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Abstract In this article we introduce the local versions of the Voevodsky category of motives with Fj-
coefficients over a field k, parametrized by finitely generated extensions of k. We introduce the so-called
flexible fields, passage to which is conservative on motives. We demonstrate that, over flexible fields,
the constructed local motivic categories are much simpler than the global one and more reminiscent
of a topological counterpart. This provides handy ‘local’ invariants from which one can read motivic
information. We compute the local motivic cohomology of a point for p =2 and study the local Chow
motivic category. We introduce local Chow groups and conjecture that over flexible fields these should
coincide with Chow groups modulo numerical equivalence with Fp-coefficients, which implies that local
Chow motives coincide with numerical Chow motives. We prove this conjecture in various cases.
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1. Introduction

The category of algebraic varieties is rich and marvelous but not additive, in the sense
that one cannot add morphisms between varieties. The program to ‘linearize’ the algebro-
geometric world was first introduced in the 1960s by A. Grothendieck, who proposed
the category of Chow motives. It is a close relative of the category of correspondences,
where objects are smooth projective varieties and morphisms are algebraic cycles on the
product modulo rational equivalence. The result is a tensor additive category, because
we can add (and subtract) algebraic cycles and multiply them externally. Moreover, one
does not have to limit oneself to only rational equivalence of cycles. Instead, it is possible
to consider algebraic, numerical or homological equivalence and, actually, the theory of
Chow groups here can be substituted by any oriented cohomology theory (in the sense of
[11, Definition 3.1.1] or [9, Definition 1.1.2]). Chow motives of varieties split into smaller
pieces, which permits expressing in a precise form some of the similarities observed in
the behaviour of different varieties. In particular, the Tate motives appear responsible
for the cellular structure. The above Grothendieck category has innumerate remarkable
applications, but it deals with smooth projective varieties only. At the same time, in
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topology, motives were known for a long time in full generality in the form of singular
complexes of topological spaces. This problem was solved by V. Voevodsky in [20], who
constructed the triangulated category of motives DM(k) over a field &k (around the same
time, alternative constructions were proposed by M. Hanamura and M. Levine). This
category of Voevodsky contains the Grothendieck category of Chow motives as a full
additive subcategory closed under direct summands and, in particular, permits studying
these ‘pure’ objects by triangulated methods. Voevodsky supplied his category with many
flexible tools and his motives found numerous bright applications, most notable of which
is to the proof of Milnor’s and Bloch-Kato’s conjectures.

In this article, we study Voevodsky category DM(k;F,) with finite coefficients over a
field of characteristic zero. We introduce the local versions DM(E/k;F,) of this category,
corresponding to all finitely generated field extensions E/k together with the natural local-
isation functors ¢ : DM (k;F,) — DM(E/k;F,). In the case of a trivial extension we get
the isotropic motivic categories DM(E/E;F,) and localisation functors can be specialised
further to isotropic functors ¥ : DM(k;F,,) - DM(E/E;F,). Such isotropic versions (in
the appropriate situation) appear to be much simpler than the original global category
and allow one to obtain ‘local’ invariants of motives, residing in a rather simple world.

The construction of isotropic motivic category is based on the notion of an anisotropic
variety, that is, a variety that does not have closed point of degree prime to a given
prime p (thus the fact that coeflicients are finite is really essential). The rough idea is to
‘kill” the motives of all anisotropic varieties over k. This idea belongs to T. Bachmann,
who in [1] considered the full tensor triangulated subcategory DQMI™ of DM(k;Fs)
generated by motives of smooth projective quadrics and studied it with the help of
functors ®F : DQMY™ — K°(Tate(F3)) to the category of bigraded Fj-vector spaces.
These functors were defined by the property that they ‘kill’ the motives of k-quadrics,
which stay anisotropic over £ (and act ‘identically’ on Tate motives). In our approach, the
same idea comes naturally from the development of some ideas of Voevodsky and that of
[14]. Namely, we consider the natural ®-idempotents in the Voevodsky category, given by
motives X g of Cech simplicial schemes corresponding to smooth varieties Q over k. The
respective projectors naturally commute with each other and form a partially ordered
set P, where Xg > Xp if there exists a correspondence of degree 1 (modulo p) Q@ ~~ P
(Definition 2.1). This condition is equivalent to the fact that Xg ® Xp = Xg. That is, a
stronger projector ‘consumes’ a weaker one. Moreover, there is a natural map Xg — Xp
(the unique lifting of the projection Xg — T'). For connected varieties, this is actually a
condition on their generic points. The ‘smallest’ idempotent is the unit object of the tensor
structure, given by the trivial Tate motive T (which corresponds to P = Spec(k)). Thus,
we get a P-parametrized filtration by idempotents on the unit object. We may consider the
upper graded components of this filtration. In other words, we take a particular idempotent
Xp and mod-out all strictly large ones; that is, we consider the colimit of idempotents
Xp ®/'FQ7 for all X = Xp, where /'FQ is an idempotent complementary to Xg. The
result is a certain idempotent in DM(k;F,), which actually can be described in terms
of the Cech simplicial scheme of a variety with infinitely many connected components.
This idempotent will be zero unless P is connected up to equivalence (i.e., can be
replaced by a connected variety with the same X') and, in the latter case, it depends
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only on E = k(P), and even only on the equivalence class of such finitely generated field
extension E/k. Applying the respective projector to DM(k;F,) we obtain the motivic
category DM(E/k;F,) of the extension E/k (Definition 2.3). It is naturally a full tensor
localising subcategory of the Voevodsky category DM(k;F,) supplied with the localisation
functor g : DM(k;F,) — DM(E/kK;F,). In the case of a trivial extension k/k, we get the
isotropic motivic category DM(k/k;F,,), where the respective projector is the colimit of
projectors )?Q& where @) runs over all varieties with X # T' or, in other words, over
all anisotropic varieties. Because /'FQ ® M (Q) =0, such a projector ‘kills’ the motives of
all anisotropic varieties. These local motivic categories were discovered in an attempt to
find an alternative approach to the functors of Bachmann (mentioned above) and were
briefly introduced in [17, Section 4].

Our next point is that to extract the local information in a meaningful form one
should first pass to an appropriate field extension of a ground field. This is illustrated by
the example of an algebraically closed ground field k, where, up to equivalence, there
is only one (trivial) class of field extensions, represented by the extension k/k, and
the respective localisation functor ¢ : DM(k;F,) — DM(k/k;FF,) is an equivalence of
categories (see Remark 2.12). Thus, it is conservative but not very interesting. At the
same time, there is a large class of fields for which the localisation really simplifies things.
These are the so-called flezible fields introduced in Subsection 1.2; that is, fields that are
purely transcendental extensions of infinite (transcendence) degree of some other fields.
Note that one can always pass from an arbitrary field ky to a flexible one ko(t1,o,...)
without losing any motivic information. The class of flexible fields is closed under finitely
generated extensions. Thus, if the ground field %k is flexible, then all of the functors
Yg : DM(k;F,) — DM(E/E;F),) take values in ‘flexible’ isotropic categories. And such
categories are really simple. We examine them from two points of view: We look at the
isotropic motivic cohomology of a point Hj\‘;{k,(k/k;lﬁ‘p) and at the isotropic Chow motivic
category Chow(k/k;F,).

We show in Theorem 3.7 that, in the case of a flexible field, Hj{;/(k/k;]Fg) is the
external algebra Ar,(r;li>0) with the generators in one-to-one correspondence with
Milnor’s operations and the action of the latter given by Q;(r;) =1 and Q;(ry;)) =0,
for i #£ j. Thus, the answer is the same for all flexible fields, and all of these cohomology
elements are ‘rigid’, because we can get 1 from any such nonzero element by applying
an appropriate combination of Milnor’s operations. The answer is also remarkable in
the sense that Milnor’s operations are encoded into the structure of isotropic motivic
category (in the form of their ‘inverses’ ry;s). The computation is done with the help of
the Voevodsky technique used in the proof of Milnor’s conjecture, and our answer explains
to some extent why Milnor’s operations played such an important role in Voevodsky’s
proof (see Theorem 3.5). Finally, the answer is drastically different from the ‘global’
one and the localisation functor H*M*/(k,IFZ) — Hm/(k/k;lﬁ‘g) is zero outside the bidegree
(0)[0]. We are restricted to the prime p =2, because in our calculations the crucial role
is played by [15, Corollary 3], and there is no analogue of this statement for p > 2.

It appears that isotropic Chow motives are closely related to the numerical equivalence
of cycles with IFp-coefficients. We conjecture that, in the case of a flexible field, isotropic
Chow groups Chy, ;. (describing Homs between such motives) coincide with the Chow
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groups (with F,-coefficients) modulo numerical equivalence Ch},,,, (see Conjecture 4.7).

This would imply that the category of isotropic Chow motives is equivalent to the
category of Chow motives modulo numerical equivalence (with finite coefficients). We
prove this conjecture for divisors, for varieties of dimension < 5, and for cycles of
dimension < 2 (Theorem 4.11). In particular, this implies that isotropic Chow groups are
finite-dimensional in these situations. This also shows that the projection Ch* — Chj ;.
factors through the third theory of higher type Chyy, (where Ch{; = Ch* is the original
theory of rational type and Ch{;) = Ch’fllg is the algebraic version; see Definition 4.3 and
Proposition 4.25). The proof of Theorem 4.11 constitutes the bulk of this article. It is
by induction on the dimension of a variety X. Using the moving technique introduced in
Section 6, we show that after an appropriate blow-up, any class u numerically equivalent
to zero may be represented by a cycle supported on a smooth connected divisor Z and
numerically trivial already on Z. An important step here is to represent u by the class of
a smooth connected subvariety and numerically annihilate certain characteristic classes
of it (cf. Corollaries 6.11, 6.12). Interestingly, the latter is achieved by a combination of
appropriate blow-ups and Steenrod operations, depending on a prime involved.

This article is organized as follows. After briefly discussing flexible fields in
Subsection 1.2, in Section 2 we introduce the local motivic category with IF,-coefficients as
well as its Chow-motivic version. In Section 3 we study the isotropic motivic cohomology
of a point, and Section 4 is devoted to the study of isotropic Chow groups and the
respective Chow-motivic category. In Section 5 we expand the definition of local motivic
category beyond prime coefficients. Finally, in Section 6 we prove various geometric
results used in Section 4.

1.1. Notations and conventions

Everywhere below k will denote a field of characteristic zero.

Smy, is the category of smooth quasi-projective varieties over k.

Ch* is the Chow groups CH* /p with finite coefficients, where p is some prime (in Section 6,
p will be replaced by an arbitrary natural number n).

DM(k;F,) will denote the triangulated category of Voevodsky motives over a field [20],
[3] and DMy, (k;F,) will denote the full triangulated subcategory of geometric motives
in it.

LL is the Lazard ring; that is, the coefficient ring of the universal formal group law.

1.2. Flexible fields

Traditionally, algebraic geometry was considered over algebraically closed fields. Over
such fields, every algebraic variety (of finite type) has a rational point, which simplifies
many things. In the case of a general field the standard approach is to consider the
passage to its algebraic closure. Note, however, that (torsion) information is lost under
such a passage. One of the aims of the current article is to convince the reader that
there are other directions one can pursue. Namely, I propose to move instead in the
direction of the so-called flexible fields. Such fields have the advantage that one does not
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have to distinguish between the ground field and finitely generated purely transcendental
extensions of it. This helps with many algebro-geometric constructions.

Definition 1.1. Let us call a field k& flexible if it is a purely transcendental extension of
countable infinite degree of some other field: k = ko(t1, t2, ...) = ko(P*>).

Note that any finitely generated extension of a flexible field k is itself flexible. Indeed,
such an extension is defined by finitely many generators and relations, which can ‘spoil’
only finitely many of the original transcendental generators. Thus, all of the points of the
large Nisnevich site of Spec(k) are flexible. On the other hand, we have the following.

Remark 1.2. The natural restriction functor DM (ko;F,,) — DM(k;F,,) is conservative.
Therefore, we can substitute a field by a flexible one without losing any motivic
information. A

The main property of flexible fields we will need is the following obvious observation.

Proposition 1.3. Let k be a flexible field, X, variety of finite type over k, and E/k be a
finitely generated purely transcendental field extension. Then there exists a commutative
diagram

X XE

.

Spec(k) = Spec(E)

with horizontal maps isomorphisms (over some subfield k).

Proof. Let k = ky(t1,%,...). Then X is defined over some finitely generated purely
transcendental extension F' of kg such that k/F is purely transcendental. That is, there
is a variety X of finite type over F, such that X = X. Because extensions k/F and E/F
are isomorphic, we get what we need. O

2. Motivic category of a field extension

Everywhere below DM(k;F,,) will denote the triangulated motivic category of Voevodsky
over Spec(k) with F,-coefficients (see [20], [3]). We will construct the local versions of
this category, corresponding to all finitely generated field extensions FE/k, or in other
words, to all points of the big Nisnevich site over Spec(k). The local motivic categories
will be obtained as full localising subcategories of a global one by application of certain
projectors. These projectors will be produced using Cech simplicial schemes.

Let P be a smooth variety over k. The Cech simplicial scheme Cech(P) has graded
components (é ech(P)), = P*™*D with faces and degeneracy maps given by partial
projections and partial diagonals. This object is an analogue of the contractible space
EG in topology, and it will be contractible in the Morel-Voevodsky homotopic motivic
category as long as P has a rational point, though in general it ‘measures’ how far we
are from acquiring such a point. In particular, it is a form of a point, because it certainly
contracts over algebraic closure. Let us denote the motive of éech(P) as X'p. The natural
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projection éech(P) — Spec(k) provides the morphism Xp — T to a trivial Tate motive,
which is an isomorphism if and only if P has a zero cycle of degree 1 (modulo p, in our
case) (a ‘weak form’ of a rational point) - [14, Theorem 2.3.4]. This gives an exact triangle

Xp T Xp Xp[1],

where Xp and Xp are mutually orthogonal idempotents
Xp®Xp = Xp; Xp @ Xp < Xp; Xp® Xp =0.
Thus, the functors of a tensor product with these objects:
Xp® : DM(k;Fp,) — DM(k;Fp); Xp®: DM(k;F,) — DM(k;F)p)

are projectors. This defines the semi-orthogonal decomposition of the category DM(k;F,)
as an extension of /'Fp ®DM(k;F,) by Xp @ DM(k;F,), because there are no Homs from
the latter subcategory to the former one (by [14, Theorem 2.3.2], which is basically [19,
Lemma 4.9]).

For different varieties, these projectors naturally commute and we have canonical (co-
associative, respectively associative) identifications

XP®XQ (z—XpXQ and /’%VP@XNQ;EPUQ

(note that endomorphism rings of Xy and Xy are either F,, or zero; [14, Theorems 2.3.2,
2.3.3], and such an endomorphism is fixed by the map Xy — T, respectively T — Q?V)
Thus, the tensor product of any (finite) number of such objects can be always expressed
as XR®)?5, for some R and S.

Each Xp corresponds to a subsheaf y p of the constant sheaf 7 =T, on the big Nisnevich
site over Spec(k) defined as follows. For a smooth connected quasi-projective variety
X, xp(X) =T, if P has a zero-cycle of degree 1 over k(X), and it is zero otherwise.
Equivalently, xp(X) = F, exactly when Xp @ M(X) =0 [14, Theorems 2.3.6, 2.3.3].
Respectively, Xp corresponds to the quotient sheaf x'p = 7/xp. We can introduce an
order on the set of Xgs as follows.

Definition 2.1. We say that Xg > &A’p if any of the following equivalent conditions is
satisfied:

(1) The natural map X b Xqo ® Xp is an isomorphism.

(2) The natural map /’FQ ® Xp b=l Xp is an isomorphism.
(3) The map Xg — T factors through Xp — T.
(4) P has a zero-cycle of degree 1 modulo p over the generic point of every component
of Q.

(5) xq is a subsheaf of xp.
Here (1) & (2) is automatic from the definition; (2) = (5) follows from the description of
xp above; (5) = (4) follows from the fact that xq(Q;) =F,, for any connected component
Q@ of Q; (4) = (1) is [14, Theorem 2.3.6]; (1) = (3) is straightforward,; arfl\(‘i, finally, (3) =
(1) is clear, because Xgo ® Xp & (Yo — T) is the identity map of Yo ® Xp.
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Note that the relation Xg > X'p is obviously transitive. In the case of connected
varieties, this relation may be formulated in terms of the respective field extensions
(generic points). Let E/k and F/k be two finitely generated extensions of a field of
characteristic zero. Let P/k and @Q/k be smooth projective varieties whose function fields
are identified with F and F.

Definition 2.2. We say that F/k > E/k if there exists a correspondence of degree 1
(with Fp-coefficients) @ ~» P. We call extensions ‘equivalent’ F//k ~ E/k if F/k > E/k
and E/k > F/k.

By the composition of correspondences, the property F'/k > E/k is transitive. It is also
equivalent to the condition Xg > Xp above. If k/[ is a field extension, then F/k > E/k
implies that F/l > E/I.

Let P be some smooth variety (of finite type) over k. Let Q be the disjoint union of all
connected varieties Q/k, such that X 2 Xp (thus it is a smooth variety but with infinitely
many components), and let Xg be the motive of the respective Cech simplicial scheme,
which is still an idempotent in DM(k;F,), and ./'FQ be the complementary idempotent.
Define

Tp .= /?Q@Xp.

We can view Tp as a colimit of projectors /'FQ ® Xp, where @ runs over all smooth
projective varieties of finite type with X = Xp.

Note that if P is not connected up to equivalence — that is, if P cannot be substituted
by a connected variety with the same X — then Yp = 0. Indeed, let P; be a ‘minimal’
component; that is, Xp, > Xp, implies that X'p, = X'p,. Suppose that there exists another
component Py with Xp, 2 Xp,. Let f-’l be the union of all of the components equivalent to
Py. Then for Q; = P\P; and Qo = P; we have Xg, = Xp, Xo, = Xp, but Xg, [0, = Xp-

Now we can define the local motivic category corresponding to a finitely generated
extension E/k (cf. [17, Section 4]).

Definition 2.3. Let E/k be a finitely generated extension and P/k be a smooth
connected variety with k(P) = E. Define the ‘motivic category of the extension E/k’
as the full localising subcategory

DM(E/k:F,) = Tp @ DM(k; F,)

of DM(k;F,) and the ‘local geometric category’ DMg,,(E/k;F,) as the full thick
triangulated subcategory of DM(E/k;F,) generated by (local) motives of smooth
projective varieties.

This definition does not depend on the choice of a smooth model P, because Xp depends
on k(P) only. Moreover, it depends only on the ~-equivalence class of an extension F/k.
In the case of a trivial extension, we obtain (cf. [L7, Section 4]) the following.

Definition 2.4. The ‘isotropic motivic category’ is the full localising subcategory
DM(k/k;F,) of DM(k;F,) given by Yspecry ® DM(k;F,), and the geometric version
DM (k/k;Fp) is the full thick triangulated subcategory of it generated by (isotropic)
motives of smooth projective varieties.
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Now, we can read the information about motive by looking at local versions of
it. Namely, we get a collection {¢g|E/k — finitely generated extension} of localisation
functors

95 : DM(k:F,) — DM(E/k:F,)

parametrized by all points of the big Nisnevich site over Spec(k). These can be further
specialised to isotropic realisations

¥ : DM(k:;F,) — DM(E/E;F,).

The following result shows that there are no unexpected objects in the isotropic
geometric category.

Proposition 2.5. The category DM, (k/k;F)) is the idempotent completion of the full
subcategory Yspecs) @ DMgp, (k;Fp) of DM(k;F)).

Proof. We need to prove that Yspecky ® DMgn, (k;F,) is closed under cones. For this, it
is sufficient to show that, for any objects U, V of DM, (k;Fp) and a map f XQ QU —
XQ ® V (where Q is the disjoint union of all anisotropic varieties over k), there is a
map f: U — V' in DMy, (k;FFp), such that f®ZdXQ _f Composing the map fwith
U— /'FQ ® U we obtain amap g: U — fQ ® V with the property that ¢ ® id/gQ %f. Define
(fq)gn as Cone((Xq)<n-1 — T) and (;qu)>n as Cone((z\N,’Q)gn — AN,’Q). Then (/'FQ)NL is
an extension of M (Y)[r|, for some smooth varieties Y and r > n. Because U and V are
geometric, for sufficiently large n, there are no Homs from U to (Xq)>n ® V. Hence, the
map g can be lifted to a map f': U — (XQ)<n ® V', which, in turn, can be lifted to a
geometric map f: U — ()? Q)<n ® V, for some anisotropic variety @ of finite type over k.
Because )?Q ® (Q?Q)gn = )?Q, for any n > 0, we obtain that f ® idfq %f. O

We can describe Homs from geometric isotropic motives as follows. For an object X of
DM(k;F,) and some idempotent &€, we will denote by the same letter the image of X in
§ @ DM(K; Fp).

Proposition 2.6. Let U € Ob(DMg,, (k;Fp)) and V € Ob(DM(k;Fy,)). Then
HomDM(k/k;]Fp)(U, V)= S(%l;rr%ﬂome@)DM(k;Fp)(U’ V),

where the colimit is taken over all of the functors /’?g@ : fR®DM(k;Fp) — 2?5@
DM(k;Fp), for Xgr > Xg # T. In other words, Q) runs over all anisotropic varieties over k.

Proof. We have HomDM(k/k;Igp)(U, V)= HomDM(k;Fp)(Tspec(k) ® U, Yspec(ky®@ V), and the
latter can be identified with Hompig; Fp) ( U, fQ ® V), where Q is the disjoint union of all
anisotropic varieties over k. But because U is geometric, any map U — XQ ® V factors
through U — XQ ® V, for some anisotropic @ of finite type, and the map U — XQ RV
vanishes when extended to a map to XQ ® V if and only if there exists an anisotropic @’
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with Xg > X, such that the composition U — /'FQ RV — fQ/ ® V is zero. Thus, our
Hom-group can be identified with the

S(%ILH%Home®DM(k;FP)(U7 V),
where the colimit is taken over a directed system (as X, > &, @, and if Xg, # T, for
each i, then &|[, g, # T, because the coefficients are F,). O

Geometric motives vanishing in the local category can also be detected by projectors
corresponding to varieties of finite type. Let P be a smooth connected variety with
E =k(P).

Proposition 2.7. An object U of DM, (k;F,) vanishes in DM(E/k;Fp) if and only if
there is a variety @ of finite type over k, with Xg = Xp and Xo @ Xp® U =0.

Proof. If Tp® U =0, then (/"\?Q ® U)g =0, where, as above, Q is the disjoint union of
all smooth connected varieties @ over k, with X = Xp. That means that the projection
(X¥Xq® U — U)g has a section (from the right). But because U is geometric, such a
section will factor through some section of (X¥o ® U — U)g for some variety @ of
finite type over k with X = Xp. Hence, (.J?Q ® U)g =0 (as Ug is a direct summand
of Xo® Ug, so .J?Q ® Ug is a direct summand of it as well, but the latter object is stable
under /'FQ®7 whereas the former one is killed by it). But, according to [14, Theorem
2.3.5], the functor Xp @ DM(k;F,) — DM(E;F,) is conservative. Hence, f@ RAXPRQU =0
in DM(k;Fp). O

Because )?Q ® M(Q) =0, the projection to the isotropic motivic category DM(k/k;Fy)
kills the motives of all anisotropic varieties over k. Hence the name of this
category.

Remark 2.8. The isotropic motivic category DM(k/k;F,) is the Verdier localisation
of DM(k;F,) modulo the localising subcategory .4 generated by motives of anisotropic
varieties.! Indeed, an object U of DM(k;F,) vanishes in DM(k/k;F,) if and only if U =
U ® Xq, where Q is the disjoint union of all connected anisotropic varieties ¢)/k. Hence,
U belongs to A, because this subcategory is a tensor ideal. By the universal property
of the Verdier localisation, ¥ g : DM(k;F,) — DM(k/k;F,,) is equivalent to DM(k;F,) —
DM(k;Fp)/A. A

We have functoriality for the ‘denominator’ of the extension E/k. Suppose that we
have a tower of fields L C F' C E, and P/L, @/L are smooth projective varieties with
L(P)=F and Xg = Xp. Then @ remains anisotropic over L(P), and thus over F(P)
(because F' C L(P)). Hence, Xg|r = Xp|p. Thus, we get a natural functor

DM(E/L;F,) — DM(E/F;F,).

1T am grateful to T. Bachmann for pointing this out.
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The following result shows that, in the case of a flexible ground field, we can pass
from (geometric) local realisations {¢g|E/k —f.g. extension} to isotropic realisations
{Ye|E/k—{.g. extension} without losing any information.

Proposition 2.9. Let E/k be a finitely generated extension of a flexible field. Then the
functor

DM (E/k;Fp) — DMy, (E/E;TFp)
s conservative on the image of ¢ .
Proof. Let us start with purely transcendental extensions.

Lemma 2.9.1. Let E/L/k be a tower of finitely generated extensions where L/k is a
purely transcendental extension of a flexible field. Then the functor

DMgm (E/k’ IFp) - DMgm(E/L; IFp)
is conservative on the image of ¢g.

Proof. Let L =k(A™) and E = k(R) for some smooth variety R/k. Let U € Ob(Xg®
DMy, (k;F,)) be an object vanishing in DM, (E/L;Fp,). Then, accordmg to Pr0p051t10n
2.7, there exists a variety Q/L of finite type such that XQ z Xg, and UL(X)Xf =0 in

DM(L;F,). The condition XQ =z XRL means that we have an L-correspondence o : a ~ Ry,
of degree one, and there is no such correspondence in the opposite direction. Because
k = ky(P®) is flexible, varieties R and Q are actually defined over F and M = F(A"),
respectively, where extensions k/F'/ky are purely transcendental and F'/ky is, moreover,
finitely generated. By the same reason, we can assume that the geometric object U
is defined over F', whereas the correspondence @ is defined over M. Therefore, there
exist varieties R/F, @Q/M, an object U of Xr ® DMy, (F;F,) and a degree one M-
correspondence o« : Q ~» Ry such that Ry = R, Q| = Q, Ul = U and «|, = @. Note
that we still have Xqg 2 Xg,, (because « is defined over M and by functoriality), and
Up ®XQ =0 (because the restriction DM(M;F,) — DM(L;F,) is conservative). But
the extension M /F can be embedded into k/F, making k/M purely transcendental.
Let @' be a variety over k obtained from Q using this embedding. Then Xg 2
= (because k/M is purely transcendental) and U®XQr =0 in DM(%;F,). Hence,
U:o in DM(E/k;F,). O

Using Lemma 2.9.1 our problem is reduced to the case of a finite extension. In this
situation, the statement is true for an arbitrary field.

Lemma 2.9.2. Let E/L be a finite extension of fields. Then the functor
DM(E/L;F,) — DM(E/E;F,)
18 conservative.

Proof. Let F = L(P) for some smooth connected zero-dimensional variety P. Let U €
Ob(Xp @ DM(L;F),)) be an object vanishing in DM(E/E;F,). Then, for the disjoint
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union Q of all anisotropic varieties over F, we have Ug ®)?Q =0in DM(E;F,). Consider

a smooth L- varlety Q given by the composition Q — Spec(E) — Spec(L). We have a
natural map Q — QE This means that X > A, and thus Ug ®XQ =0 as well. Clearly,
Xg = Xp. Suppose that these are equal. Then there exists a commutative diagram

6 —— > Spec(F) — Spec(L)

|

Spec(F) —— Spec(E) —— Spec(L)

where F' is an extension of E of degree prime to p. But becaus [E : L] is finite, the
composition Spec(F) — Q — Spec(F) has the same (prime to p) degree. This contradicts
the fact that Q is anisotropic. Hence, XQ = Xp, and so Xz > Xq, where Q is a disjoint
union of all L-varieties @ with Xo = Xp. Thus, (U®XQ)E 0 as well. By [14, Theorem
2.3.5], the functor Xp @ DM(L;F,) — DM(E;F,) is conservative, so (U®/’f\qu) RXp=0
in DM(L;F,). This means that U =0 in DM(E/L;F,). ]

This finishes the proof of Proposition 2.9. 0

Another type of functoriality we have is the following one. Let k(A)/k be a purely
transcendental extension of k. Then we have a natural functor

DM(E/k:F,) — DM(E(A)/k(A);F,).

One just needs to observe that the inequality Xg = Xp is preserved under the passage
from k to k(A).

It is natural to ask: In which situations will our localisation functors be conservative?

Question 2.10.

(a) What is the kernel of the collection of functors {¢g| E/k —f.g. extension}?
(b) What is the kernel of the collection of functors {¢'g| F/k —f.g. extension}?

Because the passage from kg to k& = ko(t1,1t2,...) is conservative and any finitely
generated extension FE of k£ has the form E = Ey(ty,...), for some finitely generated
extension Ey of kg, and by Proposition 2.9, the triviality of {¢g,| Eo/ko —£.g. extension}
on Xy implies the triviality of {{g,| Eo/ko —f.g. extension} on Xo, implying the triviality
of {Yg|E/k —f.g. extension} on Xy|r, which, in turn, is equivalent to the triviality of
{op| E/k —f.g. extension} on Xy|,. Thus, for a given geometric object Xy/ko,

(a) = (b) = (b)ﬁex N (a)ﬁezs

where (a) means that Xj is in the kernel of the family {¢g,| Eo/ko —£.g. extension}, (@) fes
means that Xp|p (the restriction to the flexible closure) is in the kernel of the family
{op| E/k —1f.g. extension}, etc.
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Remark 2.11. Restricting the functors ¥g to the tensor triangulated subcategory
DQM™ generated by motives of smooth projective quadrics and specialising it further,
one gets the functors of T. Bachmann ®% : DQMY™ — K°(Tate(F3)) to the category
of bigraded Fa-vector spaces (see [1]). This can be deduced from the fact that the
functor ¥ g maps the subcategory DQMY™ to the subcategory of geometric Tate motives
in DM(E/E;F,) (by [17, Proposition 4.9]). The functors ®¥, constructed originally by
completely different methods, were shown by T. Bachmann to be conservative [1, Theorem
31]. In particular, the collection {¢'g|E/k —f.g. extension} is conservative on DQMI™.
Our approach also permits seeing conservativity on this and other similar subcategories.
Namely, it follows from [17, Proposition 4.9] that, for any object A of DQM?9Y™ there
exists a finite filtration by idempotents on the unit object T', such that associated graded
idempotents map A to geometric Tate motives. And this collection of associated graded
idempotents (having a form /'?Q ® Xp, for some smooth varieties P and @, with P-
connected) acts conservatively (as the unit object is an extension of them). It remains to
observe that, for geometric Tate motives, the triviality of fQ ® Xp ® A is equivalent to
the triviality of Tp ® A € Ob(DM(E/E;Fp)), for E = k(P). A

Remark 2.12. If the ground field kg is algebraically closed, then there exists only one
~-equivalence class of finitely generated extensions of ky (the trivial one). Thus, there is
only one ‘local’ point and only one localisation functor ¢ : DM(ky; F,) — DM(ko/ko; Fp),
which is an equivalence of categories (because there are no anisotropic varieties over ky).
Thus, in this case, the family {¢g,| Eo/ko —f.g. extension} is conservative, but it does not
provide any interesting information. A

The collection {¢pg| E/k —f.g. extension} is not conservative, in general.

Example 2.13. (1) Let k be a flexible field and C be an elliptic curve over k without
complex multiplication. Consider p = 2. Then M (C) =T ® M (C)® T(1)[2]. Consider the
Chow groups Ch yym(p) modulo numerical equivalence with Fo-coefficients (see Subsection
4.2). Then

Ch}\/um(p)(c X C) = [pt X C] ']FZ @ [C X pt] -Fz.

Indeed, for an arbitrary p, such a group is generated by [pt x C], [C' x pt] and the class
of the diagonal [A] (in the absence of complex multiplication). But with Fo-coefficients,
(A] [pt x C]+[C x pt]. Thus, M(C) =0 in Chownum (E;Fs), for any extension
E/k. Hence, by Theorem 4.11(1), it is zero in Chow(E/E;Fs3), which is a subcategory
of DM(E/E;F5). Therefore, all isotropic realisations 1//E(Z\7[(C)) are trivial. At the same
time, M (C) is nontrivial, because the (complex) topological realisation of it is nontrivial
(has nonzero H :1rop)- Alternatively, one can see that the restriction to the algebraic closure

Num(p)
~

M () is nontrivial. Note that the choice of a prime was essential here.
(2) Refining the previous example, we can show that even the combination

{prl| E/k —f.g. extension} Uresz

is not conservative on DMy, (k;F3). In the above situation, consider some nontrivial
quadratic extension F' = k(\/a) and P = Spec(F) 5 Spec(k). Let a = {a} € KlM(k)/2
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and M « be the ‘completely’ reduced Rost motive (see the proof of Theorem 3.5). This
motive fits into the exact triangle My — X,[1] > X, — M,[1], where X, = Xp. Let us
show that U = M (C) ®X #0. Indeed, such a triviality is equwalent to the fact that
the projection Xp x M(C’) — M(C) has a section. And because M(C) is a pure motive
(= Chow motive), any such section is liftable to a section of P x M(C’) — M(C’). This
would mean that the projector p defining M (C) is in the image of the natural map
7. : Ch'(C x C x P) - Ch'(C x C). Note, however, that Ch'(C x Clp) =[A] - Fa®[pt x
C]-Fo@®[C x pt]-Fy (because k-points of the Jacobian form a 2-divisible group), and
so the map resgom, : Ch'(C x C x P) - Ch'(C x Clz) is zero (because the action of
the Galois group on Ch'(C x Cly) is trivial, which implies that reszom, = 2- resy p).-
On the other hand, pl; # 0, because it is nonzero even in the topological realisation.
Hence, p is not in the image of reszom, and M(C) ®X # 0. Notice that ¥ g(U) =0,
because Vg (M(C)) =0, and res;(U) =0, because resg (X ) = 0. Thus, we have produced
a nontrivial example on which the needed combination of functors vanishes but, so far,
not a geometric one.

Consider V = ]V[(C) ® ]\7[a. Then we have a distinguished triangle V — U[1] - U —
V[1]. In particular, V is geometric and all of the above functors vanish on it. It remains
to show that V # 0. Note that because U # 0, the homology Hompni(g:r,) (T () [*], U)
considered for all finitely generated extensions E/k is nontrivial. At the same time, this
homology is zero for %" < x (below the main diagonal). This implies that V # 0. Indeed,
if it were zero, then the homology of U would be [1]-periodic, which is not the case. A

2.1. Local Chow motivic category
Let X be a scheme of finite type over k. We can define its isotropic Chow groups as

Chyyk: (X)) := Hompmn/h:w,) (T () [27], M (X)),

where M°¢(X) is the motive with compact support of X (see [20]). For smooth varieties,
we have from duality

hi p (X) = Hompm/k;r,) (M (X), T(r) [2r]).

The theory Chy,; has natural pull-backs and push-forward maps coming from the
respective maps between motives of varieties that satisfy all of the axioms of [9, Definition
1.1.2] (because these follow from the properties of motives). Finally, we have the excision
axiom (EXCI), claiming that for a scheme X with the closed subscheme Z and open
complement U, there is an exact sequence

Chijk;(Z) = Chigjiss(X) == Chiyis(U) = 0.
This follows from the Gysin exact triangle [20, (4.1.5)]
M(Z)—> M¢(X)— M°(U)— M°(Z)[1]

and the fact that the map Ch* — Chj, sk 1s surjective, which follows from Proposition 2.16
below. Thus, Ch, sk is an oriented cohomology theory (with excision) on Smy in the sense
of [18, Definition 2.1].
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Definition 2.14. Let @ be a scheme (of finite type) over k and n € N. We say that @ is
‘n-anisotropic’ if the degrees of all closed points of @) are divisible by n.

Schemes that do not have this property will be called not n-anisotropic, and we will
reserve the term isotropic for a scheme having a zero-cycle of degree 1 (mod n). Below
almost everywhere we will be dealing with n = p-prime, and so isotropic will be the
complement to anisotropic. Unless specified, the term anisotropic will mean p-anisotropic,
for some prime p.

Definition 2.15. Let X be a scheme over k, and z € Ch,.(X). We call z ‘anisotropic’ if
there exists a proper morphism f: Y — X from a p-anisotropic scheme Y and a class
y € Ch,.(Y) such that z = f,.(y).

For fields of characteristic zero and X projective, x is anisotropic if and only if it is a
push-forward of the generic cycle from some smooth projective anisotropic variety over k.
Isotropic Chow groups can be alternatively described as follows.

Proposition 2.16.
Chy/;(X) = Ch(X)/(anisotropic classes).
Proof. By Proposition 2.6, Hompk/k:F,) (T (1) [27], M ¢(X)) is the colimit of the groups
HomDM(k;]Fp)(/’FQ(T) [2r], M°(X)® /'FQ),

where @) runs over all anisotropic varieties over k. Recall that we have an exact triangle

Xo T Xo Xol1].

By [14, Theorem 2.3.2] (which is basically [19, Lemma 4.9]), Hompm:r,)(Xq(+)[*],
Me(X) ®XQ) =0, and so our group is the colimit of groups HomDM(k Fp)(T(T)[Q’I"]
Me(X) ®XQ), where @ can be assumed to be projective. Because XQ is an extension
of M(Q*")[i], for i >0, and Hompwmk;r,) (T'(r)[27], M°(Y)]i]) =0, for any i > 0 and any
scheme Y of finite type, we can identify

Homp e, (T(r)[27], M(X) @ Xg) = Coker(Ch,.(X x Q) —% Ch,(X)).

Thus, Hompik/x:F,) (T (r)[27], M ¢(X)) = Ch,.(X)/I, where [ is the subgroup generated
by the images of ()., for all anisotropic varieties /k. In other words, we mod-out all
anisotropic classes. O

The isotropic motivic category DMy, (k/k;F;,) has a pure part.

Definition 2.17. Define the ‘isotropic Chow motivic category’ Chow(k/k,Fp) as the
full additive subcategory of DM, (k/k,Fy) - the image of Chow(k,F,) under the natural
projection

DMy, (k. F,) = DMy, (k/k,F,).

Thus, the objects of Chow(k/k,Fy) can be identified with direct summands of motives
of smooth projective varieties over k, and the morphisms are described as follows.
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Proposition 2.18. Let X and Y be smooth projective k-varieties. Then
Hom o k) (M (X), M(Y)) = Chi 2 (X x V).

Proof. If B is an object of DMy, (k;F,) with the dual BY, and A, C are objects of
DM(k;F,), then we have a functorial identification

Homppik:F,) (A® B, C) = Hompwmk;r,) (4, BY ® C).

Hence, for the projector pg = /’FQ@) we also have a functorial identification
Hompk:F,) (0Q(A) ® pq(B), po(C)) = Hompmk:r,) (0@(A), po(BY) ® po(0)).
Taking into account that M (X)Y = M(X)(—d)[—2d], where d = dim(X), we obtain that
Hom chowk/k,F,) (M (X), M (Y)) = Hompnigryi:F,) (T (d)[2d], M(X x V)

= Chy 7" (X x V). O

We can describe Chow motives disappearing in the isotropic category.

Remark 2.19. An object U of Chow(k,F,) vanishes in Chow(k/k,IFp) if and only if it is
a direct summand in the motive of a (smooth projective) anisotropic variety.? Indeed, a
direct summand U of M (P) vanishes in Chow(k/k,IF)) if and only if the identity map idy :
U — U does. By Propositions 2.16 and 2.18, this means that the map Ay : T — UQ UY
factors through (the motive of) a smooth projective anisotropic variety @. Consequently,
U is a direct summand of M (Q)® U, which, in turn, is a direct summand of M (Q x P),
and the latter variety is still anisotropic. A

From Propositions 2.16 and 2.18 we obtain the following.

Corollary 2.20. The functor Chow(k,F/p) — Chow(k/k,F/p) is surjective on mor-
phisms.

In other words, all ‘local’ morphisms between (isotropic) Chow motives are defined
‘globally’.
We will have a closer look at the category Chow(k/k,IF),) in Section 4.

3. Local motivic cohomology of a point

In this section we will compute the motivic cohomology of a point in the isotropic
motivic category for p = 2. This will be achieved by substituting all anisotropic k-
varieties in the colimit of Proposition 2.6 by norm-varieties for nonzero pure symbols from
KM (k)/2 (anisotropic Pfister quadrics, in our case). This makes the problem amenable
to calculation due to Voevodsky technique. Moreover, the resulting answer, drastically
different from the ‘global’ one, in turn sheds some light on this technique.

21 am grateful to T. Bachmann for emphasizing this.
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The starting point is the following statement, which is a slight modification of the result
of J.-L. Colliot-Thélene and M. Levine [4, Theorem 3]. We provide a somewhat different
proof.

Statement 3.1. Let B be an anisotropic (mod n) projective variety. Then, over some
finitely generated purely transcendental extension, it can be embedded into an anisotropic
hypersurface of degree n.

Proof. Embed B into a projective space. Passing to a Veronese embedding, we can assume
that all of the relations in the projective coordinate ring of B are generated by quadratic
ones or, in other words, that B is defined by quadrics. Then it will also be defined by
hypersurfaces of degree n (in our P™), for any n > 2. Let P" = Proj|D| be the projective
system of hypersurfaces of degree n containing B. I claim that the generic element of
this linear system is an anisotropic hypersurface. Consider Y C (P™\B) x P” defined by
Y ={(z,H)|z € H}. Then Y is a projective bundle Projpm\ g, (V) over (P™\B), where
V is a codimension 1 subbundle in the trivial bundle |D|. Let Y, be the generic fibre
of the projection Y — P”. This is exactly (Q,\B), where @, is the generic hypersurface
of degree n passing through B. Note that the degree (mod n) is well defined on the
zero-cycles on Y, because B is anisotropic. By the projective bundle theorem, CH*(Y)
is a free module over CH*(P™\B) with the basis 1,p,...,p" "', where p = ¢;(O(1)). On
the other hand, we have a surjective ring homomorphism CH*(Y) —» CH*(Y;) that is
zero on p (because this class is supported on a hypersurface in P"). Thus, we obtain
the surjective map CH*(P™\B) — CH"(Y,), which sends the class ¢ € CH*(P™\B) to
the restriction of 7*(c) to Y;, where 7 is our projective bundle fibration. In particular,
c € CH; (P™\B) is mapped to a zero-cycle on Y; whose degree is equal to the intersection
number of ¢ and any hypersurface from our linear system (which, again, makes sense,
because B is anisotropic). Hence, it is a zero-cycle of degree 0 (mod n). Thus, the
degrees of all zero-cycles on Y, are divisible by n, and so the same is true about
@Q,=Y,UB. O

Corollary 3.2. Let k be a flexible field, U € Ob(DMg, (k;IFp)) and V € Ob(DM(k;F))).
Then

HomDM(k/k;Fp)(U, V)= cogmHom§Q®DM(k;Fp)(U, V),

where the colimit is taken over all of the functors ®/’?Q, where Q runs over all anisotropic
hypersurfaces of degree p over k. This system is directed.

Proof. Let B be any anisotropic variety over k. By Statement 3.1, there exists a purely
transcendental field extension E/k and anisotropic hypersurface @ over E such that
Xplg = Xg. Let k = kg(P*°). Then there exists a diagram of purely transcendental
extensions of fields
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]

ky —=1l——=1L

_—

with the extensions of the bottom row finitely generated, such that the variety B is defined
over [, and the variety @ and the correspondence B ~~ @ (of degree 1) are defined over
L. But we can embed L into k over [ so that k/L will be purely transcendental. Thus, we
obtain an anisotropic hypersurface @ over k together with a correspondence B ~~» @ of
degree 1. Anisotropic hypersurfaces of degree p thus form a final subsystem in the system
of all anisotropic varieties that is directed; hence, this subsystem is directed as well. [

Corollary 3.3. Let k be a flexible field and p =2. Let U € Ob(DMyp, (k;Fp)) and V e
Ob(DM(k;F,)). Then
HomDM(k/k;Fp)(U, V) = CotlximHomea@DM(k;Fp)(U’ V),

where the colimit is taken over all of the functors ®é\~,’Qa, where o Tuns over all nonzero
pure symbols from KM (k)/2 and Qy is the respective Pfister quadric. This is a directed
system.

Proof. By [15, Corollary 3] (see also [8]), every anisotropic quadric @ (over any field
k) can be embedded into an anisotropic Pfister quadric ¢, over an appropriate purely
transcendental extension of finite transcendence degree. If now k is flexible, then arguing
as in the proof of Corollary 3.2, we can embed @ into some anisotropic Pfister quadric
Q. over k. Thus, the set of anisotropic Pfister quadrics forms a final subsystem in the
system of all anisotropic varieties over a flexible field, which, again, must be directed. O

From the fact that the system in Corollary 3.3 is directed, as a by-product, we obtain
the following result (which, of course, is a simple consequence of Statement 3.1 and [15,
Corollary 3] and can be even seen from the latter result alone).

Proposition 3.4. Let k be a flexible field and {a;},er, be a finite collection of nonzero pure
symbols from KM (k)/2. Then there exists a mnonzero pure symbol a € KM (k)/2 divisible
by every «aj.

Using Corollary 3.3, we can compute the cohomology of a point in isotropic motivic
category for p =2. For a nonzero pure . symbol o € KM (k) /2, let us denote as DM(a/k;Fs)
the full triangulated subcategory X ® DM(k;F3), where XD, = XQu and @, is the
respective Pfister quadric. Homs between Tate objects in this category can be computed

as follows.
Define an Fa-vector space Q7 '(n) = @;r;-Fa, where I runs over all subsets of
n={0,1,...,n}, with the structure of a module over Milnor’s operations @; defined by

Qi(rr) =, if @ € I, and zero otherwise, and with the bidegree of 7 being (0)[0]. Let
T(n+1) be a polynomial generator with Qp4+1(7(n41y) = 15 and Q;(rp41y) =0, for ¢ #n+1.
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Let R, be a module over K*M(k)/Z isomorphic to the principal ideal o - K*M(k)/2 with the
generator in bidegree (0)[0]. In other words, R, = KM (k)/Ker(-a). In particular, it has a
natural ring structure. The multiplicative structure on Q~1(n)[r(,11)] ®F, Ry is provided
by rr =[1,c; iy and the identity r{ = Tit1y - p, for 0 < i< n, and p = {—1}. In other
words, this is the ring Ra[r{i}|0<i<n+1]/(r — it1) - Plogign)-

For a motivic category D with Tate obJects, let us denote as Endp(V) the ring
®q, s Homp(V, V(a)[b]).

Theorem 3.5. Let a € KM (k)/2 be a nonzero pure symbol. Then
Endpm/k:ra) (T) = QH(m —2)[r(m—1)| ®F, Re = Ra[ri) |O<i<m—1]/(r{2i} —T{i+1) - Plogi<m—2)-

Proof. By definition, Endpm@a/k:r,) (T) = EndDM(k;]Fz)(fa). From this point, all of the
Homs will be in the category DM(k;F2), unless specified otherwise, so I will omit it from
notations.

Let M, be the respective Rost motive [12]. We have natural maps T'(d)[2d] - M, — T,
where d =2™~! —1, whose composition is zero. Cutting out the respective Tate motives
from M, and tensoring the result by X, and 5(,0” respectively, we obtain

T and ; ')?a
P / 8
M, R 1\71a * o wl 1] {n = o
\ i [1] \ 1]
T(d)[2d] Xa(d)[2d] X, (d)[2d]

Here we are using the fact that M, ® X, =0 and that M « ® X, =0, which are equivalent
to the exactness of the left triangle [22, Theorem 4.4]. Let us denote the above half of
the octahedron as <. Note that because there are no Homs from X, to /’E, (*)[*'], we can
naturally identify groups Hom(X,, X, (+)[*]) = Hom(T, X, (+)[«]).

For each 0 <i<m—1, let g € K’ 1(lc)/2 be any pure symbol dividing «. We obtain a
similar map ng(—d;)[—2d;] : Xﬂ — Xﬂ( d;)|—2d; — 1], where d; = 2° — 1. Tensoring it with
5(:1, we obtain the map 7 : 5(:1 — )?a(—di)[—2di —1] or, in other words, an element ry; €
Hompwma/k:re) (T, T(—d;)[—2d; — 1]). Below we will see that this map does not depend
on the choice of the divisor f.

For any smooth projective R, we have the natural (homological) action of the
Steenrod algebra on Hom(T, X R(*)[*’ ) and the natural (cohomological) action of it on
Hom(Xx, T (x)[*']), which commute with the maps X — Xs (for X > Xg). In particular,
we have the action of the Milnor’s operations @;. If R is a v;-variety, then by the arguments
of V. Voevodsky [22, Corollary 3.8], the differential @); is exact on Hom (X, T (x)[+]). By
the same arguments, it is exact on Hom(T XR(*)[ D. In particular, in our case, @; is
exact on Hom(T, X, (*)[*’]) and Hom()(a, T(x)[*]), for any i < m—1.

Consider N = ® Hom(X, [—1], Xy () [¥']). It has the natural right action of A=End(X,)
as well as the left action of A = End(X,). In particular, there is a right action by 7
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and a left one by w. I claim that these are mutually inverse. Indeed, to see that for any
f: Xy = Xy(a)[b], one has pefen=f, it is sufficient to look at the ‘vertical axis’ of

>® (X, EN Xy (a)[b]), which is (after rotating by 90°)

B —L B~ Z(D2d]
fl i lf(dﬂ2d]
Xy () [b] —a Xy (0t d)[b+2d] == X, (a+ d)[b+2d]

m(a)[b]

Thus, N is u — p-periodic, because the actions by w and n are mutually inverse
isomorphisms on N.

At the same time, Hom(fa,f (a)[b]) = Hom(T, X, (a)[b]) is zero for b > a, and
Hom(Xa, T(a)[b]) =0 for b < a+1 by the Belhnson—Llchtenbaum conjecture’ (note that
X, disappears in the etale topology). Considering Homs from X, [—1] to the (a)[b]-shifted
exact triangle X, — T — fa — X,[1], we obtain that Ais exactly the < 0 diagonal part
of N, and H*’Ajlk/ (fa[—l];Fg) is exactly the > 0 diagonal part of it. Thus, N combines the
homology and cohomology groups of X, .

Because there are no Homs from T to X,(a)[a+ 1], the map Hom(T, T(a)[a]) —
Hom(T, fa(a)[a]) is surjective, so the Oth diagonal of A (or the Oth diagonal of N, which
is the same) as a KM (k)/2-module is generated by 1 - the unit of this ring. Let R,
be this Oth diagonal. From u — n-periodicity, the diagonal number (—2™~!) (where 7
resides), as a KM (k)/2-module, is generated by 1. Because the differential Q,,_; is exact
on Z, we obtain that 1 is covered by the image of Q-1 (because A is concentrated
in nonpositive diagonals). But the only nonzero element of the needed bidegree is 7.
Thus, @m-1(n) = 1. Applying the same arguments to the symbol 8 (considered above),
we obtain that Q;(ng) =1, so Q;(ry) =1.

For any I C (m—2), denote 77 :=[[,c; riy and Qr = o4e1 Q;. Denote as D; the jth
diagonal of N. For 0 < i< m—2, let I; ={i, z+1 ,m —2}. Because Hﬁ (Xa[—l],]FQ)
is trivial below the first dlagonal, and Qs are exact, the composition Qp, : Dyi = Dom-1
is injective. But from u — n-periodicity, Doym-1 as a KM (k)/2-module is generated by u.
In particular, the Dy is trivial below e lerr. By the u— n-periodicity, Doi_om-1 is
trivial below r7,. In particular, Q;(n) =0, for any 0 < i < m —2 (because this element is
below 77,), and because n generates D_ym-1, all of the differentials @;, for i < m—2, are
trivial on this diagonal. Applying the same arguments to the divisor 8 of degree (i +1),
we obtain that @;(ng) =0 and, hence, @Q;(ry;;) =0, for [ < ¢ (the fact that @Q;(r;) =0, for
| > 14, is obvious, because A is concentrated in nonpositive diagonals). Combining it with
the (external) co-multiplication identity for Milnor’s operations,

Qzxy) = Y Qr(x)x Qsy) - {-1H/=IKI (1)

2l 427 =2K

where 2/ =Y. ;2% we obtain that Q;(r;) =1, for any I C (m —2).
Let us show that D_or is a free module over Dy = R, generated by 7. Let s be the
smallest element of I (which we assume to be m — 1, if I is empty). Decreasing induction
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on s. The (base) s =m — 1 follows from u — n-periodicity. The, (step): let 2/ =27 425,
Because I'\s and J consist of elements larger than s, by inductive assumption, D_ o1, 9s) =
r7-Do and D_(y1_9s) = r1\s - Do (Where we denote 7y, 1) :=n). In particular, Qs is trivial

on D_149s), and from the exact sequence D_ o1 9s) BN D_or s D_(51_5s), taking into

account that Q,(ry) =rr\s, we see that Qs : D_yr = D_(51_5s) is an isomorphism inverse
to the multiplication by 7. Thus, D_sr = r1- Dy.

From p — n-periodicity we obtain that A is a free module over R, generated by n* - ry,
for k>0 and I C (m—2), and Hm‘/(fa[—l];lﬁ‘g) is a free module over R, generated by

wtery, for I >0 and I € (m—2). Consider y = prelerg—5 — the generator of Dy —

the first diagonal in N, or the first diagonal in the motivic cohomology of 2?0([—1], which
is the same. By the Beilinson-Lichtenbaum conjecture, multiplication by t identifies D,
with the kernel Ker(KM (k)/2 — KM (k(Qx))/2) (see [19, Lemma 6.4]). The generator
y is identified with some element of degree m, which must coincide with the symbol
o (because « vanishes over k(@) and there exists exactly one nonzero element of the
respective degree in D;). Hence, as a KM (k)/2-module, R, can be identified with the
principal ideal of KM (k)/2 generated by a. So, as a ring, R, = (KM (k)/2)/(Ker(-a)).
This gives the description of A (as well as N) as a module over KM (k)/2 and over
Steenrod algebra. Finally, the equation r{zi} = 1(i+1) - o follows from the co-multiplication
identity for Milnor’s operations (1). O

As a by-product, we obtain the description of motivic cohomology of /'E,, (known already
from the original version of [10] and [23, Theorem 5.8]) but now enhanced with the
structure of a module over motivic homology of Xj,.

Corollary 3.6. Let o € KM(k)/2 be a nonzero pure symbol. As a module over A=
Endpmk; Fa) (e ),

Hxl(fa[—l];lﬁ‘z) = Z[T{_n%—n]/l
It is a free Ry-module with the basis r{;i_l} -rr, for 1 >0 and I C (m—2).

Now we can compute the ‘local’ motivic cohomology Hj\’jlk/(k/k; F2) =Endpmp/k;re) (T).
Theorem 3.7. Let k be a flexible field. Then
HYY (k/k:Fa) = Q71 (00) = A, (1 li0).

Proof. As we know, our colimit (from Corollary 3.3) is taken over a directed system.
Let o € Ké‘f(k)/? and B=«a-{b} € K%H(k)/Q be nonzero pure symbols. Consider the
restriction

EndDM(&/k;[Fz)(T) E) EndDM(ﬁ/k;Fg)(T)'

Then res = )?,3@) is a ring homomorphism respecting Steenrod algebra action and, in the
notations of Theorem 3.5, for I C {0,...,m —2}, we have res(r;) = r; and res(rj,—1)-r7) =
T1uim—1}- Indeed, res sends 1y to ry, and ry and ry (respectively rm—1y- 77 and rrupm—1)) are
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the only elements (in the source and the target) that are mapped to 15 via @ (respectively,
Qrum-1y). In addition, res: R, — Rp is the natural projection, corresponding to the map
{b
a-KMky/2 -5 g KM (k) /2.
Combining this with Corollary 3.3, we obtain that

HE; (/K5 F) = Q7 (00) @x, (KM (h)/2)/ N,

where N = U, Ker(-«), where « runs over all nonzero pure symbols in K*M (k)/2. It remains
to observe that N contains KM (k)/2. Indeed, let {a} € K{¥ (k)/2 be any element such that
{a} #0 # {—a}. Then, from {a, — a} =0, both {a} and {—a} belong to N. This implies that
{—1} € N. Because over a flexible field an element a as above always exists, we obtain that
N contains KlM (k)/2 and thus coincides with the augmentation ideal K%(k’) /2. Hence,
(KM (k)/2)/N =TFy.

Finally, from the equation r{%} = 1i+1; - p it follows that rﬁ} = 0. Thus, we obtain the
external algebra in ry;s over Fs. O

What is remarkable here is that the Milnor operations are intertwined into the
very fabric of the local motivic category. In addition, all of the nonzero elements of
Hm/(k/k;Fg) are ‘rigid’ in the sense that the identity map of the unit object of the
local category can be obtained from any such element using Milnor’s operations, so these
classes disappear only together with the category itself.

We can now compare ‘local’ and ‘global” motivic cohomology of a point

(7]
(4) .
o 5]
) '7{0}
Hiyf (k/k;F2)=Q (o)
Ty
°T{h,1} KMo
*7{2}
®7{0,2}
®7{1,2}
®7(0,1,2} - -
(4)
Hyyy (ki) =KM (k) /2[r)
*7{3}

Note that in contrast to ‘global’ motivic cohomology of a point residing in the first
quadrant, the ‘local’ version resides in the third one. In particular, the global-to-local map

HYY (k, Fy) — HI (k/k, Fy)

is zero in all bidegrees aside from (0)[0].

https://doi.org/10.1017/51474748020000560 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000560

1292 A. Vishik

Our ring generators r;; are related by the action of the Steenrod algebra.
Namely, because (modulo p = {—1}), Qi+1 = [Q:, Sq22+1] [21] and p disappears

locally, we ob‘téiin from bidegree considerations that Sq2l+1(r{i+1}) = 1. In particular,
Sq'Sq?... Sq227 Sqw Ty =1 =1.

Remark 3.8. Despite some similarities between the (complex) topological realisation
functor and isotropic functors, there is a difference in the way they handle r. Namely,
Trop = 1, and Y () =0 (in the case of a flexible field). A

The only obstacle that prevents us from performing the same calculations for odd
primes is the lack of the analogue of [15, Corollary 3] in this situation. In particular, it
would be sufficient to have a positive answer to the following.

Question 3.9. Let @ be an anisotropic hypersurface of degree p over k. Is it true that,
over some finitely generated purely transcendental extension E/k, the kernel

Ker(KM(E)/p — KM(E(Q))/p)

contains a nonzero pure symbol?

4. Isotropic category of Chow motives

In this section we will study in detail local Chow motives. As we will see, over a flexible
field, these resemble in many respects their topological counterparts and are closely related
to the numerical equivalence of cycles with finite coefficients. In particular, the Homs
between such local pure motives are expected to be not larger than Homs between their
topological realisations and so finite-dimensional. We will prove this in various situations.

Let us start by introducing some ‘gradual’ approach to the numerical equivalence of
cycles, which will permit measuring our progress towards the goal.

4.1. Theories of higher types and numerical equivalence

Let A be a commutative ring and L —%5 A be some formal group law with A-coefficients.
Denote as A := Q*®p A the respective free theory in the sense of Levine-Morel 9,
Remark 2.4.14]. By [18, Proposition 4.7] this is a theory of rational type. We call this type
0. We are going to introduce the theory A7, of type n as some quotient of Af,. This is
based on the following construction (cf. [6, Example 4.6]):

Example 4.1. Let A* be some oriented cohomology theory (with localisation) in the
sense of [18, Definition 2.1] and ' = {@;, a1}rea be a collection of smooth projective
k-varieties with some classes a; € A*(Q)). That is, we have a collection of A*-
correspondences p : @ ~» Spec(k). Construct the new theory A} as follows:

AL (X) := AY(X)/(im((p. X id):)ren),

where p; x id is the correspondence @ x X ~» X. In other words, we mod-out all of the
elements of the form B,(a*(a;) - u), where u is an arbitrary element of A*(Q), x X) and «
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and B are natural projections:
62)L <L Q)L x X L X.

One can check that the resulting theory A} will be an oriented cohomology theory in the
sense of [18, Definition 2.1] A

Definition 4.2. Let Q — Spec(k) be a smooth projective variety and a € A*(Q). We
say that a o 0, if my(a-b) =0, for any b € A*(Q).
Now we can introduce the theories of higher types.

Definition 4.3. Consider the collection I';, = {Q;, a;}ren, Where @; runs through all

smooth projective k-varieties of dimension 2n —1 and a; € A*(@) runs over all elements
Num

~ 0. Define
A>(kn) = (A(O))}k‘n.

If a € A*(Q) is e 0, then a x [(PY)] € A*(Q x (P*)*2) is also M. Therefore, the
images of correspondences from I',, are covered by those from I',.;. Hence, we get a
chain of surjections

Ay = Al = Ay =+ = 4G

Here A%

(n)

with the colimit A% is obtained from A* by moding-out all classes N

Num* Num
on all varieties.

Remark 4.4. For n =1, the theory A7) is, by definition, the algebraic version A’glg. In
particular, CH{}, = CHalg. A

The meaning of the theory A}, is described by the following universal property.

Proposition 4.5. For any oriented generically constant cohomology theory (with
localisation) A* (in the sense of [18, Definition 2.1] and [9, Definition 4 4.1]) with the
formal group law L AN A, there exists a unique morphism of theories A* AN that
18 surjective.

Proof. By [18, Proposition 4.8], the canonical morphism of theories G : Al A* is
surjective (this morphism is induced by the canonical morphism Q* — A* of [9, Theorem
1.2.6]). By the same universality of algebraic cobordism, such morphism is unique. In

particular, there is a unique morphism of theories Af, — A},,,. Note that G |Spec(k) :

A= Ais an isomorphism. Hence, if € A* )(X ) belongs to the kernel of G, then z "o,
factors through A — A O

Thus, the unique morphism of theories A — A% N

Num

Thus, Ay, (o) and
any generically constant theory A* with the formal group law ¢ is canonically squeezed

* *
between A(O) and A(oo)

plays the role opp051te to that of Af and can be denoted as Aj

A —>>A —))—A(oo),

and the latter provides an alternative way of describing such theories A*,

https://doi.org/10.1017/51474748020000560 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000560

1294 A. Vishik

4.2. Numerical equivalence modulo p and isotropy

Everywhere below X is a smooth projective variety over a field k of characteristic zero.
In the case of a theory Ch* = CH* /p, we will denote the numerical equivalence M as

M) ¢ stress that we consider finite coefficients. Thus, Ch%, (X)=Ch*(X)/N, where

Num
N is the ideal of elements =" 0. In our situation, z € Ch(X) is
y € Ch(X), the deg(z-y) =0€F,.
By the very definition, we have a nondegenerate pairing

Num(p)
~

0 if, for any

ChNum(X) X ChNum (X) — Fp

defined by (z,y) — deg(xz - y). Moreover, because deg(z - y) may be defined on the level of
the (complex) topological realisation, the kernel of the topological realisation functor is
contained in N, so Chyym (X) is a subquotient of the topological cohomology H 7, (X;F,)
of X. In particular, Chpyyn, (X) is finite-dimensional F,,-vector space. Note, however, that
this subquotient depends on the ground field &, because for different fields the images of
the topological realisation functor will be different.

The theory Ch},,, inherits the action of the reduced power operations from Ch*,
as follows from Proposition 4.6 below. Recall that we have reduced power operations
P?: Ch* — Ch*" =D (see [2] and [21]) commuting with pull-back morphisms and the
respective homological operations P; : Ch, — Ch,_;p—1) commuting with push-forwards.
These are connected as follows:

P'=Y d(Tx)- Py,
=0

where d; satisfies Cartan’s formula and, for a line bundle L, d; (L) = zP, where x = ¢ (L).

Num(p)

Proposition 4.6. Let u € Ch*(X). Then u REON) = Pi(u) 0.

Proof. Induction on i. Because P° = id, we have the (base) i = 0.

(step) We need to show that deg(P’(u)-wv) =0, for any class v of complementary
dimension. By Cartan’s formula, P%(u)-v = P*(u-v) — Z;;é Pi(u)- P9 (v). By the
inductive assumption, we have that deg(P?(u)- P*7(v)) =0, for any j < i. And the
degree of the first summand can be rewritten as

deg(P*(u-v)) = deg (Z d(Tx) - Piy(u- v))

=0
i i—1
= deg(P;(u-v)) +deg (Z di(Tx)- Y dn(=Tx)- P " (u- v)) :
=1 m=0

The second summand is zero by the inductive assumption, and the degree of P;(u-v) is
the same as that of P;(m,(u-v)), where m : X — Spec(k) is the natural projection. The
latter degree is equal to zero for any 7 > 0. The induction step is proven. O
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If x is an anisotropic cycle, then z M, Indeed, x = f,(z') for some projective map f :
7 — X from anisotropic variety Z and some x’ € Ch*(Z). But then deg(x-y) = deg(f.(z) -
y) =deg(2’- f*(y)) =0, because all zero-cycles on Z have zero degree (modulo p). Thus,
we get the surjective map:

k/k(X) - ChNum( )

I conjecture that, over flexible fields, in reality these two cohomology theories coincide.
Conjecture 4.7. Let k be a flexible field. Then Chy,, = Chly,,,.

Remark 4.8. The condition on the flexibility of & is essential here. For example, if k is
algebraically closed, then from Remark 2.12 we know that Chj , = Ch*, and Chj

Num
some subquotient of it. A

Remark 4.9. This conjecture, in particular, implies that the local Chow motivic category
Chow(k/k;Fp) is equivalent to the numerical Chow motivic category Chownym (k;Fp).
Because the degree pairing is defined over the algebraic closure and even in the
topological realisation, we obtain that the numerical Chow groups over E are subquotients
of the respective groups over E, which, in turn, are subquotients of topological cohomology

ChNum/E(X) “«——> ChNum/E(X) “«——> HTop(X;IFp)~

Thus, our conjecture implies that any object of Chow(k;IF,) that vanishes over k, or even
in the topological realisation, should vanish in every isotropic category Chow(E/E;F,).

In contrast, ‘non-pure’ motives behave differently. For example, the idempotent,
corresponding to the projector wg : DM(k;F,) — DM(E/kK;F,), is mapped via \ Yp to the
unit object of the category DM(E/E;F)). On the other hand, its restriction to k is trivial,
because XQ|k =0, for any nonempty Q (note that E # E, because k is flexible, so the
respective directed system contains nonempty @s). Consequently, all of the subcategories
DM(E/k;Fp), for all finitely generated E/k, are killed by the restriction to the algebraic
closure functor DM(k;Fp) — DM(k; FF,,). There are geometric examples as well: the motive
M of Section 3 vanishes over k but is nonzero in the isotropic motivic category. A

Remark 4.10. Although the numerical Chow motivic category Chownym (k;F,) is a
subquotient of a topological category (that is, of the category of graded [Fp-vector spaces),
it is more interesting. In particular, it is not generated by a single object (Tate motive).
This is reflected by the absence of the Kunneth formula. Namely, for smooth projective
X and Y, the product map

is not an isomorphism (< not surjective), in general. A
Our aim is to prove the following result.

Theorem 4.11. Conjecture 4.7 is true in the following cases:

(1) dim(X) <5
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(2) Ch';
3) Chyy, for m <2.

Item (2) will be proven in Proposition 4.15, item (3) follows from Corollary 4.16 and
Propositions 4.20 and 4.23, and for item (1) we need to add Proposition 4.24.

Corollary 4.12. In the situation of Theorem 4.11, the local Chow groups Chz/k(X) are
finite-dimensional F,-vector spaces.

This contrasts with the global situation, where Chow groups of varieties are often huge.
We have the following Chow-motivic questions of increasing strength related to
Question 2.10.

Question 4.13.

(1) Is it true that any U € Ob(Chow(k;F,)) that vanishes in the (complex) topological
realisation is zero?

(2) Is it true that any f € End chow:F,) (V) that vanishes in the (complex) topological
realisation is nilpotent?

As we saw, by Conjecture 4.7, for a flexible field the triviality of the topological
realisation should imply the triviality of all local realisations.

Remark 4.14. Note that the stronger variant of Question 4.13(2) fails. Namely, C. Soule
and C. Voisin produced an example of a class ¢ € Ch®(X), for some smooth projective
X, such that ¢ vanishes in H%OP (X;F,), but ¢ is not smash-nilpotent (that is, ¢*" #0 €
Ch3"(X*"), for any r) [13, Theorem 5.

If we are interested instead only in the triviality of local realisations, it is sufficient
to take the image T of any torsion class z from CH!(X), whose topological realisation

in HQTop(X ;Fp) is nontrivial. Then, because the degree pairing is defined integrally,

T|g ) 0, for any E/k. Thus, all local realisations of T are trivial by Theorem 4.11(2).
At the same time, its topological realisation is nontrivial and thus not smash-nilpotent.

Hence, 7 is not smash-nilpotent either. A

A weaker variant of Question 4.13 with ‘topological realisation’ replaced by the
‘restriction to the algebraic closure’ is a safer bet. In this form, question (2) becomes
the Rost Nilpotence Conjecture.

4.3. The proof of the Main Theorem
4.3.1. Divisors and zero-cycles. We start the proof of Theorem 4.11 with the case
of divisors (item (2)), which is actually the base for the whole technique.

Num(p)
~

Proposition 4.15. Let k be a flexible field and u € Ch*(X) be 0. Then u=0¢€

Chy, ), (X).

Proof. Adding to an effective divisor representing « a p-multiple of a very ample divisor,
we may assume that u is represented by a very ample divisor D. Let (P™)Y = Proj|D|
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be the projective linear system of D. This defines the embedding of X into P”. From
Statement 6.3, the embedding ¢ : D, — X of the generic representative of our linear

system into X induces a surjective map ¢* : Ch; (X) — Cho(D,). But because D 0,
the degree of the zero-cycle t*(v) is zero for any v € Ch;(X). Hence, D, is anisotropic.
Thus, over k((P™)Y), our class u is represented by the class of an anisotropic divisor
D,. Because k is flexible, it is represented by an anisotropic class already over k (by
Proposition 1.3). O

Num(p)

Because the theory Chj, sx has the structure of push-forwards and pull-backs, we obtain
the following.

Corollary 4.16. Let k be a flexible field. The projection Ch* — Ch}z/k passes through
Ch*, =Chf,,.
(€8]

alg
Proof. A class u € Ch*(X) is algebraically equivalent to zero if it can be presented as
fe(y-g*(v)), where X <f— X x C —L> C are natural projections, C' is a smooth projective

curve, y € Ch*(X x C) and v € Cho(C) is a zero-cycle of degree zero. Because v e 0,
Proposition 4.15 implies that v =0 € Chj, ;. (C), so u =0 € Chj ;, (X). 0

Because any zero-cycle on a smooth projective variety X is a push-forward of some
zero-cycle from a curve, we also get the case of zero-cycles.

Num(p)
~

Corollary 4.17. Let k be a flexible field and u € Cho(X) be 0. Then u=0¢€

Chyyk;0(X).

Our general strategy of proving that the class u NP 0 s anisotropic will be to find an

appropriate blow-up 7 : X — X, so that 7*u may be represented by a cycle supported

Num(p)
~

on a smooth connected divisor Z ¢ X , which is 0 already on Z. Then we use
induction on the dimension of X and the fact that v = m,m*u. In order to achieve this,
we will need first to present u by the class of a smooth connected subvariety S and make

Oon X.

. C . ., Num(p)
the appropriate characteristic classes of it ~ ~

4.3.2. 3-folds and 1l-cycles. We will be moving up the dimension of varieties. The
above statements settle the case of curves and surfaces. Our next aim are 3-folds, where
only the case of 1-cycles remains open.

Proposition 4.18. Let k be a flexible field and X be a smooth projective variety over k
of dimension 3. Let u € Chy(X) be MO, Thenu=0e Chyp:1(X).

Proof. We will show that there is a blow-up 7 : X — X such that m*(u) is represented
by the class of a smooth anisotropic curve on X. Because " (u) = u, this will show
that the class u is anisotropic. Here, as in many statements below, we will be gradually
reducing a general case to the one with better and better special properties.

Lemma 4.18.1. We may assume that u is represented by a class of a smooth curve S
on X and, moreover, deg(c1(Nscx)-|[S]) =0 (mod p).
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Proof. By Corollary 6.2, after some blow-up, we may represent u by the class of a
smooth curve S on X (we keep the same name for the variety). Note that ¢;(Nscx) =
c1(Tx)+ c1(—Ts) and deg(ci1(Tx) - [S]) = 0, because [S] 0 and ¢1(Tx) is a class
defined on X. Now we need to treat separately p =2 and odd primes. Such separate
treatment of different primes is the feature that we will see repeatedly below.

(p=2) Our degree is equal to the deg(ci(—Ts)-[S]) = deg(P1([S])), where P; is the
homological Steenrod operation Sq¢2. But deg(P;([S])) = deg(P1(e4[5])), where ¢ : S —
Spec(k) is the projection, and &,[S] = 0.

(p # 2) Let [Z] be a smooth very ample divisor on S representing %cl (=Tg) in Chq(S).
Let 7 : X — X be the blow-up of X at Z. Let S be the proper pre-image of S in X. Then
by [5, Theorem 6.7], we have

Num(p)

7*(1S]) =[]+ [P,

where [P}] is the class supported on the special divisor P%. Therefore, 7*(|S]) is
represented by the class of a smooth curve S’ = S| [P}, (we can always choose the curve
P}, not intersecting ). Note that S = 5. Then

d%@ﬁ—ﬂw¢$b=d%wa—7@-ﬁb+d%@u—m%ymy>
= deg(ci(—Ts) - [S]) +deg([Z]) - (—2) = 0. O

Now, in addition, we can make our class to be supported on some smooth surface.

Lemma 4.18.2. We may assume that u is represented by the class of a smooth (possibly,
disconnected) curve S that is contained in some smooth (possibly, disconnected) surface
E on X, and the curve S also satisfies deg(ci(Nscx)-[S]) =0.

Proof. By Lemma 4.18.1, we can assume that u = [S], where S C X is a smooth curve and,
moreover, deg(ci (Nscx) - [S]) = 0. Consider X = Blg(X) with the projection 7 : X - X.
Then 7*(u) is supported on E =Pg(Ngcx), which is a smooth surface. More precisely,
it is represented by p + &*(¢1(Nscx)), where ¢ : E — § is the natural projection and
p =c1(0(1)) = —|E]. By adding a p-multiple of a very ample divisor, we can assume (by
Statement 6.4) that 7*(u) is represented by a very ample divisor on every component
of F and so is represented by a smooth curve S’ on E. Moreover, ¢;(Ng %) is the
restriction of £*(¢1(Nscx)) to S'. Hence, deg(ci(Ng/ ) -[S]) =deg(ci1(Nscx)-ex([S']) =
deg(e1(Nscx) - [S]) =0. O

In view of Corollary 6.12, it remains to make our curve and surface connected.

Lemma 4.18.3. We may assume that u is represented by the class of a smooth connected
curve contained in a smooth connected divisor E on X, and the curve S also satisfies

deg(c1(Nscx)-[S]) =0.

Proof. By Lemma 4.18.2 we may assume that u = [S], where S is smooth and S C
E’ c X, where E’ is a (possibly disconnected) smooth surface and deg(c;(—Ts)-[S]) =
deg(c1(Nscx) - [S]) = 0. By Statement 6.5 applied to the divisor E’ considered as a
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single component, over some purely transcendental extension of k, there is an irreducible
divisor E” on X containing S and smooth outside an anisotropic subset. Because k
is flexible, we may assume that the divisor E” of X is defined already over k. Let

: X — X be the embedded desingularization of E”. Let E be the proper pre-image
of E” and S be the proper pre-image of S. Then w*(u) is equal to [S] plus some
classes supported on the special divisors of our blow-up. But these special divisors are
anisotropic (because the singularities were). Hence, modulo anisotropic classes, w*(u) is
equal to the class [§] supported on a smooth connected surface E. And because S = S ,
we have deg(c;(—T%)- [§]) =deg(c1(—Ts)-[S]) =0. Our class is a divisor on E. Adding a
p-multiple of an appropriate very ample divisor, we may assume that our divisor is very
ample (by Statement 6.4) and thus is represented by a smooth connected curve on E.
Note that this procedure does not change the deg(ci(—Ts)-[S]) =0 €F,. O

Proposition 4.18 follows now from Corollary 6.12 and flexibility of k. O

Now, the case of varieties of dimension < 3 is settled, which, due to the presence of push-
forwards and pull-backs, implies that isotropic Chow groups factor through the second
theory of higher type.

Proposition 4.19. Let k be a flexible field. The projection Ch* — Chj, %k Jactors through
ChY,,.
(2)

Proof. A class u € Ch*(X) is =0 € Chy,), if it can be presented as f.(y-g*(v)), where

X L XxQ N @ are natural projections, @ is a smooth projective variety of dimension

3, y € Ch*(X x Q) and v € Ch*(Q) is <" 0. Then, by Proposition 4.15, Corollary 4.17
and Proposition 4.18, v =0 € Chk/k(Q), sou=0¢€ Chk/k(X). O

The case of surfaces and 3-folds permits starting induction and dealing with 1-cycles
on a variety of an arbitrary dimension.

Proposition 4.20. Let k be a flexible field and X be a smooth projective variety over k.
Let we Chy(X) be =" 0. Then u=0 € Chyp:1(X).

Proof. Induction on n = dim(X).
(base) The case n =1 is trivial. The cases n =2 and n = 3 follow from Propositions 4.15
and 4.18, respectively.
(step (n—1) — (n)) We may assume that n > 3.
First of all, we need to make our class supported on a smooth divisor.

Lemma 4.20.1. We may assume that u is represented by a class supported on some
smooth (possibly disconnected) divisor Z on X .

Proof. By Corollary 6.2, we may assume that u is represented by the class of a smooth
curve S on X. Consider the blow-up 7 : X =Blg(X) — X. Then 7*(u) is supported on
the special divisor £ =Pg(Ngcx), which is smooth. O
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Now we can make the supporting (smooth) divisor connected and, in addition, we can
make all codimension 1 classes on it restrictions of some classes from X, at least, modulo
anisotropic classes.

Lemma 4.20.2. We may assume that u is represented by a class supported on some
smooth connected divisor Z on X such that the restriction Chi/k(X) — Chi/k(Z) is
surjective.

Proof. By Lemma 4.20.1, we may assume that v is represented by the class of a curve
S contained in a smooth divisor Z. By Statement 6.5 and flexibility of k£, S is contained
in some irreducible divisor Z’, smooth outside an anisotropic subset, and such that the
restriction Chk/k (X) —» Chk/k(Z’\S) is surjective. Because dim(Z’) —1 > 1 = dim(S), we
also get the surjection Chk/k(X) —» Chi/k(Z/).

Let 7 : X —> X be the embedded resolution of singularities of Z’. Because the
singularities of Z’ were anisotropic, the special divisors of X will be also such. Let Z' be the
proper pre-image of Z’ and S be the proper pre- image of S. Then Ch} /k(Z ) = Chj, Kk (Z’),
so the map f*: Cht ke (X) = Ch! /k(Z ), mduced by the natural projection f : 7 — X, is
surjective. The i > image of 7*(w) in Chj, Kk (X ) = /k(X ) is represented by the class of g
supported on Z'. 7/ O

Because the restriction j* : Cht ki (X) = Chk/k(Z) is surjective, u = j.(u'), for some

class v’ € Chy/p;1(Z), and u @ 0 on X, we get that o’ y oz® 0 on Z. Because Z is

a smooth connected projective variety of dimension n — 1, by the inductive assumption,
v’ =0 € Chyyi;1(Z). Then the class u is equal to 0 € Chyg,1(X) as well. Proposition 4.20
is proven. O

4.3.3. 4-folds. The next target is 4-folds, where only the case of codimension 2-cycles
is left.

Proposition 4.21. Let k be a flexible field and X be a smooth projective k-variety of
dimension 4. If u € Ch?(X) is Nz 0, thenu=0¢ Chi/k(X).

Proof. Our strategy will be to find an appropriate blow—up 7: X — X such that ¥ (u)

is supported on some smooth connected divisor Z and is TP 0 on it.

By Corollary 6.2, we may assume that u is represented by the class of a union of smooth
complete intersections of very ample divisors with components meeting transversally In
such a situation (of transversal smooth components), let us denote as ¢?(Ngcx) - [S] the
sum Y. ¢?(Ng,cx)-[Si], and similar for other characteristic classes.

The case of a prime 2 requires certain preparations to be made still at this level of
transversal complete intersections, before passing to a single smooth subvariety (to be
done in the next step).

Lemma 4.21.1. We may assume that u is represented by the class of U;S;, where each S;
18 a complete intersection of very ample divisors, with components meeting transversally.
For p =2, we may moreover assume that deg(ci(Nscx)-[S]) =
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Proof. Let p =2 and [S] =), ;y;, where z; and y; are classes of very ample divisors.
Then, in Ch?, we can substitute this presentation by

[S'] = Z(xiyi + 2 (2 + yi) + yi (2 + yi) + (@ + ya) (@ + vi)),

where all of the divisor classes involved are very ample and thus components can be
made transversal. Then ¢f(Ngcx)-[S'] = > (@i + yi)2 + z(z + yi)yi2 + v (z; + ;)
22 +0)=0. O

For a surface S =U,;S; with smooth transversal components, let us denote A?[S]:=
2 i plSil - 18] in Cho(X), where the sum is over all 2-element subsets of the set of
components.

The following result permits combining our transversal components into a single smooth
connected surface. Moreover, there is some control over the characteristic classes of the
surface obtained this way.

Lemma 4.21.2. Let S =U,;S; be a surface on X with smooth transversal components.
Then there exists a blow-up n: X — X such that n*([S]) is represented by the class
of a smooth connected surface S contained in a smooth connected divisor Z, and
deg(cf(Ngcf() . [S’]) =deg(c}(Nscx)-[S]—2A2%(|S]). If, moreover, |S] ez 0, then this
degree is equal to the deg((cf + c2) (Nscx) - [S])-

Proof. Let u=[U;S5;] =), u; be the class of [S]. Let 7 : X — X be the blow-up of X in
all components S;. Let E; be the respective components of the special divisor and p; =
c1(0(1);) = [—E;]. Then, by [16, Proposition 5.27], 4; = 7*([S;]) = [E;]- (c1(Ng;cx) + pi) is
supported on F; and may be represented by a smooth surface S i- Note that ¢1(Ng,-5) =
7% (1 (Ns,e x)), 50 deg(e?(Ngc ) - [S]) = deg(c2(Nscx) - [S)).

Let T;; = E; N E; be the intersection of the components of the special divisor, and
ti; =Ty j]. We have deg(@; - ;) = deg(u; - u;), and deg(; - t; ;) = deg(—|E;]* - [E;]) =0
and deg(w; - tj ;) =0, for any i & {j,k}, as well. Finally, deg(tzj) =deg([T; |- pi-pj) =
deg(u; - u;), and t; ; -t =0, for {4,7} # {k,}. Now, for all pairs (¢,7) of distinct numbers
let us choose signs &(; ;) € £1 with the condition that e(; jy +&(; ) = 0. Let us substitute
classes u; by @ == u; + 3,6 tij- Note that the sum }_, @ is still equal to the
> u; =m*(w). On the other hand,

deg (@} - u}) = deg((ﬁi + X ki mtin) - (@ + X860, l))
= deg(ul . Uj) — deg(ti,j . tj,i) =0.

Because these classes ), are divisors on (connected) E;, we can make them very ample (by
adding a p-multiple of some very ample divisor), so we can move them around and make
them smooth connected and transversal to any given subvariety. Let 5~”Z be the generic
representative of the respective linear system || on E;. It is a smooth connected surface
on E; representing ;. We now have a divisor with strict normal crossings £ = U; E; and
a surface §' = ui§ % on it, with 5 ' smooth connected, transversal to each other and to the
other components of F.
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Because deg(u; - f[;) =0, for i # j, by the arguments of the proof of Proposition 4.15,
all of the intersections g; ng ; are anisotropic. Because k is flexible, we may assume that
S’ is defined already over k (by Proposition 1.3). Finally, denoting y; = n*(¢1(Ng,cx)),
because p;p;vi, ,oi,of, pipj Pk are zero, for distinct 4,7, k, we have

deg(c}(Ngc3)-[Sh = deg <—Pz‘(%‘ +0i+ 285 P) (Vi Zj;éig(i,j)pj)Q)
=Y “deg(—pi (i + pi)yi — X;:P103) = deg(c} (Nzc ) - [S] — 2A2([S])
= deg(ci (Nscx) - [S]—2A2%([S])).
It (5] "7 0, then deg(2A2([S]) = deg([S] - [S] - 28] - [8i]) = —deg(ca(Nscx) - [S]).
Thus, in this case, deg (c%(NSCx) -[S]— 2A2([S])) = deg((c% + 02) (Nscx)- [S])
After all, we managed to present our cycle by the class of the union of smooth

surfaces transversal to each other and all intersections anisotropic. It remains to use
Statement 6.6. O

In order to apply Corollary 6.12, we need to eliminate (numerically) the powers of the
first Chern class of the normal bundle of our surface. We will proceed from highest to
smallest powers.

Lemma 4.21.3. We may assume that u is represented by the class of a smooth connected
surface S that is contained in a smooth connected divisor Z, and deg(cf (Nsex)-[S) =
OeF,.

Proof. By Lemmas 4.21.1 and 4.21.2, we may assume that u is represented by the class
of a smooth connected surface S contained in a smooth connected divisor Z, and (again
by the same lemmas) we already know the case (p = 2). We need to treat separately p =3
and the remaining primes.

(p=3) Let di = ¢+ co. This characteristic class of degree 2 corresponds to the reduced
power operation P!:Ch"” — Ch"*2. Namely, P'([S]) = di (Nscx)-[S]. By Proposition 4.6,
deg(di(Nscx) - [S]) = 0 € F3, because [5] MZP0. On the other hand, deg(c2(Ngcx) -
[S]) = deg(|S]-[S]) =0 (by the same reason). Hence, deg(c?(Ngcx)-[S]) =0 € Fs.

(p #2,3) Let R be a smooth zero-cycle representing the complete intersection (of very
ample divisors) %Cl(Nscx) . %cl (Nscx)on S. Let 7 : X = Blz(X) — X be the blow-up of
X at R,and E 5 S be the special divisor of 7, with p = ¢1(0(1)) = —[E]. Then n*([S]) =
[5]+[F], where S is the proper transform of S, and [F] = [E]- (¢*(c1(Nscx)) + p). We
have ¢;(Ngc5) =2p+m5(c1(Nscx)), and ¢1(Np ) =€*(c1(Ngcx)). Hence (taking into
account that 7 (F) is zero-dimensional),

E(N5e ) [S]+ 2 (Npe ) - [Fl = jur (e} (Nsex) - [S]) +4p2 - [5]
= jimi(cf (Nscx) - [S]—4[R]) = jir§ (% ¢ (Nscx) - [5]).
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where § £ § 5 X are natural maps. On the other hand,
[S]-[F] =15]- [E]- (¢* (1 (Nscx)) +p) = [Pyl - p = jurr§ (5§ (Nscx) - S])
By Lemma 4.21.2, there exists a blow-up i : X — X such that wrr*([S]) e Ch2 /k(X) is

represented by a smooth connected surface S contained in a smooth connected divisor Z
with

deg(ci(Ng %) -[S]) = deg(cf (N5 g) - [S]) +deg(c?(Npc 5) - [F]) — deg(2[S] - [F])
=deg ((3¢f (Nscx) — 5 (Nscx)) - [S]) =0. O

It remains to treat the first power of the first Chern class.

Lemma 4.21.4. We may assume that u is represented by the class of a smooth connected

surface S that is contained in a smooth connected divisor Z, with ¢?(Ngcx)-|9] AECN)

and ¢ (Ngcx) - [9] N® g,

Proof. By Lemma 4.21.3, we may assume that u = [S], where S C Z C X are smooth
connected, with the needed condition on ¢f. It remains to terminate ¢;. We need to treat
separately p =2 and larger primes.

(p=2) The characteristic class c¢; corresponds to the reduced power opera-

tion P! : Ch"” — Ch"™ (modulo 2). Because [S]
Num( )

a(Nscx)-[S]=PH(s]) ~~"

(p #2) Let R be a smooth connected curve on S representing %Cl(Nscx) -[S]- Let 7 :

X =BIg(X) —> X be the blow-up at R, with the (connected) special divisor £ 5 S and
p=c¢1(0()) = —|E]. Then 7*([S]) = [S]+[F], where S is the proper pre-image of S, and
[F]=[E] (¢*(c1(Nscx))+ p) is supported on E. Note that wg : .S — S is an isomorphism.
Then

Num(p)
~

0, by Proposition 4.6,

I"(Nge ) 18] =[5+ (wh(er(Nsex)) +20)™ =0 € Ch*(X), for m > 0,

because p+n§(%cl(NSCX)) =0on S.

Because ¢i(Nscx) - [9] M on X, and R is connected, we have that c;(Ngcy) -

Num(p) Num(p)
~

R 0 on R, which implies that [E]-&*(¢1(Nscx)) 0 on E. Hence,

" (Npcg) - |Fl=|E]- (" (ca(Nscx)) +p) - ¥ (c]" (Nscx)) ” 0 on X for m > 0.
Finally, [§] |F) = [§] (=p)- ((c1(Nscx)) +p) = [S] ‘ﬂg(icl(NScX)) -né(gq(NsCx))

M0 on S, because ¢2(Ngcx)-[9] M0 on 8.

Substituting F' by the generic representative of the (very ample) linear system |F| on E,
by the proof of Proposition 4.15 we may assume that the intersection SNFis anisotropic.
Then, by Statement 6.6, there exists a blow-up u: X — X such that wr*([S]) is
represented by the class of a smooth connected surface S contained in a smooth connected
divisor Z, such that ¢/*(Ng %) - [S] RO " (Nge ) [S]+ ¢ (Npc 5) - [ F] 0, for
m > 0. O

Num(p)
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Now Proposition 4.21 follows from Corollary 6.12 and flexibility of k. O

4.3.4. 2-cycles. The case of 4-folds is completed. Our next destination is 2-cycles. The
main difficulty here is the case of 2-cycles on a 5-fold, which (together with the treated
4-folds) will form a base of our induction.

Proposition 4.22. Let k be a flexible field and X be a smooth projective k-variety of
dimension 5. If u € Cho(X) is e 0, then u =0 € Chyg.2(X).
Proof. The strategy, as usual, is to find an appropriate blow-up, so that the pull-back of

Num(p)

u is supported on some smooth connected divisor Z and is ~"0 already on Z.
We start by presenting u by the class of a disjoint union of smooth complete intersections
and eliminating numerically its second (normal) Chern class.

Lemma 4.22.1. We may assume that u is represented by the class of a smooth surface
S on X, with all components complete intersections and deg(ca(Nscx)-[S)) =0€F,.

Proof. By Corollary 6.2, we may assume that u is represented by the class of a disjoint
union of smooth complete intersections: v = [S] = [[]; Si]. We need to treat separately
the case p =2 and that of odd primes.

(p = 2) The characteristic class ¢, corresponds to the reduced power operation P? (modulo

2); that is, P?([S]) = c2(Nscx)-[S]- But [S] Mz® 0, so by Proposition 4.6, P%([S])

0, too. Hence, deg(ca(Nscx)-[S]) =0 € Fs.
(p # 2) If the degrees of ¢y of all of the components are trivial, there is nothing to prove.

Num(p)
~

Otherwise, there is a component S; given by z11223 such that deg(zfzizz) =1 #0 € Fp.
Let R be a disjoint union of d copies of the curve z2xZ, where one factor of z; and
x5 here is the same as in S and the other one is generic, so that @ = RN .S is given
by the d disjoint copies of z2x31; and R does not meet other components of S. Let
7 : X — X be the blow-up at R with the special divisor E and p = ¢1(0(1)) = —[E].
Then, by [5, Theorem 6.7], 7*([Si]) = [S1]+[ V], where §; =5 S is the proper transform
of Sy and V = IPQQ is a subvariety of the Q-fibre of the P3-bundle E — R. Here S, is a
complete intersection (z; + p) (22 + p)z3, and V is a complete intersection —p? - 23. We can
move [@] along R and make V disjoint from S, ; (it is automatically dlSJOlnt from other
components). On S}, z;-p =0 (because 75(SN E) is zero-dimensional) and p? = =-m5[Q),
and on V = ]P’Q, z; =0 and p? is the class of a section Q — IF’Q . Hence,

deg(c2(Ng %) [Si]) +deg(ea(Ny < 5) - | V]) = deg((a123 + w13 + 2371 + p*)[S)])
+deg(—p?[V]) = deg(c2(Nsc x)[S]) — 2deg(|Q]) = deg(c2(Nsc x)|S]) —2rd.

Because p # 2, by choosing d appropriately, we can always make the total degree of
c2(Nscx)-[S] zero (in Fy,), while keeping all of the components complete intersections. [

Having made the second (normal) Chern class of our surface numerically trivial, now
we will do the same with every connected component of it. This will make the mentioned
Chern class numerically trivial already on the surface itself (not just after the push-
forward to X).
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Lemma 4.22.2. We may assume that u is represented by the class of a smooth surface
S on X, and for each component Sy of S, we have deg(cz(Ng,cx)-[Si]) =0€F,.

Proof. By Lemma 4.22.1, we may assume that u is represented by the class of a disjoint
union of smooth complete intersections: u = [S] = [[[, Si] with deg(c2(Nscx)-[S]) = 0.
Let S; be represented by the intersection zi2»x3 of very ample divisors. Let Ry; j;; C X

be the complete intersection z?z?, where one copy of z; and z; is the same as in S,

i j’
but the other copy is generic, so that Ry;; meets S; at a zero-cycle zzxfxm (where

{m} ={1,2,3]\{4,7}), and does not meet other components of S. Let R =]] (el Ry iy
(we can make components disjoint). Note that [RN S| represents the class cz(Ng,cx)
on S). Let 7 : X — X be the blow-up at R, where Ey 5 iy Ry;, 5y are the components
of the special divisor, py; j; = —[Eji ;] and p =}, ;) ppi,j)- Let S, =5 5, be the proper
transform of Sj. -

The Chern roots of Nsch are x; +Z]#Z (.51 ¢ = 1,2,3. Moreover, S is still a complete

intersection: [Sy] = [T, (% + 2 ;i Prig)), and on S, we have identities x; - pj.x) = 0, and
p{Zi’j} = —NE[R{Z‘_]‘} ﬂSl] and Pli,g) * P53y = 0, for {Z,j} 75 {i/,j/}. Then, on Sl,

02(N§lc)?) = —ﬂg[RﬂSl] +JT§CQ(NSCX) =0.

Let Qujy = SN Ruj. By [5, Theorem 6.7], 7*([Si]) = [Si] 4 [V], where V =
]_[{i’j}e(%)[V{i,j}], Vi) = ]P’QQ{Z_.]_} given by p~n;1j (Qyi.;)) and contained in the P3-bundle
Ey; ;3 — Ry, 5y is a complete intersection —,0{2 51Zm (m as above). We can move the class
[Qpi.;y] along Ry, ;, and so can make IP’2 Q. disjoint from S (and it is automatically
disjoint from the other components of §). The Chern roots of Ny, are —p,0, p, so

deg(c2(Nycg)-[V]D = _Zdeg([Q{i,j}]) = —deg(ca(Ns,cx) - [Si]).
(7.7}
Let Py; j; be the (p —1) (disjoint) copies of Pl ) contained in 7, (Q” ) but not in
]P’2 . Let P=]]; ;; Pli.jy and p : X — X be the blow-up at P. Let G =11, Giij) be
the bﬁemal divisor of W, with projections ;51 : G,y = P,y and a@ = ¢;(0(1)) = —[G].
Let Vy; j be the proper transform of Vi, ;, and Fy; j; = M{_i,lj}(PQQ” 5 NPy ;) - (which

is isomorphic to the disjoint union of (p — 1) copies of ]P’%2 ) whose class is given by

(i.5) -
—a-a-pi ). Let F'=[1; ; Fiij)- By [5, Theorem 6.7], w*([Vii ) = [ Vi ] +[Fi ] The
Chern roots of NV{M}CY are o — p, o, p. Hence,

2Ny, ) Vil = @ =p* +ap) - [Vigl = (p = D(=1) =1+ 0)-pn7,¢ =0,

where ¢ is the class of a section Qj; — Vi = IP’ Qi) The Chern roots of
NF”,])CX are —a,a,0. Therefore, the deg(ca(Np %) - [F]) = deg(—a? - [F]) = —(p — 1)
Z{i,j}deg([Q z,j}]) —deg(CQ(NSlCX) [Sl])

Let us apply the above construction to every component S; of S and denote the
respective objects by the subscript [. Now, after applying u*7*, the degree of co(Ngcx) -
[S] is concentrated in the F-components, where [F| is given by —o;-«;-p;. Then
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[F] =) ,(—a;-a;- p;). But because p;- o =0, and o;-ar =0, for [ # k, this can be
rewritten as —o- - p, where @ =), ; and p = ), p;. We can substitute —o, o and p
by very ample divisors and represent [F| by (the class of) a smooth connected surface
with the same deg(ca(Np %) - [F|), not meeting other components of S. Now, the whole
degree of ca(Ngcx)-[S] is concentrated in a single component F. But, by Lemma 4.22.1,
this total degree is zero.

Lemma 4.22.2 is proven. O

Now we can finish the proof of Proposition 4.22. By Lemma 4.22.2, we may assume
that wu is represented by the class of a smooth surface S with ¢y (NSCX) M0 on 8.

Let 7 : X — X be the blow- up at S, with the special divisor £ ZE5 S and p= 61(0(1)) =
—[E]. Let &1 _nEcl(NSCX) By [5, Proposition 6.7], 7*(|S]) = (0% +c1p) -|E] in Ch} /k(X),

because co(Ngc X) 2P 0 on S (and by Corollary 4. 17) Being a complete intersection on

E, this class may be represented by a smooth surface S on E. Note also that o(p?+ c1p)-
[E] 0 and that the Chern roots of Ng- g are —p,p,p+ c1, so the deg(c2(Ng, %) [S D
is still zero.

By Statement 6.5 and flexibility of k, there is an irreducible divisor Z, containing
S smooth outside an anisotropic closed subseheme of S and such that the restriction
Ch*(X) —» Ch*(Z\S) is surjective. Let w: X — X be the embedded desingularization of
Zand § (note that we may assume that no component of S belongs to the singular locus
of Z, because this locus is anisotropic). Let Z and S be the proper pre-images of Z and
S. , respectively. Then, Z is smooth connected and, modulo anisotropic classes, ,u*([g]) is
represented by [?] supported on Z. Because the maps Z \S~ «— Z\u! (§ ) —> Z\S induce
isomorphisms Chk/k(Z\S) — Chk/k(Z\,u 1(S)) <~ Chk/,c(Z\g)7 we obtain that the group
Chk/k(Z) is generated by the image of j* Chk/,c (X)— Chi/k(f) and the classes [S;] of all

(p)

of the connected components of 5. Because S 0 on X, the image of j* is orthogonal

to [S] on Z. Finally, on Z
deg([S]-[S:]) = deg([S,] - [S:]) = deg(c2(N5,c2) - [Si])
= deg(c2(Ng,x) - [Si]) = deg(ca(Nz, 5) - [Si]) = 0.
because ¢2(Ng,x) = c2(Ng,7z) + aa(Ng,7) - cl(NZCX), where ¢ (Nz %) = u'e

(Ngcg)=—u*p € Chk/k(X) (because S coincides with 5’ 7 coincides with Z and
X coincides with X modulo anisotropic subvarieties) and p-[S;] =0 € Ch*(X).

Hence, [S] NP0 on Z. By Proposition 4.21, the class [S]| is represented by an
anisotropic subvariety on Z, and thus on X. Proposition 4.22 is proven. O

Having treated 2-cycles on 4- and 5-folds, now the general case follows by an easy
induction.

Proposition 4.23. Let k be a flexible field and X be a smooth projective k-variety. If
uwe Chy(X) is "0, then u =0 Chyp2(X).
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Proof. Induction on n = dim(X). The case n = 2 is trivial, and the cases n = 3,4,5 are
covered by Propositions 4.15, 4.21 and 4.22, respectively. This gives the base of induction.
(step) Let dim(X) > 5. By Corollary 6.2, we may assume that u is represented by a

class of a smooth (possibly disconnected) surface S on X. Let 7 : X — X be the blow-up
at S, with the special divisor E. Then 7*(u) has support on a smooth divisor £ and
is represented there by a class of some surface S’ (possibly nonsmooth). By Statement
6.5 and flexibility of k, there is an irreducible divisor Z, containing S’, smooth outside
an anisotropic closed subscheme of S, such that the restriction Ch* ()? ) = Ch*(Z\9’) is
surjective.

Let u: X — X be the embedded resolution of singularities of Z, with Z and S the
proper transforms of Z and S’, respectively. Then Z is a smooth connected divisor on
X and p*([S')) is represented by [S] € Ch} /k(Y) supported on Z (because the remaining
ingredients are anisotropic). Because Z, respectively, S, coincides with Z, respectively
S’, modulo anisotropic subvarieties, the restriction Ch3 / L (X) — Ch? / L (Z\S) = Ch} / W (Z)

is surjective (note that dim(Z) > 5). But [S] M0 on X hence, it is | ~" 0 on Z as
well. By inductive assumption, [S] is represented by the class of an anisotropic surface

on Z, and thus on X. The induction step and Proposition 4.23 are proven. O

4.3.5. Codimension 2-cycles on a 5-fold. The last remaining case of Theorem 4.11
is that of the codimension 2-cycles on a 5-fold. This is, by far, the hardest one and will
require various new tools and extensive computations.

Proposition 4.24. Let k be a flexible field and X be a smooth projective variety of

Num(p)

dimension 5. If u € Ch%(X) is ~" 0, thenu=0¢€ Chi/k(X).

Proof. By Corollary 6.2, we may assume that u is represented by the class [S] =), z;y;,
where z;,y; are classes of very ample divisors. In particular, all of the components of S
are smooth and transversal to each other.

We start by eliminating (numerically) certain zero-dimensional characteristic classes of
S. This needs to be done still at the level of the union of complete intersections (before
passing to a single component). In the case of a prime 2, we also need to make numerically
trivial the square of the first Chern class of S at this stage.

Lemma 4.24.1. We may assume that u is represented by the class [S], where components

of 8 are smooth complete intersections transversal to each other, with cf (Nscx)-[S] ez

0 and cica(Nscx) - [S]
Num(p)

c2(Nscx)-|S] ~ 0 on X.

MZP 0 on X. For p =2, we may assume, in addition, that

Proof. We need to treat separately the case p =2 and that of odd primes.
(p=2) Replace [S] =) ;my; by [ =@y + (@ + y)wi + (@ + y)yi + (@ + ys)

S (Ngex) - [9'1=D (@iyi @i+ y) + (2 + y) wy? + (@i + y)yszd) =0 € ChP(X).
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On the other hand, (¢} + ¢1¢2)(Nsrcx) -[S'] = P2P1(|S"]), where P! is the reduced power

operation (modulo 2). By Proposition 4.6, because [S] "~ 0 on X, so is P2P1([S]).

Thus, ¢;c2(Nsiex)-[9] M 0 on X Finally,

F(Norex) - [S'1=) (@iyi (@i +yi)? + (@i + y)my] + (i + yi)yia?) = 0 € Ch*(X).
(p #2) In the case of an odd prime, we need to complement the above method with
blowing certain zero-cycles on S. This keeps the result in the form of a union of complete
intersections, while modifying the degrees of the needed zero-dimenional Chern classes.
How exactly it does this is described by the following result.

Sublemma 4.24.1.1. Let 7 : X — X be a blow-up at a smooth point of degree 1 on
S. Then 7*([S]) may be represented by the class of S, where the components of S" are
smooth complete intersections (transversal to each other), and deg(cica(Ng5)-[S']) =
deg(cica(Nscx) - [S]) —2, and deg(ci(Ng ) -[S]) = deg(ci (Nscx)-[S]) — 8.

Proof. Clearly, we may assume that S consists of a single smooth complete intersection.
Let E =P be the special divisor of 7 and p = ¢;(0(1)) = —[E]. By [5, Theorem 6.7],

7 ([S]) = [S]+[F], where S is the proper transform of § and F= IP3 is a divisor on E given
by p. We can make S and F transversal. If [S] = xy, then S is a complete intersection
(x+p)(y+p), and F is a complete intersection —p - p. On S we have p-z=p-y=0,and
p3 is the minus class of a point. Then

deg (cre2(Ngc2) - [S]+ c1ea(Npe 2) - [F]) = deg([S](z + p) (y + p)(z + y +2p))
= deg([S] - (zy(z +y) +2p%) = deg(c1 c2(Nscx) - [S]) — 2.

Similarly,
deg (¢} (Nge) - 18]+ ¢} (Npc ) - [F])
= deg(|S](z +y+20)%) = deg(|S]- (z +1)* +80%)) = deg(c} (Nscx) - [S]) 8. O

Denote as ¢§ the deg(ci(Nscx)-[S]) and similar for ¢1 ca. For [S] =Y, z;4;, let us denote
[Seap] = D (wiyi — (@i + yi) i — (xi + yi) yi + (% + y:) (x; + y;)), which represents the same
class. This operation affects the degrees of Chern classes as follows.

Sublemma 4.24.1.2. The substitution of [S]| by [Sesp| acts on characteristic numbers as

follows:
(¥ _ (20 -2 3
ceh) \5 1 ciea)’

Proof. It is sufficient to treat the case of a single complete intersection [S] = zy. Then

¢* = & =deg((z + )2+ 1)) — @+ Q2 +19)° — @+ 1 yQ2y +2)%)

=deg(zy(z +y)(19(z + 1) — 2zy)) = 1901 —2c1 ¢, and
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ey —ciea =deg((z+y)°2(z +y)° — (2 +9°2°Cr +y) — (2 +9)°y* 2y + 2))
=deg(Gry(z+1y)>) = 5ci°’. O

Now we can combine both methods. Substituting S by S.s, and blowing up the zero-
cycles %cf(NSCX) and %clcg(NSCX) on it (note that p # 2), we obtain [S”] = 7*([S])
such that all of the components of S” are still smooth complete intersections transversal
to each other, and by Sublemma 4.24.1.1,

(eD*\ _ (0 =6\ [ ¢
ey ) \0 0 ) \cie)”

Applying this procedure twice, we obtain ¢ =0 and ¢; c; =0. Lemma 4.24.1 is proven. [

The next step is to make S into a single connected component. This will be possible
due to the preparations we made (trivial zero-dimensional Chern classes).

Lemma 4.24.2. We may assume that S is smooth connected with c3 3(Nscx)-|9] ez

0, c1ca(Nscx) - [9] NP0 For p =2, we may assume, in addition, that c?(Ngcx)-
[S] Nuﬁ(p) 0

Proof. By Lemma 4.24.1 we may assume that S = U,;S; consists of smooth transversal
complete intersections and the needed conditions on the characteristic classes are satisfied.
Let 7 : X — X be the blow-up at all intersections S; N S;, @ # 7. Let Ey; 5 iy SiNS; be
the respective component of the special divisor, Plig) = —[E{Z al and p =3, 5 ppiji- By
[5, Theorem 6.7], 7*([S]) = [S] +[F] +[G], where § =[], S, is the proper transform of 3,
and F' =[], ;, Flsj), where

[Fi | = [Elipl - Goriy + 7y (1 (Ns;ex) + e1(Ns;ex)))  and  [G] = (=p) - p.
Let &= SUFUG. Here 01,5y satisfies ,0 —i—p{%’j}(mi +yi +z;+y;) + 2 yiwy; =0, where
[Sk] = zryx. Of course, one can get rid of the G-term by considering
[Frii)] = [Biiq)] - o) + 715y (e1(Ns,cx) + 1 (Ns; e x))).

This will work for odd primes. But for p =2, this term really makes a difference.
The following result computes the degrees of characteristic classes of S, F', G and their
intersections in terms of those of §.

Sublemma 4.24.2.1.

(1) deg(c1ea(Nzc ) -[S) =2-deg(crca(Nscx) - [S]);

(2) deg(crca(Npc ) -[F]) =deg(cica(Nscx) - [S]); deg(cica(Ngeg)-[G]) =0;
(3) deg(c}(Ngc ) -[S']) = deg((c} +4ere2) (Nsex) - [S]:

(@) deg(c1(Ngc)-[S]-[F]) = —3-deg(cica(Nscx) - [S]);

(5) deg(c1(Npc)-[8]-[F]) = —2-deg(cie2(Nscx) - [S])-

Proof. Let p; = Z#Z . The Chern roots of S are p; + z;, p; + v;, and the Chern
roots of Fy; j; are —p{m Py + o + yi +x; + y;. Denote: a; = z; + 5, by = x;y;, and
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agi,jy = a; + aj, by jy = b;bj. Using the equation for py; ;3 and the fact that py; j;, multiplied
by any monomial of degree > 2 in = and ys, is zero, we get

deg(c1¢a(Ngc ) -[S]) = deg <Z(,0¢ +2)%(pi +:)* 2ps + ai))
= deg (Z(zp;” +50 a; + b7 an)

=deg (QZb?ai_Zbiai . (Z%)) =2-deg(cica(Nscx) - [S)),
i i J

Num(p)

because »_; z;y; = [S] 0 on X. Analogously,

deg(c1e2(Npc ) - [F]) = deg (Zpa,j}(mi,j) + a{i,j})Za{i,j}> =deg (Zp?j,j}a{i,j}>
{3.7} {75}

= deg (ZZ —b;b; ai> =deg (be a; — <sz ai) <ij)) =deg(cica(Nscx) - [S),
i j#i i i j
again because [S] M0 on X Using the same properties, we obtain

deg(c} (Nzc5)-[3]) = deg (Z(pi +2:) (pi + i) (20i + ai)i”)

3

=deg <Z(8pf +20p} a; + b; af’))

7

=deg Y "(4b7a; + b;a) — 4deg <Zbiai : Zb])
7 7 7

= deg((4c1ca+ ) (Nscx) - [S]),  and
deg(c; (Npcg)-|F]) = degz = Py (P, gy + a{i,j])af’i,j} =0.
{z.5}

Clearly, deg(ci(Ngcg) - [G]) = 0 and deg(cic2(Ngc5) - [G]) =0, because ¢ (Ngcg) = 0.
As a result, deg(Cf(Ns/c):g) [8']) = deg((cf +4ere2) (Nsex) - [SD.
Finally, deg(ci(N5-%)-[S]-[F]) =

deg ) (e1(Ng, )[Sil+ 1 (N§jc)?)[§j])(—ﬂ{i.j})(ﬂ{zﬁj} + ag,j))

{i.5}
=deg (Z — {51 @by +3ai.5)) (pgi gy + a[i,j}))
{2.5}
=deg (Z - /0{4,-,]-}(40{1',3'} + 7a{i,j}))
{1.5}

=deg 2(4,0?2-,]-} + Tbi; 1) a5y = 3dega{i,j}a{i,j} = —3deg(c1ca(Ngcx) - [S]); and
{i.5} {t.5}
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deg(c1(Npcx)- [5]-[F]) = deg Z((m + ;) (i +yi) + (p; +27)(p; +y5))
{i,5}
X (=Pt (P, gy F g6 jy) O, 5)

- degz(_%é,jl ag;,jy) = —2deg(crc2(Nscx) - [S]. 0
{25}

For the prime 2 we also need to control the square of the first Chern class of S.

Sublemma 4.24.2.2. For p =2, we have

C%(N§CX~) : [S] =n"c (NSCX) [S]
Proof. Using the fact that the centers of the blow-up = were one-dimensional, we obtain

f(Nge)-[S1=Y (oi+ ) (i + ) (@i +y)* = Y miyi (@i + 90> =7 cF (Nscx) - [S];

Num(p)

0 and Z(Npcg)-[F]=0

i (Npcg)-[F] = Z(_p{i,j})(P{i,j} + 24y + 2+ y) (@ + i+ 2+ )7 =0 O
{i.5}

We may assume that our class is represented by the class of S = SUFUG , where S , F
and G are smooth (possibly disconnected) and transversal to each other (note that we do
not have triple intersections of S;s), and [G] = (—p) - p, for some divisor p. Moreover, both
S and F have trivial c1 and ¢ ¢y characteristic numbers and deg(c;(Ng-%) - [S NF)=0
and deg(ci (Npcg) - [Sﬂ F]) = 0. Because components of S respectively F', are disjoint,
by Statement 6.6 there exists a blow-up u: X — X such that u ([S]) and p*([F]) are
represented by the classes [S] and [F] of smooth connected transversal subvarieties, such
that SNF is connected, with trivial cf’ and ¢ ¢o characteristic numbers for both S and F
and with deg(ci(Ng-x)-[SNF]) =0 and deg(c1 (N x) - [SNF]) = 0. For p =2, we have,

Num
in addition, cf 2(Ngex) - [S] "0 and (Npex) - [F) 0. As a next step, we will
combine SUF into a single component. We start with the following general statement
about codimension 2 subvarieties on a variety of an arbitrary dimension.

Num(p)

Sublemma 4.24.2.3. Let Y =U,Y; be a divisor with strict normal crossings on X such
that Y;s and all of the intersections Y 3 = Y;NY;, for i # j, are connected. Let S =
U;S; be a union of smooth transversal components, where S; C Y; are divisors. Suppose
that [S; N S;] NP0 on Yiijy- Then [S] =[S5'], where S"=U;S., with S; C Y; smooth
connected and transversal to each other, and all of the intersections S, N S]/. anisotropic.
This procedure does not change the characteristic classes of Ngcx in Ch*(X).

Proof. Adding to S; a p-multiple of a very ample divisor on Y;, we may assume that S; is
given by a very ample divisor on Y; (this does not change the characteristic classes (mod
p)). Let S! be the generic representative of the linear system [5;|. Then S/ is connected
and, by Statement 6.3, the restriction Cha(Y; N Y;) — Cho(S;N S]’-) is surjective. This

implies that S;N S} is anisotropic, because [S; N S;] NP 0 on YN Y;. Because [S] — Y]
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is cobordant to [S; — Y;] in Q*(Y;), all of the characteristic classes are preserved. Finally,
because k is flexible, we may assume that S’ is defined over k. 0

Using this result we can make SUF into a single smooth component with the needed
Chern classes numerically trivial. This is done with the help of the following statement,
specific to dimension 5.

Sublemma 4.24.2.4. Let S = 51U Sy with S1, Sy smooth connected transversal to each
other and connected Si1,2) = S1 N Sa.

(1) Suppose that deg(ci(Ns,cx) - [Su.2)) =0, deg(cica(Ns;cx) - [Si]) =0, for i =1,2,
Num(p)

deg(c}(Nscx)-|S]) =0, and for p=2, ¢?(Nscx)-[S] ~ 0 on X. Then there
erists a blow-up ¢ : XA—> X such that e*([S]) ZsArepresented by the class gf a smooth
connected subvariety S with deg(cica(Ng_3)-[S]) =0, deg(cf(NgCX) -[Sp =0, and

Num®

Jorp=2, cf(Ng_5)- El on X.
@) If[S] """ 0 and deg(ciea(Ns,cx)-[Si]) =0, then deg(ci(Ns,cx) - [Sin.z)]) = 0.
Proof. (2) Denote N; = NSiCX- Then deg(cy(Ny) - [S{Lg}]) = deg(c1 (V) - [51] . [52]) =

Num(p)

deg(c1(Ny) - [S1] - [S]) — deg(c1(N1) - [S1] - [S1]) = —deg(crea(N1) - [S1]) =0, as [S]  ~" 0
and, similarly, deg(cl (NQ) . [5{1,2}]) =0

(1) Let 7 : X — X be the blow-up in the components of S, with the components
E, =5 S, of the special divisor, and p; = —[E;]. Note that Ey, E» and Ejj.0y = E1 N Eo
are connected. Then w*([S;]) = [E;]- (pi + 7} c1(N;)). Consider the classes [E1](p1 — p2 +
7y c1(Ny)) and [Es] (o1 + p2 + 75 ¢1(N2)). We may assume that these classes are represented
by the classes of smooth connected subvarieties S; and S}, contained in F; and Fs,
respectively, and transversal to each other and to Ejj 9. Let S’ = S{US,. Then [S'] =

7*([S]). Using the equation p2 + p;7r*c1(N;) +7m*ca(N;) =0, on Ejp 2 we get

[S1085] 51,0y = (01 — P2+ 701, 9y 1 (N1)) X (p1 + p2 +7[1 9y c1(N2))
=11 9y (= ca(N1) + c2(N2) + c1 (N1) €1 (N2)) + p177() o) €1 (N2) + p27r() 5y c1(N1)
= ,0177{*1,2}61(]\/'2)+)027T{*1,2}61(N1),

where 1,9y : E1,2 — Sj1,2) = 51N Ss is the projection. Here Sy, 9) is a smooth connected
curve, with deg(ci(V;) - [Si1,21]) = 0. Because Sjp,9) is connected, this implies that [S] N

SQ] Num(p) 0 on E 1,2}

By Sublemma, 4.24.2.3, we can substitute S} by smooth connected S, i, transversal to each
other, w1th anisotropic S 1N S S2, without changlng characteristic classes in Ch*(X ). Let
n:X — X be the blow-up in S 1 S. 2, with the special divisor V. Here V is smooth outside
an anisotropic subscheme (the intersection of components), so we can treat it as a single
component. n*( [S D is represented by the class of a subvariety S of V whose characteristic
classes are n* of those of S and that is smooth outside an anisotropic subscheme. Then
using Statement 6.5 (with V treated as a single component) and flexibility of k, we
can find an irreducible divisor Z on X, smooth outside an anisotropic subscheme, and
containing S. Let u : X — X be the embedded desingularization of Z and Z , 8" be the
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proper pre-images of Z and S. Because the singularities of Z are anisotropic, the map
W Ch}z/k(X) — Chz/k(X) is an isomorphism, and p*([S]) =[9”]. Let S be a smooth
connected variety representing [S”| on the smooth connected divisor Z. Because S” is

smooth outside an anisotropic subscheme, the characteristic classes of S with values in
Chj,, (X) coincide with u* of those of S.

It remains to check that the needed characteristic classes of S are trivial. Using the
fact that Ejj o) is a P! x P1-bundle over a curve S 2y and the equation p? + p;m} c1(N;) +
m}ca(N;) =0 on F;, we get

deg(cf (g 5) - [S]) = deg(cf (Vg 5) - [S'])

= deg(|E1|(p1 — p2 +7f e (N)) (= p2 + 7 e1 (N1))?

+[E2](p2 + p1 + 75 1 (N2)) (o1 + 705 1 (N2))?)

= deg([E1] o1 (7} ¢} (N1) + 3p3 7 c1 (N1) — p3) + [ Bz pa (705 ¢ (N2) + 30775 1 (No) + 7))

= deg(mr{ (¢{ (N)[S1])p1) + deg (75 (1 (N2)[S2]) p2)
—deg(mr(} 5y ((2c1(N1) +4c1(N2))[Si1.2) D) p102)
= deg (¢} (Nscx) - [S]) —2deg(cr (V1) - [Sp,2)]) — 4deg(er (N2) - [Sir.2)]) =0,

Similarly,

deg(crca(Ng 1) - [S]) = deg(ere2(Ngi ) - [S']
= deg(—[E1]p1(p1 — p2 + 77 c1(N1))* (—p2 + 7§ c1 (V1))
—[B2]p2(p2 + p1 4+ 75 1 (N2))? (p1 + 75 ¢1 (N2)))
= deg(—[E1]p1(p3 (7§ Ber (N1) + 1 (N2)) +2p1) + (p1 4+ 7§ 1 (N1)) 7 1 (V1))
— [Balpa(p7 (5 (Ber (N2) — 1 (N1)) +2p2) 4 (p2 + 5 c1 (N2)) 15 1. (N2)))
= deg([Ep1. )77 5, (2c1 (V1) + 41 (N2) p1p2) + deg([Er] 3 (2017} 1 (V1))
+ deg(| E2] p (20275 c1(N2)))
— deg([E1]m} c1 (N1) p1(p1 + 75 1 (N1))?) — deg (| Ea]ms c1 (N2) p2(p2 + 75 ¢1 (N2)))
= deg([Bp.o] - 271(;, 9y c1(N2) p1p2) 4+ deg([Er| - 71 c1 ca(N1) (o1 + 707 c1 (V1))
+deg([Es] - 5 c1ca(N2) (p2 + 75 c1(N2)))
=deg(c1ca(Nscx)[S]) +2-deg(ci(Na2) - [S1, 1)) = 0.

Num(p)
~

Finally, for p = 2, the fact that ¢} (Ngcx)- [S’] 0 follows from Sublemma 4.24.2.5. [

Sublemma 4.24.2.5. In the situation of Sublemma /.24.2./, on )A(,

ANy 3)-15] £*(=2[S1] - [S2] 4+ ¢2(Nscx) - [S])-

Proof. In the notations of the proof of Sublemma 4.24.2.4, denoting v = nou and using
the fact that Ejp o) is a P! x Pl-bundle over a curve Si1,2y, the equation pf +pim}er(N;)+
mwfca(N;) =0 on E;, and [5, Theorem 6.7], we obtain

F(Nge )15 = v (cf (Nge ) - [S]

Num(p)
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= v*([E1](p1 — p2 + {1t (ND)) (—p2 + 77 ¢1 (V1))
+[B2] (02 + p1 4705 1 (No) (p1 + 705 €1 (N2))?)
=V ([B1](03 (7} (Ber(N1) + c1(No)) + p1) + p2 (=275 ¢1 (N1) py) + 75 ¢Z(N1) (7rf e1 (N1) + p1))
+[Ba] (03 (3 (Ber (No) — 1 (N1)) + p2) + p1 (275 €1 (No) p2) + 705 ¢ (N2) (75 ¢1 (Na) + p2))
= V" ((1.2)+ (71 (1 9y (=3c1(N1) — 31 (N2)) p2 + 711 o) (=31 (N2) +3c1(N1)) p1 — 2p102)

F (NS + 7 (N[ Sa]) * = v* (2 (Nsex) - [S] - 2[S4] - [Sa]),

Num(p) . . .
because cq (V) 0 on Si1,2; (note that Sy1 9y is connected). Here ji1,9y : Ej1,0y = X is

the closed embedding. O

The subvariety S U F satisfies the conditions of Sublemma 4.24.2.4(1). Thus, we may
substitute it by a single connected component and assume that our class is represented
by the class of TU G, where [G] = (—p) - p, for some divisor p, and T is a smooth
connected subvariety with ¢ (Npcx)-|T| 0, ciea(Nrex) [T 0, and for p =2,
in addition, c] 2(Npex) - [T] e 0. We may assume T and G transversal, with G and
T'N G connected. Clearly, ¢} (Ngcx) |G| ped 0, c1ca(Ngex) -G piead 0, and for p =2,
¢}(Ngex)-|G| M2 0 as well. Because [T]+]G] e 0, applying Sublemma 4.24.2.4(2)
and (1) again, we may represent our class by [S], where S is smooth connected with

Num(p)
¢} (Nscx) - 1S] 0, crea(Nsex) - [S] "~
[S] NP 0. Lemma 4.24.2 is proven. O

Num(p) ] Num(p)

Num(p)

0, and for p =2, in addition, cj 2(Ngcx) -

Now as S is smooth connected with numerically trivial zero-dimensional Chern classes,
we can move up the dimension and make the square of the first Chern class numerically
trivial as well. This is already achieved for the prime 2. It remains to treat the odd primes.
We will actually make the mentioned ¢f numerically trivial not only on X but already
on S itself. This will be important for the next step.

Num®

Lemma 4.24.3. We may assume that S is smooth connected with ¢ (Nscx)-[9]
Num
cres(Nscx) - [S] %7 0 and ¢2(Nscx) - [S]

Num(p)

c?(Nscx) 0onsS.

M0 on X. We also may assume that

Proof. By Lemma 4.24.2, we have all of the needed conditions, aside from that on ¢7. Let
Num(p)

us first make c; (NSCX) [S] "~ Oon X. For p=2 we already have it by Lemma 4.24.2.
p# 2 3) Letm: X — X be the blow-up in the smooth connected complete intersection
R= cl (Nscx)-3 Lei(Nsex) (of very ample divisors on S). Let E be the special divisor
of m, and p = —[E]. Then 7*([S]) =[]+ [F], where S is the proper transform of S and F
isa smooth connected (very ample) divisor on F, transversal to S with connected SN F
and with [F] = [E|(p +7}¢1), where ¢; = ¢;(Nscx). Also, ¢1(Ng-5) =2p+mhe; and
c1(Npcg) =mjc1, where g : S — S and g : F — R are natural projections. Because p
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satisfies the equation p? + %ns ci-p+= ”s c1 on S and dim(R) = 1, we have
¢t (Ngez) 151+ 6 (Npe ) - [Fl = [S|@p + 7§ e0)” + [El(p + mjpen)m ]
=[5](—4- Saier-p—4-imiel +anher p+mie])
Num( )
' [5] 501’

because —[5~']p is represented by the class of a P'-bundle P = Pr(Ngcsg) over R, and

= [§](§nf§cl p+imiet

1 Mz Oon R, as deg(cf -[S]) =0 and R is connected. By the same reason,

Num(p)

1S1-1F] = Sl(—=p)(p+7je1) = S| Erter-p+ amiel —mher - p) S]- tmsel.
At the same time, because pm§c; MZP 0 on §, as we saw above, and [S]¢} e 0, by
assumption,
~ ~ Num(p) [~ * Num(p)
¢ (Nge)-1S] = 1S]@p +mhe)® " =" [8]8p +mied) ~~"

[5]-80% = [P|-8(2nger-p+ in5e?) "7 0, and
t(Npe) - [Fl = E)(p+rpe)el =0,

again because dim(R) =1 and ¢; MZP 0 on R. Using the same arguments,

3 i~ * % % Num(p)
crea(Ngeg)-[S] = [S]1@p+mhe)(p® +rher-p+mhcs) r
wé(cren- [S])—i—[g]ﬂp?’ e wg(eree-[S)) e 0, and

% * Num(p)

crea(Npcg)-[Fl=[El(p+rmhc)?(—p)mha ~70.
Let ¢ : X — X be the blow-up from Sublemma 4.24.2.4 applied to SUF. Then we get a
Num(p)

smooth connected subvariety S on X such that G (Nge i) [5]

[5] 0. Finally, by Sublemma 4.24.2.5,

0 and C1 C2(N.§'Cf() .
Num(p)

Num(p)
~

C%(Nécf()'[S]—g (cf(N3cz)- [S]+01(NFcX) [F]—2[S]-[F])
e*(18]- Gnge? —2- Ltakeh) =0.
The case (p # 2,3) is done.
(Pp=3) Let d = ¢} + c2 be the characteristic class of degree 2 corresponding to
the reduced power operation P! :Ch* — Ch**? (modulo 3). Because [S] ) 0, by
Proposition 4.6, di(Nscx)-[S] = P1(|S]) M) as well. On the other hand, ca(Ngcx) -
1S =[5]-15] =" 0. Hence, c2(Nscx)-[5] ="
Thus, we managed to make ¢Z(Ngcx)-[S]

and ¢;ca(Nscx) - [S]
¢1(Ngcx) on S anisotropic.

By blowing up S, we may assume that S C Y, where Y is smooth connected divisor
on X. Note that the new ¢, cico and ¢f characteristic classes are the pull-backs of
the old ones and so are still numerically trivial. By Statement 6.5 and flexibility of k,

0 too. The case (p = 3) is done.

Num(p) Num(p)

0, while keeping ¢ (Nscx)-[S]
M2 0. Let us now make the complete intersection Cl(NSCX)'
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there exists an irreducible and smooth outside an anisotropic subscheme (of 5) divisor Z
containing S, such that the restriction Ch'(X) — Ch'(Z\S) is surjective. Let 7:X—>X
be an embedded desingularisation of Z and S, with proper pre-images Z and S , which
are Smooth connected subvarieties. Because singularities were anisotropic, the maps
T* /k(X) S Ch’};/k(X) and nZ Ch; 5k (Z\S) - Ch}‘;/k(Z\S) are isomorphisms, so
the restriction Chk/k(X) — Chk/k(Z\S) is surjectlve as well. Thus, the group Chk/k(Z)

is generated by the image of j*: C /k (X) — Cht /k(Z) and the class [S] In addition, on
Num(p)

X, the classes ¢3 S(Ngc3)- 5], c1ca(Nge5) - [5] and 2 2(Ngc3)- [S] are 0. Because
c}(Ng.3)- [5] M0 on X, this class will be orthogonal to the im(j*) on Z. On Z,

deg(c?(Nzc)15]-715]) = deg(c? (Nzc ) e1 (N5 2)|S]) = deg(c? (N3 %) - |S]) =0,

~ Num(p)

because c(Nz- %) - [S] 0 on X and ¢;(Nz_g) is in the image of j*. Hence,

Num
i (Ngc3)- [S] <0 already on Z. Because this class is a complete intersection on Z,

the intersection of generic representatives of the respective (very ample) linear systems is
anisotropic by Statement 6.3. The respective subvariety S is smooth connected, and ¢}
and cjco characteristic classes are preserved. Because k is flexible, we may assume that
our varieties are defined over k. Lemma 4.24.3 is proven. O

In order to apply Corollary 6.12 and finish the proof of Proposition 4.24, it remains to
terminate numerically the first Chern class of our S.
Lemma 4.24.4. We may assume that S is smooth connected and c]*(Ngcx)-[S] Num(p)
for m > 0.

7

Proof. By Lemma 4.24.3, we may assume that S is smooth connected variety with the
numerically trivial 0?7 ¢y ¢o and c% characteristic classes. It remains to make ¢; numerically
trivial. We need to treat separately the case p =2 and that of odd primes.
(p # 2) Let R be the generic representative of the (very ample) linear system |%cl (Nscx)|
on S. It is a smooth connected surface and, by Statement 6.3, we have the surjection
Ch!'(S) — Ch!(R). Because k is flexible, we may assume that it is defined over k. Let
7: X — X be the blow- up at R, with the special connected divisor E and p = —[£]. Then
7*([S]) = [S]+ [F], where S is the proper pre-image of S and F is a smooth connected
divisor on E transversal to S, with connected SN F and with [F| = [E] (p+mhc1), where
c; = ¢;(Ngcx). We have

a1 (Nge ) - [S]4+ c1(Npeg) - [F] = [S]@o+her) + |El(o+ el e
=[E|l(p+nfc)n)a e 0,
because, on S = S, p = —[R], and ¢; - [R] NP0 on R, as ¢}(Nscx) e
Ch'(S) — Ch!'(R). On the other hand, on R = SOE,

0 on S and

Num(p)

15]-[F] = [S](—=p)(p + ¢1) = [R] (3 e1) 0,
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and, moreover, we may assume the intersection SNF to be anisotropic. By Statement 6.6,
there exists a blow-up u: X — X such that u*([SU F]) is represented by the class of a
smooth connected subvariety S and such that the characteristic classes of S in Chy, , are

w* of the respective classes of SUF.In particular, the ci-class of it is numerically trivial.
It remains to check 012 and c{’ characteristic classes of SUF. We have

G WNge ) 18]+ 6 Wpe )+ [F] = 820 + wgen) + Bl o+ whenme?
= [Bl(o+rpenmpet "0
on )’(V, because (2p+m5c;) =0 on §, and deg(c?(NscX) -[S]) = 0 while R is connected.
Similarly,
A WNse ) [8]+ ¢ (Npe ) - [F] = [81@p + w5 e)* + [ Bl (p + whenmjsef = 0,

by the same and dimensional reasons. The case (p # 2) is done.
(p = 2) The characteristic class ¢; corresponds to the reduced power operation P! : Ch* —

Ch**! (modulo 2). Because [S] e 0, by Proposition 4.6, ¢1(Nscx)-[S] = P'([S]) S
0 as well. Lemma 4.24.4 is proven. O
Proposition 4.24 now follows from Corollary 6.12 and flexibility of k. O

Because Conjecture 4.7 was established for all varieties of dimension < 5, from the
existence of push-forward and pull-back structure we obtain that isotropic Chow groups
form a quotient of the third theory of higher type associated to Ch.

Proposition 4.25. Let k be a flexible field. The projection Ch* —» Ch”,;/k factors through
Ch7,,.
3)

Proof. A class v € Ch*(X) is =0 € Ch;‘?’) if it can be presented as f,(y-g*(v)), where

X L XxQ LN @ are natural projections, @ is a smooth projective variety of dimension

5,y € Ch*(X x Q) and v € Ch*(Q) is e, Then, by Proposition 4.15, Corollary 4.17,
Proposition 4.18, Proposition 4.22 and Proposition 4.24, v =0 € Chz/k(Q), sou=0¢
Chz/k(X). O

5. Thick local categories

In this section we extend the definition of local motivic category to arbitrary finite
coefficients Z/n and introduce the thick versions of it, which have better conservativity
properties.

Definition 5.1. Let n € N. Let P and @ be smooth varieties of finite type over k. We
say that Xg S Xpif Pis n-isotropic over every generic point of @), and @ is n-anisotropic
over some generic point of P.

Let E/k be some finitely generated extension and P be a smooth connected variety
with k(P) = E. Let Q™ be the disjoint union of all smooth connected varieties @) of finite
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type with Xg 2 Xp and
T; = .)?Qn QR Xp.
Generalising Definition 2.3, we can define the local motivic category with 7./ n-coefficients.

Definition 5.2. The local motivic category with Z/n-coefficients
DM(E/k;Z/n) := Y35 @ DM(k;Z/n).

If we are interested in a p-localised situation, we can define the thick local motivic
categories.

Definition 5.3. The p-local motivic category of thickness r and F-coefficients
DM({E/k}"; F) := T @ DM(k; F).

In particular, the local category with Z/p"-coefficients DM(E/k;Z/p") is the p-local
motivic category of thickness r and Z/p"-coefficients DM({E/k}";Z/p").

Because Xg Sx p implies that Xg Tx p for m|n, we get natural functors

DM(E/k;Z/n) - DM(E/k;Z/m) and DM{E/k}"; F) — DM{E/k}®; F),

for any r > s and m|n, commuting with the natural functors <p?n : DM(k;Z/n) —
DM(E/k;Z/n).

In the usual way, we can introduce local geometric motives, local Chow motives and
local Chow groups. Exactly as in Proposition 2.16 we get the description of isotropic
Chow groups.

Proposition 5.4.
CHy/k(X;Z/n) = CH(X;Z/n)/(n-anisotropic classes).
Similarly, for the thick local Chow groups, we have
CHygpyr (X3 F) = CH(X; F)/(p"-anisotropic classes).

Because every n-anisotropic class is numerically equivalent to zero modulo n, we obtain
the surjection

CHy/k(X5Z/n) — CHnym (X5 Z/n). (1)
Question 5.5. Let k be flexible. Is it true that CHy(X;Z/p") = CHnum (X;Z/p")?

Using the arguments of Proposition 4.15 and Corollary 4.17, we see that the answer
is positive for divisors and for zero-cycles. In particular, the projection CH(X;Z/p") —
CHyk(X;Z/p") factors through CHgy,y(X;Z/p"). In addition, it is easy to see that it is
true for cycles of dimension 1, provided p > 2, so the mentioned projection factors through
CH2)(X;Z/p"), in this case.
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With the increase of r (and fixed s), the family of functors
¢ " : DM(k:Z/p*) — DM((E/k)": Z/p").

for all f.g. extensions E/k, becomes more and more conservative. But the target categories
are getting more complicated. At the same time, the categories DM(E/k;Z/p") (that is,
r = s) should be simpler, and the natural strategy to improve conservativity is to pass to
Zp)-coefficients.

The local motivic category with Zp)-coefficients DM(E/k;Zy)) should be the
local category of oo thickness DM({E/k}*;Z)). This should be defined as a limit
lim, DM({E/k}"; Z(;)) of categories of finite thickness and will be considered in a separate

paper.

6. Auxiliary results

6.1. Up to blow-up, Chow ring of a variety is generated by divisors

The following result is crucial for most of our constructions.

Theorem 6.1. Let X be a smooth projective variety and y € CH"(X). Then there exists
a blow-up w: X — X such that w*(y) is a Z-polynomial in divisor classes.

Proof. Induction on the dim(X). Below we will denote this induction as Ind;.

(Ind; base) dim(X) = 0. Nothing to check.

(Ind; step) We can assume that r > 0. Then y has support on some divisor. By blowing
X up we can assume that this divisor has strict normal crossings, and by the following
lemma we can assume that y has support on a smooth divisor D.

Lemma 6.1.1. If y=) . y;, and the statement is true for each y;, then it is true for y.

Proof. Suppose, for each i, there exists such a blow-up 7; : )?1 — X that 7} (y;) is a
polynomial in divisorial classes. Then, by the results of Hironaka [7], there exists a blow-
up 7 : X — X that covers m;, for each i. Then, clearly, 7*(y) is a polynomial in divisorial
classes. O

Let now jp : D — X be a smooth divisor and y is supported on D. Let us say that the

pair (D, X) has a special structure with the base B if D is a consecutive projective bundle
over B where the canonical line bundles O(1) of all of these fibrations are the restrictions
of some line bundles from X. Every pair (D, X) possesses a ‘trivial’ special structure with
the base B = D. We will prove our statement by the induction on the dim(B). We will
denote this induction as Inds below.
(Ind; base) dim(B) = 0. Then D is a disjoint union of consecutive projective bundles
whose canonical bundles O(1) are restrictions of some line bundles from X. Then CH*(D)
is generated by j}5(c1(L)), for some line bundles L on X. Because y = (jp)«(¥), for some
v € CH*(D), it is a polynomial in divisorial classes.
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(Indy step) We have y = (jp)«(y), where g =), e*(w;) - r; with w; € CH*(B),¢: D — B is
the natural projection, and r; is a monomial in p;s, where p; = ¢1 (O(1);) is the restriction
of some divisorial class from X. By Lemma 6.1.1, we can assume that § = ¢*(u), where
u € CH*(B).

Because dim(B) < dim(X), by the inductive assumption of Ind;, there exists a blow-up
t:B— B, such that t*(u) is a polynomial in divisorial classes. We have a Cartesian

I

B—+B

diagram of blow-ups:

Let ¢ : X > X be a blow-up of X in the same centers as tp, and jz : D — X. Then
@ ((Up)«e* (W) = (Gp)«ThH(E* (W) + >, vm, Where v, are supported on the components
E,, of the special divisor £ = U,, E,, of the blow-up ¢ (see [5, Theorem 6.7] or [16
Proposition 5.27]). Let X,, be a variety obtained after m blow-ups with the special
divisor jg,, : lim — X,, of the mth blow -up and the projection ¢,, : X - X,, whose

restriction to E,, is the blow-up o, : En, — Ey,. Then (again by [5, Theorem 6.7]), the
image of

(@55 )s = U, )e0th,) - CH (Ey) —> CH*(X)
has support on U7l>mﬁn, and the map
®ak, : ®,, CH*(E,,) — CH(E)
is surjective (because Un>mE‘n\ Un=m En is an open subvariety of E,,). Hence, the map
@9}, () : @ CH* (Epp) —> CHA(X)

covers the image of (jz)..

The pair (E,,, X,,) has a special structure with the base of dimension smaller than B
(namely, the center of the mth blow-up of 1), where ¢1(0(1)) of the external projective
fibration is the restriction of [—FE,,| from X,,, and all of the other (internal) canonical
bundles are induced by the special structure on (D,X) and thus are restrictions of
some divisorial classes from X. By the inductive assumption of Inds, any element in
(jg,,)« CH*(E,,) is a polynomial in divisorial classes over some blow-up X m —> Xm- By
Lemma 6.1.1, we obtain that > v, is a polynomial in divisorial classes over some blow-
up of X. Hence, it remains to deal with (jp).1},(e*(u)).

We know that 7}, (¢*(u)) = £*t*(u) is a polynomial in divisorial classes by construction.
Let us denote this element again as ¥ and the divisor (on which it is supported) as D. By
Lemma 6.1.1, we can assume that ¥ is a monomial z; -...-z,_; in very ample divisorial
classes on D. We will use induction on r. Below it will be denoted as the Inds.

(Inds base) When r =1 there is nothing to prove as y = (jp)«(¥) = [D].

(Inds step) Consider the chain of codimension 1 regular embeddings D & Y, <2

Y, B ..., where [Y}41] represents the restriction of z; to Y. Construct the chain of

https://doi.org/10.1017/51474748020000560 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000560

Isotropic motives 1321

blow-ups X LY, & X, & in codimension 2 centers Z, — X p_1 inductively as
follows. The special divisor Ej, of 7, is a consecutive projective line fibration Ej i3 Y, and
Zpr1= go,;l (Yi11). In particular, Fj 5 Zy, is a projective line fibration and ¢ = ¢gj0...0¢y.
Let iy =41 0... 0% and ¥ = ¢} (ix)*(y) be the class supported on Ej.

Then we have a Cartesian diagram

By —
Ek+1 I Xk+1

o

g1 —5— Ey,

with Ej, = By, and .1 = &5,12" Y. By (the Chow group version of) [16, Proposition
5.27], we have

71 (B Y1) = U )Yk — (g )5 Yria-

Here, by the inductive assumption of Inds, the first summand (g, ).y) = (fg, )« (21 - 22
e o) = [Ekia]- g )@ 1) 18 expressible as a polynomial in divisorial classes
over some blow-up of Xj41, s0 (using Lemma 6.1.1) the question about ¥, supported
on E, — Xy is reduced to the question about Yp41 supported on Eii1 — Xpy1. Thus,
it is sufficient to show that our statement is true for 7, supported on Ej — X, for at
least one k. But for £ = dim(X) — r, the class (iz)*(y) is zero by dimensional reasons.
Hence, the (Inds step) is proven. This implies (Inds step) and (Ind; step). The theorem
is proven. O

Corollary 6.2. Let X be a smooth projective variety and y € CH"(X). Then there exists
a blow-up 1 : X — X, such that w*(y) is represented by a linear combination of classes of
smooth complete intersections of very ample divisors that are transversal to each other. In
particular, for r> dim(X)/2, it is represented by the difference of classes of two smooth
disjoint subvarieties.

6.2. General position results

In this section we present various general position arguments that permit replacing cycles
by the classes of connected subvarieties and, in some cases, reducing the anisotropy of a
class [S] to the numerical triviality of some characteristic classes of S.

The following simple and well-known ‘Chow group shadow’ of the Lefshetz theorem is
one of our key ingredients.

Statement 6.3. Let X be a scheme with a map X EN P™ and t: D, — X be the generic
hyperplane section of X (over k((P™)Y)). Then the pull-back * : CH*(X) — CH*(D,) is
surjective. If X is a smooth variety, so is D,.

Proof. Consider Y C X x (P"™)Y given by Y = {(z, H)|f(z) € H}. Then Y is a projective
bundle: ¥ =Projx (V), where V.= W/0(—1) (with (P")Y =P(W)). Let Y, be the generic
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fibre of the projection ¥ — (P™)". This is the ‘generic’ hyperplane section D,. By the
projective bundle theorem and localisation, we have surjections CH*(X)[p] - CH*(Y) —
CH*(Y,), where p = ¢1(O(1)). Because p is the pull-back of the class of a hyperplane on
(P™)Y, it is zero in CH*(Y,). Thus, we get the surjection CH*(X) — CH*(Y}). Finally, if
X is smooth, so are Y and Y. O

The next result shows that any closed subscheme of an effective Cartier divisor can
be made the base set of the respective linear system (which, in turn, can be made very
ample), if we modify the divisor by an n-multiple of some other divisor, for a given
natural n.

Statement 6.4. Let X be an irreducible quasi-projective variety and n € N. Let E be an
effective Cartier divisor on X and S C E be a closed subscheme. Then there exists a very
ample divisor D such that the linear system |E+n- D|gs consists of very ample divisors
and S is the base set of it.

Proof. There are very ample divisors Fy, Fo on X such that [E] = [Fi]| — [F2]. Then the
class [E +nFy] = [F1 + (n— 1) Fy] = [H] is very ample and defines an embedding X < PV.
Let S be the closure of the image of S in this embedding. The coordinate ring of S has
relations of degree < m. In other words, the base set of the linear system |kH|g is S,
for any k > m. Take k = nm+1. Then [kH| = [(nm + 1)(E + nFy)| = [E + n(mF; + ((n —
1)m+1)Fy)| = [E + nD|, where D = mF; + ((n —1)m+ 1) F5 is very ample. O

The following result will enable us to substitute a multicomponent divisor with only n-
anisotropic singularities, which contains a given closed subscheme, by a single component
one. The same can be done with a collection of such divisors and subschemes with
the result having all of the faces connected, if the original collection of divisors was
with strict normal crossings modulo n-anisotropic subvarieties. This will be our key tool
below.

Statement 6.5. Let n € N, X be a smooth projective connected variety of dimension d
and E =U;E; be a divisor on it with strict normal crossings outside an n-anisotropic
closed subscheme, with possibly reducible components F;, and let S; C E; be some closed
subschemes such that, for any subset I of the set of indices, dim(S7) < d —#(I), where
St =Nye1Si. Then, over some purely transcendental f.g. extension of k, there is a divisor
Z =\U;Z;, where |Z;| = [E;] € CHY(X:;Z/n), S; C Z;, for any I, the variety Z; = Nic; Z; is
wrreducible, and Z has strict normal crossings outside an n-anisotropic closed subscheme
of S. Moreover, the restriction CH*(X) — CH*(Z;\S;) is surjective.

Proof. By the Statement 6.4, for any 4, there exists a very ample divisor D;, such that
the linear system ®; = |E; 4+ n- D;|g, consists of very ample divisors and has the base set
S;. Let Z; be the generic element of this linear system (defined over k(P(®;))). Clearly,
[Z:] = |E:] € CHY(X;Z/n) and S; C Z;. Let us show that Z; = N;c;Z; is irreducible. We
will prove by induction on #([) that, for any i € I, the restriction CHO(ZIV-) — CH%(Z))
is surjective. The (base) I = is empty.
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(step) The linear system @; defines an embedding of X\S; into a projective space, and
for any subscheme T C X defined over some field L and Z; defined over L(P(®;)) as
above, we have dim(7T N (Z;\S;)) < dim(7T) — 1. By Statement 6.3, we have a surjection
CHO(ZI\Z-\ZI\Z- ns;) —» CHO(ZI\ZI\Z- N.S;). We know that all of the components of Z; have
dimensions > d — #(I). On the other hand, the scheme Zp; NS; is the union Usejcr Yy,
where Y; = (Njes5;) N (Njens(Z;\S;)). Because dim(Y ;) < dim(S;) —#(I\J), we obtain
that dim(Z;\; NS;) < max(dim(Sy) —#U\J)|i € J C I) < d —#(I). Hence, CHY(Z)) =
CHO(ZI\ZI\i NS;), and we get the surjection CHO(ZI\i) — CH®(Z;). The induction step
is proven.

Thus, we have the surjection CH(X) — CH%(Z;), and because X is irreducible, so is Z;.

Our system @®; contains FE; 4+ |n - D;|. The generic representative of |n - D;| is n-
anisotropic (by Statement 6.3 and the arguments from the proof of Proposition 4.15).
Thus, the generic representative G; of F; + |n- D;| has only n-anisotropic singularities
and, modulo n-anisotropic subvarieties, the divisor G = U; G; has strict normal crossings.
Consequently, the generic representative Z; of our system |E; +n-D;|y will have
only m-anisotropic singularities, too, and the divisor Z = U;Z; will have strict normal
crossings modulo n-anisotropic subvarieties. Indeed, we have a divisor W on X x P,
where P = [[,P(®;) parametrizes (combinations of) elements of our linear systems.
The fibre over the generic point of P is Z, and the fibre over some special point is
G. Let R be a discrete valuation ring with the fraction field K and residue field «
and Wpg be some divisor on X x Spec(R), with fibres Wi and W, over the generic
and closed point of Spec(R), respectively. Having a closed point 7 of Wy, consider the
closure of it in W. We get a proper morphism f: T — Spec(R) of relative dimension
zero, whose fibre over Spec(x) consists of points #; with multiplicities e;; these are the
specialisations of 7. The specialisation of a singular point is singular, and specialisation
of a point where components are not transversal has the same property. At the same
time,

[k(T): K] = Z[k(tl) k- e
l

Therefore, if [k(T) : K] is not divisible by n, then one of [k(#) : k] is. This shows that Z
should be a divisor with strict normal crossings at every point that is not n-anisotropic.
Because our linear system &, is very ample on X\S;, the divisor Z has strict normal

crossings outside S. By the same reason and by Statement 6.3, we have the surjection

This allows representing some cycles of codimension 2 by single components.
Everywhere below we will denote

Chj‘c/k (X) := CH*(X,Z/n)/(n — anisotropic classes),
where n is some natural number (which should be clear from context).

Statement 6.6. Let S =U,S; be the union of smooth connected transversal subvarieties
of codimension 2 on a smooth projective wvariety and n € N. Suppose that all of
the intersections S;NS; are n-anisotropic. Then over some f.g. purely transcendental
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extension of k there exists a blow-up W : X —> X, such that pu*([S]) € Ch; /k(X) 18
represented by the class of a smooth connected variety S whose characteristic classes
in Chy . are u* of the characteristic classes of S. Moreover, if S =U;S; and T =U; T;
are two subvarieties as above that are transversal to each other, then there exists a blow-
up u: X — X with the properties as above for both S and T and such that S and T are
smooth connected, transversal to each other, and SNT is connected.

Proof. Let 7 : X — X be the blow-up in all of the components S; of S, with E; N S; the
components of the special divisor and p; = —[E;]. Then, by [5, Proposition 6.7], 7*([S]) =
[F|, where F' =U, F;, F; is supported on E; and [F;| =[E;|(p; + 7] (¢1(Ns,cx))). Note that
E =U;E; is a divisor with strict normal crossings, with all of the intersections E; N E;
n-anisotropic. Note that cl(NFng) =71 (c1(Ng,cx)) and CQ(NFng) =7 (c2(Ns;cx))-
Hence, the same is true about all other characteristic classes.

Because E is smooth outside an n-anisotropic subscheme, by Statement 6.5 (where we
consider E as a single component), over some f.g. purely transcendental extension of k,
there is an irreducible divisor Z, containing F', smooth outside an m-anisotropic closed
subscheme of F. Let ¢ : X — X be an embedded desingularisation of Z. Let Z and F be
the proper pre-images of Z and F. Then ¢* : Chj} k()?) > Chz/k(Y) is an isomorphism
and *(|F]) = [F] € Ch? /k(X) is supported on the smooth connected divisor Z. By adding
an n-multiple of a very ample divisor, we can substitute [F | by a very ample divisor on
Z. Let S be the generic representative of the linear system |F | on Z. Then S is smooth
and connected. Because, modulo n- anisotropic subvarieties, X coincides with X and F
with F, the characteristic classes of S in Chy, Ik (X) are &* of the respective classes of F.

For the pair of subvarieties S =),5; and T = Zj T;, consider the blow-up = :
X —> X at all components of S and T. Then the special divisor £ = EsU Er has
strict normal crossings, where Eg and E7 are smooth outside n-anisotropic subschemes.
Applying Statement 6.5 to Fs U Fr contained in EsU E7r (where we consider Eg and
Er as single components), we obtain a divisor Z = ZgU Z7 containing SU T, with
strict normal crossings outside an n-anisotropic subscheme, with irreducible Zg, Zr and
Zs N Zp. Resolving m-anisotropic singularities and nontransversalities of Z, as above,
we obtain the needed smooth connected transversal subvarieties S and T having the
needed characteristic numbers. Because Zg N Zyp is irreducible, the intersection SNT is
connected. O

The next statement represents an elementary block with the help of which we will
‘deform’ the chains of codimension 1 embeddings of irreducible varieties.

Statement 6.7. Let n € N, X be projective irreducible variety, smooth outside an
n-anisotropic closed subscheme, and S C Z C X be embeddings of codimension 1 of
irreducible subvarieties, smooth outside n-anisotropic closed subschemes and such that
S is not n-anisotropic. Then, over some f.g. purely transcendental extension of k, there
exists Z' such that S C Z' C X has the same properties, [Z'] = |Z] in Chllc/k(X), and the
restriction Chk/k (X) — Chy, i /k (Z'\S) is surjective.
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Proof. This is a particular case of Statement 6.5, aside from the fact that we permit
X to have anisotropic singularities. But the same proof works. Outside some closed n-
anisotropic subscheme T of X, Z is a Cartier divisor and, by Statement 6.4, there exists a
very ample divisor D on X\ T, such that the linear system ® =|Z +n-D|s\snr on X\ T
consists of very ample divisors and has the base set S\ 7. This linear system defines an
embedding of X\(SU T) into a projective space. Let Z’ be the closure in X of the generic
element of this linear system (defined over k(P(®))). Because S is not n- cmz'sotropz’c7
S\SN T is nonempty, so Z' contains S. Clearly, [Z'] = [Z] € Ch; (X)) = /k(X\T).
By Statement 6.3, we have a surjection Chy, , (X) — Chy ,,(Z'\S), and Z' is irreducible.
The same arguments as in the proof of Statement 6.5 show that Z’ has only n-anisotropic
singularities. O

The previous result permits deforming the chains of codimension 1 embeddings in such
a way that isotorpic Chow groups of a term of the new chain would be covered by those
of the previous (ambient) term modulo such groups of the next (smaller) term of the
original chain. Later it will enable us, subject to certain conditions, to make numerically
trivial classes anisotropic.

Statement 6.8. Let ne N and X, 25 X, 7’5 .. 2 x; & Xy be embeddings of
codimension 1 of irreducible subvarieties, smooth outside n-anisotropic closed subschemes,
with X, not n-anisotropic. Then, over some f.g. purely transcendental extension of k, it
can be complemented to a commutative diagram

-/

. I .
Ir Ir—1 -77‘ 2 J2
’ ’ / !
X, X, 4 X, o .. *>X *>X0
V gr_/ gr/ 92
Jr Jr—1 Jr—2 72
X, X, X,_o ... LI X; L Xo

where all maps are embeddings of codimension 1 of irreducible subvarieties, smooth outside
n-anisotropic closed subschemes and for any i, the map

((.7) (gi+1)+) : Chy, /k( 1)@Chz/;(xz+1) —» Ch} /k(X)
is surjective (for i =r, the map (j))* is surjective), and [X], || =[Xi11] € Ch} ko (X))

Proof. This follows from the inductive application of Statement 6.7 from top to bottom.
Finally, in the last step, we take X/ to be the closure of the generic representative of the
respective (very ample) linear system | X,. +n - D| without any base set. Because X,. is not
n-anisotropic, X, is nonempty and irreducible. By Statement 6.3, we have a surjection
;)" Chy, ), (X7 _1) = Chy , (X)). O

Note that although X/ _, is still not n-anisotropic, X may be, in principle, anisotropic.
We also have a ‘smooth’ version of the above result, which is what we will use
below.
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Statement 6.9. Let Xy be a smooth projective connected variety and X, KIS e

BB Xo be reqular embeddings of codimension 1 of connected varieties, with X,
not n-anisotropic. Then, over some f.g. purely transcendental extension of k, it can be
complemented to a commutative diagram

Jr Jro1 Jr_2 75 i
T / T ’ T l ’
X, XT2 o —= X —— X
/ / V

L B
X 7‘* ’(‘ 2 ; e Xl 0
\t t/ w \tnT_Z t/ﬂl

Jr—1 Jr—2 J2 Ji

! X, 0 T2 o—= X ——= X

where the upper and lower horizontal maps are regular embeddings of codimension 1
of connected varieties, and the vertical ones are blow-ups in n-anisotropic centers. In
partzcular the maps 7} Chk/,C (X)) — Chk/k (Xi) are isomorphisms. In addition, for any

, the map
(D" (gi+1)s774q) : Chy ) (X] 1)@Ch}i/;i(Xz+1)ﬁ*Ch k(X))
is surjective (for i = r, the map (j.)* is surjective), and [X] ] = (gi+1)« [Xz+1] €
Chy 4 (X))

Proof. By Statement 6.8, we get the commutative diagram

]rl_
14>Xr24> ,,,4>X14>X0

Aol A

XHXrl 1*>XO

where X, are irreducible varieties smooth outside some closed proper n-anisotropic
subschemes, the maps

((7 )", (g1+1) ) : Chy /k(Xz 1)®Chz/1§(Xz+1)_»Chk/k(X)

are surjective, and [X ;1] = [X;41] € Ch'(X)).

Let 7 : X) — Xo be the embedded desingularization of X, CX, 1CX,9C...C
X, C Xp and & : X! — X, be the proper pre-images (with = JT()) Because special
divisors are m-anisotropic, we have isomorphisms &} : C /k(X ) — Ch} /k(X ). Noting

that X; is not n-anisotropic, by blowing X, at n-anisotropic centers, we may resolve the
—1 . 71

. . . 9 < &i—1 Ji Ti-1 .
indeterminacies of the maps X; = X,_; --» X/, and X; = X,_1 --» X, 1 and obtain
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commutative squares

~ i ~ %
Xi—léXi%XiLl

Ji i
Xig<=—Xi— X,

and the needed commutative diagram. Because the maps 7 : Chy, ;. (X;) = Chy (X)) are
isomorphisms, the maps

((.72/)*9 (gi+1)*nj+1) : Ch ]{;(X/ 1) @Chk/k (Xit1) = Ch* k(X/)

are surjective (for ¢ = r, the map (j))* is surjective) and [X/ ] = (git1)« [X,H] €
Chk/k(X) Finally, because [X;| = (g,)«|X;] € Ch} /k(XZ 1), we obtain that [X]] =
(9:) [X | € Chy /k( 1) O

In the next key statement, applying the above result repeatedly, we will deform a given
chain of codimension 1 regular embeddings keeping the classes of all of the subvarieties
(of the chain) in Chj,,(X) unchanged but making the image of Chy, , (X;) (the smallest
subvariety) in Chj, / k(X ) a submodule generated by monomials in the first Chern classes of
normal bundles of the (original) chain. After that, to make X, anisotropic, it will remain
only to eliminate the mentioned monomials numerically.

Let | = (lo, ..., 1) be a vector of nonnegative integers. We say that 1is i- good if there
exists an i +1< s <7+1 such that I >0 for i+1< k< s, and [, =0, for k> s. Any
i-good vector is (7 + 1)-good and every vector is r-good, so we get a filtration.

Statement 6.10. Let X, 7 X1 ]'—>1 E23 X A Xo be regular embeddings of codi-

mension 1 of smooth connected varieties. Then over some f-g. purely transcendental
extension there emsts a blow-up in n- amsotropzc centers XO — Xy and a similar sequence
]7‘ 1

of embeddings X, 25> X,_1 "5 ... E) X, B Xo, where [X] [X,| € Ch} /k(XO) and the
image of the restriction [ Chk/k(Xj) — Chk/k(Xr) as a Chy  (Xo) = Chk/k(Xo) -module
is generated by monomials ol = [T— cii(Ni), for j-good f, where N; = Nf(ic)}i—l , and the
image of the map (o)l Ch}‘;/k(f(j) — Ch’,’;?,:(j(o) as a Chy , (Xo)-module is generated
by elements c'-[X,] = ]_[: 2cii(N-) -|X,|, where N; = Nx,cx,_ and? runs over all j-
good wvectors (here f; : X — Xz is the embedding). In partlcular the zmage of (fo)« :
9hz/k(f(r) — Chf/']:(Xo) as a Ch} 1/ (Xo)-module is generated by elements ct-[X,], where
I runs through all vectors.

Proof. Let us denote the original sequence as X Ei3 X0, J&)I ig) X0 X0 Either X?
is m-anisotropic, in which case there is nothing to prove, or we can produce a diagram as in

Statement 6.9. We can iterate this process as long as the variety X" is not n-anisotropic
and obtain diagrams
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~ ~ L o~ jm j
m T m m r m
X Xm, Xm, 2y 2 X7 7
J{ﬂm Tl Ly l”{n
er Jr—1 Jr—2 J N
m m m m m
X, X" X"y X/ X5

These induce maps on isotropic Chow groups:

m+1 m+l m+1 m+

Chy, p(XmHy Chk/k(X'”“) < Chk/k(X’”“) =L Chk/k(X"'“) o Chy , (Xg™H)
s o3’ m of' m
k(Xm ~ Chk/k 1) ~ Chk/k Xy)=— ... ~—— Chl*g/k(Xl ) . Chlt/k(XO

where ! = (51)*, B = (g)).(x/71)* and -maps shift the codimension by (+1). The maps
(@l Bl,1) : Chy /k( _1) ®&Chy (X, L Ch}kc/k(Xil)

are surjective. Either at some stage we will get an n-anisotropic X;" , in which case we
are done, or we can iterate the process ¢ = dim(X)+1 times. Set X; = X!, etc. Then
Chy, / k(f(i) is generated by the elements of the form w(z), where w is a composition of as
and Bs and x € Chz/k(Xo). Here we are using the fact that the number of 8s in such a
composition cannot be more than dim(X;) (because each ,3 increases the codimension by
1), so the chain has to start with X,. We also have maps yz (7 )+ and 6l (nl b, (gl)*

fitting commutative diagrams (recall that (")* and (™). are 1somorphlsms)

/k(Xm“)LH,Ch (XY and Chy ), (Xm+1)£0h L (XY
ﬂmly - ] |
Ol (X ) — 1 Ol (X7 b (X75) = Ol (X7

Note that

m+1 m+1(u)

,an+18;n+1(u) =UuU-C (NXm_)XnH»l) =UuU-C (NX771+1CXm+1) = and

S7HB (0) = v ex(Ngm_, xmp1) = v ea(Nxpexp,) = "y (v).

Using these relations, one can reduce w(x) to the form 6(z), where 6 is a combination of
a; 75 and Y, 7s. The restriction of such an element to Ch} k/k (X,9) is f§(z) times a monomial

in ¢ (NXquq ) = cl(N )s, where each factor cl(N) corresponds to a loop Ol y in 6.
Thus, the image f]* : /k(X ) — Ch} /k(X) as a Chk/k(Xo) -module is generated by

monomials in ¢; (Ni)s. Because such a monomial corresponds to a closed path from qu
to itself, these will be exactly j-good monomials. In addition, we need to observe that
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a (Nl) =ci (N % c Xo) is the restriction of a class from )A(O. Finally, from the same relations,
we get that (f5).¢" =y ...y 0¢" =y ...y0c" = ¢™-[X,]. Hence, the image of (fo).(f;)*
Chk/k (X ) — Chj;/k (Xo) as a Chk/,C (Xo)-module is generated by elements el [X], where

I runs over all j-good vectors. O

With the previous result in hand we have a practical tool ensuring the anisotropy of
Chow group elements.
Corollary 6.11. Let X, J—T> X1 st £> X 2) Xo be reqular embeddings of co-
dimension 1 of smooth connected varieties with N; = Nx,cx,_, - Suppose that ct [ Xr] A
on Xy, for all monomials in c1(N;)s, i = 2. Then, over some f.g. purely transcendental

extension, [X,| =0 € Chy ; (Xo).

Proof. By Statement 6.10, over some f.g. purely transcendental extension of k, there

PO
ex1sts a blow—up with m-anisotropic centers 7 : X > X and a sequence X i X5

B )A(l Xo of regular embeddings of smooth connected projective varieties, such
that [Xr] = [X,] € Chy, k(XO) = Chy, ), (Xo) and the image of the map (fo). : Chk/k X)) -

*l/k(f(o) as a module over ChZ/k(Xo) is generated by cz~[XT], for all r-good (=all) f,

where fj : X — XO Because all of these classes are '~ 0 on XO, the zero-dimensional
component of our image is zero. This means that X, is anisotropic and so [XT] =0¢

In the case r =2, we get the following.

Corollary 6.12. Let S C X be a regular embedding of codimension 2 of smooth connected

projective varieties. Suppose that c]"(Ngcx) - [S] "0 on X, for any m > 0. Then, over
some f.g. purely transcendental extension, [S]=0 € Chk/k(X).

Proof. By blowing X at S we may assume that S is contained in a smooth connected
divisor Z. Note that the ‘new’ characteristic classes of S are pull-backs of the ‘old’ ones
and so are numerically trivial as well. We obtain the triple S — Z — X. Our statement
now is a particular case of Corollary 6.11, where it remains to observe that ¢;(Ngcx) =
¢1(Nscz)+ c1(Nzcx), where the second summand is defined on X. O
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