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Abstract Standard results from non-abelian cohomology theory specialize to a theory of torsors and
stacks for cosimplicial groupoids. The space of global sections of the stack completion of a cosimplicial

groupoid G is weakly equivalent to the Bousfield–Kan total complex of BG for all cosimplicial groupoids
G. The k-invariants for the Postnikov tower of a cosimplicial space X are naturally elements of stack

cohomology for the stack associated to the fundamental groupoid π(X) of X . Cocycle-theoretic ideas and

techniques are used throughout the paper.
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Introduction

This paper is an exposition of the basic homotopy theory of cosimplicial spaces, from a

point of view that is informed by sheaf-theoretic homotopy theory.

This discussion interpolates ideas associated with the injective model structure for

cosimplicial spaces with classical results of Bousfield and Kan. The injective model

structure for cosimplicial spaces is a special case of the injective model structure for

all small diagrams of simplicial sets I → sSet which are defined on a fixed index category

I , and this in turn is a special case of the injective model structure for simplicial sheaves
(and presheaves) on a small Grothendieck site.

We effectively lose nothing by working within the injective structure for cosimplicial

spaces, as it has the same weak equivalences as the Bousfield–Kan model structure. At

the same time, interesting phenomena arise from the injective structure which correspond

to well-studied features of the homotopy theory of simplicial sheaves.

In particular, the injective model structure creates an attractive theory of torsors and

stacks for cosimplicial groupoids which is displayed in the second section of this paper. As

in local homotopy theory, the category of cosimplicial groupoids has a model structure
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which is induced from the injective structure on cosimplicial spaces, for which the fibrant

object associated to a cosimplicial groupoid H is its stack completion St(H). The stack

completion may be described in global sections by torsors, suitably defined, and the link

between torsors and stacks is achieved by using cocycles. The use of cocycle theory is a

recurring theme of this paper.

There is a minor surprise: while the cosimplicial space BG associated to a cosimplicial

groupoid G might not be Bousfield–Kan fibrant, any weak equivalence G → H induces a

weak equivalence of the associated Bousfield–Kan total complexes. This is a consequence

of Theorem 12 (or Corollary 13) below, which says that the total complex Tot(BG) and

the classifying space B(G− tors) of the groupoid of G-torsors have the same homotopy

type.

The set of isomorphism classes of G-torsors, or equivalently the set of path components

of the groupoid G− tors, coincides with the set of morphisms [∗, BG] in the homotopy

category of cosimplicial spaces, just as in sheaf theory.

The rest of the paper (especially §4) is taken up with an analysis of Postnikov towers

and k-invariants.

The Postnikov tower of a cosimplicial space X is used to construct an analogue of

the cohomological descent spectral sequence for the homotopy inverse limit of X , as one

would expect [6], modulo the catch that X has to have a non-trivial cocycle for this

approach to say anything at all. In fact, one can prove easily (Lemma 6) that X has a

non-empty homotopy inverse limit if and only if there is a cocycle

∗
'
←− U → X.

There are injective fibrant cosimplicial spaces which do not have cocycles; see Example 5.

To analyse the Postnikov tower of a cosimplicial space X away from the cocycles of X ,

a different method is required.

The k-invariant of the standard fibration PnY → Pn−1Y for a simply connected Kan

complex Y can be described as the composite

Pn−1Y → Pn−1Y/PnY → Pn+1(Pn−1Y/PnY ) =: ZnY,

for n > 2, and ZnY has a functorial base point. It follows (Lemma 23) that, for any

diagram of simply connected Kan complexes X , there is a weak equivalence of diagrams

Zn X ' K (Hn(Zn X), n+ 1).

The resulting fibre homotopy sequence

Pn X → Pn−1 X → Zn X

specializes to a fibre sequence of diagrams which is indexed by the stack completion

of the fundamental groupoid π(X). The homotopy Cartesian square which is given by

Theorem 26 is the result of applying a homotopy colimit functor to that sequence. From

this point of view, the k-invariants of X are elements of stack cohomology groups that

are associated to the fundamental groupoid π(X).
There is nothing special about cosimplicial spaces in the k-invariant construction; that

same construction applies to all diagram-theoretic homotopy types.
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1. The injective model structure

Suppose that 1 is the category of finite ordinal numbers n = {0, 1, . . . , n}, n > 0, and all

order-preserving functions between them.

Write sSet1 for the category of cosimplicial spaces, meaning functors

X : 1→ sSet

taking values in simplicial sets, and their natural transformations. It is standard practice

to write Xn
= X (n) for n ∈ 1.

The injective model structure on the category of cosimplicial spaces has weak

equivalences and cofibrations defined sectionwise1: a map X → Y is a weak equivalence

(respectively, cofibration) if and only if all maps Xn
→ Y n are weak equivalences

(respectively, cofibrations) of simplicial sets. The injective fibrations are defined by a

right lifting property with respect to trivial cofibrations.

The weak equivalences coincide with the weak equivalences of the Bousfield–Kan

model structure on cosimplicial spaces [1]. A Bousfield–Kan cofibration is a sectionwise

cofibration which induces an isomorphism in maximal augmentations. Explicitly, the

maximal augmentation X−1 of a cosimplicial set is the simplicial set which is defined by

the equalizer diagram

X−1 // X0
d0
//

d1
// X1

Thus, a Bousfield–Kan cofibration is a cofibration A→ B as defined above, such that

the map A−1
→ B−1 is an isomorphism.

It follows that every injective fibration is a Bousfield–Kan fibration.

We also have the following.

Lemma 1. There is a natural isomorphism

lim
←−

n
Xn ∼=
−→ X−1

for cosimplicial sets (hence for cosimplicial spaces) X .

The proof of Lemma 1 is elementary.

The simplicial set Tot(Y ) is usually defined [1] for a Bousfield–Kan fibrant cosimplicial

space Y by

Tot(Y ) = hom(1, Y ),

where 1 is the cosimplicial space n 7→ 1n and hom(1, Y ) is the usual diagram-theoretic

function complex.

In general, for cosimplicial spaces X and Y , the function complex hom(X, Y ) is the

simplicial set whose n-simplices are the cosimplicial space maps

X ×1n
→ Y.

1The term “sectionwise” is commonly used in algebraic geometry. Homotopy theorists more often use
“objectwise” or “pointwise” to describe the same concept.
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This function complex construction defines a closed simplicial model structure for both

the injective model structure and the Bousfield–Kan model structure on cosimplicial

spaces.

The notation ∗ is used for the terminal object in cosimplicial spaces: it is the constant

diagram on the one-point simplicial set. The cosimplicial space 1 is cofibrant for the

Bousfield–Kan model structure, and it is a “fat point” in the sense that the canonical

map 1→ ∗ is a weak equivalence.

It is now standard to say (see [7], for example) that the homotopy inverse limit

holim
←−−−

n Xn of a cosimplicial space X is defined by taking an injective fibrant model

j : X → Z (a weak equivalence with Z injective fibrant), and then setting

holim
←−−−

n Xn
= lim
←−

n Zn
= hom(∗, Z).

In this sense, the homotopy inverse limit is a derived inverse limit.

The injective model structure on cosimplicial spaces is cofibrantly generated, so one can

make a natural choice of injective fibrant model. The homotopy inverse limit construction

just described is therefore functorial in cosimplicial spaces X .

Lemma 2. There is a natural weak equivalence

Tot(Y ) ' holim
←−−−

n Y n

for Bousfield–Kan fibrant objects Y .

Proof. Every injective fibrant cosimplicial space is Bousfield–Kan fibrant.

The cosimplicial space 1 is cofibrant for the Bousfield–Kan structure, so any weak

equivalence Y → Y ′ of Bousfield–Kan fibrant objects induces a weak equivalence

hom(1, Y )→ hom(1, Y ′).

Thus, if j : Y → Z is an injective fibrant model for a Bousfield–Kan fibrant object Y ,

then the map

hom(1, Y )
j∗
−→ hom(1, Z)

is a weak equivalence. At the same time, the map1→ ∗ is a weak equivalence of cofibrant

objects for the injective model structure on cosimplicial spaces, so the induced map

hom(∗, Z)→ hom(1, Z)

is a weak equivalence since Z is injective fibrant.

I shall now write

Tot(X) = holim
←−−−

n Xn

for all cosimplicial spaces X .

There are natural identifications

π0 Tot(X) = [∗, X ] (1)

and

πn(Tot(X), x) ∼= [Sn, X ]∗ (2)
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with morphisms in the homotopy category (respectively, pointed homotopy category) of

cosimplicial spaces, where x is a cosimplicial space map x : ∗ → X , or a global base point

for X . The pointed simplicial set Sn
= (S1)∧n is identified with a constant cosimplicial

space in formula (2).

Here is another elementary statement.

Lemma 3. Suppose that the cosimplicial space X is a cosimplicial set in the sense that

the simplicial set Xn is discrete on a set of vertices for all n. Then X is injective fibrant.

Proof. If the map i : A→ B is a trivial cofibration of cosimplicial spaces, then the

induced map π0 A→ π0 B is an isomorphism of cosimplicial sets, and any map A→ X
factors uniquely through a map π0 A→ X . Thus, all lifting problems

A //

i
��

π0 A //

∼=

��

X

B // π0 B

==

can be solved.

Remark 4. Lemma 3 is a special case of a basic sheaf-theoretic fact. If F is a sheaf of

sets on a small Grothendieck site C, then the simplicial sheaf K (F, 0) is fibrant for the

injective model structure for simplicial presheaves on C which is defined by the topology;

this statement appears, for example, as Lemma 6.10 of [6], with the same proof.

Suppose that I is a small category. In the I -diagram category sSetI in simplicial sets,

every presheaf is a sheaf, and so every I -diagram of simplicial sets which is simplicially

constant is injective fibrant.

Example 5. There are cosimplicial spaces X for which Tot(X) = ∅. The cosimplicial space

1 has empty inverse limit, and it follows that the cosimplicial space sk01 (vertices of 1n

for all n) has empty inverse limit. This object is an injective fibrant cosimplicial space,

by Lemma 3.

A cocycle (g, f ) from X to Y is a diagram in cosimplicial spaces

X
g
←−
'

V
f
−→ Y,

such that g is a weak equivalence. A morphism of cocycles is a commutative diagram

V
'

ww

��

&&
X Y

V ′
'

ff 88

These are the objects and morphisms of the cocycle category h(X, Y ). It is a basic result

[9] for injective model structures on diagram categories that the assignment which sends
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a cocycle (g, f ) to the morphism f g−1 in the homotopy category defines a bijection

π0 Bh(X, Y )
∼=
−→ [X, Y ]

between path components of the cocycle category h(X, Y ) and the set of morphisms [X, Y ]
of the homotopy category.

We also have the following.

Lemma 6. Suppose that X is a cosimplicial space. Then the space Tot(X) is non-empty if

and only if there is a cocycle

∗
'
←− U → X.

Proof. The space Tot(X) is non-empty if and only if an injective fibrant model j : X → Z
for X has a vertex ∗ → Z . We show that the object Z has a global vertex ∗ → Z if and

only if the cocycle category h(∗, Z) is non-empty. The map j is a weak equivalence, so

the cocycle category h(∗, Z) is non-empty if and only if h(∗, X) is non-empty, since these

two categories have isomorphic sets of path components.

To see that the injective fibrant object Z has a map ∗ → Z if the cocycle category

h(∗, Z) is non-empty, let

∗
'
←− U

f
−→ Z

be a cocycle, and observe that there is a commutative diagram

U
f //

j ��

Z

U ′
f ′

99

where j is a trivial cofibration and U ′ is injective fibrant. The map U ′→ ∗ is a trivial

injective fibration, and therefore has a section ∗ → U ′, and there is a map

∗ → U ′
f ′
−→ Z .

Lemma 7. Suppose that the map p : X → Y is an injective fibration between injective

fibrant cosimplicial spaces. Suppose that Tot(Y ) 6= ∅, and let x ∈ Tot(Y ) be a vertex. Let

F be the fibre over x, so the diagram

F i //

��

X

p
��

∗ x
// Y

is a pullback in cosimplicial spaces. Then Tot(F) 6= ∅ if and only if there is a cocycle

∗
'
←− U

f
−→ X such that the composite cocycle

∗
'
←− U

p f
−→ Y

is in the path component of the cocycle x : ∗ → Y .
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Proof. If Tot(F) 6= ∅ then there is a cocycle

∗
'
←− U

g
−→ F,

and then the diagram

U
ig //

��

X

p
��

∗ x
// Y

commutes.

Conversely, suppose that we are given a map of cocycles

U1 f1

%%

��

Y

U2
f2

99

and write Fi = Ui ×Y X for i = 1, 2. If either of the maps f1 or f2 lifts to X , then one

of the objects Fi has a non-trivial cocycle. It follows that both of the objects Fi have

non-trivial cocycles since the map F1 → F2 is a weak equivalence. Thus, if the cocycle

x : ∗ → Y is in the path component of a cocycle U → Y that lifts to X , then the fibre F
has a non-trivial cocycle.

We finish this section by recalling some basic notation and concepts from [1], which

will be needed later.

Write 16n for the full subcategory of 1 on the ordinal numbers k with k 6 n. Write

Trn X for the composite functor

16n ⊂ 1
X
−→ sSet,

and let Ln be the left adjoint of the truncation functor X 7→ Trn X . The n-skeleton skn Y
of a simplicial set Y can be defined by

skn Y = lim
−→

1k→Y,k6n

1k .

It follows that there is an isomorphism of cosimplicial spaces

skn 1 ∼= LnTrn1.

This relationship between skeleta and truncations is used to show that a map f :
skn−11→ X can be extended to a map f ′ : skn 1→ X if and only if there is a map

(simplex) f ′ : 1n
→ Xn such that the diagram

skn−11
n i //

f ##

1n

f ′

��

s // Mn−11

f∗
��

Xn
s
// Mn−1 X
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commutes. Here, the matching space Mn−1 X is defined by the assignment

Mn−1 X = lim
←−

n→k,k<n

X k ∼= lim
←−

n
s
�k,k<n

X k,

which inverse limit can also be defined by the equalizer

Mn−1 X //
∏

06i6n−1

Xn−1 //
//

∏
06i6 j6n−1

Xn−2

which arises from the cosimplicial identities s j s j
= s j+1si , i 6 j . The canonical map

s : Xn
→ Mn−1 X is induced by the map

(si ) : Xn
→

∏
06i6n−1

Xn−1

that is defined by the codegeneracies si .

2. Torsors

Suppose that H is a cosimplicial groupoid, with source and target maps s, t : Mor(H)→
Ob(H) and identity e : Ob(H)→ Mor(H).

An H -diagram X in sets can be defined in multiple equivalent ways.

(1) The internal definition: an H -diagram X is a cosimplicial set map π : X → Ob(H),
together with an H -action

Mor(H)×s,π X m //

��

X

π

��
Mor(H)

t
// Ob(H)

which respects composition laws and identities of H .

(2) The H -diagram X consists of functors X k
: H k
→ Set and natural transformations

hθ : Xm
→ Xnθ for each θ : m→ n, such that the usual compatibility conditions

are satisfied.

The compatibility conditions amount to the following: the transformation h1
associated to an identity morphism is the identity, and if one is given composable

ordinal number maps

m θ
−→ n

γ
−→ k

then the diagram of natural transformations

Xm hθ //

hγ θ
��

Xnθ

hγ θ
��

X k(γ θ)
=
// (X kγ )θ

commutes.
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(3) Write E1H for the Grothendieck construction of the cosimplicial diagram of

groupoids H . The category E1H has as objects all pairs (n, x) such that n is

an ordinal number and x is an object of the groupoid Hn . A morphism (γ, f ) :
(n, x)→ (m, y) of E1H consists of an ordinal number morphism γ : n→ m and a

morphism f : γ (x)→ y of the groupoid Hm . An H -diagram X in sets is a set-valued

functor X : E1H → Set.

In the internal functor description (1), the elements of Mor(H)n ×s,t Xn over an object

i of Hn are pairs (α, x) such that α : i → j is a morphism of Hn and x is a member of

the fibre Xn(i) over i of the map Xn
→ Ob(Hn). Then m(α, x) = α∗(x) ∈ X ( j) defines

the corresponding functor Xn
: Hn

→ Set in description (2). The transformations hθ :
Xm(i)→ Xn(θ(i)) in description (2) correspond to the functions θ : Xm

→ Xn in the

commutative diagrams

Xm θ //

π

��

Xn

π

��
Ob(Hm)

θ
// Ob(Hn)

(3)

by restriction to fibres.

Diagram (3) is the simplicial degree-0 part of the commutative diagram

holim
−−−→

Hm Xm θ //

��

holim
−−−→

Hn Xn

��
B Hm

θ
// B Hn

of simplicial set maps which arises from description (2). The respective homotopy colimits

define a cosimplicial space holim
−−−→

H X and a canonical cosimplicial space map holim
−−−→

H X →
B H .

The homotopy colimit holim
−−−→

Hn Xn is the standard Bousfield–Kan homotopy colimit. It

is the nerve B(EHn Xn) of the translation category EHn Xn for the functor Xn
: Hn

→ Set.
The objects of this category are pairs (i, x) with i ∈ Ob(Hn) and x ∈ Xn(i), and its

morphisms (i, x)→ ( j, y) consist of pairs (α, f ) such that α : i → j is a morphism of Hn

and f : Xn(α)(x)→ y is a function.

The corresponding internally defined functor X → Ob(H) is the part of the simplicial

cosimplicial set map holim
−−−→

H X → B H in simplicial degree 0, the identities are defined by

the degeneracy

s0 : X → (holim
−−−→

H X)1 = Mor(H)×s,π X,

and the multiplication map

m : Mor(H)×s,π X → X

is the face map d0. The requirement that the multiplication map for the internal

functor respects laws of composition amounts to the simplicial identity d0d1 = d0d0, and

multiplication respects identities by the relation d1s0 = d1s1 = 1.
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An H -diagram X in sets is said to be an H -torsor if the cosimplicial space holim
−−−→

H X
is weakly equivalent to the terminal object ∗. A morphism of H -torsors f : X → Y is a

natural transformation

X
f //

π
��

Y

π
��

Ob(H)

in the usual sense.

The diagram of cosimplicial spaces

X //

��

holim
−−−→

H X

��
Ob(H) // B H

is sectionwise homotopy Cartesian for each H -diagram X , by the technology around

Quillen’s Theorem B; see [2, IV.5.7]. It follows that, if f : X → Y is a map of H -torsors,

then the map f : X → Y of cosimplicial sets is a weak equivalence of cosimplicial

spaces, and is therefore an isomorphism. The category H − tors of H -torsors and natural

transformations between them therefore forms a groupoid.

The functor

holim
−−−→

H : H − tors→ h(∗, B H) (4)

takes an H -torsor X to its canonical cocycle

∗
'
←− holim
−−−→

H X → B H

in cosimplicial spaces. The canonical cocycle functor has a left adjoint

pb : h(∗, B H)→ H − tors (5)

which is defined in sections by taking path components of pullbacks along the canonical

maps B(Hn/x)→ B Hn (see [8], [10, Lem 9.16]), and we have the following.

Theorem 8. There are induced isomorphisms

π0(H − tors) ∼= π0h(∗, B H) ∼= [∗, B H ].

Again, [∗, B H ] denotes the set of morphisms in the homotopy category of cosimplicial

spaces, and is also isomorphic to the set π0 Tot(B H).
Theorem 8 is a special case of a principle which identifies non-abelian cohomology

with isomorphism classes of torsors. The torsors that are considered here are torsors for

groupoids; this concept is a generalization of torsors for groups, or classical principal

homogeneous spaces.

Remark 9. Every torsor X for a cosimplicial groupoid H consists of functors Xn
: Hn

→

Set, which are themselves torsors in the sense that the simplicial set maps holim
−−−→

Hn Xn
→ ∗
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are weak equivalences. The simplicial set holim
−−−→

Hn Xn is the nerve of the translation

groupoid EHn Xn which has objects consisting of pairs (x, v) with x ∈ Xn(v). The set

of objects of EHn Xn is non-empty, and so there is a natural transformation

Hn( , v)
x
−→ Xn

of functors defined on the groupoid Hn . This natural transformation is a map of

Hn-torsors, and is therefore an isomorphism. This transformation is a trivialization of

the torsor Xn in the geometric sense.

The collection of H -torsors therefore consists of functors X → Ob(H) such that X has

cardinality bounded above by |Mor(H)|. We can thus assume that the groupoid H − tors
is a small groupoid, and so the nerve B(H − tors) is a simplicial set.

There is a way [10, Proposition 6.7] to replace the cocycle category h(∗, B H) by a small

category up to “weak equivalence”, but we shall not need this here.

Example 10. There is a cosimplicial groupoid H for which the associated cosimplicial

space B H is not Bousfield–Kan fibrant.

To see this, observe first of all that, if f : K → H is a morphism between contractible

groupoids, then the induced map f : BK → B H is a fibration if and only if f is surjective

on objects.

If H is a cosimplicial contractible groupoid, then all of the groupoids Mn H are

contractible: if (x0, . . . , xn) and (y0, . . . , yn) are objects of Mn H , then there is a

unique morphism fi : xi → yi in Hn−1, and these morphisms fi are consistent with the

cosimplicial identities because they specialize to unique morphisms of Hn−2 under the

codegeneracy maps. It follows that the maps

s : B Hn
→ Mn−1 B H = B(Mn−1 H)

are fibrations if and only if the functors s : Hn
→ Mn−1 H are surjective on objects.

There are cosimplicial sets X for which the functions s : Xn
→ Mn−1 X are not surjective

in general. In the cosimplicial category 1, the category M11 ∼= 1× 1 has four objects, so

the functor

s : 2→ M11

cannot be surjective on objects.

Suppose that X is a cosimplicial set, and let C(X) be the degreewise contractible

groupoid on X . Then the groupoid C(X)n has the set Xn as objects, and has exactly one

morphism between any two elements of Xn . The groupoid MnC(X) is the contractible

groupoid on the set Mn X for all n, and so there are cosimplicial sets X for which the

functors s : C(X)n → Mn−1C(X) are not all surjective on objects.

The cosimplicial space B H for a cosimplicial groupoid H is not Bousfield–Kan fibrant

in general, but we can form the function complex hom(1, B H). This object is the nerve of

a groupoid H1 whose objects are all cosimplicial functors 1→ H and whose morphisms

are the natural transformations of these functors.
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Lemma 11. Suppose that U is a cosimplicial groupoid such that the map BU → ∗ is

a weak equivalence of cosimplicial spaces. Then the function complex hom(1, BU ) is a

contractible space.

Proof. One shows that there is an isomorphism of groupoids

U1 ∼= U 0,

while U 0 is a contractible groupoid by assumption.

The groupoid U 0 is non-empty. Pick a ∈ U 0, and let it define a functor 0 a
−→ U 0. The

image of the vertex i ∈ n in U n is determined by the composite

0 a
−→ U 0 i∗

−→ U n,

where i : 0→ n is the ordinal number morphism which picks out the vertex i . A functor a :
n→ U n is defined by sending the morphism i 6 j to the unique morphism i∗(a)→ j∗(a)
of the groupoid U n . The functors a : n→ U n , n > 0, define a map 1→ U of cosimplicial

categories. Conversely, a morphism 1→ U is completely determined by the object 0→
U 0 in cosimplicial degree 0.

The groupoids (U n)1 of morphisms in U n are contractible, so a morphism of the

groupoid U1 is completely determined by the part in cosimplicial degree 0.

Recall that a map G → G ′ of groupoids is a weak equivalence if and only if the induced

map BG → BG ′ of classifying spaces is a weak equivalence.

There is a model structure on the category Gpd1 of the cosimplicial groupoids for which

the weak equivalences (respectively, fibrations) are those maps f : G → H for which

the induced maps BG → B H are weak equivalences (respectively, injective fibrations)

of cosimplicial spaces. This is a special case of general results about sheaves and/or

presheaves of groupoids, for which the usual references are [3, 11].

This model structure has an associated definition of cocycles and cocycle categories

h(G, H) in cosimplicial groupoids: a cocycle in this category is a diagram

G
g
←−
'

K → H

in cosimplicial groupoids for which the map g is a weak equivalence.

A cocycle

∗
'
←− V → B H

in cosimplicial spaces defines a cocycle

∗
'
←− π(V )→ H

in cosimplicial groupoids, by an adjointness argument, where π(V ) is the result of

applying the fundamental groupoid functor in all cosimplicial degrees. The fundamental

groupoid functor therefore defines a functor of cocycle categories

π : h(∗, BG)→ h(∗,G).

This functor has a right adjoint

B : h(∗,G)→ h(∗, BG)
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which sends a cocycle

∗
'
←− H → G

in cosimplicial groupoids to the cocycle

∗
'
←− B H → BG

in cosimplicial spaces. It follows that there are isomorphisms

π0h(∗,G) ∼= π0h(∗, BG) ∼= [∗, BG].

Make a fixed choice of morphism xU : 1→ U for all cosimplicial groupoids U such

that U → ∗ is a weak equivalence, as in the proof of Lemma 11.

Suppose that we are given a cocycle

∗
'
←− U

f
−→ H

in cosimplicial groupoids. We have our fixed choice of morphism xU : 1→ U of

cosimplicial categories. Write aU for the composite f · xU .

Suppose that g : U → V is a morphism of cocycles, and consider the diagram

U
g //

��

V

��
1

xU

EE

aU
// H 1

xV

YY

aV
oo

Then V1 is a contractible groupoid by Lemma 11, and so there is a unique natural

transformation g · xU → xV , which induces a morphism g∗ : aU → aV in H1.

The assignment g 7→ g∗ is functorial. We have therefore defined a functor

s : h(∗, H)→ H1.

The functor

holim
−−−→

H : H − tors→ h(∗, B H)

factors through (and is defined by) a functor

EH : H − tors→ h(∗, H),

where (EH X)n for a torsor X is the translation groupoid which is associated to the functor

Xn
: Hn

→ Set.

Theorem 12. The composite functor

H − tors EH
−−→ h(∗, H)

s
−→ H1 (6)

is a weak equivalence of groupoids.
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Proof. Suppose that X is an H -torsor. Following the choices made above, write x = xEH X
and a = aEH X . Consider the functor x : n→ EHn Xn in cosimplicial degree n. Then, for

each i ∈ n, x(i) = (a(i), xi ) with xi ∈ X (a(i)), and there is an induced isomorphism of

Hn-torsors

Hn( , a(i))
xi
−→
∼=

Xn .

If i 6 j , then the diagram

Hn( , a(i))
xi

))
α∗

��

Xn

Hn( , a( j))
x j

55

commutes, where α : a(i)→ a( j) is defined by the functor a.

Suppose that g : X → Y is a morphism of H -torsors. Then all diagrams

Hn( , a(i))
xi

∼=

//

s(g∗)
��

Xn

g
��

Hn( , b(i)) yi

∼= // Y n

commute, where y = xEH Y and b = aEH Y . It follows that the morphism of torsors g
is completely determined by the morphism s(g∗) of H1. The composite functor (6) is

therefore fully faithful.

If τ : 1→ H is an object of H1, then τ is a cocycle, and there is a cocycle morphism

1
η //

τ
$$

EH pb(τ )

��
H

for an H -torsor pb(τ ) which arises from the adjunction of (4) and (5). If x = xEH pb(τ ) :

1→ EH pb(τ ) with image a : 1→ H , then there is a unique morphism η→ x in the

trivial groupoid (EH pb(τ ))1, whose image is a morphism τ → a of H1.

Corollary 13. The composite functor (6) induces a weak equivalence

B(H − tors) '−→ B(H1) = hom(1, B H).

The functor

H 7→ B(H − tors)

takes weak equivalences of cosimplicial groupoids to weak equivalences of spaces, so we

also have the following.

Corollary 14. Any weak equivalence f : G → H of cosimplicial groupoids induces a weak

equivalence

f∗ : hom(1, BG)→ hom(1, B H).
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We say that a cosimplicial groupoid G is a stack if the cosimplicial space BG is injective

fibrant. The injective model structure for cosimplicial groupoids is cofibrantly generated,

so there is a functorial fibrant model j : G → St (G) for a cosimplicial groupoid G, such

that the map j is a trivial cofibration and St (G) is injective fibrant. This fibrant model

St (G) is a functorial stack completion for G. More generally, a weak equivalence G → H
of cosimplicial groupoids such that H is a stack is called a stack completion of G.

If G is a cosimplicial groupoid and j : G → H is a stack completion of G, then

Corollary 14 implies that the induced map

hom(1, BG)
j∗
−→ hom(1, B H)

is a weak equivalence. At the same time, the weak equivalence 1→ ∗ induces a weak

equivalence

hom(∗, B H)→ hom(1, B H),

since B H is injective fibrant. Thus, in sheaf-theoretic language, the groupoid G1 is

equivalent to the groupoid of global sections of the stack completion of the cosimplicial

groupoid G.

3. Abelian cohomology

The results of this section appear in [1] for the most part, and are essentially well known.

They are included here for the sake of completeness, and the overall description is from

a sheaf-theoretic point of view.

Lemma 15. Suppose that A is a cosimplicial abelian group. Then there is an abelian group

homomorphism j : Mn−1 A→ An such that the composite s · j is the identity on Mn−1 A.

The homomorphism j is natural in cosimplicial abelian groups A.

Proof. Suppose that (0, . . . , 0, ai , . . . , an−1) is an element of Mn−1 A. Then s j ai = 0 for

j < i , and we have

sd i+1ai = (s0d i+1ai , . . . , si−1d i+1ai , ai , ai , . . . )

= (d i s0ai , . . . , d i si−1ai , ai , ai , . . . )

= (0, . . . , 0, ai , ai , . . . ).

It follows that

(0, . . . , 0, ai , . . . , an)− sd i+1ai = (0, . . . , 0, ai+1− ai , . . . ),

and we construct j (a0, . . . an) inductively by setting

j (0, . . . , 0, ai , . . . , an) = d i+1ai + j (0, . . . , 0, ai+1− ai , . . . ).

Corollary 16. Suppose that f : A→ B is a map of cosimplicial objects in simplicial

abelian groups such that each morphism f : An
→ Bn is a fibration of simplicial abelian

groups. Then f is a Bousfield–Kan fibration.
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Proof. We use the Dold–Kan correspondence [2, III.2.3], [2, III.2.11] to suppose that

p : A→ B is a morphism of cosimplicial objects in chain complexes such that each chain

map f : An
→ Bn is surjective in non-zero degrees.

Suppose that m > 0, and consider the map

An+1
m → Bn+1

m ×Mn Bm Mn Am .

We want to show that this homomorphism is surjective.

For this, it suffices to show that the indicated map p∗ in the comparison of exact

sequences

0 // K1 //

p∗

��

An+1
m

s //

p
��

Mn Am //

p

��

0

0 // K2 // Bn+1
m s

// Mn Bm // 0

is surjective. This map p∗ is a direct summand of the surjective map p : An+1
m → Bn+1

m
by Lemma 15, and is therefore surjective.

Corollary 17. Suppose that A is a cosimplicial object in simplicial abelian groups. Then

there are isomorphisms

[∗, A] ∼= π0hom(1, A) ∼= πch(NZ1, N A),

where N is the normalized chains functor and πch( , ) is the group of chain homotopy

classes of maps in cosimplicial chain complexes.

Proof. The cosimplicial object A in simplicial abelian groups is Bousfield–Kan fibrant

by Corollary 16, and so the group of homotopy classes of maps 1→ A coincides with

the group of morphisms [1, A] ∼= [∗, A] in the homotopy category of cosimplicial spaces.

Chain homotopy is defined by a natural path object for chain complexes, which

therefore defines a path object for cosimplicial objects in simplicial abelian groups

through the Dold–Kan correspondence, again by Corollary 16. It follows that the

morphisms 1→ A are homotopic if and only if the corresponding morphisms NZ1→
N A are chain homotopic.

Now suppose that A is a cosimplicial abelian group. For k 6 n− 1, let Mn−1
k A be the

set of tuples (a0, . . . , ak) with ai ∈ An−1 and si a j = s j−1ai for i < j . There is a natural

map s : An
→ Mn−1

k A which is defined by

s(a) = (s0a, s1a, . . . , ska).

This morphism s has a natural splitting and is therefore surjective, as in the proof of

Lemma 15.

Write cNk An for the kernel of the map s : An
→ Mn−1

k A. Then cNk An is the intersection

of the kernels of the si
: An
→ An−1, for 0 6 i 6 k.

The coboundary

δ =

n∑
i=0

(−1)i d i
: An
→ An+1
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induces a morphism cNk An
→ cNk An+1. We therefore have a natural cochain inclusion

cNk A ⊂ A. Write cN A for the intersection of the complexes cNk A in A.

Lemma 18. Suppose that A is a cosimplicial abelian group. Then the cochain complex

map cNk A ⊂ A is a cohomology isomorphism for all k. The inclusion cN A ⊂ A is also a

cohomology isomorphism.

Proof. There are short exact sequences of cochain complexes

0→ cNk+1 An
→ cNk An s∗

−→ Cn
→ 0,

where Cn
= 0 if k > n− 1 and the map s∗ is the map

sk+1
: cNk An

→ cNk An−1

if k < n− 1. In the latter case, the map sk+1 has a section given by dk+2.

Suppose that n > k+ 1, and form the diagram

0 // cNk+1 An //

δ

��

cNk An sk+1
//

δ

��

cNk An−1 //

δ∗

��

0

0 // cNk+1 An+1 // cNk An+1
sk+1

// cNk An // 0

Then

sk+1
(n+1∑

j=0

(−1) j d j
)
(x) =

( n+1∑
j=k+3

(−1) j d j−1sk+1
)
(x)

for x ∈ cNk An , so

δ∗ =

n∑
j=k+2

(−1) j+1d j

for n > k+ 1. The cochain complex C∗ has a contracting homotopy defined by the maps

sk+1 in degrees where it is non-zero.

It follows that all inclusions cNk+1 A ⊂ cNk A are cohomology isomorphisms.

A similar argument shows that the inclusion cN0 A ⊂ A is a cohomology isomorphism.

The quotient complex for this inclusion is isomorphic to the cochain complex

0→ A0 d1
−→ A1 d1

−d2
−−−→ A2 d1

−d2
+d3

−−−−−−→ A3
→ · · · ,

and the quotient map is the map s0 in positive degrees. The contracting homotopy is the

map s1.

Suppose again that A is a cosimplicial abelian group, and form the cosimplicial space

K (A, n), as a cosimplicial object in simplicial abelian groups.

Lemma 19. Suppose that A is a cosimplicial abelian group. Then there is a natural

isomorphism

π0hom(1, K (A, n)) ∼= Hn(A),

where Hn(A) is the nth cohomology group of the cochain complex associated to A.
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Proof. A cosimplicial chain map f : NZ1→ A[−n] is uniquely specified by the chain

complex morphisms

f k
: NZ1k

→ Ak
[−n]

for k > n, which morphisms respect the cosimplicial identities. These cochain complex

morphisms are completely determined by the morphism f n , and in particular the image

f (ιn) ∈ An of the classifying simplex. The requirement that the diagram

NZ1n+1 f n+1
// An+1

[−n]

NZ1n f n
//

d i

OO

s j

��

An
[−n]

d i

OO

s j

��
NZ1n−1

f n−1
=0
// An−1

[−n]

commutes forces f (ιn) ∈ cN An and
∑n+1

i=0 (−1)i d i f (ιn) = 0. Conversely, a cycle z ∈ cN An

completely determines the map f .

Similarly, a cosimplicial chain homotopy s between chain maps f, g : NZ1n
→ A[n] is

defined by the element s(ιn−1) ∈ cN An−1 such that

δs(ιn−1) = f (ιn)− g(ιn)

in cN An .

It follows that there is an isomorphism

πch(NZ1, A[−n]) ∼= Hn(cN A)

which is natural in cosimplicial abelian groups A. There are natural isomorphisms

[∗, K (A, n)] ∼= πch(NZ1, A[−n])

and

Hn(cN A) ∼= Hn(A)

by Corollary 17 and Lemma 18, respectively.

Corollary 20. Suppose that A is a cosimplicial abelian group. Then there are natural

isomorphisms

πkhom(1, K (A, n)) ∼=

 Hn−k(A) if 0 6 k 6 n

0 if k > n.

Suppose that i : A→ J ∗ is an injective resolution of A in the category of cosimplicial

abelian groups, thought of as a morphism of unbounded chain complexes with A
concentrated in chain degree 0. Then there is a induced weak equivalence of cosimplicial

chain complexes

i : A[−n] → Tr(J ∗[−n]),
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where Tr is the good truncation functor in degree 0 (which preserves homology

isomorphisms). Write K (J, n) for the cosimplicial object in simplicial abelian groups

which is given by applying the Dold–Kan correspondence to Tr(J ∗[−n]). Then there is

an induced weak equivalence

i : K (A, n)→ K (J, n).

The weak equivalences i and 1→ ∗ induce isomorphisms

πch(NZ1, A[−n]) ∼= πch(NZ1,Tr(J ∗[−n])) ∼= πch(NZ∗,Tr(J ∗[−n])).

The first of these isomorphisms is a consequence of Corollary 17.

For the latter, a cosimplicial space X defines a bicomplex hom(Xn, J p) with associated

spectral sequence

E p,q
2 = Extq(Hp X, A)⇒ πch(ZX, J ∗[−p− q]) = πch(ZX,Tr(J ∗[−p− q])). (7)

It follows that any weak equivalence X → Y of cosimplicial spaces induces an isomorphism

πch(NZY,Tr(J ∗[−n]))
∼=
−→ πch(NZX,Tr(J ∗[−n]))

for all n.

Remark 21. The ideas of the last few paragraphs, leading to the “universal coefficients”

spectral sequence (7) and the displayed application, are again essentially sheaf theoretic.

The spectral sequence (7) is a special case of a spectral sequence which relates homology

sheaves to cohomology groups for simplicial sheaves and presheaves. Many of these ideas

originated in [4], and the theory is discussed in some detail in [10].

We have, finally, an isomorphism

πch(NZ∗,Tr(J ∗[−n])) ∼= H−n(lim
←−

J ∗) = R lim
←−

n(A),

where R lim
←−

n(A) is the nth derived functor of the inverse limit functor on cosimplicial

abelian groups.

Lemma 19 therefore implies the following.

Lemma 22. There is an isomorphism

Hn(A) ∼= R lim
←−

n(A)

which is natural in cosimplicial abelian groups A.

A cosimplicial abelian group A is the analogue of a sheaf of abelian groups in the

present context, and it is a consequence of Lemma 22 that the groups Hn(A) are the

corresponding sheaf cohomology groups. Sheaf cohomology groups are defined to be the

higher derived functors of global sections, while “global sections” is a different name for

the inverse limit functor.
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4. Postnikov towers

Suppose that

X0
p
←− X1

p
←− X2 ← · · ·

is a tower of sectionwise fibrations of sectionwise fibrant cosimplicial spaces, and let

X = lim
←−n

Xn . Take an injective fibrant model

G X0
q
←− G X1

q
←− G X2 ← · · ·

of the original tower by first taking an injective fibrant model j : X0 → G X0 ( j a trivial

cofibration, G X0 injective fibrant), and then inductively form diagrams

Xn+1
j //

p
��

G Xn+1

q
��

Xn j
// G Xn

such that all maps j are trivial cofibrations and all q are injective fibrations. Then the

diagram of simplicial set maps

Xm
n+1

j //

p

��

G Xm
n+1

q

��
Xm

n j
// G Xm

n

in each cosimplicial degree consists of trivial cofibrations j and Kan fibrations p and q.

The maps j form a weak equivalence of injective fibrant towers in simplicial sets, so the

maps

Xm
= lim
←−

n
Xm

n
j∗
−→ lim
←−

n
G Xm

n

are weak equivalences for all m. It follows that the map

X = lim
←−

n
Xn

j∗
−→ lim
←−

n
G Xn

is a weak equivalence of cosimplicial spaces. The object lim
←−n

G Xn is injective fibrant, so

j∗ is an injective fibrant model of X .

Suppose that X is a cosimplicial Kan complex, and form the Postnikov tower

P1 X
p
←− P2 X

p
←− P3 X

p
←− · · ·

by making a sectionwise construction. Then the canonical map X → lim
←−n

Pn X is a weak

equivalence, and the composite

X
'
−→ lim
←−

n
Pn X

j∗
−→ lim
←−

n
G Pn X
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is an injective fibrant model of X . Write

G X = lim
←−

n
G Pn X.

Suppose, more generally, that I is a small category. It is well known (see also Remark 4)

that the category of I -diagrams X : I → sSet, with natural transformations, has an

injective model structure for which the weak equivalences and cofibrations are defined

sectionwise, while the injective fibrations are defined by a right lifting property. The

injective model structure on cosimplicial spaces is a special case of this object. Again,

the terminal object for the I -diagram category is denoted by ∗, and we have cocycles

∗
'
←− U → X

and a cocycle category h(∗, X) for an I -diagram X . It is again a consequence of general

results [9] that there is a bijection

π0h(∗, X) ∼= [∗, X ]

relating path components in the cocycle category and morphisms in the homotopy

category for the injective model structure on sSetI .

We also have the following.

Lemma 23. Suppose that the I -diagram F is a diagram of Eilenberg–Mac Lane spaces in

the sense that there are weak equivalences F(i) ' K (B(i), n) for all objects i of I , and

for some fixed n > 2. Suppose that F has a cocycle

∗
'
←− U → F

in I -diagrams. Then F is weakly equivalent to the I -diagram K (Hn F, n).

Proof. Take a factorization

U i //

  

V

p
��

F

where i is a cofibration and p is a trivial injective fibration. There are maps

F
p
←− V

h
−→ ZV → ZV/ZU → Pn(ZV/ZU )

'
←− K (Hn, n),

where h is the Hurewicz map and Pn is the nth Postnikov section functor in simplicial

abelian groups. The composite

V
h
−→ ZV → ZV/ZU → Pn(ZV/ZU )

is a sectionwise weak equivalence by the Hurewicz theorem. The I -diagram Hn in abelian

groups can be identified with the integral homology Hn F of the diagram F .
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Corollary 24. Suppose that F is a diagram of cosimplicial Eilenberg–Mac Lane spaces in

the sense of Lemma 23. Then F is weakly equivalent in the I -diagram category to K (A, n)
for some cosimplicial abelian group A if and only if F has a cocycle.

Proof. The object K (A, n) has a global base point ∗ → K (A, n) (and hence a cocycle)

which is defined by the element 0. Thus, if F is weakly equivalent to K (A, n), then F has

a cocycle. The converse assertion is proved in Lemma 23.

Suppose that the cosimplicial space X has a cocycle U → X , or equivalently that there

is a global point ∗ → G X for G X . Let x : ∗ → G X be a choice of base point, and write

x : ∗ → G Pn X for its images in the objects G Pn X . Define the cosimplicial space Fn by

the pullback diagram

Fn //

��

G Pn X

q
��

∗ x
// G Pn−1 X

for n > 2. Then Fn is injective fibrant, and there is a pullback

hom(∗, Fn) //

��

hom(∗,G Pn X)

q∗
��

∗ x
// hom(∗,G Pn−1 X)

The space hom(∗, Fn) is non-empty, and it follows from Lemma 23 that there is a weak

equivalence

Fn
'
−→ K (πn(G X, x), n).

We know how to compute the homotopy groups of the space hom(∗, Fn) on account of

Corollary 20 in the presence of a cocycle for X . The spectral sequence for the tower of

fibrations

hom(∗,G P1 X)
q∗
←− hom(∗,G P2 X)

q∗
←− hom(∗,G P3 X)← · · ·

is a special case of the descent spectral sequence for a simplicial presheaf, with E1-terms

given by sheaf cohomology groups [5]. Thomason’s reindexing trick [12, 5.54] converts

these E1-terms to E2-terms of the form appearing in the Bousfield–Kan spectral sequence

for the tower of fibrations {Tots(G X)}; see also [6].

Remark 25. Suppose that Y is a simply connected Kan complex, with Postnikov tower

{PnY }. Form the natural cofibre sequence

PnY → Pn−1Y → Pn−1Y/PnY.

By this, we mean that we take a functorial replacement of the fibration p : PnY → Pn−1Y
by a cofibration PnY → An−1Y and then we write Pn−1Y/PnY for the natural fibrant

replacement of the quotient An−1Y/PnY . Then let

Pn−1Y/PnY → Pn+1(PnY/Pn−1Y )
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be the usual fibration to the (n+ 1)th Postnikov section of the homotopy cofibre of p.

Then the composite

Pn−1Y → Pn−1Y/PnY → Pn+1(Pn−1Y/PnY )

is the k-invariant kq of the fibration q, and there is a natural homotopy fibre sequence

PnY
q
−→ Pn−1Y

kq
−→ Pn+1(Pn−1Y/PnY ) (8)

which identifies PnY with the homotopy fibre of kq over the base point of the diagram

Pn+1(Pn−1Y/PnY ) which is defined by the image of PnY .

The fibre sequence (8) is functorial in simply connected Kan complexes Y .

Suppose that H is a cosimplicial groupoid. For the discussion of weak equivalences that

appears below, an H -diagram in simplicial sets is best viewed as a functor Y : E1H →
sSet which is defined on the Grothendieck construction for H .

There are functors Hn
→ E1H which are defined by x 7→ (n, x), and the functors Y n

associated to the functor Y are the composites

Hn
→ E1H

Y
−→ Set.

The spaces holim
−−−→

Hn Y n define a cosimplicial space holim
−−−→

H Y and a canonical map

holim
−−−→

H Y → B H . In this way we define a functor

holim
−−−→

H : sSetE1H
→ sSet1/B H

from the category of E1H diagrams in simplicial sets to the category of cosimplicial

spaces Z → B H over B H . Conversely, starting with a cosimplicial space map X → B H ,

we form the pullbacks

pb(X)x //

��

Xn

��
B(Hn/x) // B Hn

for each object (n, x) of the Grothendieck construction E1H . Then the simplicial sets

pb(X)x define a functor pb(X) : E1H → sSet. The construction is plainly functorial in

objects X → B H , and so we have a functor

pb : sSet1/B H → sSetE1H .

The pullback functor pb is left adjoint to the homotopy colimit functor holim
−−−→

H since H is a

cosimplicial groupoid. The homotopy colimit functor preserves weak equivalences, while

the pullback functor preserves weak equivalences by a Quillen Theorem B argument.

The pullback functor also preserves cofibrations, so the pullback and homotopy colimit

functors form a Quillen adjunction. This adjunction is a Quillen equivalence, since the

counit map ε and unit map η are weak equivalences for all objects in the respective

categories. See also [8, Lemma 18].
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The homotopy colimit functor holim
−−−→

H preserves homotopy Cartesian diagrams, since

it preserves weak equivalences and is the right adjoint part of a Quillen adjunction.

Suppose that X is a cosimplicial Kan complex. There are canonical maps

Pn X
q //

��

Pn−1 X

��
P1 X

j'

��
B H

for n > 2, where H is a stack completion of the fundamental groupoid

π(P1 X) ∼= π(X)

of X . Let j : π(X)→ H also denote the map induced by j : P1 X → B H .

Take x ∈ Hm . There is a morphism α : x → j (y) for some y ∈ π(Xm), and so there is

a weak equivalence

pb(Pn(X))x ' pb(Pn(X))y, (9)

where the latter space is determined by the pullback diagram

pb(Pn X)y //

��

Pn Xm

��
B(π(Xm)/y) // Bπ(Xm)

The weak equivalence (9) is a special case of a weak equivalence

pb(Z)x ' pb(Z)y

which is defined and natural for objects Z → Bπ(X). It follows that the map

q∗ : pb(Pn X)x → pb(Pn−1 X)x

is weakly equivalent to the map

q∗ : pb(Pn X)y → pb(Pn−1 X)y . (10)

The pullback pb(Pn X)y is naturally weakly equivalent to the Postnikov section

Pn pb(X)y of the universal cover pb(X)y of Xm , and the induced fibrations (10) are weakly

equivalent to the fibrations

q : Pn pb(X)y → Pn−1 pb(X)y .

It therefore follows from Remark 25 that there are homotopy fibre sequences of diagrams

pb(Pn X)
q∗
−→ pb(Pn−1 X)

kq
−→ Pn+1(pb(Pn−1 X)/ pb(Pn X)) =: Zn X
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over E1H . The image of pb(Pn X) in Zn X defines a global base point, and so Lemma 23

implies that Zn X is weakly equivalent to K (Hn+1(Zn X), n+ 1) in the E1H -diagram

category.

There is an isomorphism of groups

Hn+1(Zn X)(m, y) ∼= πn(Xm, y)

for each y ∈ Xm . For more general x ∈ Hm there is a non-canonical isomorphism

Hn+1(Zn X)(m, x) ∼= πn(Xm, y)

which is induced by a morphism x → j (y) of Hm .

Taking homotopy colimits preserves homotopy Cartesian squares, and we have proved

the following.

Theorem 26. Suppose that X is a cosimplicial Kan complex, and suppose that n > 2.

Then there is a homotopy Cartesian diagram

Pn X //

q

��

B St(π(X))

��
Pn−1 X

kq∗

// holim
−−−→

H K (Hn(Zn X), n+ 1)

(11)

in cosimplicial spaces, where Zn X = Pn+1(pb(Pn−1 X)/ pb(Pn X)) as a diagram over the

Grothendieck construction E1H of the stack completion H of the fundamental groupoid

π(X).

The k-invariant kq : pb(Pn−1 X)→ K (Hn(Zn X), n+ 1) represents an element of the

stack cohomology group

[pb(Pn−1 X), K (Hn(Zn X), n+ 1)],

where stack cohomology is interpreted to mean abelian group cohomology for diagrams

over the category E1H ; see [8].

The ideas displayed in this section admit substantial generalization. One could, for

example, start with an I -diagram X of Kan complexes, and observe that its Postnikov

tower is defined over the I -diagram π(X) of fundamental groupoids, as well over the

stack completion H , which is an injective fibrant model of π(X). Then one shows that

the comparison q∗ : pb(Pn X)→ pb(Pn−1 X) of associated diagrams on the Grothendieck

construction E I H has the formal properties that we saw in the proof of Theorem 26, so

the sequence

pb(Pn X)
q∗
−→ pb(Pn−1 X)

kq
−→ Pn+1(pb(Pn−1 X)/ pb(Pn X)) =: Zn X

is a homotopy fibre sequence of diagrams, and Zn X is a diagram of Eilenberg–Mac Lane

spaces having a global base point. It follows that there are homotopy Cartesian diagrams

of the form (11) for all such I -diagrams X .
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