, by Statement 6.3, we have the surjection

Ch1(S ) � Ch1(R). Because k is flexible, we may assume that it is defined over k . Let
π : X̃ → X be the blow-up at R, with the special connected divisor E and ρ = −[E ]. Then
π∗([S ]) = [S̃ ]+ [F ], where S̃ is the proper pre-image of S and F is a smooth connected

divisor on E transversal to S̃ , with connected S̃ ∩F and with [F ] = [E ](ρ +π∗
Ec1), where

cl = cl (NS⊂X ). We have

c1(NS̃⊂X̃ ) · [S̃ ]+ c1(NF⊂X̃ ) · [F ] = [S̃ ](2ρ +π∗
Sc1)+ [E ](ρ +π∗

Ec1)π
∗
Ec1

= [E ](ρ +π∗
Ec1)π

∗
Ec1

Num(p)∼ 0,

because, on S̃ ∼= S , ρ = −[R], and c1 · [R]
Num(p)∼ 0 on R, as c2

1(NS⊂X )
Num(p)∼ 0 on S and

Ch1(S ) � Ch1(R). On the other hand, on R = S̃ ∩E ,

[S̃ ] · [F ] = [S̃ ](−ρ)(ρ + c1) = [R]( 1
2c1)

Num(p)∼ 0,
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and, moreover, we may assume the intersection S̃ ∩F to be anisotropic. By Statement 6.6,

there exists a blow-up μ : X → X̃ such that μ∗([S̃ ∪F ]) is represented by the class of a

smooth connected subvariety S and such that the characteristic classes of S in Ch∗
k/k are

μ∗ of the respective classes of S̃ ∪F . In particular, the c1-class of it is numerically trivial.

It remains to check c2
1 and c3

1 characteristic classes of S̃ ∪F . We have

c2
1(NS̃⊂X̃ ) · [S̃ ]+ c2

1(NF⊂X̃ ) · [F ] = [S̃ ](2ρ +π∗
Sc1)

2 + [E ](ρ +π∗
Ec1)π

∗
Ec2

1

= [E ](ρ +π∗
Ec1)π

∗
Ec2

1
Num(p)∼ 0

on X̃ , because (2ρ +π∗
Sc1) = 0 on S̃ , and deg(c3

1(NS⊂X ) · [S ]) = 0 while R is connected.

Similarly,

c3
1(NS̃⊂X̃ ) · [S̃ ]+ c3

1(NF⊂X̃ ) · [F ] = [S̃ ](2ρ +π∗
Sc1)

3 + [E ](ρ +π∗
Ec1)π

∗
Ec3

1 = 0,

by the same and dimensional reasons. The case (p �= 2) is done.
(p = 2) The characteristic class c1 corresponds to the reduced power operation P1 : Ch∗ →
Ch∗+1 (modulo 2). Because [S ]

Num(p)∼ 0, by Proposition 4.6, c1(NS⊂X ) · [S ] = P1([S ])
Num(p)∼

0 as well. Lemma 4.24.4 is proven.

Proposition 4.24 now follows from Corollary 6.12 and flexibility of k .

Because Conjecture 4.7 was established for all varieties of dimension � 5, from the
existence of push-forward and pull-back structure we obtain that isotropic Chow groups

form a quotient of the third theory of higher type associated to Ch.

Proposition 4.25. Let k be a flexible field. The projection Ch∗ � Ch∗
k/k factors through

Ch∗
(3).

Proof. A class u ∈ Ch∗(X ) is = 0 ∈ Ch∗
(3) if it can be presented as f∗(y · g∗(v)), where

X
f←− X ×Q

g−→ Q are natural projections, Q is a smooth projective variety of dimension

5, y ∈ Ch∗(X ×Q) and v ∈ Ch∗(Q) is
Num(p)∼ 0. Then, by Proposition 4.15, Corollary 4.17,

Proposition 4.18, Proposition 4.22 and Proposition 4.24, v = 0 ∈ Ch∗
k/k (Q), so u = 0 ∈

Ch∗
k/k (X ).

5. Thick local categories

In this section we extend the definition of local motivic category to arbitrary finite

coefficients Z/n and introduce the thick versions of it, which have better conservativity

properties.

Definition 5.1. Let n ∈ N. Let P and Q be smooth varieties of finite type over k . We

say that XQ
n
>XP if P is n-isotropic over every generic point of Q , and Q is n-anisotropic

over some generic point of P .

Let E/k be some finitely generated extension and P be a smooth connected variety

with k(P) = E . Let Qn be the disjoint union of all smooth connected varieties Q of finite

https://doi.org/10.1017/S1474748020000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000560


1318 A. Vishik

type with XQ
n
> XP and

ϒn
P := X̃Qn ⊗XP .

Generalising Definition 2.3, we can define the local motivic category with Z/n-coefficients.

Definition 5.2. The local motivic category with Z/n-coefficients

DM(E/k ;Z/n) := ϒn
P ⊗DM(k ;Z/n).

If we are interested in a p-localised situation, we can define the thick local motivic

categories.

Definition 5.3. The p-local motivic category of thickness r and F -coefficients

DM({E/k}r ;F ) := ϒ
pr

P ⊗DM(k ;F ).

In particular, the local category with Z/pr -coefficients DM(E/k ;Z/pr ) is the p-local
motivic category of thickness r and Z/pr -coefficients DM({E/k}r ;Z/pr ).

Because XQ
n
> XP implies that XQ

m
> XP for m|n, we get natural functors

DM(E/k ;Z/n) → DM(E/k ;Z/m) and DM({E/k}r ;F ) → DM({E/k}s;F ),

for any r � s and m|n, commuting with the natural functors ϕ
Z/n
E : DM(k ;Z/n) →

DM(E/k ;Z/n).

In the usual way, we can introduce local geometric motives, local Chow motives and

local Chow groups. Exactly as in Proposition 2.16 we get the description of isotropic
Chow groups.

Proposition 5.4.

CHk/k (X ;Z/n) = CH(X ;Z/n)/(n-anisotropic classes).

Similarly, for the thick local Chow groups, we have

CH{k/k}r (X ;F ) = CH(X ;F )/(pr -anisotropic classes).

Because every n-anisotropic class is numerically equivalent to zero modulo n, we obtain
the surjection

CHk/k (X ;Z/n) � CHNum(X ;Z/n). (1)

Question 5.5. Let k be flexible. Is it true that CHk/k (X ;Z/pr ) = CHNum(X ;Z/pr )?

Using the arguments of Proposition 4.15 and Corollary 4.17, we see that the answer

is positive for divisors and for zero-cycles. In particular, the projection CH(X ;Z/pr ) �
CHk/k (X ;Z/pr ) factors through CHalg(X ;Z/pr ). In addition, it is easy to see that it is
true for cycles of dimension 1, provided p > 2, so the mentioned projection factors through

CH(2)(X ;Z/pr ), in this case.
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With the increase of r (and fixed s), the family of functors

ϕ
r ;Z/ps

E : DM(k ;Z/ps) → DM({E/k}r ;Z/ps),

for all f.g. extensions E/k , becomes more and more conservative. But the target categories

are getting more complicated. At the same time, the categories DM(E/k ;Z/pr ) (that is,

r = s) should be simpler, and the natural strategy to improve conservativity is to pass to
Z(p)-coefficients.

The local motivic category with Z(p)-coefficients DM(E/k ;Z(p)) should be the

local category of ∞ thickness DM({E/k}∞;Z(p)). This should be defined as a limit
limr DM({E/k}r ;Z(p)) of categories of finite thickness and will be considered in a separate

paper.

6. Auxiliary results

6.1. Up to blow-up, Chow ring of a variety is generated by divisors

The following result is crucial for most of our constructions.

Theorem 6.1. Let X be a smooth projective variety and y ∈ CHr (X ). Then there exists

a blow-up π : X̃ → X such that π∗(y) is a Z-polynomial in divisor classes.

Proof. Induction on the dim(X ). Below we will denote this induction as Ind1.

(Ind1 base) dim(X ) = 0. Nothing to check.

(Ind1 step) We can assume that r > 0. Then y has support on some divisor. By blowing
X up we can assume that this divisor has strict normal crossings, and by the following

lemma we can assume that y has support on a smooth divisor D .

Lemma 6.1.1. If y = ∑
i yi , and the statement is true for each yi , then it is true for y.

Proof. Suppose, for each i , there exists such a blow-up πi : X̃ i → X that π∗
i (yi ) is a

polynomial in divisorial classes. Then, by the results of Hironaka [7], there exists a blow-
up π : X̃ → X that covers πi , for each i . Then, clearly, π∗(y) is a polynomial in divisorial

classes.

Let now jD : D → X be a smooth divisor and y is supported on D . Let us say that the
pair (D,X ) has a special structure with the base B if D is a consecutive projective bundle

over B where the canonical line bundles O(1) of all of these fibrations are the restrictions

of some line bundles from X . Every pair (D,X ) possesses a ‘trivial’ special structure with
the base B = D . We will prove our statement by the induction on the dim(B). We will

denote this induction as Ind2 below.

(Ind2 base) dim(B) = 0. Then D is a disjoint union of consecutive projective bundles

whose canonical bundles O(1) are restrictions of some line bundles from X . Then CH∗(D)

is generated by j ∗
D (c1(L)), for some line bundles L on X . Because y = (jD )∗(y), for some

y ∈ CH∗(D), it is a polynomial in divisorial classes.
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(Ind2 step) We have y = (jD )∗(y), where y = ∑
l ε

∗(ul ) ·rl with ul ∈ CH∗(B), ε : D → B is

the natural projection, and rl is a monomial in ρts, where ρt = c1(O(1)t ) is the restriction

of some divisorial class from X . By Lemma 6.1.1, we can assume that y = ε∗(u), where
u ∈ CH∗(B).

Because dim(B) < dim(X ), by the inductive assumption of Ind1, there exists a blow-up

τ : B̃ → B , such that τ ∗(u) is a polynomial in divisorial classes. We have a Cartesian
diagram of blow-ups:

D̃
τD ��

ε̃
��

D

ε

��
B̃ τ �� B

Let ϕ : X̃ → X be a blow-up of X in the same centers as τD , and jD̃ : D̃ → X̃ . Then

ϕ∗((jD )∗ε∗(u)) = (jD̃ )∗τ ∗
D (ε∗(u)) + ∑

m vm , where vm are supported on the components
Ẽm of the special divisor Ẽ = ∪m Ẽm of the blow-up ϕ (see [5, Theorem 6.7] or [16,

Proposition 5.27]). Let Xm be a variety obtained after m blow-ups with the special

divisor jEm : Em → Xm of the mth blow-up and the projection ϕm : X̃ → Xm whose

restriction to Ẽm is the blow-up αm : Ẽm → Em . Then (again by [5, Theorem 6.7]), the
image of

(ϕ∗
m(jEm )∗ − (jẼm )∗α∗

m) : CH∗(Em) −→ CH∗(X̃ )

has support on ∪n>m Ẽn , and the map

⊕α∗
m : ⊕m CH∗(Em) −→ CH∗(Ẽ )

is surjective (because ∪n�m Ẽn\∪n>m Ẽn is an open subvariety of Em). Hence, the map

⊕ϕ∗
m(jEm )∗ : ⊕m CH∗(Em) −→ CH∗(X̃ )

covers the image of (jẼ )∗.
The pair (Em,Xm) has a special structure with the base of dimension smaller than B

(namely, the center of the mth blow-up of τ ), where c1(O(1)) of the external projective

fibration is the restriction of [−Em ] from Xm , and all of the other (internal) canonical

bundles are induced by the special structure on (D,X ) and thus are restrictions of
some divisorial classes from X . By the inductive assumption of Ind2, any element in

(jEm )∗ CH∗(Em) is a polynomial in divisorial classes over some blow-up X̃m → Xm . By

Lemma 6.1.1, we obtain that
∑

m vm is a polynomial in divisorial classes over some blow-
up of X̃ . Hence, it remains to deal with (jD̃ )∗τ ∗

D (ε∗(u)).

We know that τ ∗
D (ε∗(u)) = ε̃∗τ ∗(u) is a polynomial in divisorial classes by construction.

Let us denote this element again as y and the divisor (on which it is supported) as D . By

Lemma 6.1.1, we can assume that y is a monomial x1 · . . . · xr−1 in very ample divisorial
classes on D . We will use induction on r . Below it will be denoted as the Ind3.

(Ind3 base) When r = 1 there is nothing to prove as y = (jD )∗(y) = [D ].

(Ind3 step) Consider the chain of codimension 1 regular embeddings D
i1←− Y1

i2←−
Y2

i3←− . . ., where [Yk+1] represents the restriction of x1 to Yk . Construct the chain of
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blow-ups X
π1←− X 1

π2←− X 2
π3←− . . . in codimension 2 centers Zk → X k−1 inductively as

follows. The special divisor Ek of πk is a consecutive projective line fibration Ek
ϕk→ Yk and

Zk+1 = ϕ−1
k (Yk+1). In particular, Ek

εk→Zk is a projective line fibration and ϕk = ε1◦. . .◦εk .

Let ik = i1 ◦. . . ◦ ik and yk = ϕ∗
k (ik )∗(y) be the class supported on Ek .

Then we have a Cartesian diagram

Ek+1
iEk+1 ��

�

X k+1

Zk+1

��

α
�� E k

jEk

��

with E k = Ek and yk+1 = ε∗
k+1α

∗yk . By (the Chow group version of) [16, Proposition

5.27], we have

π∗
k+1((iEk )∗yk ) = (jEk

)∗yk − (iEk+1)∗yk+1.

Here, by the inductive assumption of Ind3, the first summand (jEk
)∗yk = (jEk

)∗(x1 · x2
·. . . ·xr−1) = [Ek+1] · (jEk

)∗(x2 ·. . . ·xr−1) is expressible as a polynomial in divisorial classes

over some blow-up of X k+1, so (using Lemma 6.1.1) the question about yk supported

on Ek → X k is reduced to the question about yk+1 supported on Ek+1 → X k+1. Thus,
it is sufficient to show that our statement is true for yk supported on Ek → X k , for at

least one k . But for k = dim(X ) − r , the class (ik )∗(y) is zero by dimensional reasons.

Hence, the (Ind3 step) is proven. This implies (Ind2 step) and (Ind1 step). The theorem
is proven.

Corollary 6.2. Let X be a smooth projective variety and y ∈ CHr (X ). Then there exists

a blow-up π : X̃ → X , such that π∗(y) is represented by a linear combination of classes of
smooth complete intersections of very ample divisors that are transversal to each other. In

particular, for r > dim(X )/2, it is represented by the difference of classes of two smooth

disjoint subvarieties.

6.2. General position results

In this section we present various general position arguments that permit replacing cycles

by the classes of connected subvarieties and, in some cases, reducing the anisotropy of a

class [S ] to the numerical triviality of some characteristic classes of S .
The following simple and well-known ‘Chow group shadow’ of the Lefshetz theorem is

one of our key ingredients.

Statement 6.3. Let X be a scheme with a map X
f→ Pn and ι : Dη → X be the generic

hyperplane section of X (over k((Pn)∨)). Then the pull-back ι∗ : CH∗(X ) � CH∗(Dη) is
surjective. If X is a smooth variety, so is Dη.

Proof. Consider Y ⊂ X × (Pn)∨ given by Y = {(x,H )|f (x ) ∈ H }. Then Y is a projective

bundle: Y = ProjX (V ), where V =W /O(−1) (with (Pn)∨ =P(W )). Let Yη be the generic
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fibre of the projection Y → (Pn)∨. This is the ‘generic’ hyperplane section Dη. By the
projective bundle theorem and localisation, we have surjections CH∗(X )[ρ] � CH∗(Y ) �
CH∗(Yη), where ρ = c1(O(1)). Because ρ is the pull-back of the class of a hyperplane on

(Pn)∨, it is zero in CH∗(Yη). Thus, we get the surjection CH∗(X ) � CH∗(Yη). Finally, if
X is smooth, so are Y and Yη.

The next result shows that any closed subscheme of an effective Cartier divisor can

be made the base set of the respective linear system (which, in turn, can be made very
ample), if we modify the divisor by an n-multiple of some other divisor, for a given

natural n.

Statement 6.4. Let X be an irreducible quasi-projective variety and n ∈ N. Let E be an

effective Cartier divisor on X and S ⊂ E be a closed subscheme. Then there exists a very
ample divisor D such that the linear system |E +n ·D |S consists of very ample divisors

and S is the base set of it.

Proof. There are very ample divisors F1,F2 on X such that [E ] = [F1]− [F2]. Then the

class [E +nF2] = [F1 +(n −1)F2] = [H ] is very ample and defines an embedding X ↪→ PN .
Let S be the closure of the image of S in this embedding. The coordinate ring of S has

relations of degree � m. In other words, the base set of the linear system |kH |S is S ,
for any k � m. Take k = nm +1. Then [kH ] = [(nm +1)(E +nF2)] = [E +n(mF1 + ((n −
1)m +1)F2)] = [E +nD ], where D = mF1 + ((n −1)m +1)F2 is very ample.

The following result will enable us to substitute a multicomponent divisor with only n-
anisotropic singularities, which contains a given closed subscheme, by a single component
one. The same can be done with a collection of such divisors and subschemes with

the result having all of the faces connected, if the original collection of divisors was

with strict normal crossings modulo n-anisotropic subvarieties. This will be our key tool

below.

Statement 6.5. Let n ∈ N, X be a smooth projective connected variety of dimension d
and E = ∪iEi be a divisor on it with strict normal crossings outside an n-anisotropic
closed subscheme, with possibly reducible components Ei , and let Si ⊂ Ei be some closed

subschemes such that, for any subset I of the set of indices, dim(SI ) < d −#(I ), where
SI = ∩i∈ISi . Then, over some purely transcendental f.g. extension of k , there is a divisor

Z = ∪iZi , where [Zi ] = [Ei ] ∈ CH1(X ;Z/n), Si ⊂ Zi , for any I , the variety ZI = ∩i∈IZi is

irreducible, and Z has strict normal crossings outside an n-anisotropic closed subscheme
of S . Moreover, the restriction CH∗(X ) � CH∗(Zi\Si) is surjective.

Proof. By the Statement 6.4, for any i , there exists a very ample divisor Di , such that

the linear system �i = |Ei +n ·Di |Si consists of very ample divisors and has the base set

Si . Let Zi be the generic element of this linear system (defined over k(P(�i ))). Clearly,
[Zi ] = [Ei ] ∈ CH1(X ;Z/n) and Si ⊂ Zi . Let us show that ZI = ∩i∈IZi is irreducible. We

will prove by induction on #(I ) that, for any i ∈ I , the restriction CH0(ZI \i) � CH0(ZI )

is surjective. The (base) I = ∅ is empty.
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(step) The linear system �i defines an embedding of X \Si into a projective space, and

for any subscheme T ⊂ X defined over some field L and Zi defined over L(P(�i)) as

above, we have dim(T ∩ (Zi\Si )) � dim(T )− 1. By Statement 6.3, we have a surjection
CH0(ZI \i\ZI \i ∩Si ) � CH0(ZI \ZI \i ∩Si ). We know that all of the components of ZI have

dimensions � d −#(I ). On the other hand, the scheme ZI \i ∩Si is the union ∪i∈J⊂IYJ ,

where YJ = (∩j∈JSj )∩ (∩j∈I \J (Zj \Sj )). Because dim(YJ ) � dim(SJ )−#(I \J ), we obtain
that dim(ZI \i ∩Si) � max(dim(SJ ) − #(I \J )|i ∈ J ⊂ I ) < d − #(I ). Hence, CH0(ZI ) =
CH0(ZI \ZI \i ∩Si ), and we get the surjection CH0(ZI \i) � CH0(ZI ). The induction step

is proven.
Thus, we have the surjection CH0(X ) � CH0(ZI ), and because X is irreducible, so is ZI .

Our system �i contains Ei + |n · Di |. The generic representative of |n · Di | is n-
anisotropic (by Statement 6.3 and the arguments from the proof of Proposition 4.15).

Thus, the generic representative Gi of Ei + |n ·Di | has only n-anisotropic singularities
and, modulo n-anisotropic subvarieties, the divisor G = ∪iGi has strict normal crossings.

Consequently, the generic representative Zi of our system |Ei + n · Di |Y will have

only n-anisotropic singularities, too, and the divisor Z = ∪iZi will have strict normal
crossings modulo n-anisotropic subvarieties. Indeed, we have a divisor W on X × P ,

where P = ∏
i P(�i ) parametrizes (combinations of) elements of our linear systems.

The fibre over the generic point of P is Z , and the fibre over some special point is
G . Let R be a discrete valuation ring with the fraction field K and residue field κ

and WR be some divisor on X × Spec(R), with fibres WK and Wκ over the generic

and closed point of Spec(R), respectively. Having a closed point T of WK , consider the

closure of it in W . We get a proper morphism f : T → Spec(R) of relative dimension
zero, whose fibre over Spec(κ) consists of points tl with multiplicities el ; these are the

specialisations of T . The specialisation of a singular point is singular, and specialisation

of a point where components are not transversal has the same property. At the same
time,

[k(T ) : K ] =
∑
l

[k(tl ) : κ] · el .

Therefore, if [k(T ) : K ] is not divisible by n, then one of [k(tl ) : κ] is. This shows that Z
should be a divisor with strict normal crossings at every point that is not n-anisotropic.
Because our linear system �i is very ample on X \Si , the divisor Z has strict normal

crossings outside S . By the same reason and by Statement 6.3, we have the surjection

CH∗(X ) � CH∗(Zi\Si).

This allows representing some cycles of codimension 2 by single components.

Everywhere below we will denote

Ch∗
k/k (X ) := CH∗(X ,Z/n)/(n −anisotropic classes),

where n is some natural number (which should be clear from context).

Statement 6.6. Let S = ∪iSi be the union of smooth connected transversal subvarieties

of codimension 2 on a smooth projective variety and n ∈ N. Suppose that all of

the intersections Si ∩ Sj are n-anisotropic. Then over some f.g. purely transcendental
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extension of k there exists a blow-up μ : X → X , such that μ∗([S ]) ∈ Ch∗
k/k (X ) is

represented by the class of a smooth connected variety S whose characteristic classes

in Ch∗
k/k are μ∗ of the characteristic classes of S . Moreover, if S = ∪iSi and T = ∪jTj

are two subvarieties as above that are transversal to each other, then there exists a blow-

up μ : X → X with the properties as above for both S and T and such that S and T are

smooth connected, transversal to each other, and S ∩T is connected.

Proof. Let π : X̃ → X be the blow-up in all of the components Si of S , with Ei
πi−→ Si the

components of the special divisor and ρi = −[Ei ]. Then, by [5, Proposition 6.7], π∗([S ]) =
[F ], where F = ∪iFi , Fi is supported on Ei and [Fi ] = [Ei ](ρi +π∗

i (c1(NSi⊂X ))). Note that

E = ∪iEi is a divisor with strict normal crossings, with all of the intersections Ei ∩Ej

n-anisotropic. Note that c1(NFi⊂X̃ ) = π∗
i (c1(NSi⊂X )) and c2(NFi⊂X̃ ) = π∗

i (c2(NSi⊂X )).

Hence, the same is true about all other characteristic classes.

Because E is smooth outside an n-anisotropic subscheme, by Statement 6.5 (where we
consider E as a single component), over some f.g. purely transcendental extension of k ,
there is an irreducible divisor Z , containing F , smooth outside an n-anisotropic closed

subscheme of F . Let ε : X → X̃ be an embedded desingularisation of Z . Let Z and F be

the proper pre-images of Z and F . Then ε∗ : Ch∗
k/k (X̃ )

=→ Ch∗
k/k (X ) is an isomorphism

and ε∗([F ]) = [F ] ∈ Ch2
k/k (X ) is supported on the smooth connected divisor Z . By adding

an n-multiple of a very ample divisor, we can substitute [F ] by a very ample divisor on

Z . Let S be the generic representative of the linear system |F | on Z . Then S is smooth

and connected. Because, modulo n-anisotropic subvarieties, X coincides with X and F
with F , the characteristic classes of S in Ch∗

k/k (X ) are ε∗ of the respective classes of F .
For the pair of subvarieties S = ∑

i Si and T = ∑
j Tj , consider the blow-up π :

X̃ → X at all components of S and T . Then the special divisor E = ES ∪ ET has
strict normal crossings, where ES and ET are smooth outside n-anisotropic subschemes.

Applying Statement 6.5 to FS ∪FT contained in ES ∪ET (where we consider ES and

ET as single components), we obtain a divisor Z = ZS ∪ ZT containing S ∪ T , with
strict normal crossings outside an n-anisotropic subscheme, with irreducible ZS,ZT and

ZS ∩ ZT . Resolving n-anisotropic singularities and nontransversalities of Z , as above,

we obtain the needed smooth connected transversal subvarieties S and T having the

needed characteristic numbers. Because ZS ∩ZT is irreducible, the intersection S ∩T is
connected.

The next statement represents an elementary block with the help of which we will
‘deform’ the chains of codimension 1 embeddings of irreducible varieties.

Statement 6.7. Let n ∈ N, X be projective irreducible variety, smooth outside an

n-anisotropic closed subscheme, and S ⊂ Z ⊂ X be embeddings of codimension 1 of

irreducible subvarieties, smooth outside n-anisotropic closed subschemes and such that
S is not n-anisotropic. Then, over some f.g. purely transcendental extension of k , there
exists Z ′ such that S ⊂ Z ′ ⊂ X has the same properties, [Z ′] = [Z ] in Ch1

k/k (X ), and the

restriction Ch∗
k/k (X ) � Ch∗

k/k (Z ′\S ) is surjective.
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Proof. This is a particular case of Statement 6.5, aside from the fact that we permit
X to have anisotropic singularities. But the same proof works. Outside some closed n-
anisotropic subscheme T of X , Z is a Cartier divisor and, by Statement 6.4, there exists a

very ample divisor D on X \T , such that the linear system � = |Z +n ·D |S\S∩T on X \T
consists of very ample divisors and has the base set S\T . This linear system defines an

embedding of X \(S ∪T ) into a projective space. Let Z ′ be the closure in X of the generic

element of this linear system (defined over k(P(�))). Because S is not n-anisotropic,
S\S ∩T is nonempty, so Z ′ contains S . Clearly, [Z ′] = [Z ] ∈ Ch1

k/k (X ) = Ch1
k/k (X \T ).

By Statement 6.3, we have a surjection Ch∗
k/k (X ) � Ch∗

k/k (Z ′\S ), and Z ′ is irreducible.
The same arguments as in the proof of Statement 6.5 show that Z ′ has only n-anisotropic
singularities.

The previous result permits deforming the chains of codimension 1 embeddings in such

a way that isotorpic Chow groups of a term of the new chain would be covered by those

of the previous (ambient) term modulo such groups of the next (smaller) term of the
original chain. Later it will enable us, subject to certain conditions, to make numerically

trivial classes anisotropic.

Statement 6.8. Let n ∈ N and Xr
jr→ Xr−1

jr−1→ . . .
j2→ X1

j1→ X0 be embeddings of
codimension 1 of irreducible subvarieties, smooth outside n-anisotropic closed subschemes,

with Xr not n-anisotropic. Then, over some f.g. purely transcendental extension of k , it
can be complemented to a commutative diagram

X ′
r

j ′
r �� X ′

r−1

j ′
r−1 �� X ′

r−2

j ′
r−2 �� . . . . . .

j ′
2 �� X ′

1
j ′
1 �� X0

Xr
jr ��

gr



��������
Xr−1

jr−1 ��

gr−1

����������
Xr−2

jr−2 ��

gr−2



									
. . . . . .

j2 ��

g2

��








 X1
j1 �� X0

where all maps are embeddings of codimension 1 of irreducible subvarieties, smooth outside

n-anisotropic closed subschemes and for any i , the map

((j ′
i )

∗,(gi+1)∗) : Ch∗
k/k (X ′

i−1)⊕Ch∗−1
k/k (Xi+1) � Ch∗

k/k (X ′
i )

is surjective (for i = r , the map (j ′
r )

∗ is surjective), and [X ′
i+1] = [Xi+1] ∈ Ch1

k/k (X ′
i ).

Proof. This follows from the inductive application of Statement 6.7 from top to bottom.

Finally, in the last step, we take X ′
r to be the closure of the generic representative of the

respective (very ample) linear system |Xr +n ·D | without any base set. Because Xr is not

n-anisotropic, X ′
r is nonempty and irreducible. By Statement 6.3, we have a surjection

(j ′
r )

∗ : Ch∗
k/k (X ′

r−1) � Ch∗
k/k (X ′

r ).

Note that although X ′
r−1 is still not n-anisotropic, X ′

r may be, in principle, anisotropic.

We also have a ‘smooth’ version of the above result, which is what we will use

below.
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Statement 6.9. Let X0 be a smooth projective connected variety and Xr
jr→ Xr−1

jr−1→
. . .

j2→ X1
j1→ X0 be regular embeddings of codimension 1 of connected varieties, with Xr

not n-anisotropic. Then, over some f.g. purely transcendental extension of k , it can be

complemented to a commutative diagram

X ′
r

j ′
r �� X ′

r−1

j ′
r−1 �� X ′

r−2

j ′
r−2 �� . . . . . .

j ′
2 �� X ′

1
j ′
1 �� X ′

0

π0

��

X̃ r

πr

��

gr


�������� j̃ r �� X̃ r−1

πr−1

��

gr−1
����������

j̃ r−1 �� X̃ r−2

πr−2

��

gr−2



									
j̃ r−2 �� . . . . . .

j̃2 �� X̃ 1

π1

��

g1
��








Xr
jr �� Xr−1

jr−1 �� Xr−2
jr−2 �� . . . . . .

j2 �� X1
j1 �� X0

where the upper and lower horizontal maps are regular embeddings of codimension 1
of connected varieties, and the vertical ones are blow-ups in n-anisotropic centers. In

particular, the maps π∗
i : Ch∗

k/k (Xi)
=→ Ch∗

k/k (X̃ i) are isomorphisms. In addition, for any
i , the map

((j ′
i )

∗,(gi+1)∗π∗
i+1) : Ch∗

k/k (X ′
i−1)⊕Ch∗−1

k/k (Xi+1) � Ch∗
k/k (X ′

i )

is surjective (for i = r , the map (j ′
r )

∗ is surjective), and [X ′
i+1] = (gi+1)∗[X̃ i+1] ∈

Ch1
k/k (X ′

i ).

Proof. By Statement 6.8, we get the commutative diagram

X r
j r �� X r−1

j r−1 �� X r−2
j r−2 �� . . . . . .

j2 �� X 1
j1 �� X0

Xr
jr ��

gr



��������
Xr−1

jr−1 ��

gr−1

�����������
Xr−2

jr−2 ��

gr−2



���������
. . . . . .

j2 ��

g2

��








 X1
j1 �� X0

where X i are irreducible varieties smooth outside some closed proper n-anisotropic
subschemes, the maps

((j i)
∗,(g i+1)∗) : Ch∗

k/k (X i−1)⊕Ch∗−1
k/k (Xi+1) � Ch∗

k/k (X i)

are surjective, and [X i+1] = [Xi+1] ∈ Ch1(X i).

Let π0 : X ′
0 → X0 be the embedded desingularization of X r ⊂ X r−1 ⊂ X r−2 ⊂ . . . ⊂

X 1 ⊂ X 0 and εi : X ′
i → X i be the proper pre-images (with ε0 = π0). Because special

divisors are n-anisotropic, we have isomorphisms ε∗
i : Ch∗

k/k (X i)
=→ Ch∗

k/k (X̃ i). Noting

that Xi is not n-anisotropic, by blowing Xi at n-anisotropic centers, we may resolve the

indeterminacies of the maps Xi
gi→ X i−1

ε−1
i−1��� X ′

i−1 and Xi
ji→ Xi−1

π−1
i−1��� X̃ i−1 and obtain
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commutative squares

X̃ i−1

πi−1

��

X̃ i

πi

��

gi ��j̃ i�� X ′
i−1

εi−1
��

Xi−1 Xi
gi ��ji�� X i−1

and the needed commutative diagram. Because the maps π∗
i : Ch∗

k/k (Xi)
=→ Ch∗

k/k (X ′
i ) are

isomorphisms, the maps

((j ′
i )

∗,(gi+1)∗π∗
i+1) : Ch∗

k/k (X ′
i−1)⊕Ch∗−1

k/k (Xi+1) � Ch∗
k/k (X ′

i )

are surjective (for i = r , the map (j ′
r )

∗ is surjective), and [X ′
i+1] = (gi+1)∗[X̃ i+1] ∈

Ch1
k/k (X ′

i ). Finally, because [X i ] = (g i)∗[Xi ] ∈ Ch1
k/k (X i−1), we obtain that [X ′

i ] =
(gi )∗[X̃ i ] ∈ Ch1

k/k (X ′
i−1).

In the next key statement, applying the above result repeatedly, we will deform a given

chain of codimension 1 regular embeddings keeping the classes of all of the subvarieties

(of the chain) in Ch∗
k/k (X ) unchanged but making the image of Ch∗

k/k (Xr ) (the smallest
subvariety) in Ch∗

k/k (X ) a submodule generated by monomials in the first Chern classes of

normal bundles of the (original) chain. After that, to make Xr anisotropic, it will remain

only to eliminate the mentioned monomials numerically.
Let �l = (l2, . . . ,lr ) be a vector of nonnegative integers. We say that �l is i -good if there

exists an i + 1 � s � r + 1 such that lk > 0 for i + 1 � k < s, and lk = 0, for k � s. Any
i -good vector is (i +1)-good and every vector is r -good, so we get a filtration.

Statement 6.10. Let Xr
jr→ Xr−1

jr−1→ . . .
j2→ X1

j1→ X0 be regular embeddings of codi-

mension 1 of smooth connected varieties. Then over some f.g. purely transcendental

extension there exists a blow-up in n-anisotropic centers X̂0 → X0 and a similar sequence

of embeddings X̂r
ĵr→ X̂r−1

ĵr−1→ . . .
ĵ2→ X̂1

ĵ1→ X̂0, where [X̂r ] = [Xr ] ∈ Ch∗
k/k (X0) and the

image of the restriction f ∗
j : Ch∗

k/k (X̂j ) → Ch∗
k/k (X̂r ) as a Ch∗

k/k (X0) = Ch∗
k/k (X̂0)-module

is generated by monomials ĉ�l = ∏r
i=2 cli

1 (N̂i), for j -good �l , where N̂i = NX̂i⊂X̂i−1
, and the

image of the map (f0)∗f ∗
j : Ch∗

k/k (X̂j ) → Ch∗+r
k/k (X̂0) as a Ch∗

k/k (X0)-module is generated

by elements c�l · [Xr ] = ∏r
i=2 cli

1 (Ni) · [Xr ], where Ni = NXi⊂Xi−1 and �l runs over all j -
good vectors (here fi : X̂r → X̂i is the embedding). In particular, the image of (f0)∗ :
Ch∗

k/k (X̂r ) → Ch∗+r
k/k (X̂0) as a Ch∗

k/k (X0)-module is generated by elements c�l · [Xr ], where
�l runs through all vectors.

Proof. Let us denote the original sequence as X 0
r

j0r→ X 0
r−1

j0r−1→ . . .
j02→ X 0

1
j01→ X 0

0 . Either X 0
r

is n-anisotropic, in which case there is nothing to prove, or we can produce a diagram as in

Statement 6.9. We can iterate this process as long as the variety Xm
r is not n-anisotropic

and obtain diagrams
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Xm+1
r

jm+1
r �� Xm+1

r−1

jm+1
r−1 �� Xm+1

r−2

jm+1
r−2 �� . . . . . .

jm+1
2 �� Xm+1

1
jm+1
1 �� Xm+1

0

πm
0

��

X̃m
r

πm
r

��

gm+1
r

����������� j̃mr �� X̃m
r−1

πm
r−1

��

gm+1
r−1

����������� j̃mr−1 �� X̃m
r−2

πm
r−2

��

gm+1
r−2



									j̃mr−2 �� . . . . . .
j̃m2 �� X̃m

1

πm
1

��

gm+1
1

�����������

Xm
r

jmr �� Xm
r−1

jmr−1 �� Xm
r−2

jmr−2 �� . . . . . .
jm2 �� Xm

1
jm1 �� Xm

0

These induce maps on isotropic Chow groups:

where αl
i = (j li )

∗, β l
i = (g l

i )∗(π
l−1
i )∗ and β-maps shift the codimension by (+1). The maps

(αl
i,β

l
i+1) : Ch∗

k/k (X l
i−1)⊕Ch∗

k/k (X l−1
i+1 ) � Ch∗

k/k (X l
i )

are surjective. Either at some stage we will get an n-anisotropic Xm
r , in which case we

are done, or we can iterate the process q = dim(X )+ 1 times. Set X̂i = X q
i , etc. Then

Ch∗
k/k (X̂i) is generated by the elements of the form ω(x ), where ω is a composition of αs

and βs and x ∈ Ch∗
k/k (X0). Here we are using the fact that the number of βs in such a

composition cannot be more than dim(Xi) (because each β increases the codimension by
1), so the chain has to start with X0. We also have maps γ l

i = (j li )∗ and δl
i = (π l−1

i )∗(g l
i )

∗
fitting commutative diagrams (recall that (πm

i )∗ and (πm
i )∗ are isomorphisms)

Ch∗
k/k (Xm+1

i )
γm+1
i �� Ch∗

k/k (Xm+1
i−1 )

Ch∗
k/k (Xm

i+1)
γm
i+1 ��

βm+1
i+1

��

Ch∗
k/k (Xm

i )

βm+1
i

��
and Ch∗

k/k (Xm+1
i )

δm+1
i+1

��

Ch∗
k/k (Xm+1

i−1 )
αm+1
i��

δm+1
i

��
Ch∗

k/k (Xm
i+1) Ch∗

k/k (Xm
i )

αm
i+1��

Note that

βm+1
i δm+1

i (u) = u · c1(NX̃m
i →Xm+1

i−1
) = u · c1(NXm+1

i ⊂Xm+1
i−1

) = γ m+1
i αm+1

i (u) and

δm+1
i βm+1

i (v) = v · c1(NX̃m
i →Xm+1

i−1
) = v · c1(NXm

i ⊂Xm
i−1

) = αm
i γ m

i (v).

Using these relations, one can reduce ω(x ) to the form θ(x ), where θ is a combination of

α
q
i s and γ

q
j s. The restriction of such an element to Ch∗

k/k (X q
r ) is f ∗

0 (x ) times a monomial

in c1(NXq
i ⊂Xq

i−1
) = c1(N̂i)s, where each factor c1(N̂i) corresponds to a loop α

q
i γ

q
i in θ .

Thus, the image f ∗
j : Ch∗

k/k (X̂j ) → Ch∗
k/k (X̂r ) as a Ch∗

k/k (X0)-module is generated by

monomials in c1(N̂i)s. Because such a monomial corresponds to a closed path from X q
j

to itself, these will be exactly j -good monomials. In addition, we need to observe that
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c1(N̂1) = c1(NX̂1⊂X̂0
) is the restriction of a class from X̂0. Finally, from the same relations,

we get that (f0)∗ĉ �n = γ
q
1 . . . γ q

r ĉ �n = γ 0
1 . . . γ 0

r c �n = c �n · [Xr ]. Hence, the image of (f0)∗(fj )∗ :
Ch∗

k/k (X̂j ) → Ch∗+r
k/k (X0) as a Ch∗

k/k (X0)-module is generated by elements c�l · [Xr ], where
�l runs over all j -good vectors.

With the previous result in hand we have a practical tool ensuring the anisotropy of

Chow group elements.

Corollary 6.11. Let Xr
jr→ Xr−1

jr−1→ . . .
j2→ X1

j1→ X0 be regular embeddings of co-

dimension 1 of smooth connected varieties with Ni = NXi⊂Xi−1 . Suppose that c�l · [Xr ]
Num∼ 0

on X0, for all monomials in c1(Ni)s, i � 2. Then, over some f.g. purely transcendental

extension, [Xr ] = 0 ∈ Chr
k/k (X0).

Proof. By Statement 6.10, over some f.g. purely transcendental extension of k , there

exists a blow-up with n-anisotropic centers π : X̂ → X and a sequence X̂r
ĵr→ X̂r−1

ĵr−1→
. . .

ĵ2→ X̂1
ĵ1→ X̂0 of regular embeddings of smooth connected projective varieties, such

that [X̂r ] = [Xr ] ∈ Chr
k/k (X̂0) = Chr

k/k (X0) and the image of the map (f0)∗ : Ch∗
k/k (X̂r ) →

Ch∗′
k/k (X̂0) as a module over Ch∗

k/k (X0) is generated by c�l · [Xr ], for all r -good (=all) �l ,
where f0 : X̂r → X̂0. Because all of these classes are

Num∼ 0 on X̂0, the zero-dimensional
component of our image is zero. This means that X̂r is anisotropic and so [X̂r ] = 0 ∈
Chr

k/k (X̂0).

In the case r = 2, we get the following.

Corollary 6.12. Let S ⊂ X be a regular embedding of codimension 2 of smooth connected

projective varieties. Suppose that cm
1 (NS⊂X ) · [S ]

Num∼ 0 on X , for any m � 0. Then, over
some f.g. purely transcendental extension, [S ] = 0 ∈ Ch2

k/k (X ).

Proof. By blowing X at S we may assume that S is contained in a smooth connected

divisor Z . Note that the ‘new’ characteristic classes of S are pull-backs of the ‘old’ ones
and so are numerically trivial as well. We obtain the triple S → Z → X . Our statement

now is a particular case of Corollary 6.11, where it remains to observe that c1(NS⊂X ) =
c1(NS⊂Z )+ c1(NZ⊂X ), where the second summand is defined on X .
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